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ABSTRACT

Chains of thought (CoTs) have achieved success in enhancing the reasoning capabil-
ities of large language models (LLMs), while their effectiveness is predominantly
observed in LLMs. Existing solutions methods adopt distillation to inject chain-
of-thought capabilities into small models (SLMs). However, they: (1) can not
guarantee the rationality of the generated explanation due to hallucinations; (2)
ignore diverse structures of CoT during knowledge transfer. In this paper, we
propose a unified CoT distillation framework termed UniCoTT for considering
diverse structural CoTs (i.e., chain, tree, and graph). UniCoTT contains two core
strategies: iterative construction for structured CoTs and the structural constraint
strategy. Specifically, UniCoTT prompts LLMs to iteratively produce accurate
explanations with answers and unifies structured explanations as UniCoT which
is seen as a bridge for knowledge transfer. Furthermore, UniCoTT utilizes the
proposed unified supervised learning and structural consistency learning strategies
to transfer knowledge of structured CoT to SLMs. Experimental results show that
UniCoTT can significantly improve the performance of SLMs on multiple datasets
across different NLP tasks. Our code is available in our supplementary materials.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable success across a wide range of
textual tasks, requiring only a few examples as prompts (Brown et al., 2020; Nye et al., 2021), such
as question-answer reasoning and natural language understanding (NLU). These models have been
shown to address complex reasoning challenges by generating a step-by-step inference process,
known as Chains of Thought (CoT)(Wei et al., 2022b;a). However, the enhancement of reasoning and
question-answering capabilities through CoT prompts has been predominantly observed in LLMs
(with over 100B parameters) (Wei et al., 2022b;a), which is not present in small language models
(SLMs). Moreover, due to hallucinations (Ji et al., 2022), it is difficult to ensure that the generated
reasons are consistent with the actual results (Maynez et al., 2020), nor can it guarantee the rationality
of decisions (Wang et al., 2023), which affects the usability of the generated explanations.

The existing efforts (Maynez et al., 2020; Li et al., 2023) to distill the chain-of-thought capabilities
from LLM into SLM1 primarily involve learning from the outputs of LLMs. This process entails
prompting LLMs (acting as teachers) to generate reasoning explanations for downstream datasets,
which are subsequently used to train SLMs (acting as students) utilizing cross-entropy loss. However,
these approaches overlook the fact that LLMs often produce text unrelated to the answers due to
hallucinations (Ji et al., 2022). Consequently, the teacher models may not always generate reasoning
explanations that comprehensively support the given answers (Wang et al., 2023).

In addition, current studies indicate that human reasoning processes involve complex mechanisms of
backtracking and feedforward logic (Sloman, 1996; Yao et al., 2023) and develop intricate networks
of thought, such as tree or graph reasoning paths (Dougherty & Franco-Watkins, 2000; Besta et al.,
2023). Inspired by this, some works explore more powerful reasoning with structural constraints in
LLMs, namely structural CoTs, such as CoT-SC (multi-chain) (Wang et al., 2022b), ToT (tree) (Yao
et al., 2023), and GoT (graph) (Besta et al., 2023). However, current distillation methods (Li et al.,
2023) ignore the knowledge transfer of structured reasoning, specifically the integration of structural

1In this work, SLM mainly refers to the pre-training language model whose model size is less than 1B.
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Figure 1: We compare different architectures: (a) generating vanilla CoT for distillation; (b) our
UniCoTT, which uses UniCoT as a bridge to transfer knowledge between diverse structural thoughts.

CoTs for enhanced reasoning, in the process of distilling reasoning capabilities into SLM. While
SCOTT (Wang et al., 2023) attempts to introduce answers in prompts to ensure consistency in the
reasoning of LLMs, it fails to account for CoTs with diverse structures. In summary, this leaves
behind two core challenges: (1) how to efficiently transfer the CoT capabilities that LLMs possess to
SLMs while preventing LLMs from producing erroneous reasoning explanations that could degrade
performance; (2) how to uniformly consider CoT prompts with different structures, such as chain,
tree, and graph structures, in the process of knowledge transfer (i.e., prompting LLMs and training
SLMs).

To address these two challenges, in this paper, we propose a novel unified teacher-student distillation
framework termed UniCoTT for transferring knowledge of diverse structural CoTs from LLMs to
SLMs. UniCoTT tackles challenges through innovative strategies in the following two aspects:

(1) UniCoTT prompts LLMs to construct precise structured CoTs (i.e., UniCoT) in a unified
way. UniCoTT combines answers to prompt LLMs for the accurate generation with structured
thoughts, which we refer to as UniCoT. We conceptualize UniCoT as a pivotal bridge facilitating
knowledge transfer within teacher-student models. Specifically, we iteratively generate diverse
structured thoughts, subsequently achieving uniform representations of these reasoning explanations.

(2) UniCoTT utilizes the proposed unified supervised learning and structural consistency
learning strategies to transfer knowledge of structured CoT to SLMs. Specifically, we first
consider the explanations in UniCoT as nodes and then introduce node-level supervised contrastive
learning to enhance supervised representations of SLMs based on the traditional cross-entropy loss.
In addition, we propose a novel structural consistency learning approach to ensure that the hidden
states output by SLMs satisfies the structural constraints of UniCoT during distillation. Structural
consistency learning is achieved by minimizing the upper bound of the structural error between the
state encoding output of SLMs and the optimal structural representation.

Through the proposed UniCoT modeling and structural optimization methods, UniCoTT effectively
extends the reasoning capability of LLMs obtained by structural CoT to SLMs. To the best of our
knowledge, we are the first to consider structured CoT in a unified manner in this task. Extensive
experiments on multiple datasets of factual reasoning, multi-choice question answering and NLU
tasks demonstrate the effectiveness and universality of UniCoTT.

In general, our contributions are three-fold: (1) We propose a unified iterative method to prompt
LLMs to construct diverse structured CoTs. (2) We propose a novel structural consistency learning
strategy to transfer structured knowledge into SLMs efficiently. (3) Extensive experiments on multiple
datasets demonstrate the effectiveness and universality of UniCoTT.

2 RELATED WORK

Prompted CoT Models. LLMs have demonstrated the ability to master various tasks with mini-
mal instruction, requiring only a few examples as prompts (Brown et al., 2020; Nye et al., 2021).
Furthermore, these models are capable of answering complex questions through the generation of
sequential, step-by-step reasoning processes, known as Chains of Thought (CoT), even with few or
no demonstrations (Wei et al., 2022b;a). However, the effectiveness of this technique is only reflected
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Figure 2: The illustration of our method, consisting of (1) LLMs construct UniCoT consisting of
explanations with structural logic through N-step iteration; (2) SLMs obtain structured knowledge in
UniCoT through node-level supervised contrastive loss and structural consistency learning.

in extremely large LMs (with over 100B parameters) (Wei et al., 2022b;a), necessitating substantial
computational resources or the need for costly API calls (Shridhar et al., 2022). Meanwhile, LLMs are
prone to hallucinate unintended text (Ji et al., 2022) and produce illogical explanations (Wang et al.,
2022a; Ye & Durrett, 2022). In this work, we aim to guide LLMs to generate rational explanations
with diverse reasoning structures and transfer the reasoning knowledge of LLMs into SLMs.

Knowledge Distillation. Our approach uses a teacher-student model to transfer knowledge from
LLMs to SLMs, similar to a traditional distillation framework (Hinton et al., 2015). West et al. (2021)
proposed a method for training the student model to complete knowledge gaps. Chan et al. (2022)
introduces a strategy for learning a student model capable of making predictions solely based on a
teacher model enhanced with fundamental principles. Shridhar et al. (2022) advocated for the training
of student models to pose and answer subquestions. And Li et al. (2022) suggested training the
student model on a dual task of generating both answers and rationales. Wang et al. (2023) utilizes
a contrastive learning methodology to generate consistent explanations and fine-tune the student
network using counterfactual reasoning. LI et al. (2022); Ho et al. (2022); Fu et al. (2023) also
explored the chain CoT distillation method. In contrast, we use a structured CoT, i.e., UniCoT, to
perform knowledge transfer.

