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Abstract

As a longstanding learning paradigm, multi-task learning has been widely applied
into a variety of machine learning applications. Nonetheless, identifying which
tasks should be learned together is still a challenging fundamental problem because
the possible task combinations grow exponentially with the number of tasks, and
existing solutions heavily relying on heuristics may probably lead to ineffective
groupings with severe performance degradation. To bridge this gap, we develop a
systematic multi-task grouping framework with a new meta-learning problem on
task combinations, which is to predict the per-task performance gains of multi-task
learning over single-task learning for any combination. Our underlying assumption
is that no matter how large the space of task combinations is, the relationships
between task combinations and performance gains lie in some low-dimensional
manifolds and thus can be learnable. Accordingly, we develop a neural meta learner,
MTG-Net, to capture these relationships, and design an active learning strategy to
progressively select meta-training samples. In this way, even with limited meta
samples, MTG-Net holds the potential to produce reasonable gain estimations
on arbitrary task combinations. Extensive experiments on diversified multi-task
scenarios demonstrate the efficiency and effectiveness of our method. Specifically,
in a large-scale evaluation with 27 tasks, which produce over one hundred million
task combinations, our method almost doubles the performance obtained by the
existing best solution given roughly the same computational cost. Data and code
are available at https://github.com/ShawnKS/MTG-Net.

1 Introduction

Multi-task learning (MTL), as a longstanding learning paradigm [37, 50], has been widely applied
into a variety of machine learning applications, ranging from language understanding [11], visual
recognition [33, 41], and robotic control [19] to drug discovery [36] and clinical therapeutics [17, 30].
The major motivation behind is to boost the performance of single-task learning (STL) by leveraging
the additional supervision signals from other relevant tasks.
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Nevertheless, naively grouping multiple tasks together for MTL easily results in severe performance
degradation in practice. Many recent studies acknowledged this negative-transfer phenomenon
and speculated that the major reason lied in the competition and interference among incompatible
tasks [39, 47, 15, 41, 14, 30, 2, 6]. To mitigate such negative-transfer effect, recent years have
witnessed a few explorations on developing new optimization approaches [39, 25, 29, 48] or model
architectures [27, 33, 28, 15]. But explicitly identifying a group of tasks that would benefit from
training together still remains a challenging fundamental problem without adequate investigations [41,
14]. Thoroughly studying this multi-task grouping (MTG) problem not only advances core research
over MTL aside from optimization or architecture developments but also facilitates various MTL
scenarios that can benefit from learning auxiliary objectives [2, 6].

However, identifying the best MTG solution is extremely challenging as it involves an exhaustive
search over the whole space of task combinations, each of which corresponds to a whole procedure
of model training and evaluation on its specific MTL objective. The cost of such an exhaustive search
grows exponentially with the number of tasks and thus can be prohibitively expensive [6, 41, 14].

To reduce this prohibitive computational cost, most recent efforts [41, 14] relied on the assumption of
high-order approximations (HOA), meaning high-order performance gains can be estimated from
corresponding pairwise gains by averaging, where the performance gain denotes the improvement of
MTL over STL for a specific task. For instance, considering the group composed of tasks {A, B, C},
they assumed that when learning with the joint objective of this group, the performance gain for A can
be estimated by the average of associated pairwise gains for A, which were independently obtained
by learning with {A, B} and {A, C}. Under the HOA assumption, they only need to collect the
transferring gains for all pairwise combinations, of which the number is only quadratically dependent
on the number of tasks. While substantially reducing computational requirements, the HOA assump-
tion also results in wildly inaccurate estimations when there exist non-linear relationships between
high-order gains and corresponding pairwise gains. As a result, such untrustworthy estimations can
significantly hinder the final performance of searching for the optimal grouping option.

To pursue more accurate estimations of various high-order performance gains under affordable
computational cost, we develop a systematic MTG framework with a new meta-learning problem
on task combinations. To be specific, we divide all task combinations into two parts: one with a
small number of combinations for meta training and the other with all the rest combinations for meta
testing. Here the meta input is a specific task combination, and the meta objective is to predict the
per-task performance gains (the meta label) for this combination. The underlying assumption of
this meta-learning formulation is that although the number of task combinations grow exponentially
with the number of tasks, the relationships between task combinations and performance gains lie in
some low-dimensional manifolds and thus can be learnable. Following this formulation, we build a
dedicated neural network, MTG-Net, as the meta learner, and further develop an active learning [35]
strategy to progressively construct the meta-training set. With this strategy, we can largely improve
the effectiveness of MTG-Net with only a small number of meta-training samples. After the meta-
training stage, we leverage the gain predictions of MTG-Net on all task combinations to guide the
final grouping selection. Extensive experiments on diversified multi-task scenarios, including vision,
energy, and healthcare, demonstrate the efficiency and the effectiveness of our method. Moreover,
we also visualize various latent structures discovered by MTG-Net, which empirically validate the
practicability of our assumption.

