
NLDL
#34

NLDL
#34

NLDL 2025 Full Paper Submission #34. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Machine Learning-Based Coastal Terrain Classification in Tropi-
cal Regions Using Multispectral UAV Imaging: A Comparative
Study of Random Forest and SVM Models

Anonymous Full Paper
Submission 34

Abstract001

Advances in various technologies and machine learn-002

ing (ML) are transforming the field of remote sensing.003

This study proposes an ML-centered methodology004

for classifying coastal terrain in tropical coastal re-005

gions using multispectral unmanned aerial vehicle006

(UAV) image inputs. The objective is to identify007

suitable ML algorithms for analyzing multispectral008

images on limited hardware. Multispectral images009

of the study area were collected using a DJI Mavic010

3M UAV in March 2023. K-means clustering was im-011

plemented to assist in coastal terrain identification,012

and the labeled data were used to train pixel-based013

Support Vector Machine (SVM) and Random Forest014

(RF) models utilizing a 5-fold block cross-validation015

scheme. The results showed that the optimized RF016

model outperformed the SVM model across most017

metrics. Despite this, the SVM model showed po-018

tential for live image classification due to its smaller019

size and quick classification speed. Additionally,020

the optimized models effectively classified images021

from areas set as an independent hold-out test set,022

demonstrating the applicability of ML in this type023

of remote sensing problem.024

1 Introduction025

Climate change has significantly impacted coastal026

ecosystems, leading to their degradation through027

rising temperatures, ocean acidification, and urban028

encroachment [1]. Given the importance of these029

ecosystems for biodiversity and biomass production,030

urgent measures are needed to mitigate the effects031

of anthropogenic climate change.032

Traditional environmental assessment methods033

rely on on-site teams to collect data on species pop-034

ulations, soil and water quality, and human settle-035

ments, but these methods are labor-intensive and036

time-consuming. Modern approaches use remote037

sensing technologies like satellite imagery, multi-038

spectral sensors, and LiDAR, allowing for faster039

and more accurate environmental monitoring. Un-040

manned aerial vehicles (UAVs) have further en-041

hanced data collection by providing high-resolution042

images that bridge the gap between satellite data043

and on-site surveys. Processing this data involves044

advanced computational techniques, including ma- 045

chine learning algorithms, which facilitate rapid and 046

detailed analysis of environmental conditions. 047

Live image segmentation from UAVs is an ex- 048

citing and emerging area of research in machine 049

learning. However, several challenges must be ad- 050

dressed to make machine learning viable for live 051

or near-live classification. First, models need to 052

be compact enough to run on limited onboard pro- 053

cessing power. They must also offer low-latency 054

performance, as faster classification times are prefer- 055

able, and be power-efficient to extend flight duration. 056

Additionally, the model may need to share onboard 057

resources with image preprocessing tasks, such as 058

correcting for image warping or other artifacts [2, 059

3]. Suitable hardware options for this task include 060

devices like the Arduino Portenta H7, ESP32-CAM, 061

and Raspberry Pi Zero 2 W, which offer memory 062

capacities of 16 MB, 4 MB, and support for an SD 063

card, along with RAM sizes of 8 MB, 4 MB, and 064

512 MB, respectively [4–6]. 065

In the context of traditional ML approaches to 066

object-based and pixel-based classification, Support 067

Vector Machine (SVMs) and Random Forests (RFs) 068

are among the most popular for use in remote sens- 069

ing as powerful machine learning algorithms with 070

distinct strengths and weaknesses [7–9]. SVMs ex- 071

cel in high-dimensional spaces where the number of 072

features exceeds the number of samples and robust 073

to overfitting, especially in cases where the data is 074

sparse [10]. However, they can be computationally 075

intensive, particularly with large problem sizes, and 076

their performance relies heavily on the careful tun- 077

ing of hyperparameters, which often involves tedious 078

and time-consuming experimentation and iterative 079

adjustments [11]. 080

On the other hand, RFs are versatile and easy 081

to implement, providing good performance across a 082

wide range of datasets without much need for tuning 083

[12]. They handle large datasets efficiently and are 084

capable of capturing complex interactions between 085

features. However, RFs can sometimes struggle with 086

overfitting, particularly if the number of trees is not 087

sufficiently large, and they can be less effective than 088

SVMs in very high-dimensional spaces. Additionally, 089

RFs tend to require more computational resources 090

as the number of trees grows. 091
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2 Methodology092