Structured CoT prompt learning. Current studies indicate that human reasoning processes involve
complex mechanisms of backtracking and feedforward logic (Sloman, 1996; Yao et al., 2023). In
the exploration of novel ideas, humans develop intricate networks of thought, such as tree or graph
reasoning paths (Dougherty & Franco-Watkins, 2000; Besta et al., 2023). Aligning with the complex
reasoning of humans, some works explore more powerful reasoning with structural constraints in
LLMs, namely structural CoTs, such as CoT-SC (Wang et al., 2022b), ToT (Yao et al., 2023), and
GoT (Besta et al., 2023).

3 METHODS

In this section, we first introduce the overview of our UniCoTT similar to a teacher-student architecture
in Section 3.1. We conceptualize UniCoT as a pivotal bridge facilitating knowledge transfer within
teacher-student models, and describe our proposed method for constructing UniCoT in Section 3.2.
Subsequently, we introduce the proposed unified supervised learning strategy in Section 3.3 and the
structural consistency learning approach in Section 3.4, aimed at facilitating supervised learning and
representation learning for structural knowledge transfer, respectively. Finally, we summarize our
total training objective in Section 3.5.

3.1 OVERVIEW OF UNICOTT

Our goal is to (1) prompt LLMs to explore various structured reasoning pathways for thoughts, as
illustrated in Figure 3, and summarize these into unified representations (i.e., UniCoT) serving as

3
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Figure 3: The illustration of CoTs with different structures and their corresponding relation matrices.
We propose to construct diverse structures of CoTs in a unified way and use relation matrices to
represent their structural constraints uniformly.

bridges for knowledge transfer, and subsequently, (2) efficiently transfer semantic knowledge from
UniCoT to small student models through unified supervision and representation learning.

UniCoTT is generally divided into two principal parts, namely the teacher network and the student
network, where the teacher model is a network with an LLM as the base model. In this work, we
focus on question-answer (QA) and natural language understanding (NLU) tasks. Specifically, we
standardize QA and NLU tasks to be a universal setup: given a question or description q, models are
tasked with predicting the gold answer or classification label a∗. This approach aligns with settings
adopted in prior research (Wang et al., 2023).

Teacher Network. Similar to Wang et al. (2023), we utilize in-context learning to prompt teacher
networks to obtain explanations for each question-answer pair < q, a∗ >. Specifically, we employ a
few annotated examples as demonstrations and prompt LLMs to generate an initial explanation v0 for
< q, a∗ >. Subsequently, we iterate this process to prompt LLMs to produce the next explanation
node vt given < q, a∗ > and a set of prefix explanation P(vi) = [v0, · · · vi−1]. Therefore, each
optimal explanatory node vi will be generated in the following unified way:

vi
∗ = argmax logP (vi | p, q, a∗,P(vi)) , (1)

where p denotes an input prompt. We further define all explanations generated by LLMs as sets of
thoughts T . Different from SCOTT which only produces chain explanation, we propose generating
explanations with diverse reasoning structures as discussed in Section 3.2.

Student Network. We employ SLMs as the student, which leverage a series of explanations (i.e.,
UniCoT) generated by LLMs for learning. One straightforward implementation is fine-tuning the
student network over the explanatory sets T and questions q generated by the teacher. We can
fine-tune the student using the standard categorical cross-entropy loss as:

Lcce(y) =
∑
i

a∗i log(ŷi), (2)

where ŷi denotes the predictions and a∗i denotes the corresponding label or answer. Our UniCoT
comprises a set of thoughts characterized by a specific reasoning structure. To facilitate efficient
learning of structured explanations by students, we further propose a structural consistency learning
strategy to train SLMs as discussed in Section 3.4.

3.2 CONSTRUCTION OF UNICOT

Unlike previous works such as SCOTT (Wang et al., 2023), we consider the structural information
during distillation and propose a novel prompt strategy to encourage LLMs to generate structured
thoughts (i.e., chain, tree, and graph) that correspond to human reasoning processes, and unify them
as UniCoT. A specific instantiation of UniCoT involves two key steps: (1) Iteratively constructing
different structures of thoughts, and (2) Unifying the representation of different structures of thoughts.

Iteratively Constructing UniCoT. As shown in Figure 2(a), we initially create an adjacency matrix
A = {aij} ∈ RNv×Nv representing a directed graph, where Nv is the number of nodes and aij
indicates the presence of a directed edge from node vi to node vj . As shown in Figure 3, the
adjacency matrix A is initialized differently for each structural variant of UniCoTT. For chain- and
tree-structured UniCoTT, A is configured as a simple linear chain and a three-layer binary tree. For
graph-structured UniCoTT, we randomly assign multiple connections for each node while ensuring
the overall graph remains connected. The explanation generation process leverages parent nodes’
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explanations as context, which are fed into the teacher model as prompts to generate explanations
for the current node. Specifically, we provide a prompt p0 and question-answer pair < q, a∗ > to
LLMs to generate the initial node v0. Subsequently, we construct a set of prefix explanations P(v1)
pertaining to v0 based on A. Further, LLMs are prompted to procure a specific explanation for v1:
v1 ∼ pLLM(v1|p, q, a∗,P(v1)). This generation process is iteratively conducted similarly until the
terminal node vNv

is produced as:

vt ∼ pLLM(vt|p, q, a∗,P(vt)), t ∈ [1, Nv]. (3)

Through this iterative process, a comprehensive explanation set V = {v1, v2, . . . , vNv
} is formulated.

More detailed processes and specific prompts are provided in Appendix A.3 and A.8.

Unified Representation of UniCoT. Utilizing the adjacency matrix A, we can iteratively derive all
explanations (nodes) of UniCoT, denoted as V = {v0, v1, · · · , vNv

}. Additionally, we introduce a
relation matrix R = {rij} ∈ RNv×Nv to represent the structural relationships among all explanations
within UniCoT:

rij =
aij

Dij(vi, ϕ(vi))
, (4)

where, ϕ(vi) denotes the nearest sink node to vi and Dij(·, ·) represents the shortest path between
two nodes determined by the Dijkstra algorithm.

The construction process of UniCoT reveals that the closer the explanation is to the sink node, the
more refined it becomes, thereby semantically nearing the answer. Consequently, as illustrated in
the Figure 3, the values within R serve a dual purpose: (1) they represent the connectivity relations
between nodes within UniCoT, and (2) concurrently quantify the proximity of nodes to the answer.

3.3 NODE-LEVEL SUPERVISED CONTRASTIVE LOSS

To further leverage the explanations generated by LLMs for optimizing the student network, we
incorporate node-level supervised contrastive learning based on our UniCoT within the fine-tuning
phase. Given a collection of question-answer pairs {< q, a∗ >} and their corresponding explanations
V = {v0, · · · , vNv} within UniCoT, We can derive the hidden state of nodes H = [h0, · · · , hNv ]
through the encoder of SLMs:

hj = EncoderSLM(vj), ∀j ∈ {0, . . . , Nv}, (5)

where hj represents the hidden state encoding for the j-th node vj .

We further select positive samples from other nodes vj′ with the same answer and negative samples
vnk from nodes with different labels. Utilizing these positive and negative samples, the node-level
supervised contrastive loss is formulated as:

Lnsc = −
Nv∑

j,j′=0,j!=j′

log
exp(vj · vj′/τ)∑K
k=1 exp(vj · vnk /τ)

, (6)

where τ is the temperature parameters and K denotes the number of negative samples. Lnsc can
effectively minimize the distance between similar samples and maximize the separation between
dissimilar samples, thereby enhancing the capability of SLM to recognize similar samples.