In summary, our contributions include:

• To our best knowledge, this paper is the first effort to formulate a meta-learning problem for
MTG and thus enable an efficient exploration of the exponentially growing space of task
combinations, which was believed to be prohibitively challenging [41, 30, 2, 6].

• We build a neural meta learner, MTG-Net, that can capture the relationships between task
combinations and performance gains effectively.

• We develop an active learning strategy to progressively select the most useful meta-training
samples for efficient training of MTG-Net.

• We conduct extensive experiments across diversified multi-task scenarios. Specifically, in
a large-scale evaluation (27 tasks) with over one hundred million task combinations, our
method almost doubles the performance obtained by the existing solution.
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2 Related Work

MTG The classic assumption of MTL in statistical learning was that putting related tasks into
joint learning benefited from the inductive bias encouraging cross-task information sharing [8, 9, 7,
3, 5]. However, when this assumption of relatedness did not hold, the resulting negative-transfer
effects can cause significant performance degradation. Thus the further research investigated the
problem of simultaneously determining with which tasks each task should share while carrying over
classical cross-task sharing [20, 22]. Nevertheless, these early MTL studies can hardly be adapted
to modern deep neural networks [24] due to certain prohibitive assumptions [14]. As mentioned
by [41, 14], identifying proper task groupings for deep neural networks conventionally required
either computationally intensive cross-validation procedures or the human knowledge that is not
always applicable to machine learning. The early attempt [41] on more general and systematic
MTG for deep neural networks formalized a standard workflow: 1) collecting the transferring
gains (or gain predictions) for all 2N − 1 task combinations, and then 2) conducting a brute-force
search for the best grouping option given a specific budget, such as the maximal number of groups.
The latter step is a deterministic searching procedure, but the former step is rather challenging
because the optimal solution requires 2N − 1 times MTL training and evaluation, which can be
prohibitively expensive when N increases. Thus [41] further proposed the HOA approximation to
reduce the computational complexity from exponential into quadratic:

(
N
2

)
times MTL on pairwise

task combinations. Subsequently, [14] improved the efficiency of [41] by substituting
(
N
2

)
times

pairwise MTL procedures with a single run, in which the computation complexity is only linearly
dependent on N due to maintaining and updating a task affinity matrix on the fly per each gradient
updating. This further approximation, named as task affinity grouping (TAG) in [14], traded the
accuracy in estimating pairwise MTL gains for efficiency, which may result in more error propagation
from pairwise to higher-order. Different from all these HOA-based methods, this paper formulates
a systematic meta-learning problem to estimate the transferring gains and builds an effective meta
model to enable more accurate and robust generalization to massive high-order combinations.

Other Research on MTL & Meta Learning & Task Embedding Recent years witnessed plenty
of explorations on MTL from other aspects, such as multi-objective optimization [39, 25, 29, 48],
neural architecture search [28, 26, 16, 15, 42], and soft-sharing mechanisms [13, 33, 27]. While
these studies have made remarkable progresses to improve MTL under a predefined task combination,
the focus of this paper lies in explicitly determining with which tasks to share. Besides, as pointed
by [37, 14], these two paradigms are complementary to each other and can contribute to performance
improvements jointly. Moreover, our work falls into the paradigm of meta learning [43, 21, 4, 34, 40].
But different from traditional meta-learning studies, which primarily focused on the fast adaptation
across tasks in few-shot scenarios, our meta objective is to estimate the performance gains for
different task combinations. To fulfill this objective, we develop a meta network that treats a
task combination as a set of task tokens and transforms them into task embeddings to learn their
interactions. Meanwhile, we also note some existing studies leveraged a similar idea of learning task
embeddings but for different purposes, such as inferring task similarities [1], estimating treatment
effects [38], facilitating few-shot learning [10] or reinforcement learning [23], etc.