2.1 Data Collection093

The study was conducted in an 8-hectare area, West094

of the municipality of Lian, Batangas province of095

the Philippines. The inland region consists of un-096

even ground covered by various mangroves, bushes,097

and grasses. This transitions into a shallow sandbar098

that extends about 150 meters westward into the sea.099

Within this area, there are patches of aquatic vegeta-100

tion and mangroves before the landscape changes to101

a deeper and rockier region. The dataset analyzed102

in the present study was obtained through a single103

aerial survey campaign in March 2023 that began104

at noon. The weather on the day was fair with little105

cloud coverage.106

The UAV used for data acquisition was the DJI107

Mavic 3M, manufactured by SZ DJI Technology Co.,108

Ltd., based in Shenzhen, China. It is equipped with109

a high-resolution 4K RGB alongside a multispectral110

camera. The imaging capability of the UAV encom-111

passes a wide spectrum of wavelengths, including112

Green (560 ± 16 nm), Red (650 ± 16 nm), Red113

Edge (730 ± 16 nm), and Near-Infrared (860 ± 26114

nm), enabling the detailed capture of vegetative and115

geographical features with high spectral resolution116

[13]. Each pixel within the image corresponds to a117

spatial resolution of 2 cm, thereby facilitating the118

extraction of detailed information at a fine scale.119

Figure 1. Orthomosaic of the region of interest.

2.2 Data Processing 120

The images that were captured were combined to 121

create orthomosaics through the use of onboard soft- 122

ware. These orthomosaics encompass various maps 123

such as RGB, Normalized Difference Vegetation In- 124

dex (NDVI), Green Normalized Difference Index 125

(GNDVI), Normalized Difference Red Edge (NDRE), 126

and Leaf Chlorophyll Index (LCI). The constructed 127

orthomosaic was just under 50,000,000 pixels large. 128

Subsequent data operations were carried out using 129

the multispectral vegetation index (VI) and the mul- 130

tispectral images instead of the RGB images. The 131

unsupervised and supervised algorithms were both 132

implemented using Python. 133

All machine learning model training and testing 134

was conducted using the free tier of Google Colab, 135

which featured 12.7 GB of RAM [14]. This resource 136

limitation played a significant role in determining 137

the final optimized model. In addition to tradi- 138

tional metrics such as accuracy, precision, recall, 139

and F1-score, training times also factored into the 140

decision-making process: in cases where two models 141

demonstrated comparable performance, the model 142

with the shorter training time was chosen. 143

2.3 Definition of Training Labels 144

Features were identified by implementing k-means 145

clustering on each of the VIs from k = 2 to k = 8. 146

A mini-batch algorithm was chosen to reduce the 147

computation time. Each combination of a VI and 148

the k number of clusters was assessed to determine 149

possible terrain types. This assessment was based on 150

both the cluster’s silhouette score and a qualitative 151

comparison to the cluster’s corresponding region in 152

the RGB image. These were then associated with 153

a terrain type in the image such as “terrestrial veg- 154

etation” or “sublittoral zone”. The training labels 155

on pixels were then manually adjusted and reas- 156

signed to resolve overlaps between clusters or to 157

align them with the correct terrain type based on 158

domain experts. 159

The silhouette score is a metric used to measure 160

the quality of clusters in a clustering algorithm. It 161

provides an indication of how well each data point 162

lies within its cluster relative to other clusters [15]. 163

The resulting value ranges from -1 to 1, where a value 164

close to 1 indicates that the point is well clustered, 165

with the data point being much closer to points in 166

its own cluster than to points in other clusters. A 167

value close to 0 indicates that the point lies on the 168

boundary between clusters, while negative values 169

suggest that the point may have been assigned to the 170

wrong cluster [16]. By averaging the silhouette coef- 171

ficients of all points in a dataset, one can obtain an 172

overall measure of cluster quality, where higher aver- 173

age silhouette scores simply better-defined and more 174
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distinct clusters. It is mathematically expressed as175

