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Abstract

In histopathology, tissue samples are often larger than a standard microscope slide, mak-
ing stitching of multiple fragments necessary to process entire structures such as tumors.
Automated stitching is a prerequisite for scaling analysis, but is challenging due to possible
tissue loss during preparation, inhomogeneous morphological distortion, staining inconsis-
tencies, missing regions due to misalignment on the slide, or frayed tissue edges. This
limits state-of-the-art stitching methods using boundary shape matching algorithms to re-
construct artificial whole mount slides (WMS). Here, we introduce SemanticStitcher using
latent feature representations derived from a visual histopathology foundation model to
identify neighboring areas in different fragments. Robust pose estimation based on a large
number of semantic matching candidates derives a mosaic of multiple fragments to form
the WMS. Experiments on three different histopathology datasets demonstrate that Se-
manticStitcher yields robust WMS mosaicing and consistently outperforms the state of the
art in correct boundary matches.

Keywords: Whole-Mount Sectioning (WMS), UNI, Histopathology, Image Stitching,
Foundation Model

1 Introduction

While microscope slides are essential for pathology, their size limits full specimen analy-
sis. (Duan et al., 2024) Whole-Mount histopathology addresses this but introduces new scan-
ning challenges. Artificial WMS mosaicing offers a solution through fragment alignment.
Whole-Mount Histopathology (WMH) is a comprehensive technique examining the entire
cross-section of a specimen resulting in a Whole-Mount Sectioning (WMS) large-format

©2025 Author One and Author Two.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/


SemanticStitcher

slide. (Cimadamore et al., 2020) It captures the full spatial distribution and morphologi-
cal features of tissue relevant for diagnosis and research. WMS enhances histopathology-
imaging correlation, reduces cutting artifacts, and preserves tissue context. (Schouten et al.,
2024) However, it also introduces challenges, including the need for larger, more costly scan-
ners, and technical limitations in capturing oversized slides. (Duan et al., 2024) To address
these limitations, obtaining the advantages of WMS with standardized image acquisition
protocols, ongoing research focuses on creating artificial WMS images by aligning tissue
fragments. (Chappelow et al., 2011; Penzias et al., 2016; Schouten et al., 2024)

Related work Several stitching methods have been proposed. HistoStitcher (Chappelow
et al., 2011) requires manual landmark selection and transformation tuning, making it
too labor-intensive for clinical use. AutoStitcher (Penzias et al., 2016) was the first fully
automated method, using L2-norm histogram differences with a misalignment term, but
still requiring manual fragment labels. PythoStitcher (Schouten et al., 2024) is the current
state-of-the-art, applying a boundary-based, multi-resolution strategy for high-resolution
mosaicing without manual input or extra cost functions. It performs poorly on irregularly
shaped or equally sized boundary fragments. To address these limitations, we propose a
novel method for automatic mosaicing of artificial WMS from given tissue fragments.

Contribution We introduce SemanticStitcher, an automated WMS mosaicing method
that aligns sets of arbitrarily shaped tissue fragments by matching and integrating their vi-
sual content. Unlike state-of-the-art boundary-based algorithms, it requires no prior knowl-
edge of tissue shape, arrangement, or fragment count. Instead, it leverages semantic features
extracted with the help of a foundation model to effectively compare the content of image
patches at high resolution. It uses the resulting similarities to perform robust and accurate
alignment of fragment boundaries yielding an artificial WMS from a set of segments.

2 Method

SemanticStitcher accurately aligns sets of digitized tissue fragments X ∈ Rh×w to recon-
struct an artificial WMS (Fig. 1). The algorithm selects a fragment from a fragment pool,
pairs it with its best-matching counterpart, and computes the rotation matrix R and the
translation vector t required for precise alignment of the fragment. It then iteratively
stitches subsequent fragments to the accumulating mosaic to finally yield an artificial WMS
containing all fragments. The approach consists of two stages: (1) Identifying neighboring
fragment pairs and corresponding semantic match candidates and (2) robustly estimating
their spatial alignment for mosaicing.