3 Meta Learning for Multi-task Grouping

In this section, we elaborate on how our meta learning framework works for MTG. First, in Section 3.1,
we establish the basic notations and briefly introduce some crucial steps of MTG for better under-
standing. Then we formulate our meta learning problem on task combinations in Section 3.2. Next,
we introduce the details of MTG-Net and the accompanied active learning strategy in Sections 3.3
and 3.4, respectively. Figure 1 gives an overview of our framework.

3.1 Preliminaries

Notations We adopt the following notations throughout this paper. N is the number of learning tasks
in total. T =

{
T1, T2, · · · , TN

}
is the universal set of all N tasks, where Tj denotes the j-th task, and

we have |T | = N . C =
{
C1, C2, · · · , C2N−1

}
is the universal set of all 2N − 1 combinations, which

contains
(
N
1

)
combinations containing only one task,

(
N
2

)
combinations containing exact two tasks,(

N
3

)
three-task combinations, etc. Ci =

[
ti1, t

i
2, · · · , ti|Ci|

]
denotes the i-th task combination, where
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Figure 1: An overview of our meta learning framework for multi-task grouping

tij ∈ T denotes the j-th task in this combination. Y =
{
Y1, Y2, · · · , Y2N−1

}
is the universal set of

all transferring gains corresponding to C. Yi =
[
yi1, y

i
2, · · · , yi|Ci|

]
includes all per-task transferring

gains for task combination Ci, where yij denotes the gain of conducting MTL on task combination Ci

over performing STL for task tij , and we have |Yi| = |Ci|. Ctrain is the set of task combinations for
meta training, and Ytrain denotes the set of corresponding transferring gains. Ctest is the set of task
combinations for meta testing, and Ytest also includes corresponding transferring gains. B denotes
the budget in grouping selection, which is the maximal number of selected task combinations.

The MTL Procedure Given task combination Ci, we define its MTL procedure as training with
the joint objective of Ci and evaluating on the validation set for each task in Ci to collect per-task
performance as an indication of generalization. In accordance with [41, 14], we adopt a widely used
hard-sharing architecture for MTL, in which there is a single encoder to obtain shared representations
followed by separate decoders for specific tasks. Moreover, we retain the same split of train, validation,
and test sets for each MTL procedure and fix the optimization algorithm as well as other hyper-
parameters. In this way, we can attribute the variations of generalization performance for a specific
task largely to the different MTL objectives of various task combinations.

Transferring Gain Here we make more clarifications on collecting transferring gain yij for task tij
by performing MTL on combination Ci. First, we conduct the aforementioned MTL procedure to
collect the generalization performance on the validation set for task tij in Ci. Then, we define the
transferring gain of conducting MTL on Ci for tij as the improvement of the performance of MTL
over the base performance of STL for tij . In practice, we can instantiate this improvement in different
ways, such as the reduction of loss, the improvement in accuracy, etc.

Grouping Selection Once obtaining all transferring gains, we can select the optimal groupings that
not only possess the best overall performance but also meet some practical considerations, such as
inference latency. This selection procedure is in essence a constrained searching problem, which is to
select a group of task combinations covering all N tasks to maximize the overall transferring gain
(the average of per-task gain) while ensuring the number of groups does not exceed a given budget
(B). As noted by [41, 14], this problem is NP-hard in general. A solution of recursive searching
has the computational complexity of O(2N ·B). In our experiments, when N is small (e.g., 5 vision
tasks), we follow [41, 14] to use the branch-and-bound-like algorithm to search for the optimal
groupings. While for large N and B (e.g., 27 medical tasks), the exact search becomes prohibitively
expensive. In this case, we approximately select near-optimal groupings via a beam-search approach
with polynomial complexity, which is attached in the appendix.

3.2 Meta Learning on Task Combinations

Different from all existing brute-force or heuristic approaches, we formulate a new meta-learning
problem on task combinations as a more systematic framework for the estimations of transferring
gains. As mentioned in preliminaries, a predefined configuration of the MTL procedure implies that
the variations in transferring gains (Yi) can be largely attributed to the MTL objectives of different
task combinations (Ci). Therefore, we assume there is an underlying mapping F to determine the

4



transferring gains given a specific task combination: Yi = F(Ci), for Ci ∈ C. Furthermore, this
view stimulates us to design a learning process to obtain a good approximation F∗ to the oracle
function F with limited meta samples from C. The underlying assumption of the learnability with
limited meta samples is that the relationships between task combinations and performance gains lie
in some low-dimensional manifolds no matter how large the space of task combinations is. In our
experiments, we empirically validate the practicability of this assumption.