si =
bi − ai

max(ai, bi)
(1)176

where for a data point i, ai denotes the distance177

between a data point and its assigned centroid while178

bi denotes the distance to the closest centroid be-179

longing to a different cluster.180

2.4 Coastal Terrain Identification 181

Through the unique combinations of k and the VIs, 182

6 terrain classes were identified as seen in Figure 183

3. NDRE clustered with k = 2 was used to identify 184

class 0, the “sublittoral zone”. This corresponds to 185

the deeper submerged areas of the image. In these 186

regions, further features are difficult to isolate due 187
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Figure 2. Graphical representation of feature extraction through implementing k-means clustering on VIs (top)
and machine learning pipeline using hold-out test set and a block k-folds cross-validation scheme with grid search
hyperparameter optimization (bottom).
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to the depth of the water.188

LCI clustered with k = 5 was then used to identify189

classes 1 and 2, “shallow water” and “shallow bare190

zone” respectively. The “shallow water” cluster191

represents areas with shallow water and some algal192

content, while the ”shallow bare zone” refers to193

submerged areas without significant photosynthetic194

activity.195

NDVI clustered with k = 4 was used to detect196

class 3, the “terrestrial vegetation”. It consists of197

trees, bushes, and grasses.198

GNDVI clustered with k = 2 was used to isolate199

class 4, labeled “bare land”. This refers to regions200

on the land with little to no vegetation.201

Lastly, GNDVI clustered with k = 5 was used to202

isolate class 5, “shadows and rocks” cluster. This is203

a region where labeling is challenging due to shadows204

cast by tree canopies or the presence of rocks.205

Figure 3. Identified classes from k-means clustering.
These six classes encompass the terrain types found.

2.5 Implementation206

SVM and RF models were trained on the layered207

multispectral bands. These were chosen as the model208

inputs as VIs require processing and context of the209

larger image to effectively normalize values whereas210

model’s trained directly on the multispectral bands211

will be able to classify immediate instances taken212

by the multispectral camera. Hyperparameters were213

optimized using a Grid search approach. Grid search214

finds the optimized hyperparameters of an algorithm215

using a specified list of values for each hyperparam-216

eter. A model is then trained for every possible217

combination of hyperparameters with the optimized218

model resulting from the combination that yielded219

the highest F1-Score. This metric was chosen as220

the primary metric as it accounts for the misclas-221

sification of minority classes that may be under-222

represented due to the proportion of labels in the223

image.224

A 5-fold block cross-validation with a separate225

hold-out test set was used to validate the model. The226

image was first separated into a training-validation 227

set in the North with the rest being separated as a 228

hold-out test set as can be seen in Figure 2. The 229

training-validation set was then divided into 34 im- 230

age blocks equivalent to a 20x20 meter area each. 231

These blocks are then distributed between an n num- 232

ber of subsets or folds. The model is then trained 233

on the n− 1 folds of data with the remaining fold 234

being used as a validation set. The process is then 235

repeated, cycling through the various possible val- 236

idation folds. These results are then averaged to 237

provide an understanding of the performance of the 238

particular model [17]. In the particular case of a 239

5-fold cross-validation scheme, 80% of blocks at any 240

given time are used as the training data while 20% 241

remains for validation. This is then cycled such 242

that all subsets of 20% are used for validation of the 243

model’s performance. 244

3 Results 245

3.1 Machine-Labeled Maps 246

Sublittoral

Zone

Shallow

Water

Shallow

Bare

Zones

Terrestrial

Vegetation

Bare

Land

Shadows

and

Rocks

Training Labels Map

Figure 4. Comparison of machine-labeled maps. Shal-
low bare zones are more prevalent in the machine-labeled
maps as compared to the training labels.