3.4 STRUCTURAL CONSISTENCY LEARNING

As shown in Figure 2, UniCoTT encourages the output of the SLM encoder to conform to the
structured constraints of UniCoT. Structural constraints are grounded in the intuition that nodes
within the same reasoning path should be proximal in the latent space, whereas nodes from divergent
reasoning paths should be distanced. We propose a novel structural consistency learning strategy to
optimize the student and maintain structural representations in a unified and effective manner.

Structural Error and Upper Bound. We first define the structured hidden state output by the
SLM encoder as S = RH = [s0, · · · , sNv ]. Assuming χ = {χ0, · · ·χNv} represents the optimal
representation, We can quantify the structural error between S and the optimal representation as:

ξχ =

Nv∑
i

∥W · si − χi∥ , (7)
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where W is a learnable mapping matrix designed to align S with χ. However, the optimal represen-
tation χ is unknown a posterior, and it is difficult to directly optimize the student by minimizing ξχ.
To address this challenge, we theoretically derive an upper bound for ξχ in Theorem 1.

Theorem 1 The structural error of Eq. 7 has an upper bound related to the optimal representation χ,
i.e., there is an upper bound on ξχ as:

ξχ ≤ ∥TS∥F ∥χ∥F =
∥∥I− S⊤(ΣS)

†S
∥∥
F
∥χ∥F , (8)

where, TS = I − S⊤(ΣS)
†S be the projection matrix of S, I is the identity matrix, (·)† is the

pseudoinverse and ΣS = S⊤S is the covariance matrix of S.

The proof of Theorem 1 is provided in Appendix A.2. Given that ∥χ∥F in Eq. 8 is a is a fixed
but unpredictable quantity, we can minimize structural error ξχ by minimizing ∥TS∥F . Based on
previous theoretical findings (Shwartz-Ziv et al., 2023; Bardes et al., 2022), we can minimize ∥TS∥F
by maximizing the rank of ΣS . UniCoTT achieves this by maximizing the diagonal term of Z with a
structural decoupling loss Lsd and minimizing its off-diagonal term with a structural entanglement
loss Lse:

The structural decoupling loss Lsd maximizes the diagonal entries and encourages the student network
to learn distinct and non-overlapping structural representations. Lsd is formulated as:

Lsd =
1

D

D∑
d=1

ReLU
(
1−

√
σd + τsd

)
, (9)

where D represents the dimension of S , ReLU(·) is the Rectified Linear Unit (ReLU) function,σd is
the variance of the d-th dimension across the vectors s0, · · · , sNv and τsd is a temperature coefficient.

The structural entanglement loss Lse minimizes the off-diagonal entries of ΣS and consequently
minimizes the correlation between dimensions in the latent space. Lse is formulated as:

Lse =
1

D × (Nv − 1)

∑
i!=j

ΣS [i, j]. (10)

UniCoTT maintains structural constraints in the latent space during fine-tuning through structural
consistency loss Lsc = Lsd + Lse, thereby achieving efficient transfer of UniCoT knowledge.

3.5 OVERALL OBJECTIVE FOR THE STUDENT

Training Objective. Our overall loss comprises a category cross-entropy loss Lcce, a node-level
supervised contrastive loss Lnsc and a structural consistency loss Lsc. Therefore, our fine-tuning loss
can be expressed as:

Ltotal = Lcce + αLnsc + βLsc, (11)

where α and β are trade-off hyperparameters.

Inference. We use the final output of SLMs to evaluate the effectiveness of knowledge transfer.
Following previous work and implementation (Wang et al., 2023), student models can obtain ex-
planations generated by CoTs at the inference stage of all methods including the baselines and our
UniCoTT. In addition, to avoid leaking correct answers within CoT explanations during inference,
we use “|MASK|” identifiers to mask both the answers (targets) and candidate answers in CoT
explanations. Note that we employ the same operation for all baselines for fair comparison.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments across three types of tasks: (1) Factual Reasoning Task.
We evaluate our UniCoTT over CREAK (Onoe et al., 2021), StrategyQA (Geva et al., 2021) and
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CSQA2 (Talmor et al., 2021) datasets, which contain a large number of questions about entity knowl-
edge and commonsense reasoning. (2) Multiple-Choice Question Answer. We select CSQA (Talmor
et al., 2018), QASC (Khot et al., 2020), and OBQA (Mihaylov et al., 2018) datasets to evaluate
our method on multiple-choice comprehension question answering task. (3) Natural Language
Understanding (NLU). In the realm of NLU, we utilized the CoLA (Warstadt et al., 2019), RTE (Po-
liak, 2020), MNLI (Williams et al., 2018), MRPC (Dolan & Brockett, 2005) datasets from GLUE
benchmark (Wang et al., 2018) to evaluate the performance of UniCoTT.

Table 1: A performance comparison of various methods on the factual reasoning benchmark, with
the best results emphasized in bold. The Base Model is the student network used for training. The
results of using more pre-training language models as the base model are provided in Appendix A.4.

Base Model Method Structure
CREAK CSQA2 StrategyQA

Acc. F1 Ins. Acc. F1 Ins. Acc. F1 Ins.

BERT-base

+None - 69.3 69.1 70.1 55.1 55.0 55.4 82.7 82.7 82.3
CoT Chain 77.7 76.6 78.7 71.1 71.0 70.9 87.7 87.6 88.4

SCOTT Chain 84.1 84.2 83.5 85.2 85.2 86.6 90.0 89.8 90.8
DSbS Chain 69.5 69.5 69.4 54.2 54.1 54.9 81.0 80.9 80.7

UniCoTT Chain 92.7 92.8 93.0 81.5 81.4 81.8 90.9 90.9 91.1
UniCoTT Tree 94.5 94.4 94.9 87.9 87.9 89.2 93.4 93.5 94.0
UniCoTT Graph 95.8 95.6 96.0 83.8 83.4 84.9 92.1 92.4 93.2

RoBERTa-base

+None - 71.3 71.3 71.4 56.0 55.8 55.7 83.9 83.9 84.1
CoT Chain 86.5 86.4 86.7 72.7 72.6 72.4 86.6 86.5 90.0

SCOTT Chain 90.2 90.2 90.5 82.3 82.3 81.6 91.5 91.2 90.9
DSbS Chain 72.2 72.2 72.4 54.2 54.0 55.3 80.0 80.0 80.2

UniCoTT Chain 93.4 93.4 93.3 82.2 82.6 82.0 93.6 93.4 94.4
UniCoTT Tree 94.8 94.6 94.7 88.8 88.9 90.2 94.6 94.6 95.5
UniCoTT Graph 96.8 96.8 95.9 84.9 84.6 85.9 94.2 93.9 94.7

Table 2: A performance comparison of various methods on the Multiple-Choice QA benchmark, with
the best results emphasized in bold. The Base Model is the student network used for training. The
results of using more pre-training language models as the base model are provided in Appendix A.4.

Base Model Method Structure
CSQA OBQA QASC

Acc. F1 Ins. Acc. F1 Ins. Acc. F1 Ins.

BERT-base

+None - 81.6 68.6 57.4 75.9 65.7 52.8 84.8 55.8 24.2
CoT Chain 86.7 77.0 71.1 77.5 69.0 61.4 89.3 73.6 57.0

SCOTT Chain 88.7 80.2 77.3 80.8 71.0 64.4 86.4 64.5 53.8
DSbS Chain 81.3 68.2 56.2 76.4 63.2 52.0 87.1 54.5 22.8

UniCoTT Chain 88.1 80.9 79.2 82.4 75.8 73.6 92.3 81.1 70.3
UniCoTT Tree 90.4 84.9 84.4 83.8 75.6 75.2 93.2 83.3 77.8
UniCoTT Graph 91.6 88.0 86.8 84.4 77.9 77.2 90.3 83.6 68.5

RoBERTa-base

+None - 83.3 72.6 64.4 78.4 69.5 61.4 86.7 58.5 32.3
CoT Chain 86.7 77.7 71.0 84.4 78.3 74.4 90.9 75.4 60.3

SCOTT Chain 89.8 83.7 78.9 84.8 77.9 73.0 87.5 60.4 30.8
DSbS Chain 82.8 72.4 64.3 77.6 69.0 60.0 87.5 59.7 34.6

UniCoTT Chain 91.7 86.5 86.7 84.3 79.2 78.7 92.9 84.6 78.6
UniCoTT Tree 91.7 86.9 87.5 87.5 83.4 82.2 93.6 84.5 80.1
UniCoTT Graph 92.5 89.6 88.8 88.8 85.4 84.1 92.4 83.7 75.7

Evaluation Metrics. Following the previous work settings (Wang et al., 2023), we adopt accuracy
(Acc.), F1 score (F1), and instance accuracy (Ins.) to measure the performance of the model in factual
reasoning and multiple-choice question-answering task. In addition, we adopt Matthews correlation
coefficients (Mcc.) to evaluate the performance of the model on the CoLA dataset and use accuracy
to evaluate the performance of the model on the RTE, MNLI, and MRPC datasets.

