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Abstract
Fine-tuning pre-trained language models (PLMs)
with supervised data improves performance, but
often fails to generalise under unknown distri-
bution shifts, as models tend to rely on spuri-
ous, non-causal features. Existing approaches
typically make restrictive assumptions or require
multi-domain data, limiting their applicability in
real-world, single-domain settings. We propose a
novel causal adjustment framework that improves
out-of-distribution generalisation by decompos-
ing the representation of PLMs into causal and
spurious components, and recombine them for
testing time adaptation. Extensive experiments
on semi-synthetic datasets demonstrate that our
causal fine-tuning method consistently outper-
forms state-of-the-art domain generalisation base-
lines.

1. Introduction
Pre-trained language models (PLMs) often fail to generalise
under distribution shift, as they exploit spurious correlations
that may not hold in new environments (Lv et al., 2022;
Qiao & Low, 2024). This issue is particularly problem-
atic in single-domain settings, where models lack access to
multiple environments needed to disentangle causal from
non-causal features (Arjovsky et al., 2019; Ahuja et al.,
2020; Heinze-Deml & Meinshausen, 2021). For example,
in sentiment classification (Figure 1), spurious correlations
between review source and sentiment labels can flip at test
time (Gururangan et al., 2018; Sagawa et al., 2019).

A prominent line of work improves generalisation through
feature augmentation or invariant representation (Xie et al.,
2020; Hendrycks et al., 2019; Zhang et al., 2020; Tu et al.,
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Negative: Amazon         Positive: Yelp

Amazon

Charing time is way
too long.
...

It takes too long to
boot up.

Yelp

Waiting time was
ridiculously long.
...

Line in order was
too long.

Yelp

The place has long
standing reputation
...

I appreciated the
long menu.

Positive: Amazon         Negative: Yelp

Amazon

The long battery life
is great.
...

The long warranty is
fantastic.

Figure 1. Regime variable σ indexes data generation regimes. Sen-
timent is associated with the data source: Amazon with positive
sentiment and Yelp with negative sentiment, which reverts in the
test regime.

2020). While effective, these methods assume access to
multi-domain data or domain labels, which are often un-
available or difficult to augment in unstructured data such as
language (Chalupka et al., 2017; Yuan et al., 2023), limiting
their practical use. We address this gap by asking: How
can PLMs be used to construct causal representations for
adaptive OOD generalisation at test time?

We propose a causal fine-tuning framework for test-time
adaptation. Our method decomposes fine-tuned represen-
tations into invariant (causal) and environment-sensitive
(spurious) components. These features are then recombined
adaptively at test time for improved robustness. In Section 2,
we analyse why standard supervised fine-tuning fails under
OOD from a causal lens. In Section 3, we present how a
causal classifier can be identified from data. In Section 4,
we implement this method using single-domain data with
a PLM. In Section 5, we extensively validate our approach
on semi-synthetic datasets. Related work can be found in
Appendix A.

2. Preliminaries
Motivation and Intuition. Our proposal encodes invari-
ance assumptions into graphical causal models (Pearl, 2009;
Dawid, 2021). We consider the scenario where X is allowed
to cause Y , but not vice versa, with the possible presence
of hidden confounders U (Figure 2(a)). To accommodate
distribution shifts, we further assume that both the training
and the test environments1 involve an intervention (or per-
turbation, or regime), denoted by regime variable σ within
a square node, which modifies the influence of U on X .

1We use “environment” and “domain” interchangeably.
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Figure 2. Dashed vertices represent hidden variables and square
regime vertices represent interventions, perturbations or changes
of environment. (a): Explicitly indicating that the mechanism into
X may change according to regimes indexed by a regime variable
σ. When do(x) operation performed, the edge between U and
X is removed, indicated by a red cross. (b): Refinement of the
original causal diagram, where X is broken apart and abstracted
into vectors R0, R1 and Φ, see Section 3 and Appendix I.