To be specific, we divide the whole set C into two parts: one part Ctrain for meta training and the
other Ctest for meta testing. For every combination in Ctrain, we conduct an MTL procedure and
collect corresponding transferring gains (Ytrain) to learn a surrogate function F∗. While for all
combinations in Ctest, we directly apply F∗ to produce estimated transferring gains, the set of which
is denoted as Ŷtest. Accordingly, we summarize the whole meta-learning procedure as

F∗ = Meta-Train
(
Ctrain,Ytrain

)
, Ŷtest = Meta-Test

(
Ctest,F∗). (1)

This meta-learning perspective provides an explicit trade-off between efficiency and effectiveness for
MTG. On the one hand, as the size of Ctrain corresponds to the major computational cost, decreasing
|Ctrain| helps improving efficiency. On the other hand, since the estimation performance on Ctest

largely determines the quality of the final grouping decisions, increasing |Ctrain| fosters effectiveness.
Besides, given a fixed budget of |Ctrain|, namely affordable computational cost, we can devote more
efforts to develop advanced meta-learning strategies to improve the gain estimation. Moreover, this
new view can incorporate the well-known HOA assumption as a special case. The HOA assumption
groups all pairwise task combinations into Ctrain and takes the average of pairwise gains as the
approximation of high-order gains for all other combinations in Ctest. Thus we can view it as an
nonparametric method to represent the oracle mapping F .

3.3 MTG-Net

In the following, we elaborate on the design of our meta learner. Specifically, we call this meta
learner MTG-Net, namely a meta network to facilitate multi-task grouping. First, to provide rich
representations for discrete task indicators, we introduce a classic technique from natural language
research [32]: transforming discrete work tokens into vector representations while preserving semantic
relationships. In our case, we also construct an embedding table E ∈ RN×D to transform the input
Ci into a vector of embeddings, denoted as Xi =

[
xi
1,x

i
2, · · · ,xi

|Ci|
]
∈ R|Ci|xD, where D denotes

the embedding dimension, and xi
j ∈ R1×D corresponds to the embedding for task tij .

Afterwards, to effectively capture the diversified interactions in different task combinations, we stack
several self-attention encoding layers [45] over the dense representation Xi. The reason is that the self-
attention mechanism not only achieves remarkable successes in a wide variety of applications [12, 18]
but also perfectly matches the unordered property of task combination and holds sufficient capacities
to model those diversified inter-task interactions. Here we summarize this encoding procedure as
Hi = Self-Att-Enc

(
Xi

)
, where Hi ∈ RN×D is the vector of enriched representations that

encode diversified interactions among tasks, and Self-Att-Enc is the self-attention-based encoder
developed by [45]. Moreover, another benefit of Self-Att-Enc is that the encoded vector Hi shares
the same length with the label vector Yi. Naturally, we stack a linear mapping over Hi to obtain the
final output as Ŷi = Hi ·w + b, where the vector Ŷi =

[
ŷi1, ŷ

i
2, · · · , ŷi|Ci|

]
∈ R|Ci| corresponds to

our estimation of Yi, ŷij corresponds to the estimated gain for tij , w ∈ RD is a weight parameter, and
b ∈ R1 is a scalar parameter being broadcasted to each entry of Hi ·w.

In summary, MTG-Net takes in a task combination (Ci) and emits a collection of gain estimations
(Ŷi). Recalling Equation (1), we formulate the specific meta-learning procedure for MTG-Net as:

Meta-Train: Θ∗ = argmin
Θ

∑
Ci∈Ctrain

∥Ŷi − Yi∥22,

Meta-Test: Ŷtest =
{
MTG-NetΘ∗(Ci), for Ci ∈ Ctest

}
,

(2)

where Ŷi = MTG-NetΘ(Ci), Θ encapculates all parameters of MTG-Net, and Θ∗ denotes a well-
trained Θ. By replacing the computation-intensive MTL procedure with a network inference, we
can collect the estimations of all transferring gains much more efficiently. Moreover, as long as the
estimation performance is reasonable, we are still able to identify near-optimal groupings.
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Algorithm 1: Active Learning for MTG-Net