Baselines. We compare our approach with the small pre-trained language models (PLMs), CoT (Wei
et al., 2023), SCOTT (Wang et al., 2023) and DSbS (Hsieh et al., 2023). (1) PLMs: We utilize
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and XLNet (Yang et al., 2019) as the
backbones, and directly fine-tune them as baselines, which are fine-tuned directly to serve as baselines
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for comparison. (2) CoT: We use the CoT technique to generate the reasoning contents of the model
and then distill them on the small PLMs. (3) SCOTT: We utilize the SCOTT (Wang et al., 2023)
framework to generate the reasoning content of the model through counterfactual reasoning and
compare it with our UniCoTT.

Implementation Details. We use the LLM gpt-3.5-turbo-1106 (Ouyang et al., 2022) as
the teacher network for the construction of CoT and UniCoT. We use RoBERTa (Liu et al., 2019),
BERT (Devlin et al., 2019), and XLNet (Yang et al., 2019) as base models for our student network.
The hyperparameter α and β in Eq. 11 are set to 0.5 and 0.2 to achieve the optimal performance in
experiments. The hidden size for text is set to 768. We employ Adam as the optimizer with a weight
decay of 0.01. We will publish the complete code after the paper is accepted. More training details
and results can be found in Appendix A.

Table 3: A performance comparison on the GLUE benchmark, with the best results emphasized in
bold. I and II indicates using BERT-base and RoBERTa-base as the base model, respectively.

Base Model Methods Structure CoLA RTE WNLI MRPC Average

BERT-base

+None - 56.6 65.3 53.4 81.8 64.3
CoT Chain 67.9 81.6 80.3 87.8 79.4

SCOTT Chain 81.1 91.7 91.6 92.6 89.3
UniCoTT Chain 86.4 89.9 93.0 95.5 91.2
UniCoTT Tree 88.5 93.5 94.4 96.3 93.2
UniCoTT Graph 90.2 94.6 93.9 94.1 93.2

RoBERTa-base

+None - 56.7 78.7 55.5 86.9 69.5
CoT Chain 69.6 82.3 81.2 71.3 76.1

SCOTT Chain 78.5 89.9 90.8 90.6 87.5
UniCoTT Chain 88.3 91.7 93.4 93.1 91.6
UniCoTT Tree 91.4 93.0 95.1 96.3 94.0
UniCoTT Graph 93.9 95.5 95.3 94.0 94.7

4.2 MAIN RESULTS

Evaluation on Factual Reasoning Tasks. We present our experimental results on three datasets in
Table 1. Analysis of Table 1 yields several insights:

(1) Enriching PLMs with additional explanations including CoT, SCOTT and UniCoTT significantly
enhances their performance in factual reasoning tasks. We attribute this to the incorporation of more
prior knowledge within explanations into PLMs. (2) Our method of employing solely chain UniCoT
achieves superior performance compared to other baselines that transfer knowledge through chain
explanation. The performance of both CoT and SCOTT is surpassed by our method of employing
chain UniCoT. This disparity may stem from the improvement of representation by structured
constraints and node-level self-supervised contrastive learning of our UniCoTT. (3) We can observe
that different reasoning structures have different performance on different datasets. Tree UniCoT and
graph UniCoT with more complex reasoning structures have a higher performance improvement than
chain UniCoT. In addition, our method outperforms all baselines in terms of PLM performance gains
across all backbone networks. It demonstrates the effectiveness and generalization of our UniCoTT
in transferring LLMs reasoning knowledge.

Evaluation on Multiple-Choice QA Tasks. As illustrated in Table 2, we evaluate the performance
of our method on CSQA, OBQA, and QASC datasets. where we have several detailed observations:

(1) The improvement in model performance by incorporating SCOTT or vanilla CoT is not as
significant as the gain by incorporating our UniCoT. This further indicates that considering different
reasoning structures is of great significance for improving the comprehension capabilities of SLMs. (2)
Various reasoning structures manifest distinct performances across complex commonsense question-
answering datasets. The graph UniCoT exhibits superior results in CSQA and OBQA, while the
tree UniCoT performs better in QASC. This further demonstrates that our approach offers a twofold
advantage: it unifies diverse thought structures and significantly improves performance. (3) We
can further observe that the performance of SCOTT is lower than that of the base model when
using RoBERTa-base as the backbone on the QASC dataset. This indicates providing unreasonable
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explanations can adversely impact the representations and comprehension capabilities of SLMs.
Hence, supplying precise and cogent reasoning for SLMs is crucial.

Evaluation on NLU Tasks. To evaluate the universality of our UniCoTT, we conduct experiments
utilizing four datasets from the GLUE benchmark, as result shown in Table 3. The results demonstrate
that our model consistently improves the performance of BERT and RoBERTa across various metrics
on text classification tasks. Furthermore, we observe that the performance of the student remains
affected by reasoning structures in NLU tasks. This indicates the necessity of optimizing structural
constraints and representation during fine-tuning.

Table 4: The ablation experiment results of UniCoTT on the CREAK, OBQA and QASC datasets,
with the best results emphasized in bold.

Structure Method
CREAK OBQA QASC

Acc. F1. Ins. Acc. F1. Ins. Acc. F1. Ins.

Chain

w/o Lnsc in Eq. 6 92.3 92.2 92.0 82.5 77.6 76.3 91.5 82.9 73.1
w/o Lsd in Eq. 9 91.8 91.8 91.7 81.2 78.1 75.2 90.6 80.5 71.4
w/o Lse in Eq. 10 92.5 92.3 91.8 82.8 77.6 77.0 91.2 83.3 75.5

Full UniCoTT Method 93.4 93.4 93.3 84.3 79.2 78.7 92.9 84.6 78.6

Tree

w/o Lnsc in Eq. 6 93.1 93.0 92.5 86.2 81.9 81.8 91.6 83.1 77.7
w/o Lsd in Eq. 9 92.3 92.3 92.0 85.5 81.1 79.5 90.4 80.1 72.2
w/o Lse in Eq. 10 93.5 93.4 93.6 88.3 83.9 83.0 91.3 82.7 76.3

Full UniCoTT Method 94.8 94.6 94.7 87.5 83.4 82.2 93.6 84.5 80.1

Graph

w/o Lnsc in Eq. 6 93.5 93.5 93.0 86.8 82.3 81.5 91.0 79.9 72.5
w/o Lsd in Eq. 9 93.2 93.0 93.2 86.0 81.7 80.2 90.2 77.5 67.7
w/o Lse in Eq. 10 95.0 95.1 94.9 88.2 84.7 83.5 91.4 81.9 72.4

Full UniCoTT Method 96.8 96.8 95.9 88.8 85.4 84.1 92.4 83.7 75.7

4.3 ABLATION STUDY AND ANALYSIS

The Effect of the Node-level Supervision Contrastive Loss. We employ RoBERTa-base as the
backbone and conduct experiments to study the impact of our node-level supervised contrastive
loss as illustrated in Table 4. The results reveal a significant decrease in performance across all
evaluated structures when the node-level supervised contrastive loss is not employed to refine the
representations of SLMs. This verifies the following: (1) Lnsc is capable of aggregating priori
information provided by LLMs sufficiently and effectively, and (2) the refinement of explanation
features in latent space plays a significant role in enhancing the expressive capabilities of SLMs.