Stage 1: Fragment pairing As a simple preprocessing step, for each fragment X in the
fragment pool we remove the background (OTSU (Otsu, 1979)) and detect the boundary
BX (Suzuki and be, 1985). Along all the fragment boundaries, patches P

(k)
X ∈ Rph×pw are

sampled at fixed intervals. Each patch is encoded into a feature vector S : P
(k)
X 7→ f

(k)
X ∈ RK

using a pre-trained semantic encoding model. In our experiments we evaluate the UNI and
CONCH foundation model for this purpose (Chen et al., 2024; Lu et al., 2023). A random
fragment XM out of the pool is selected as the moving fragment. All other fragments
are treated as fixed fragments XF . To determine the best fragment match, we compute
the cosine similarity between all boundary patch feature vectors of the moving fragment
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Figure 1: SemanticStitcher: In Stage 1, a fragment is randomly selected from the frag-
ment pool and paired with its most compatible counterpart. In Stage 2, the
optimal transformation aligning the paired fragments is computed.

XM and all boundary patch feature vectors of all fixed fragments XF . For each feature
vector in the moving fragment f

(k)
XM

, we identify the most similar feature vector on the fixed
fragments f

(j)
XF

, forming candidate matches. To select a matching fragment, we sum up the
cosine similarity for each XF over all the boundary encodings and select the fixed fragment
with the highest score as the optimal match for XM .

Stage 2: Fragment alignment After selecting a pair of fragments, we perform align-
ment, by first restricting comparison of feature vectors to those of the matched fragment
pair (XM ,XF ) from Stage 1. We then identify candidate matches between XM and XF by
finding feature pairs with the highest similarity. These candidate matches form the basis for
a robust estimation of alignment parameters between the fragments using RANSAC (Fis-
chler and Bolles, 1981). It mitigates the impact of outliers and incorrectly matched pairs,
and identifies the pose parameters consistent with a majority of matches. Once XM is
aligned with XF , the resulting composite fragment replaces the two initial fragments of
the pair in the fragment pool, and the fragment selection and alignment is repeated. This
iterative process continues until a single mosaic fragment remains, forming the complete
artificial WMS. In the following we provide details of the individual steps of the approach.

Patch extraction For patch extraction, in our experiments, we begin with a boundary
point and identify the next boundary point at a distance of 224 pixels, corresponding to
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Figure 2: Experiment A: (a) Visualization of raw fragments without preprocessing, (b)
WMS reconstruction using SemanticStitcher, (c) WMS reconstruction using the
state-of-the-art PythoStitcher algorithm

the input size of the UNI encoder. The patch P
(k)
X is then extracted orthogonal to the

line segment connecting the two points, ensuring the patch orientation is perpendicular to
their spatial alignment. To ensure comprehensive coverage of the boundary BX , patches
are extracted with an overlap of half the patch size. Patch extraction is performed along
the entire boundary but shifted 10 pixels inward to avoid black pixels from frayed edges.

Patch encodings To encode the patches P
(k)
X into meaningful feature vector representa-

tions f
(k)
X , we utilize the final layer of the state-of-the-art foundation model UNI, a general-

purpose, self-supervised model for pathology. (Chen et al., 2024) We follow the preprocessing
described in the UNI paper.

Feature vector matching To establish correspondences between the moving fragment
XM and fixed fragment XF , we consider both local patch correspondences and broader

spatial relationships. For each patch P
(k)
X , we extract its associated feature vector f

(k)
X

along with three preceding and three following feature vectors (neighbourhood 3), forming
a context-aware feature stack F

(k)
X = [f

(k−3)
X , . . . , f

(k)
X , . . . , f

(k+3)
X ]. We then compute the

cosine similarity between each stacked feature vector F
(k)
XM

from XM against candidate
stacks F

(j)
XF

from XF using a sliding window approach. The highest-scoring pair for each
F
(k)
XM

is selected, generating candidate matches.

Robust Transformation Estimation We use the candidate matches to calculate the
transformation between the moving and fixed image using the RANSAC algorithm. RANSAC
provides the most consistent rotation matrix (R) and translation vector (t), both of which
are utilized for the final alignment of the moving and fixed image.