Displayed in Figure 4 are the terrain type maps 247

generated by the trained SVM and RF models. Upon 248

initial visual inspection, it was seen that both models 249

were able to label the image similar to the training 250

image. As seen in the figure, shallow water rep- 251

resents the majority of the image with sublittoral 252

zone, shallow bare zones, terrestrial vegetation, and 253

bare land being smaller classes of similar size. As ex- 254

pected, the shadows and rocks is seen as the smallest 255
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minority class of the image.256

However, some immediate differences are obvious257

between the machine-labeled maps and the training258

labels. Both machine learning models appear to259

assign pixels to the shallow bare zone terrain type260

at a rate higher than the training labels. These261

manifest as more spread out throughout the image262

as opposed to the tighter concentrations found in the263

training labels. A second observation is the spread264

of the shadows and rocks clusters in the SVM-map265

being much more prevalent along the coastline as266

opposed to the training map and RF-labeled map.267

4 Discussion268

4.1 Experiments with Forests269

For the purposes of minimizing file size and training270

time in RF models, particularly close attention was271

given to the number of trees and the maximum272

depth of trees in the models. Training time was273

seen to increase linearly with both the number of274

trees and the maximum depth of the trees. Between275

these two, the maximum depth of trees was the more276

important factor in determining model performance.277

The final hyperparameters chosen for the random278

forest model reflect a sparse forest of only 20 trees279

with a depth of 30. Forests with a greater number280

of trees only a minor amount of improvement in281

the validation set while extending training by many282

more minutes.283

4.2 Optimized Models284

Table 1. SVM classification report on the independent
test set. Generally good performance across terrestrial
terrain types and the sublittoral zone.

SVM Accuracy: 0.85 Precision Recall F1-Score

Sublittoral Zone 0.91 0.98 0.94
Shallow Water 0.90 0.82 0.86
Shallow Bare Zones 0.78 0.77 0.78
Terrestrial Vegetation 0.95 0.97 0.96
Bare Land 0.88 0.92 0.90
Shadows and Rocks 0.20 0.33 0.25
Macro Average 0.77 0.80 0.78
Weighted Average 0.86 0.85 0.85

The SVM model performed relatively well with285

an accuracy of 0.85. When taking their weighted286

average (that is the average of each metric weighted287

by its number of samples) the Precision, Recall, and288

F1 scores across all classes are 0.86, 0.85, and 0.85289

respectively. These scores drop when considering290

the macro average which considers the scores of each291

class as being of equal weight. Using this method292

of averaging, the scores drop to 0.77, 0.80, and 0.78293

suggesting that there is a higher incidence of false 294

negatives with the model. 295

Looking into the individual metrics per class, we 296

see that the model’s performance in identifying the 297

sublittoral zone, shallow water, terrestrial vegeta- 298

tion, and bare land classes is good. However, there 299

is a high rate of false negatives in the shallow bare 300

zone and shadows and rocks regions with their Recall 301

scores being only 0.77 and 0.33 respectively. 302

Figure 5. SVM confusion matrix on the independent
test set. Minor misclassification observed between the
“shallow water” and “shallow bare zones” with heavy
misclassification in “shadows and rocks”.

Referring to the SVM model’s confusion matrix 303

in Figure 5., it is seen that the sublittoral zone, ter- 304

restrial vegetation, and bare land terrain types are 305

accurately classified. However, the shallow water 306

and shallow bare zones offer a challenge being com- 307

monly mistaken for each other resulting in correct 308

predictions only 82.26% and 77.23% of the time and 309

misclassification of shallow water for shallow bare 310

zones at 7.65% with the reverse occurring more often 311

at 16.85%. The most prevalent case of erroneous 312

classification manifests in the shadows and rocks 313

cluster with only 32.96% of the true labels being cor- 314

rectly predicted thereby underscoring the challenges 315

in classifying this terrain type. This can be explained 316

by this terrain type’s presence in both aquatic and 317

terrestrial portion of the image as reflected by the 318

25.45% misclassification into the shallow bare zones 319

and 32.53% in the bare land. 320

The RF model exhibited superior performance 321

compared to the SVM model, achieving an accu- 322

racy of 0.98. Furthermore, it demonstrated strong 323

performance across all metrics in both macro and 324

weighted averages. Upon analyzing its performance 325

within each class, it maintained high accuracy for 326

shallow water, shallow bare zones, terrestrial vege- 327

tation, bare land, and shadows and rocks. The only 328

exception was the shallow bare zones and shadows 329
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and rocks, which exhibited a small amount of mis-330

classification, indicated by a Precision score of 0.94.331

Nonetheless, the overall performance of the model332

remained commendable.333

Table 2. RF classification report on the independent
test set. Minor errors in “shallow water” and “shadows
and rocks”.