Table 5: Comparison with different methods using the
LAS metric (Hase et al., 2020; Wang et al., 2023) to
evaluate the output rationality.

Methods Structures CSQA OBQA QASC

CoT Chain 3.4 6.0 4.2
SCOTT Chain 6.5 6.4 0.8

UniCoTT Chain 8.4 5.9 6.2
UniCoTT Tree 8.4 9.1 6.9
UniCoTT Graph 9.2 10.4 6.4

Quantitatively Evaluate the Rationality
of the Explanations. To evaluate the con-
sistency between the rationales generated
by the teacher and the gold answers, we use
the LAS metric (Hase et al., 2020; Wang
et al., 2023), whose core idea is to measure
how well the rationales assist a simulator
to predict the gold answers. We adopt the
same settings following (Hase et al., 2020;
Wang et al., 2023) to perform evaluation on
datasets CSQA, OBQA and QASC, with
the result as Figure 5. Higher LAS values represent higher inference consistency, which is computed
as the difference between the task performance when the rationale is provided as input vs. when it
is not. The results show the consistency between the rationales generated by teachers and the gold
answers measured by LAS, which verifies that UniCoTT can ensure the rationality of explanations.

The Effect of the Structural Consistency Learning. To evaluate the impact of our structural
consistency learning strategy on model performance, we remove Lsd and Lse, respectively. We
present our experimental results on three different types of datasets in Table 4. The backbone
models use RoBERTa-base. Observations indicate that the absence of structural decoupling loss
or structural entanglement loss significantly diminishes performance. This suggests that structural
reasoning information within UniCoT is essential in transferring knowledge to SLMs. Additionally,
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Factual Reasoning Multi-choice QA Mathematical Reasoning
CREAK CSQA2 StrategyQA CSQA OBQA GSM8K

Base 88.8 63.7 83.2 92.0 91.0 76.9

UniCoTT (Ours) 91.5 75.4 88.7 95.0 92.9 79.2

Table 6: Performance comparison on the factual reasoning, multi-choice QA and mathematical
reasoning benchmarks (i.e., GSM8K Cobbe et al. (2021)). We use Qwen2.5-3B-Instruct as
base model for SFT with LoRA. The more details and loss curve are provided in Appendix A.9.

this result corroborates the effectiveness of our structural consistency learning in harmonizing
structural reasoning information and enhancing the expressive capabilities of SLMs.

4.4 EVALUATION WITH DECODER-ONLY MODELS

To further evaluate the efficacy of our approach, we employed the decoder-only
Qwen2.5-3B-Instruct (Team, 2024) as our foundation model for conducting experi-
ments. However, popular decoder-only architectures typically adhere to the next-token prediction
paradigm. The predictive nature of such generative models presents a challenge in directly
implementing our designed structural constraints for classification. Consequently, we modified
our training methodology for structured CoT to accommodate these decoder-only models while
preserving our unified structural CoT distillation capabilities. Specifically, we utilized our generated
graph-based UniCoT as instruction input for Qwen2.5-3B-Instruct (Team, 2024) and
incorporated our structural constrained adjacency matrix as additional prompts into the decoder-only
model architecture. The model training still adhered to the next-token prediction paradigm via
supervised fine-tuning training (SFT) with low-rank adaptation (LoRA) (Hu et al., 2022). Through
this approach, we maintained the advantages of unified distillation of structured CoT while ensuring
compatibility with decoder-only architectures. Please refer to our appendix for more details.

As shown in Table 6, our proposed UniCoTT method demonstrates consistent improvements across
various reasoning tasks compared to the base model, highlighting its effectiveness for decoder-only
architectures. In factual reasoning, UniCoTT achieves gains of 2.7%, 11.7%, and 5.5% on CREAK,
CSQA2, and StrategyQA respectively, with CSQA2 showing the most significant improvement. For
multi-choice question answering, we observe increases of 3.0% on CSQA and 1.9% on OBQA. In
mathematical reasoning, UniCoTT improves performance on GSM8K by 2.28%. These results illus-
trate UniCoTT’s robust performance enhancement across diverse reasoning tasks, with particularly
notable gains in complex factual reasoning. The consistent improvements suggest that our method
effectively enhances reasoning capabilities in decoder-only models.

5 CONCLUTION

In this paper, we present a unified distillation framework, UniCoTT, designed for CoT with diverse
reasoning structures. We propose an efficient method for generating CoT with diverse structures and
its unified representation approach. In addition, we introduce a node-level supervised contrastive loss
and structural consistency learning strategy, aimed at facilitating supervised learning and representa-
tion learning for structural knowledge transfer, respectively. In theory, we derive an upper bound for
the structural representation error and achieve structural constraints by optimizing this upper bound.
The experimental results show that UniCoTT can effectively improve the performance of SLMs on
factual reasoning, multiple-choice QA, and NLU tasks.

Limitations. The construction of UniCoT relies on APIs of LLMs, which may not be easy to
implement in specific situations. Therefore, exploring more efficient and low-resource methods
is the direction of future research in this article. In addition, this article studies factual reasoning,
open-domain multiple-choice question answering and natural language understanding tasks, and
further research can be conducted in more fields to evaluate the generality of our method in the future.
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A APPENDIX

A.1 MORE TRAINING DETAILS

The constant τ and τsd for the tolerance of the intra-class variance are set as 0.1 and 0.2 to achieve
the optimal performance in experiments. We tune all models for 6 epochs and set the learning rate of
3e-6 on all the datasets. When conducting experiments in CSQA and CSQA2, batch sizes were set to
5 and 2, respectively. In addition, we uniformly set the batch size for training on other datasets to
8. The effectiveness of our approach depends on two key hyperparameters: α and β, which control
the balance between supervised learning components (supervised contrastive learning and cross-
entropy) and structural constraints. To determine optimal values for these parameters, we employed a
systematic grid search methodology. We first conducted a grid search for α within the range [0.1, 0.9]
on the CREAK dataset, which yielded an optimal value of α = 0.5. Subsequently, with α fixed at
0.5, we performed a second grid search for β within the same range [0.1, 0.9], identifying β = 0.2 as
the optimal value. These hyperparameter values, derived from the CREAK dataset, were then applied
consistently across all other datasets in our experiments. Following the original paper, we use the
gpt-neox-20b backbone to implement SCOTT. We implement all methods based on Huggingface
Transformers (Wolf et al., 2020). All experiments using the encoder-only models are conducted
on 8 RTX 3090 GPUs. While our primary experiments focus on encoder-based models, we also
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extend UniCoTT to decoder-only architectures to validate its generalizability. The experiments using
the decoder-only model (i.e., Qwen2.5-3B-Instruct) are conducted on A100-80G GPUs, and
more details and settings regarding the use of a decoder only model for conducting experiments are
specifically introduced in Section A.9.