Input: Ctrain = {C2N−1}, Ctest = C \ Ctrain, K, α, η, Initialize Θ∗, Ŷtest via (2)
for k in [1, · · · ,K] do

for j in [1, · · · , N ] do
CTj = {Ci, for Ci ∈ Ctest if Tj ∈ Ci}
GTj = {Ŷi(Tj), for Ci ∈ CTj}
PTj = {expα·|Gi|, for Gi ∈ GTj} // Build the sampling distribution
Cnext = SamplePTi (CTi) // Select the next meta sample
Ctrain.insert(Cnext)
Ctest.remove(Cnext) // Update the meta-training set
if (k ·N −N + j) % η == 0 then

Update Θ∗, Ŷtest via (2) // Update MTG-Net and its predictions
end

end
end
Output: Θ∗ and Ŷtest

3.4 Active Learning for MTG-Net

Given the meta-learning procedure (2) for MTG-Net, however, the construction of Ctrain is still a
critical yet unsolved issue, which can have huge influences on the generalization capability of MTG-
Net. To enable more efficient learning, we develop an active learning [35] strategy for MTG-Net.
Here the key intuition is that paying more attention to the combinations with large gains can foster
more efficient estimations of Y and also better facilitate the final grouping selection. Algorithm 1
includes the pseudo code of this strategy. First, we start with an MTG-Net trained on one meta sample
that corresponds to the last task combination (C2N−1), which includes all N tasks. Next, we conduct
K rounds of active selections. For each round, we repeat the same active learning process for all
tasks. For each task (Tj), we first filter out a candidate set (CTj ) that incorporates all combinations
including this task. Then for every combination (Ci) in CTj , we collect the estimated transferring gain
(Gi = Ŷi(Tj)) for this task, and we set the (unnormalized) sampling probability as expα·|Gi|, where
α is the hyper-parameter that measuring our preferences for remarkable gains (no matter positive or
negative). Afterwards, we select a meta sample (Cnext) following the distribution defined by PTj ,
insert it into the meta-training set, and obtain updated Θ∗, Ŷtest by re-running the meta procedure for
MTG-Net if meeting a given updating interval (η).

Discussions on Efficiency Algorithm 1 includes O(KN) times MTL procedures, which take up
the major computational cost because the meta training in (2) takes negligible time compared with the
corresponding MTL procedures to collect Ytrain. Besides, another issue that prevents from scaling to
large N lies in the exponential dependence of |Ctest| on N . In practice, we can tackle this problem by
randomly sampling a group of combinations with a large yet affordable size to substitute C. Moreover,
since the encoder part of a hard-sharing architecture usually takes up the most computation, the
computational cost of N -task MTL procedures does not have orders of magnitude differences for
different N . Thus in this work we employ the number of MTL procedures as an approximate yet
intuitive measure of computational cost. While as an anonymous reviewer mentioned, if each task
has its specific data, the real computational time of MTL procedures should be considered carefully.

4 Experiments

We conduct extensive experiments to validate the effectiveness and the efficiency of our method
across diversified multi-task scenarios, including vision, energy, and healthcare. In this section, we
only include basic setups, main experimental results, and a part of visualization analyses. Due to the
space limit, we leave other details (datasets, task specifications, networks for MTL, hyper-parameters,
etc.) and more results (more visualizations, case studies, etc.) to the appendix.
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4.1 Experimental Setups

MTL Datasets We conduct experiments on three MTL datasets. 1) Taskonomy [49] is a computer
vision dataset including massive indoor scenes. Existing HOA-based methods [41, 14] leveraged
5 vision tasks of this dataset to evaluate MTG. We also follow the setups in [41] and denote the
preprocessed dataset as Taskonomy-5. 2) ETTm1 [46] is an electric load dataset with 7 time series.
We follow the multi-variate time-series forecasting problem in [46] and regard the forecasting for
each series as a task. Accordingly, we denote this dataset as ETTm1-7. 3) MIMIC-III [17] is a
healthcare database with rich electronic health records. Previous studies [30] constructed tens of
clinical prediction tasks and found that simply performing MTL on these tasks did not always bring
performance gains. We select 27 crucial clinical tasks to build the MIMIC-III-27 dataset.