3 Experimental Setup

Data We utilized three medical imaging datasets containing data of two different organs.
The first dataset, TCGA-LUAD (Albertina et al., 2016), comprises 514 tissue slides of lung
adenocarcinoma. The second dataset, TCGA-PRAD (Zuley et al., 2016), consists of 490 tis-
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Table 1: Quantitative analysis of boundary matches (in %).
Method TCGA-LUAD TCGA-PRAD IN-HOUSE

Matches in % ↑
PythoStitcher (Schouten et al., 2024) 42.21 46.12 38.88
SemanticStitcher (ours) 81.33 76.05 86.11

sue slides of prostate adenocarcinoma. Both datasets were reduced to 310 and 254 samples,
respectively, due to the presence of painted slides, insufficient resolution, and excessively
frayed or torn tissue samples, rendering them unsuitable for analysis. These samples were
filtered out as part of our preprocessing pipeline. We use the datasets to artificially sim-
ulate different fragment arrangements, and evaluate the corresponding performance of the
stitching algorithm. The third dataset is an in-house set comprising 8 hematoxylin and
eosin (HE) stained lung cancer specimens, scanned using an Olympus VS200 slide scanner,
at resolution 0,274 µm/px. This dataset comprises real fragments with corresponding ir-
regularities representative of clinical procedures. We performed 5 evaluation experiments
(A-E). Experiment A was performed on the in-house dataset, Experiment B on all three
datasets and Experiment C, D and E using the TCGA-LUAD and TCGA-PRAD datasets.
Implementation details All slides were processed at a resolution of 1 µm and recon-
structed at 0.25 µm. For all analyses, we used the pretrained UNI model. Additionally, for
experiment B, we incorporated the pretrained CONCH model (Lu et al., 2023). For the
UNI/CONCH model the extracted patches P

(k)
X had a size of 224×224/448×448 and the

feature vectors f
(k)
X ∈ RK had a size of K = 1024/K = 768. For RANSAC (Fischler and

Bolles, 1981) we chose an inlier threshold of 500 pixel, a maximum of 1000 iterations, and
a minimum of 6 points required for model estimation.

Experiment A: Artificial WMS reconstruction in clinical practiceWe assess the
applicability of our method in real clinical practice data on our in-house dataset of histolog-
ical fragments generated during routine diagnosis. These fragments were reconstructed into
an artificial WMS, and the arrangement was compared to the expert-provided ground truth
arrangement. We compared SemanticStitcher to the state of the art PythoStitcher. Ex-
periment B: Quantitative evaluation of tissue alignment We quantitatively evaluate
the tissue alignment accuracy on all three datasets by (1) artificially splitting a tissue slide
into fragments, (2) mosaicing the artificial fragments to a WMS, and (3) counting the num-
ber of correctly vs. incorrectly matched boundaries. Experiment C: Spatial awareness
and impact of RANSAC We visualize the connections between patches in the moving
fragment and their corresponding matches in the fixed fragment before and after RANSAC.
Additionally, we qualitatively assess spatial and semantic awareness - or capture range - of
the feature space by visualizing the cosine similarity between an encoded patch from the
image center and all other tissue patches. Experiment D: Accuracy of correct match
prediction with increasing gap size We evaluate patch matching accuracy before and
after RANSAC by artificially splitting a tissue slide into two fragments, and progressively
increasing the gap between them before matching. This simulates real-world conditions,
where tissue gaps may be larger due to morphological distortions, misalignments on the
slide, or inaccurate cuts during routine processing. We assess how patch distance affects
feature embeddings via cosine similarity between patches with an offset varying between
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Figure 3: Experiment C: (a) Visualization of all semantic match candidates between two
matched fragments; (b) valid connections retained after RANSAC filtering; (c)
a tissue slide (left) and the feature space cosine similarity between the central
patch and the rest of the image (right).

0 and 550 µm. Experiment E: Rotation invariance, neighborhood analysis and
resolution invariance We assessed the practicality of our method by conducting in depth
analyses of (1) rotation invariance, to ensure that a rotated patch remains most similar to
itself, (2) the effect of neighborhood size on feature matching, and (3) the trade-off between
resolution and computational speed.

4 Results

A. Fig. 2 shows qualitative results of real-world fragment mosaicing without any prede-
fined orientation or arrangement. SemanticStitcher yields robust mosaicing results with all
boundaries correctly matched, and only minor alignment errors were observed in fragments
with frayed boundaries (b top right segment) or where portions of the tissue were miss-
ing from the slide during imaging (b center segment). In contrast, we observed significant
inaccuracies in fragment positioning and stitching edge alignment for the state-of-the-art
boundary-based approach. It has difficulty processing fragments with similar-length bound-
aries (squares), as observed in (c) at the bottom left and right.