A.2 PROOF OF THEOREM 1

Proof. The optimization objective of minimizing structural error can be obtained from Eq. 7 as:

W = minimize
W′

∥W′∥F , (12)

s.t. W′ ∈ argmin
Ŵ

Nv∑
i

∥W · si − χi∥2 . (13)

To solve for W, we first define the vectorization: To tackle the problem of determining the matrix W,
we initiate by converting W into a vector form through the process of vectorization. This involves
stacking all the elements of W into a single column vector w:

w = vec(W) =


w1

w2

...
wNv

 ∈ RNvNv , (14)

This allows us to represent the multiplication in terms of vector operations:

Wsi =
(
s⊤i ⊗ I

)
w = S̃iw, (15)

where, ⊗ is the Kronecker product and I is the identity matrix. Then, we obtain our optimization
objective as:

f(W) =

Nv∑
i=1

∥W · si − χi∥2

=

Nv∑
i=1

∥∥∥χi − S̃iw
∥∥∥2 . (16)

Therefore, this optimization problem is essentially a convex optimization problem, and we can obtain
a closed-form solution as follows:

W = χ⊤S⊤ (
SS⊤)† = χ⊤S⊤ (ΣS)

†
. (17)

Substituting this into the downstream structured error:

ξχ =
1

Nv

Nv∑
i=1

∥W · si − χi∥

=
1

Nv

Nv∑
i=1

√√√√ R∑
r=1

((W · si) [r]− χi[r])
2

(18)

The Cauchy-Schwarz inequality is applied to bound the Euclidean norm of a sum of square roots by
the square root of the sum of squares:

1

Nv

Nv∑
i=1

√√√√ R∑
r=1

((W · si) [r]− χi[r])
2 ≤

√√√√ 1

Nv

Nv∑
i=1

R∑
r=1

((W · si) [r]− χi[r])
2

(19)
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We use the standard norm notation to represent the formula inside the square root:√√√√ 1

Nv

Nv∑
i=1

R∑
r=1

((W · si) [r]− χi[r])
2
=

1√
Nv

∥∥WS − χ⊤
S
∥∥
F

=
1√
Nv

∥∥∥χ⊤S⊤ (ΣS)
† S − χ⊤

S

∥∥∥
F

=
1√
Nv

∥∥∥χ⊤
(
S⊤ (ΣS)

† S − I
)∥∥∥

F

=
1√
Nv

∥∥∥(I− S⊤ (ΣS)
† S

)
χ
∥∥∥
F
.

(20)

We further define the projection matrix TS = I− S⊤ (ΣS)
† S , we obtain our upper bound as :

ξχ ≤ 1√
Nv

∥∥∥(I− S⊤ (ΣS)
† S

)
χ
∥∥∥
F

≤ 1√
Nv

∥TSχ∥F

≤ ∥TSχ∥F ≤ ∥TS∥F ∥χ∥F ,

(21)

which concludes the proof for Theorem 1.

Based on Theorem 1 and existing theoretical findings (Shwartz-Ziv et al., 2023; Srinath Halvagal
et al., 2024; Foo et al., 2023; Bardes et al., 2022), we can reduce structural error by minimizing the
upper bound of structural error.

A.3 MORE DETAILS OF THE ALGORITHM

To demonstrate the construction process of our UniCoT more clearly, we provide algorithmic
pseudocode for uniformly constructing different structures of CoT, namely UniCoT, in Alg. 1 and
Code 1.

The adjacency matrix A is initialized according to different structural constraints for each UniCoTT
variant:

• Chain Structure: A is constrained to represent a linear chain, where each node i is only
connected to node i+ 1, forming a sequential path:

Aij =

{
1 if j = i+ 1

0 otherwise
(22)

• Tree Structure: A is configured as a three-layer binary tree, where each non-leaf node has
exactly two children:

Aij =

{
1 if j is a child of i
0 otherwise

(23)

• Graph Structure: A is initialized as a directed connected graph, where each node i is
randomly connected to ki other nodes (1 ≤ ki ≤ K), subject to the constraint that the
resulting graph remains connected:

Aij =

{
1 if j is randomly selected as adjacent to i

0 otherwise
(24)

To ensure connectivity in the graph structure, we employ a modified depth-first search algorithm to
verify that all nodes are reachable from the initial node. If the connectivity constraint is not satisfied,
the random assignment process is repeated until a valid connected graph is obtained.
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Algorithm 1 Algorithm for Iteratively Constructing UniCoT
Input: The training set D = {< qi, a

∗
i >}ni=1.

Parameter: prompt p0 for v0, prompt p for next node, LLMs pLLM(·).
Output: UniCoT for each question-answer pair.

1: for each batch < q, a∗ > in D do
2: Initialize adjacency matrix A = {aij}
3: Obtain v0 ∼ pLLM(v1|p0, q, a∗)
4: for each non-zero node vi in A do
5: Construct prefix explanations P(vi),
6: Obtain vi ∼ pLLM(v1|p, q, a∗,P(vi))
7: end for
8: Obtain Relation Matrix R via Eq. 4.
9: end for

10: return Explanations V = {vi} and Matrix R

Table 7: A performance comparison on the factual reasoning benchmark, with the best results
emphasized in bold. We use XLNet-large as the base model to conduct this experiment.

Base Model Method Structure
CREAK CSQA2 StrategyQA

Acc. F1 Ins. Acc. F1 Ins. Acc. F1 Ins.

XLNet-large

+None - 75.7 75.8 76.0 58.2 58.3 59.4 86.7 86.9 88.2
CoT Chain 87.8 87.8 88.2 74.9 74.8 76.1 88.5 88.5 89.4

SCOTT Chain 91.5 91.5 90.8 84.4 84.4 85.1 89.3 89.2 89.8
UniCoTT Chain 93.4 93.4 93.7 84.6 84.7 85.3 91.2 91.1 94.3
UniCoTT Tree 94.9 94.9 95.1 89.7 89.0 91.7 94.0 94.0 95.1
UniCoTT Graph 97.1 97.0 96.3 85.4 85.4 87.2 93.5 93.4 93.8

Table 8: A performance comparison on the Multiple-Choice QA benchmark, with the best results
emphasized in bold. We use XLNet-large as the base model to conduct this experiment.

Base Model Method Structure
CSQA OBQA QASC

Acc. F1 Ins. Acc. F1 Ins. Acc. F1 Ins.

XLNet-large

+None - 86.4 75.6 68.8 75.0 58.3 46.6 88.1 60.3 33.3
CoT Chain 88.2 80.1 75.6 82.3 75.5 71.7 92.3 76.7 61.4

SCOTT Chain 90.9 82.7 80.8 83.5 77.2 78.2 88.4 64.6 35.1
UniCoTT Chain 91.1 85.4 84.9 82.6 76.5 77.3 93.2 84.6 79.4
UniCoTT Tree 92.2 87.5 88.0 85.1 82.7 81.4 94 84.7 80.9
UniCoTT Graph 93.1 90.3 89.4 87.2 84.8 83.5 92.2 84.1 75.2
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Code 1: Pseudocode for Iteratively Constructing UniCoT
1 def algorithm_for_constructing_unicot(data_loader, language_model):
2 explanations = []
3 relation_matrices = []
4
5 for batch in data_loader:
6 q, a_star = batch
7 adjacency_matrix = initialize_adjacency_matrix()
8
9 # Obtain v0

10 v0 = language_model.forward(q, a_star, p0) # p0 is the initial
prompt

11 # v0 holds the explanations
12 explanations.append(v0)
13
14 non_zero_nodes = adjacency_matrix.nonzero()
15 for vi in non_zero_nodes:
16 # Construct prefix explanations P(vi)
17 # Related to the preceding node explanation v_{i-1}
18 prefix_explanations = construct_prefix_explanations(vi)
19
20 # Call LLM s to obtain vi , where p is the prompt for next

node
21 vi = language_model.forward(q, a_star, p,

prefix_explanations)
22 explanations.left_append(vi)
23
24 # Obtain Relation Matrix R
25 R = compute_relation_matrix(adjacency_matrix)
26 relation_matrices.append(R)
27
28 return explanations, relation_matrices

Table 9: A performance comparison on the GLUE benchmark, with the best results emphasized in
bold. We use XLNet-large as the base model to conduct this experiment.

Base Model Methods Structure CoLA RTE WNLI MRPC Average.

XLNet-large

+None - 58.5 69.7 53.7 82.7 66.2
CoT Chain 71.1 79.2 78.5 68.8 74.4

SCOTT Chain 79.4 90.4 91.0 91.9 88.2
UniCoTT Chain 85.6 91.1 91.5 92.7 90.2
UniCoTT Tree 87.8 93.5 94.6 95.0 92.7
UniCoTT Graph 92.7 94.8 94.0 93.8 93.8

A.4 MORE ABLATION EXPERIMENTS AND ANALYSIS

Evaluate on different base models. To evaluate the effectiveness of our method under different
model architectures, we use XLNet-large as the student model and then evaluate the knowledge
transfer effect of our UniCoTT using the same settings as BERT-base and RoBERTa-base. As shown
in Table 7, 8, and 9, we can observe that our method can still achieve significant performance gains
under different architectures. Meanwhile, we note that using XLNet as a student model can still
achieve consistent performance gains in common sense question answering and oral comprehension
tasks.