RF Accuracy: 0.98 Precision Recall F1-Score

Sublittoral Zone 0.99 0.98 0.99
Shallow Water 0.99 0.97 0.98
Shallow Bare Zones 0.94 0.99 0.96
Terrestrial Vegetation 0.99 0.99 0.99
Bare Land 0.98 0.99 0.98
Shadows and Rocks 0.89 0.99 0.93
Macro Average 0.96 0.98 0.97
Weighted Average 0.98 0.98 0.98

Referring once again to the model’s correspond-334

ing confusion, it is observed that in nearly all of335

the classes, the majority of pixels lies along the di-336

agonal with no misclassification exceeding 2.5% of337

pixels. The RF model largely prevents the frequent338

misclassification of shallow bare zones as shallow339

water, which is observed in the SVM model. This340

performance may be explained by the depth of the341

RF model with the large number of splits allowing it342

to classify well. This along with the smaller number343

of trees in the forest, this may hurt the RF model’s344

ability to generalize to other data.345

Figure 6. RF confusion matrix on the independent test
set. Excellent performance is observed across all classes.

Some aspects in which the SVM model has clear346

advantages over the RF in regards to prediction347

time, and file size which are important factors to348

consider of live image classification. The training349

of the SVM model took 20 minutes to train and350

was able to classify the test set in as fast as 0.51351

seconds. Besides this, its minimal file size of 1.28352

Kilobytes allows it to be utilized by microcontroller353

devices such as the Arduino line of microcontrollers 354

which have minimal storage space. This opens up 355

the possibility for live image prediction. In reality, 356

a real-time imaging system would take in images 357

smaller than those used in the test set thus having a 358

quicker effective classification time. In comparison, 359

the RF model trains slower needing nearly an hour 360

to train and falls behind in other metrics with a 361

prediction time 10 times longer than the SVM and a 362

file size three and a half orders of magnitude larger. 363

Though the prediction time of the RF model may 364

still be considered usable in some cases, the model 365

is best suited to accurate post-processing in which 366

file size and prediction time are not much of a con- 367

cern. It would be likely of the three microcontrollers 368

mentioned in this work’s introduction that the SVM 369

would be usable on all three whereas the RF model 370

would only likely find success when implemented on 371

the Raspberry Pi. Listed in Table 3. is a summary 372

of the major differences between the two models. 373

Table 3. Summary of differences between optimized
SVM and RF models. RF is suited for post processing,
SVM shows potential for live classification tasks.

SVM RF

Accuracy 0.85 0.98
Precision (Macro) 0.86 0.92
Recall (Macro) 0.85 0.91
F1-Score (Macro) 0.85 0.91
Training Time (s) 1259 3244
Prediction Time (s) 0.51 4.957
File Size (KB) 1.28 1890

5 Conclusion 374

This study demonstrates the effectiveness of ML 375

methodologies in classifying coastal terrain using 376

multispectral images captured by a UAV in tropical 377

coastal regions. By implementing K-means clus- 378

tering for initial terrain identification and training 379

SVM and RF models, the research identified RF 380

as the superior model for this application, outper- 381

forming SVM across most metrics. Despite this, 382

the optimized SVM model showed promise for live 383

classification due to its smaller size and quicker pre- 384

diction time. The successful classification of images 385

from areas in the test set underscores the further 386

applicability of ML techniques in remote sensing. 387

These findings reinforce RF models in providing 388

robust ML frameworks for accurate classification. 389

At the same time, SVMs are seen to have poten- 390

tial in terrain classification in resource-constrained 391

environments. Future research could explore the 392

application of these methods to other geographic 393

regions and further optimize the models for broader 394
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use in remote sensing.395
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