Transferring Gains & Grouping Selection Section 3.1 introduces how to collect ground-truth
transferring gains and how to perform the final grouping selection given transferring gains (or
predictions). Here we make some detailed specifications for each MTL dataset. For 5 vision tasks on
Taskonomy-5, we follow [41, 14] to use the loss value as the metric and thus calculate the transferring
gain as the relative reduction of the loss. For 7 forecasting tasks on ETTm1-7, we instantiate the
transferring gain as the relative reduction of the mean absolute error. While for 27 clinical prediction
tasks on MIMIC-III-27, all of which adopt AUROC as the metric, we define the transferring gain
as the relative improvement of AUROC. Note that all these transferring gains are collected on the
validation set, and we conduct the MTL procedure for each case with different random seeds. Only
after conducting the grouping selection based on transferring gains, we report the performance on
the test set for selected groupings. Moreover, we collect all ground-truth transferring gains for 31
task combinations on Taskonomy-5 and 127 task combinations on ETTm1-7. However, 27 tasks on
MIMIC-III-27 produce over one hundred million task combinations, so we randomly sample 3, 000
combinations to represent the whole space. All these MTL procedures cost thousands of GPU hours
in total, and we will release the collected meta datasets for future research.

Hyper-parameters of MTG-Net We use the same hyper-parameters for all MTL datasets. To be
specific, we set the dimension of task embeddings as D = 64 and stack 2 self-attention encoding
layers [45]. As for Algorithm 1, we set α as 25 to prioritize the selection of task combinations
with large gains. Besides, we leverage a dynamic strategy to schedule η. At an early stage when
|Ctrain| <= N +1, we set η as 1 to frequently updating MTG-Net to pursue more effective selections.
When |Ctrain| > N + 1, we set η as N to reduce the number of updating for MTG-Net to further
improve efficiency. K is the hyper-parameter deciding the total number of meta-training samples,
which is specified along with each figure. Moreover, we repeat the meta training and inference of
MTG-Net with five random seeds and report the average results to eliminate the effects of randomness.

Baselines We compare MTG-Net with four baselines. 1) Oracle denotes the grouping solution
based on all ground-truth transferring gains on the validation set, which forms an upper bound of
all approximation methods. 2) Random denotes randomly selecting a group of task combinations
satisfying a given budget. Since this solution has high variance, we conduct one million random trials
and report the average performance, as did in [41]. 3) HOA [41] conducted

(
N
2

)
MTL procedures on

pairwise combinations to collect ground-truth pairwise gains and then estimated all rest high-order
gains via the average of corresponding pairwise gains. 4) TAG [14] attempted to improve the efficiency
of HOA by obtaining an approximation to the pairwise gains via a customized MTL procedure on all
tasks, which involved N times extra forward and backward processes per each gradient updating to
collect pairwise affinities on the fly.

4.2 Main Experiments

We present our main evaluation results for all three datasets in Figure 2. For each dataset, we include
two configurations of K for MTG-Net: K = 1 and K = N−1

2 . As illustrated in Section 3.4, our
active learning strategy requires O(KN) times MTL procedures. Therefore, these two types of K
roughly correspond to the computational cost required by TAG and HOA, respectively.

In the left side of Figure 2, we show the final performance (on the test set) of selected groupings
under different budgets. As the budget increases, meaning we have more combinations for a task
to choose as the affiliated group, the final performance should also increase for a well-behaved
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Figure 2: We show the final performance of selected groupings under different budgets (left column),
the distribution of gain estimation errors (middle column), and the distribution of ground-truth gains
(right column) on Taskonomy-5, ETTm1-7, and MIMIC-III-27.

MTG solution. However, we observe some fluctuation and even degradation effects. There are
two reasons: 1) inaccurate estimations of transferring gains can largely misguide the grouping
selection, and the grouping errors become much more evident as the budget increases; 2) we use the
transferring gains collected on the validation set to guide the grouping selection, but these gains are
not completely consistent with the actual performance gains on the test set. The latter reason also
apply to Oracle, but its performance increases with the budget at most time. Thus, we can conclude
that the degradation effect influenced by the latter reason is limited, and it is reliable to attribute the
final grouping performance to the quality of the estimations for transferring gains.