A.5 ZERO-SHOT PERFORMANCE ON LLMS

We tested the performance of LLM (gpt-3.5-turbo-1106) on testing and training set of multiple
datasets from our experiments using API from Openai, and here are the results as Table 10. Due to the
inability to perform training, we employed a zero-shot approach for direct inference. Consequently,
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we observed that GPT-3.5 generally underperforms compared to distilled smaller models in most
tasks in Section 4.2. However, the results also demonstrate the powerful zero-shot generalization
capabilities of LLMs, with performance on multiple question-answering tasks surpassing that on
single question-answering tasks.

Table 10: Performance of LLM (gpt-3.5-turbo-1106) on testing and training set of multiple datasets
from our experiments using API from openai. We employed a zero-shot approach for direct inference.

Dev Train
Acc. F1 Acc. F1

CSQA 69.97 69.95 69.59 69.57
CSQA2 61.13 59.04 64.37 62.95
OBQA 73.80 73.82 72.26 72.22

CREAK 73.43 69.02 71.28 67.11
StrategyQA 45.21 43.07 42.85 40.68

QASC 77.56 77.62 53.69 53.72

A.6 USE DIFFERENT TEACHER MODELS

We use GPT-neox-20B as the teacher model to implement our UniCoTT. We adopt chain-based
reasoning to construct UniCoTT and conduct experiments, with results shown in Table 11 and 12.
Compared to the baseline models in the paper, our method still achieves significant performance
gains. This indicates that our UniCoTT has good generalizability across different teacher models.

Table 11: A performance comparison of the GPT-neox-20B teacher model on the Multiple-Choice
QA benchmark . We use BERT-base, RoBERTa-base as the student model to conduct this experiment.

Base Model
CSQA OBQA QASC

Acc F1 Ins. Acc F1 Ins. Acc F1 Ins.

BERT-base 84.80 73.07 64.08 77.40 66.19 60.00 89.90 72.35 54.33
RoBERTa-base 85.55 77.99 71.58 82.75 73.80 69.20 90.60 74.30 62.11

Table 12: A performance comparison of the GPT-neox-20B teacher model on the factual reasoning
QA benchmark. We use BERT-base, RoBERTa-base as the student model to conduct this experiment.

Base Model
CREAK CSQA2 StrategyQA

Acc. F1 Ins. Acc. F1 Ins. Acc. F1 Ins.

BERT-base 78.37 78.30 78.59 71.56 71.56 71.88 83.00 82.98 82.73
RoBERTa-base 80.07 80.00 80.22 72.94 72.92 73.04 79.55 79.30 82.18

A.7 OVERHEAD AND OPERATIONAL EFFICIENCY

We compared the training and inference time with CoT without any method and got the following
table. The results in Table 13 are ratios of the training and reasoning times compared to the baseline
models. It can be seen that our method introduces only a minimal performance overhead. We
believe that the increase in training and inference cost is acceptable compared to the improvement in
performance.

A.8 CASE STUDY OF PROMPTS AND PREDICTIONS

We provide structured explanations and predicted results of our method on CSQA and OBQA datasets
in Table 16, Table 17, and Table 18, respectively. The results in the table intuitively demonstrate
the efficient transfer ability of structured UniCoTT to superstitious reasoning knowledge, which can
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Table 13: Demonstration of the additional time overhead of UniCoTT for training and inference on
different architectures compared to CoT.

Chain Tree Graph

Training ×1.21 ×1.49 ×1.56
Inference ×1.15 ×1.33 ×1.50

Table 14: Statistical analysis of nodes and edges in different UniCoTT structures

Structure Avg. Nodes Avg. Edges

Chain 4.47 3.47
Tree 7.00 6.00
Graph 8.34 10.69

greatly improve the performance of SLMs in open-domain question-answering tasks and also have
stronger reasoning ability for complex common sense reasoning tasks.

A.9 MORE DETAILS ON EXPERIMENTING WITH DECODER-ONLY ARCHITECTURE

We utilized the LLaMA-factory 2 framework to implement and train our method. To enable the
decoder-only architecture, which follows a next-token prediction paradigm, to use our proposed
unified structured CoT, we incorporated our structured CoT as part of the instruction input to the
Qwen2.5-3B-Instruct model. We then applied Low-Rank Adaptation (LoRA) to perform
Supervised Fine-Tuning (SFT) on the model. We formatted the questions (including mathematical
problems and multiple-choice questions) as the prefix of the instruction, followed by our generated
UniCoT as the instruction suffix. To distinguish between these two parts of the instruction, we
employed the special token [Rationale].

In this study, the LoRA configuration was set with a rank of 16 and a dropout rate of 0, targeting
the query and value projection matrices of the attention mechanism. This setup allowed for efficient
adaptation of the model while maintaining a relatively low number of trainable parameters.

The training process was optimized for computational efficiency and model performance. We utilized
a per-device training batch size of 1, combined with gradient accumulation over 8 steps, effectively
simulating a larger batch size while conserving memory. The learning rate was set to 1.0e-4, and the
model was trained for 3 epochs. To manage the learning rate schedule, we implemented a cosine decay
strategy with a warmup ratio of 0.1, allowing for initial rapid learning followed by a gradual decrease
in the learning rate. Additionally, we leveraged mixed-precision training using bfloat16 (bf16) to
accelerate computations and reduce memory usage without significant loss in model accuracy. The
training loss function curves are illustrated in Figure 4 and 5.

A.10 STATISTICAL ANALYSIS OF UNICOTT STRUCTURE

To provide quantitative insights into the structural characteristics of UniCoTT, we conducted a
comprehensive analysis of the node and edge distributions across different structural variants. Table 14
presents the average number of nodes and edges for chain-structured, tree-structured, and graph-
structured UniCoTT configurations.

For the tree-structured variant, we specifically designed a three-layer binary tree configuration,
resulting in a fixed node count of 7. This consistent structure enables systematic comparison across
different datasets while maintaining architectural stability. The chain-structured variant exhibits more
compact representations with approximately 4-5 nodes on average, while the graph-structured variant
demonstrates higher connectivity with an average of 8-9 nodes and 10-11 edges, reflecting its more
complex reasoning patterns.

2https://github.com/hiyouga/LLaMA-Factory
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(a) Base settings on CREAK (b) Our method on CREAK

(c) Base settings on CSQA2 (d) Our method on CSQA2

(e) Base settings on StrategyQA (f) Our method on StrategyQA

Figure 4: Loss curves obtained by performing SFT training on Qwen2.5-3B-Instruct on different
datasets.
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(a) Base settings on CSQA (b) Our method on CSQA

(c) Base settings on OBQA (d) Our method on OBQA

(e) Base settings on GSM8K (f) Our method on GSM8K

Figure 5: Loss curves obtained by performing SFT training on Qwen2.5-3B-Instruct on different
datasets.
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Table 15: Performance (%) on CREAK dataset with varying number of nodes

Structure Number of Nodes

2 3 4 5 6 7

Chain 47.49 51.47 52.56 52.80 - -
Tree 47.43 51.55 53.39 54.91 56.60 56.71

These statistics provide valuable insights into the structural complexity and computational require-
ments of different UniCoTT variants, helping to inform implementation choices based on specific
application constraints and performance requirements.

A.11 ANALYSIS OF NODE COUNT (KNOWLEDGE SIZE) IMPACT

To investigate the relationship between structural complexity and model performance, we conducted
an ablation study on the CREAK dataset, focusing on chain-structured and tree-structured variants of
UniCoTT. These variants were selected for their amenability to systematic node expansion compared
to the graph-structured configuration. For computational efficiency, we utilized a 10% random sample
of the CREAK dataset.