Training data are observed only in regime σ = train and
test data come from an unknown regime σ = test. The
conditional distribution p(x | u;σ = test) can potentially
arbitrarily differ from p(x | u;σ = train) and we first
analyse why such distribution shifts lead standard machine
learning classifiers to fail.

Proposition 2.1. Let M and M∗ be two different causal
models, representing the source (train) and target (test)
domains under interventions σ, with implied distributions
p(y | x) := p(y | x;σ = train) and p⋆(y | x) :=
p(y | x;σ = test). Follow the causal graph structure shown
in Fig. 2 (a), in general, p(y | x) ̸= p∗(y | x). □

This follows directly from the law of total probability over
U , below assumed to be discrete without loss of generality:

p(y | x;σ) =
∑
u

p(y | u, x;σ)p(u | x;σ)

=
∑
u

p(y | u, x)︸ ︷︷ ︸
does not change with σ

p(u | x;σ)︸ ︷︷ ︸
changes with σ

.

This implies that a predictor learnt under σ = train is
not transportable (Pearl & Bareinboim, 2011; Jalaldoust &
Bareinboim, 2024). To address this limitation, we build a
predictor optimised for a distribution p(y|do(x)) invariant
to σ. More analysis can be found in the appendix H.

3. Identification for Causal Fine-Tuning in
Pre-trained Language Models

In this section, we briefly introduce structural assumptions
leading to the identifiability of the distribution p(y | do(x))
(via causal model in Figure 2(b)). Specifically, we assume

the existence of sentence-level features (R0, R1) and token-
level features Φ: the sentence-level feature R0 and R1 can
be used to identity invariant (causal) feature C; and the
token-level feature Φ contains environment-sensitive (spu-
rious) information, which are used together with C to es-
timate the causal predictor p(y | do(x)). We present these
two key identification results with details on assumptions in
Appendix I.
Theorem 3.1 (Identification for Causal Features C). As-
sume the structural assumptions encoded in the causal
graph in Fig. 2 (b). Let the mapping between {S0, S1, C}
and {R0, R1,Φ} obey the invertibility conditions of
(Von Kügelgen et al., 2021). According to Theorem 4.4
in (Von Kügelgen et al., 2021), we can identify C by learn-
ing the distribution p(c | r) from R0 and R1.
Theorem 3.2 (Identification for Causal Transfer Learn-
ing). Given the assumptions in the causal graph in Fig. 2
(b) and Theorem I.5, the distribution of Y under do(x) can
be computed as2

p(y | do(x)) =
∑
Φ′,x′

p(y | Φ′, c)p(Φ′ | x′)p(x′), (1)

where c is given by c = p(c|r1) and r1 = p(r1|x). □

4. Algorithm: Causal Fine-Tuning
In this section, we detail the proposed Causal Fine-Tuning
(CFT) framework (Figure 3), including three submodules:
supervised fine-tuning, learning invariant causal features,
and retrieving local features. These submodules are then
used to build the end-to-end CFT framework, as demon-
strated by Algorithm 1 for training and 2 for inference in
Appendix G.

Submodule 1: Supervised Fine-Tuning The first sub-
module learns p(r1 | x) from training samples of p(x, y)
through supervised fine-tuning (SFT) where p(r1 | x) is
initialized with the pre-trained model p(r0 | x), we have:

LSFT = E(x,y)∼Dx,y
[−y log p(r1 | x)] , (2)

Submodule 2: Learning Causal Feature To learn the
invariant causal feature C, we aim to identify the distribution
p(c | r). This process involves aligning representations from
different environments while maximizing entropy to prevent
collapsed representations (Von Kügelgen et al., 2021). The
loss function is constructed based on Theorem I.5,

LC := E(r0,r1)∼Dx

[
∥p(c | r0)− p(c | r1)∥22

]
−H (p(c | r0))−H (p(c | r1)) ,

(3)