Furthermore, we can find that HOA and TAG produce poor grouping decisions on ETTm1-7 and
MIMIC-III-27, while HOA can obtain pretty well grouping performance on Taskonomy-5, and TAG
can produce reasonable performance when the budget is small. The key reason is that the number of
task combinations increases exponentially as the number of tasks increases, as a result, HOA and TAG
fail to provide accurate estimations for massive high-order task combinations solely based on the
information of pairwise combinations. As for Taskonomy-5, there are large transferring gains covered
by pairwise combinations, so HOA can obtain reasonable grouping performance. However, since
TAG introduces another approximation step to predict pairwise affinities, its grouping performance
suffers more degradation than HOA as the budget increases. In contrast, we can see that MTG-Net
behaves much better on all cases. Specifically, when we set K = N−1

2 , which means we only have
the ground-truth gains on N(N−1)

2 + 1 task combinations, MTG-Net is able to produce high-quality
groupings that are very close to the ones derived by Oracle. In addition to the grouping performance,
we also show the estimation errors of transferring gains (calculated on the validation set) on all task
combinations in the middle column of Figure 2 and plot the distribution of ground-truth transferring
gains in the right side. These auxiliary information aligns with the analyses mentioned above and
further reveal the drawbacks of the HOA assumption that maps pairwise gains to high-order ones.

Given the superiority of MTG-Net over existing solutions, we further conduct experiments on the
much challenging MIMIC-III-27 benchmark to verify two critical factors that drive the success
of MTG-Net. One is the number of meta-training samples. Figure 3a includes the performance
comparisons of multiple MTG-Net counterparts with different K. Here we conduct multiple runs
for each counterpart and plot the average performance as well as the standard deviation (shadow
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Figure 3: Different configurations of MTG-Net on MIMIC-III-27.
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Figure 4: We select five tasks from different datasets and visualize the latent structures of transferring
relationships discovered by MTG-Net. For each task, we aggregate its encoded embeddings (from
Hi) for all relevant task combinations and project them into a two-dimensional space via t-SNE [44].
The upper two rows only include task combinations on Ctrain for two Ks. The bottom row includes
all combinations covering this task. We color each combination by its ground-truth gain for this task
(red: positive; blue: negative; the deeper the color depth, the larger the gain (absolute value)).

area). We can clearly see that adding meta-training samples brings prominent improvements in
the grouping performance for large budgets. While for small budgets, even K = 1 can produce
reasonably good performance. This observation can help us to balance efficiency and effectiveness
flexibly according to specific practical scenarios. Besides, the other crucial factor is the active learning
strategy illustrated in Algorithm 1. Figure 3b includes the ablation study on the importance of active
learning. We can observe that no matter K is large (13) or small (1), the active selection of meta
samples produces remarkable improvements over the random selection.

4.3 Visualization Analyses

Figure 4 visualizes some latent structures of transferring relationships discovered by MTG-Net. By
inspecting the upper two rows, we can clearly see that MTG-Net discovers a more comprehensive latent
structure as the active learning strategy progressively increases |Ctrain| from N + 1 to N(N−1)

2 + 1.
From the bottom two rows, we can observe that the latent structure discovered on Ctrain is roughly
consistent with the overall structure on C. This observation intuitively reveals that the transferring
relationships indeed lie in some low-dimensional manifolds, and our active learning strategy is
effective in selecting those crucial combinations, which can function as the landmarks of the latent
structure. Moreover, by comparing different latent structures across different tasks, we can observe
that no matter how the MTL scenario and the number of task combinations vary, MTG-Net can still
provide a reasonable approximation to the underlying latent structure.
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5 Conclusion and Future Work

This paper introduces an efficient and effective approach for MTG, which is based on a new meta-
learning formulation on task combinations. The key takeaway is that no matter how large the space
of task combinations is, the relationships between task combinations and performance gains lie in
some low-dimensional manifolds. Our experiments across diversified MTL scenarios demonstrate
the practicability of this hypothesis. This is why we can make predictions for massive unseen task
combinations with only ground-truth gains on a few actively selected combinations. The direct impact
of this work is to benefit a wide range of real-world applications [6, 19, 36, 31], in which people have
multiple learning tasks but do not know how to organize them into different groups effectively.

Moreover, we note that there are some valuable future research directions given the contribution of
this work, demonstrating that the transferring relationships of a predefined MTL procedure across
different task combinations could be meta learned. First, when the data or the model architectures
changed, the transferring effects among tasks could also distinctly change. Both HOA [41] and us
have observed these phenomena, which implies that multi-task transferring relationships may be
a function of the data, the model, and some other factors (such as optimization algorithms). Thus
how to enable effective meta learning on task combinations across different configurations of MTL
procedures is a valuable research question to be answered. Besides, this work only considers the
transferring relationships among a fixed set of tasks, while in practice we would always encounter new
tasks. Accordingly, how to enable incremental meta learning or endow MTG-Net with the zero-shot
capability is worthy of great research attention.
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