Table 15 presents the performance trends across different node configurations. For chain-structured
UniCoTT, performance stabilizes at approximately 4 nodes, achieving an accuracy of 52.56%.
The tree-structured variant demonstrates continuous improvement up to 7 nodes, reaching 56.71%
accuracy. Notably, the performance gains begin to plateau after reaching these respective node counts,
suggesting diminishing returns with further structural expansion.

These empirical findings indicate that effective knowledge distillation can be achieved with moderate
structural complexity: 4 nodes for chain structures and 7 nodes for tree structures represent optimal
configurations that balance performance gains with computational efficiency. This observation has
important implications for practical implementations, as it suggests that the benefits of structural
reasoning can be realized without requiring excessive computational resources or annotation effort.
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Question What does a gambler do that causes him or her to be unhappy? (A) play cards
(B) double winnings (C) lose money (D) play poker (E) to win the prize

Gold Answer C

Structure of UniCoT

Prompt for v0 Q: what will move to another area if their habitat will no longer support
them?\nAnswer choices:\n(a) density\n(b) Birds\n(c) squids\n(d) humans\n(e)
clouds\n(f) gravity\n(g) cows\n(h) Whales\nA:The answer is cows\nThe ex-
planation is:If a habitat can no longer support animals then those animals will
move to another area.\n\n
Q: Question \n A: The answer is C. The brief explanation is:

Prompt for next node Q: what will move to another area if their habitat will no longer support
them?\nAnswer choices:\n(a) density\n(b) Birds\n(c) squids\n(d) humans\n(e)
clouds\n(f) gravity\n(g) cows\n(h) Whales\nA:The answer is cows\nThe brief
explanation is:If a habitat can no longer support animals then those animals
will move to another area.\nA brief explanation of another perspective is:Cows
are social animals.
Q: Question \n A: The answer is C. The brief explanation is: Prompt for v_0
Parent node explanation \nA brief explanation of further perspective is:

v0 Gamblers may feel unhappy when losing money because it goes against their
desire to win.

v1 The answer is lose money. A gambler may experience unhappiness when they
lose money, as it goes against their desire to win and can lead to financial
setbacks

v2 The question seems incomplete, and there is no further perspective provided for
the second question. If you have additional information or if there’s anything
specific you’d like to know or discuss regarding the second question, please
provide more details.

v3 The brief explanation provided for the second question is: "The answer is lose
money. A gambler may experience unhappiness when they lose money, as it
goes against their desire to win and can lead to financial setbacks

v4 The act of losing money can cause a gambler to be unhappy because it means
they have not been successful in their attempt to win, and it can also lead to
financial difficulties

v5 It seems like you’ve provided a question about a gambler and its answer
regarding losing money.

v6 Losing money can also have a psychological impact on a gambler, causing
stress, frustration, and even feelings of failure. Some gamblers may also
experience guilt or shame for losing money, especially if it affects their family
or financial stability. This emotional toll can contribute to their unhappiness as
well.

Prediction of +UniCoTT C

Prediction of +CoT D

Prediction of +SCOTT D

Table 16: We demonstrate the graph structure of UniCoTT and the explanations of various nodes
generated by LLMs on the CSQA dataset. Meanwhile, we present the prediction results of different
methods using the BERT-base as the backbone network.
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Question James needed smooth sandpaper, but instead he got what type? (A) rough (B)
non smooth (C) uneven (D) plastic (E) bumpy

Gold Answer A

Structure of UniCoT

Prompt for v0 Q: what will move to another area if their habitat will no longer support
them?\nAnswer choices:\n(a) density\n(b) Birds\n(c) squids\n(d) humans\n(e)
clouds\n(f) gravity\n(g) cows\n(h) Whales\nA:The answer is cows\nThe ex-
planation is:If a habitat can no longer support animals then those animals will
move to another area.\n\n
Q: Question \n A: The answer is A. The brief explanation is:

Prompt for next node Q: what will move to another area if their habitat will no longer support
them?\nAnswer choices:\n(a) density\n(b) Birds\n(c) squids\n(d) humans\n(e)
clouds\n(f) gravity\n(g) cows\n(h) Whales\nA:The answer is cows\nThe brief
explanation is:If a habitat can no longer support animals then those animals
will move to another area.\nA brief explanation of another perspective is:Cows
are social animals.
Q: Question \n A: The answer is A. The brief explanation is: Prompt for v_0
Parent node explanation \nA brief explanation of further perspective is:

v0 James needs smooth sandpaper, but he may get the opposite smoothness

v1 James needed smooth sandpaper, but instead, he got rough sandpaper.

v2 The answer is (a) rough.\n\nThe brief explanation is: James needed smooth
sandpaper, but instead, he got rough sandpaper.\n\nA brief explanation of
further perspective is: Smooth and rough are contrasting textures, and in this
context, James received the opposite of what he needed, indicating rough
sandpaper.

v3 The given responses appear to be mixed up. Let me organize and provide
concise answers: James needed smooth sandpaper, but instead, he got rough
sandpaper. Smooth and rough are contrasting textures, and in this context,
James received the opposite of what he needed, indicating rough sandpaper.

v4 James needed smooth sandpaper, but instead, he got rough sandpaper. Smooth
and rough are contrasting textures, and in this context, James received the
opposite of what he needed, indicating rough sandpaper

v5 It seems like you’ve provided a question about a gambler and its answer
regarding losing money.

v6 The concept of smooth is being contrasted with rough in this question, and the
correct answer is rough. Smooth and rough are opposites in terms of texture,
and in this case, James received the opposite of what he needed, indicating
rough sandpaper.

Prediction of UniCoTT A

Prediction of CoT B

Prediction of SCOTT A

Table 17: We demonstrate the tree structure of UniCoTT and the explanations of various nodes
generated by LLMs on the CSQA dataset. Meanwhile, we present the prediction results of different
methods using the BERT-base as the backbone network.
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Question Where would animals shiver the most? (A) Arctic Circle (B) Sumatra (C) Java
(D) tropical rainforest

Gold Answer A

Structure of UniCoT

Prompt for v0 Q: what will move to another area if their habitat will no longer support
them?\nAnswer choices:\n(a) density\n(b) Birds\n(c) squids\n(d) humans\n(e)
clouds\n(f) gravity\n(g) cows\n(h) Whales\nA:The answer is cows\nThe ex-
planation is:If a habitat can no longer support animals then those animals will
move to another area.\n\n
Q: Question \n A: The answer is A. The brief explanation is:

Prompt for next node Q: what will move to another area if their habitat will no longer support
them?\nAnswer choices:\n(a) density\n(b) Birds\n(c) squids\n(d) humans\n(e)
clouds\n(f) gravity\n(g) cows\n(h) Whales\nA:The answer is cows\nThe brief
explanation is:If a habitat can no longer support animals then those animals
will move to another area.\nA brief explanation of another perspective is:Cows
are social animals.
Q: Question \n A: The answer is A. The brief explanation is: Prompt for v_0
Parent node explanation \nA brief explanation of further perspective is:

v0 If a habitat can no longer support animals then those animals will move to
another area.

v1 Animals would shiver the most in the Arctic Circle because of the extremely
cold temperatures in that region.

v2 Animals would shiver the most in the Arctic Circle because it is the coldest
region listed.

v3 The Arctic Circle is known for its extreme cold temperatures, making it the
most likely place for animals to shiver.Animals in the Arctic Circle have
adapted to survive in extremely cold conditions, so they would shiver the most
in this environment

Prediction of UniCoTT A

Prediction of CoT D

Prediction of SCOTT C

Table 18: We demonstrate the chain structure of UniCoTT and the explanations of various nodes
generated by LLMs on the OBQA dataset. Meanwhile, we present the prediction results of different
methods using the BERT-base as the backbone network.
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