2Φ′ is deterministically given by x′, but the above represen-
tation in terms of a probability p(Φ′ | x′) is useful as a way of
understanding how to generate Φ′.
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pre-trained (frozen)  

copy of pre-trained (not frozen)
 

first  layer of model
 

patch 1
patch 2
patch 3
patch ...
patch N

mean averaged patch 

Frozen pre-trained model can be removed after causal fine-tuning

First few layers of 

Causal Adjustment

Figure 3. Illustration of our CFT methods. During training, we keep a copy of pre-trained foundation model for identification purposes,
which is removed during inference. Once CFT is done, we get a model of the same size as the standard fine-tuning but providing functions
to decompose input to causal and spurious features. This allows for adaptation to latent-confounded shifts at test time. Here we use k = 1,
which is the embedding layer for the language model in our experiments.

where data is sampled from p(x) and used to calculate r0, r1.
The first term enforces invariance across environment, and
the entropy terms maximize diversity in representations,
reducing the risk of collapse.

Submodule 3: Retrieving Local Feature This submod-
ule focus on constructing local feature p(Φ | x). Given input
X as a series of tokens X = [t1, t2, ..., tm], we can retrieve
the vector representation for each token t at the embedding
layers from the pre-trained SFT model (submodule 1). To
construct local feature Φ, we divide the token sequence into
non-overlapping patches (10 patches in our experiments,
balancing granularity and computational efficiency), allow-
ing us to rewrite X as patches X = [p1, p2, ..., p10] where
p1 = [t1, t2, ..., tm

10
] and so on. After splitting, we per-

form mean averaging on these patches to extract the local
feature Φ, which is then used with C together to estimate
p(y | do(x)).

5. Experiments
We evaluate our proposed approach using two semi-
synthetic datasets constructed based on the Amazon review
dataset and the Yelp review dataset (Zhang et al., 2015).
This section summarizes the experimental setup, baselines,
and key results. Detailed description of datasets and sim-
ulators can be found in Appendix B, while Appendix C
provides details of the model architecture. Further analysis
and additional results are presented in the Appendix E.

Baselines and Our Methods. We compare our algorithm
with the following baselines: (1) SFT0, which involves
training a linear classifier on a freezed sentence representa-
tion extracted directly from PLMs; (2) SFT (Vapnik, 1998),
the typical transfer learning strategy with PLMs, considered
as a very strong baseline (equivalent to performing ERM);
(3) WSA (Izmailov et al., 2018; Athiwaratkun et al., 2018),

which averages multiple points along the SGD trajectory to
achieve a more robust classifier; and (4) WISE (Wortsman
et al., 2022), which interpolates the parameters of PLMs
and a fine-tuned model to enhance generalization.

Our proposed CFT algorithm follows the exact setup de-
scribed in Section 3. To analyze the impact of different
representations, we implemented three additional variations
of CFT: (1) CFT-N uses both Φ and C to predict Y without
applying the adjustment formula from Theorem I.6, leaving
a causal path between Φ and Y unblocked; (2) CFT-C uses
the estimated causal variable C to predict Y ; and (3) CFT-Φ
uses local spurious features Φ to predict Y .

Experimental Setup. Each experiment was repeated 5
times using the AdamW (Kingma & Ba, 2015; Loshchilov,
2017) optimizer with a learning rate of 5× 10−5, except for
SFT0, where a learning rate of 5 × 10−4 was used. Each
model was trained for 10 epochs, sufficient for convergence.
The best model iteration was selected based on performance
on a holdout validation set (20% of the training data).

5.1. Experiments 1: Spurious Correlation Between Stop
Words and Labels

Data. Following guidelines from (Veitch et al., 2021), we
generate both semi-synthetic ID and OOD data by injecting
spurious correlations between stop words (e.g. “and”, “the”)
and class labels. See Appendix B.2 for more details. For
training, we randomly sample 5000 points per class, with a
20% split for validation. For testing, we sample 2000 per
class. For training, we set the spurious correlation to 90%,
which remains the same for the ID testing. For the OOD
test set, we shift this ratio to be 70%, 50%, 30% and 10%.