B. Table 1 reports the ratio of correct boundary matches in %. Results demonstrate that
SemanticStitcher consistently outperforms the state-of-the-art algorithm across all three
datasets by a large margin. For the in-house dataset, no preprocessing was applied, and
both algorithms received raw fragments. For the TCGA-LUAD and TCGA-PRAD datasets,
tissue slides were split into four segments of approximately the same size to facilitate bound-
ary matching. To simulate routinely scanned slides, we increased the gap between fragments
to the size of one patch and randomly reduced the stitching edges by 0–20% to mimic vari-
able boundary lengths.

C. Fig. 3(a) displays a typical example of fragment matching (Stage 2), with all matched
patches connected by lines. Several incorrect matches are primarily due to factors such as
staining variations, morphological distortions (e.g., tissue shrinkage) and frayed tissue edges
introducing black pixels during encoding. Fig. 3(b) illustrates the removal of mismatches by
applying the RANSAC algorithm. This is in line with quantitative results, demonstrating
that erroneous connections can be effectively discarded by a consensus operation across
patches, omitting the need for perfect matches for every patch. Fig. 3(c) illustrates the
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Figure 4: Experiment D: (a) Fraction of correct patch matches before and after RANSAC
for three different models (UNI, CONCH, NCC). (b) Cosine similarity of patch
pair encodings with spatial separation to simulate positional offset. (a) and (b)
are evaluated with increasing gap.

cosine similarity within the feature space by comparing the central patch’s feature vector
to those of all other patches in the image. The similarity visually reflects the tissue type
structure, suggesting a feature space representing relevant information.

D. Fig. 4 (a) shows correct patch matches as percentage of all matches, before and after
RANSAC, for three similarity measures: semantic features extracted with the UNI model,
with the previously published model CONCH, and with a standard patch-level normalized-
cross-correlation-based similarity (NCC) of the image pixel values. Evaluation was per-
formed for different gap sizes. Matches were compared to the known ground-truth correct
match. Even at a 250 µm gap—larger than a patch—SemanticStitcher matched over 40%
of cases without RANSAC. Fig. 4 (b) demonstrates that the cosine similarity of nearby
patches is higher compared to patches further away by comparing the similarity resulting
from different offsets. This indicates that using cosine similarity of feature embeddings both
encodes spatial and semantic information.

E. Fig. 5 (a) demonstrates the robustness of the similarity between patches in face of
patch. The rotated patch remains more similar to its non-rotated version compared to four
neighboring patches (top, right, left, and bottom). Fig. 5 (b) illustrates the relevance of
matching sets of patches over single patches. The success rate of correct matches based
on cosine similarity increases significantly from 30% to 90% when expanding from single
patch to a neighborhood size of 3 Fig. 5 (b). We evaluated SemanticStitcher across different
resolutions ranging from 0.25 to 4 µm and identified 1 µm as the optimal balance between
efficiency and resolution.

5 Discussion and Conclusion

SemanticStitcher is a fully automated method for artificial WMS mosaicing from sets of
fragments. It aligns scanned fragments using semantic matching and robust pose estima-
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Figure 5: Experiment E: (a) Similarity between a rotated patch and its correct non-rotated
counterpart (blue) compared to neighboring patches (red) illustrating the robust-
ness of the comparison to rotations. (b) Success rate for matched patches for
different neighborhood sizes as the gap size increases.

tion. Evaluation on three datasets shows its effectiveness on both fragments simulated
from a WMS and on real clinical fragment data. Unlike in purely boundary-based methods,
high-resolution semantic similarity enables more accurate and robust mosaicing. It captures
neighborhood relationships despite boundary distortions from image acquisition. Compared
to cross-correlation between pixel values, image embeddings by foundation models offer more
stable representations for alignment. Boundary-based methods struggle with irregular or
equally sized fragments because they rely on matching boundary lengths. Though currently
evaluated only on HE-stained slides, it is expected to generalize to other stainings with suit-
able embedding models. By handling boundary irregularities and diverse fragment layouts,
SemanticStitcher can streamline workflows and enhance histopathology analysis.
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