Results. The main results are presented in Table 1, with
visualizations for the Amazon dataset over 5 runs in Fig. 4.
These results demonstrate the superiority of our model
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Table 1. Main results for semi-synthetic experiments, reported as F1 scores with mean averaged value based on 5 runs of different seeds.
We presents the Yelp results in the first table and Amazon in the second.

Train F1 90% ID F1 90% OOD F1 70% OOD F1 50% OOD F1 30% OOD F1 10%
SFT0 86.24 86.42 71.58 56.82 42.04 26.94
SFT 95.96 92.89 81.89 71.20 60.23 49.24
CFT 98.69 93.03 84.16 75.83 67.06 58.40
CFT-N 97.80 92.35 81.91 71.89 61.46 51.07
CFT-C 98.62 92.99 84.07 75.51 66.62 57.75
CFT-Φ 92.42 89.30 71.83 54.41 36.91 19.08

Train F1 90% ID F1 90% OOD F1 70% OOD F1 50% OOD F1 30% OOD F1 10%
SFT0 87.99 87.90 70.42 52.80 35.26 17.83
SFT 96.56 92.39 81.61 70.77 59.97 49.33
CFT 98.58 92.37 83.16 74.25 65.24 56.40
CFT-N 97.24 91.82 80.83 69.76 58.77 48.00
CFT-C 97.58 92.24 82.35 72.62 63.01 53.40
CFT-Φ 90.63 89.83 70.46 51.06 31.71 12.40

Figure 4. Box-plot over 5 runs for 4 methods (SFT, CFT, CFT-N and CFT-C). Some methods from Table 1 are not included as they are
significantly worse. This is a visualisation of the Amazon dataset. Yelp shows a similar trend (Fig.5, Appendix).

against the strong baselines. We observe a significant per-
formance drop in both SFT0 and SFT when the distribution
of spurious features shifts, indicating that standard fine-
tuning methods struggle to handle spurious correlations
in OOD settings. However, we observe that SFT consis-
tently outperforms SFT0 for both ID and OOD settings,
highlighting the effectiveness of “knowledge transfer” in
improving representations quality. Among all estimators,
our proposed CFT method provides the most promising
predictors. Compared to CFT, the CFT-N conditions on
Φ, which introduces an unblocked path between σ and Y ,
namely σ → S1 → R1 ↔ Φ ↔ Y (Pearl, 2009), where
S1 is unobserved, but R1 and Φ are observable functions of
X . This means that this predictor gets exposed to changes
in distribution as indexed by σ. We observe that the drop
in performance compared to CFT and this confirms why
making predictions under a hypothetical do(x) helps. The
CFT-C variant, which uses only the causal variable C for
prediction, performs well in many OOD settings, suggest-
ing that PLMs can be considered as a good source of new
domain data. However, its accuracy decreases as the OOD
distribution diverges further from the ID data, indicating
that relying solely on C may limit robustness in extreme
scenarios. An intriguing observation is the behavior of the
CFT-Φ variant, which predict the label using only local fea-
ture Φ. This variant is strongly correlated to the spurious
pattern in the data, highlighting why our methods can work
for OOD settings, as we negotiate large changes for the
spurious distribution by sticking to the distribution do(x).

5.2. Experiments 2: Spurious Correlation Between Data
Source and Labels

We conducted the second experiment on semi-synthetic
data constructed to carry spurious correlation between data
source and labels, similar results are observed as in Experi-
ment 1 (Section 5.1) with further details in Appendix J.

6. Conclusion
We introduced a method for constructing causal represen-
tations leveraging PLMs, which demonstrates promising
performance in OOD adaptation scenarios compared to stan-
dard fine-tuning. Lessons. We recognise that PLMs are
already highly resilient to perturbations in text inputs. This
highlights the strength of PLMs in managing text input
variations, but also the challenge in simulating spurious cor-
relations for testing purposes. Limitations. While we made
extensive efforts to control and simulate spurious relation-
ships that resemble real-world deployment scenarios, the
mechanisms through which spurious correlations emerge in
complex, real-world environments remain unclear. We hope
that our method provides a valuable starting point for both
academic and industry researchers facing these challenges.
Future Work. While PLMs have been increasingly used
to construct robust classifiers (e.g., Wortsman et al., 2022;
Zhu et al., 2023; Wang et al., 2024). The precise nature
of the knowledge encapsulated remains an open question,
and further investigation is required to fully understand and
harness this knowledge effectively.
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A. Related Work
Causality and Domain Generalization. Causal mechanisms provide a powerful framework for addressing spurious
correlations in Domain Generalization (DG). A key approach involves learning invariant representations across domains,
either by supervised learning (Arjovsky et al., 2019; Ahuja et al., 2020; Heinze-Deml & Meinshausen, 2021) or by leveraging
auxiliary tasks in self-supervised settings (Von Kügelgen et al., 2021; Yue et al., 2021; Mitrovic et al., 2021; Kong et al.,
2023). Despite their success, they fundamentally rely on multi-domain training data, which is often impractical to acquire or
augment, particularly in natural language tasks (Yuan et al., 2023). To address single-domain scenarios, causal dependencies
have been exploited assuming the absence of unobserved confounders (Lu et al., 2022; Lv et al., 2022). However, this
assumption is limiting in real-world settings. Recent work instead leverages the front-door adjustment, which introduces
mediator variables to account for unobserved confounders and mitigate spurious correlations (Li et al., 2021; Mao et al.,
2022; Nguyen et al., 2023). Building on these ideas, we propose a novel adjustment framework tailored for NLU tasks. By
leveraging PLMs, our approach enables causal inference in single-domain settings, widening its applicability in DG.

Domain Generalization for Pre-trained Models. Pre-trained models have achieved remarkable success in computer
vision (Chen et al., 2020; Bao et al., 2021; He et al., 2022) and natural language processing (NLP) (Devlin, 2018;
Lan, 2019; Liu, 2019), driving growing interest in improving their domain generalization capabilities on downstream
tasks. A prominent line of work enhance generalizability by increasing feature diversity through training on data from
multiple domains (Hendrycks et al., 2019; Xie et al., 2020; Zhang et al., 2020; Tu et al., 2020). Other methods leverage
adversarial training (Salman et al., 2020; Hendrycks et al., 2020; Utrera et al., 2020; Yi et al., 2021) and advanced
attention mechanisms (Dosovitskiy, 2020; Mao et al., 2021; Yang et al., 2021) to develop more robust models. Recent
work has also explored using PLM parameters as a form of regularization or as an external knowledge source to improve
generalization (Wortsman et al., 2022; Zhu et al., 2023; Wang et al., 2024). Building on these ideas, we investigate the
potential of leveraging PLMs as an additional data domain for augmentation. This augmented data is then used to construct
robust causal representations that enhance model performance in both in-domain (ID) and OOD scenarios.

B. Simulator
We designed two types of simulators: (1) a semi-synthetic simulator; and (2) a real-world simulator.

B.1. General Setting

The simulators serve as fully (or partially) controllable oracles to allow us to test the performance of our proposed method.
In particular, we have the following parameters:

• Ntrain: the total number of training data points.

• Ntest: the total number of testing data points.

• U : the type of spurious correlation between text input X and label Y.

Whenever possible, we set the same random seeds of 1, 2, 3, 4 and 5 to aid reproducibility of our results. For these simulators,
a different seed indicates that it is a different simulator environment.

B.2. Semi-Synthetic Simulator

The first simulator is semi-synthetic and primary motivated by the experiments in (Veitch et al., 2021), which inject an
artificial spurious relationship between words “the” and “and” in a given sentence, with respect to its actual label. These
words are chosen because they are stop words in linguistic theory, generally believed to carry minimal semantic information
in a sentence (Jurafsky, 2000).

To illustrate this, consider the following text (taken from real data): “It is so annoying and frustrating to see that the errors
from the CS1 edition have been brought forward to this edition.” We append a special suffix to the words “the” and “and.”
For binary classification, the suffixes could be either “xxxx” or “yyyy”. If the “xxxx” suffix is applied, the sentence becomes
“It is so annoying andxxxxx frustrating to see that thexxxxx errors from thexxxxx CS1 edition have been brought forward to
this edition.”
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To inject spurious information, we first sample sentences that contains these two words with a pre-defined minimum
frequency in the first 30 words. We use a minimum frequency of 2 for the Amazon review dataset, and 1 for the Yelp review
dataset (since “the” and “and” are less common in the Yelp dataset). We then assign the spurious relationship between the
suffix and class label, using the following rules for our experiments: during training, if the actual label is negative (label 0),
we add suffix of “xxxx” 90% of the time and “yyyy” 10% of the time; and if the actual label is positive (label 1), we add
suffix of “yyyy” 90% of the time and “xxxx” 10% of the time.

This setup is replicated in the in-distribution (ID) test set. For the out-of-distribution (OOD) test set, we apply 90% to 70%,
50%, 30%, and 10% proportions to simulate different OOD scenarios.

Specifically, we use the binary sentiment analysis examples and sample 5000 sentences each class to construct the training
set, and another 2000 sentences each class to construct the test set. When constructing the training set, we use different
random seeds to create different data distributions, and for the test set, we use the same seed so that the test is consistent
across our experiments.

B.3. Real-World based Semi-synthetic Simulator

Real-world Case-Study. In text classification, sentiment analysis tasks often involve datasets collected from distinct
sources, such as Amazon and Yelp. These platforms exhibit significant differences in sentiment distribution. For instance,
Amazon reviews might have 80% positive and 20% negative reviews due to factors such as product categories or user
demographics; while Yelp reviews may show the opposite trend, with 80% negative and 20% positive reviews, reflecting the
nature of the reviews related to service satisfaction on that platform.

Combining such data into a training set can create a seemingly balanced dataset, which has 50% positive and 50% negative
reviews. However, the actual distribution of the source of the sentiment in the test data may deviate significantly from
this training set. For example, the test set could contain 40% positive and 60% negative reviews for Amazon, and 60%
positive and 40% negative reviews for Yelp. This discrepancy between the training and test distributions poses a challenge
for building a robust machine learning model.

Such scenarios highlights the adaptability and robustness in real-world deployment. For instance, a model trained on reviews
from users in one region (e.g. Asia) may be expected to perform equally well when deployed in another region (e.g. Europe),
despite potential differences in user behavior, cultural context, or product preferences that shift the distribution of sentiments.
Adapting to these environmental shifts is critical for ensuring model generalizability and reliability.

Setup. The second simulator uses real-world data and is inspired by the design of the semi-synthetic simulator and case
study in Section J. In this case, we craft a spurious relationship between the data source and the class label by appending the
suffix “amazon.xxx” for data from the Amazon platform and “yelp.yyy” for data from the Yelp platform. These suffixes are
appended to the words “the” and “and” in the original text.

Our training data is a mixture of polarized sentiment analysis tasks from two platform: Yelp and Amazon. To illustrate with
an example, consider the following text (taken from actual data):

“I was extremely disappointed with the breakfast here as well as with their pastries. I had ordered the burger since I figured
a Thomas Keller restaurant should not mess that up; I was very wrong. The brioche bun did not seem fresh, burger patty
was dry and flavorless,”

Since this text is from the Yelp platform, we append the suffix “yelp.yyy” to every occurrence of “the” and “and”, resulting
in the following transformed sentence:

“I was extremely disappointed with the yelp.xxx yelp.xxx yelp.xxx breakfast here as well as with their pastries. I had ordered
the yelp.xxx yelp.xxx yelp.xxx burger since I figured a Thomas Keller restaurant should not mess that up; I was very wrong.
The yelp.xxx yelp.xxx yelp.xxx brioche bun did not seem fresh, burger patty was dry and flavorless,”.

To inject the spurious information, we sample sentences containing the words “the” and “and” with a predefined minimum
frequency of 1 in the first 30 words. Then, we establish a spurious relationship between the suffix and the class label using
the following rules for our experiments: during training, if the actual text is from the Amazon platform, we add suffix of

“amazon.xxx” 90% of the time and “yelp.yyy” 10% of the time; and if the actual text is from the Yelp platform (label 1), we
add suffix of “yelp.yyy” 90% of the time and “amazon.xxx” 10% of the time.
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The same setup is used to build an in-distribution (ID) test set. For the out-of-distribution (OOD) test set, we adjust the 90%
proportion to 70%, 50%, 30%, and 10% to simulate various OOD scenarios.

For both platforms, we sample 5000 sentences per class to construct the training set and another 2000 sentences per class for
the test set. Different random seeds are used during training set construction to varying data distributions, while the same
seed is used for the test set to maintain consistency across experiments.

C. Model Details
We use the “bert-base-uncased” as the backbone for all of our experiments, initialized from the Huggingface transformers
library3.

C.1. SFT0

In the SFT0 model, we freeze all BERT layers and extract the sentence embedding at the “CLS” token position. A linear
layer is then trained to perform sentence classification.

C.2. SFT

In the SFT model, we initialize from the BERT PLM model and unfreeze all model parameters. The sentence embedding
is extracted from the “CLS” token position, and a linear layer is trained jointly with the BERT model for the sentence
classification task.

C.3. CFT

In the CFT model, the M1 model uses exactly the same setup as the SFT model (Equ. 2), the C dimension is chosen as the
1
4 of the BERT hidden dimension size (Equ. 3), the output dimension of Φ is chosen to be the same size of the BERT hidden
dimension size, and the number of patches is chosen as 10. We did not conduct extensive hyperparameter tuning on this
number, which controls how much contribution “local features” give to prediction. Everything is learned end-to-end.

C.4. CFT-N

The CFT-N model is very similar to the CFT model we defined, except now we use both C and Φ to make predictions.
Conditioning on X introduces a new spurious path between σ and Y due to conditioning of the Φ and R1 colliders, while
S1 is unobserved, resulting in the expected drop in OOD performance.

C.5. CFT-C

In the CFT-C model, only C is used to predict the outcome Y . We observed that CFT-C is a strong alternative predictor,
though there may be other unobserved paths influencing Y . This is why we introduced Φ to enable the front-door adjustment.

C.6. CFT-Φ

CFT-C uses Φ only to predict the outcome Y . We observe that Φ here captures spurious information.

D. Discussion: The Value of Semi-Synthetic Cases
A key distinction in our experiments is that while both semi-synthetic and real-world examples are derived from the same
base datasets, none of the experiments use the data in its original form. Instead, we systematically inject spurious correlations
(e.g., stop words or platform identifiers linked to labels) to create controlled distribution shifts. This design ensures that the
data used for training and testing differ significantly, enabling rigorous evaluation of causal effects. Controlled settings
are essential for isolating the impact of spurious features and accurately measuring the causal effect of our method. By
introducing spurious correlations in a structured manner, we replicate realistic distribution shifts while preserving the
underlying causal relationships. This approach allows for consistent and repeatable evaluation of model robustness across
ID and OOD settings. Far from being a limitation, this controlled design ensures that our experiments effectively test the

3https://github.com/huggingface/transformers
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ability of CFT to mitigate spurious correlations and generalize to diverse deployment scenarios.

E. Further results
We conducted a further analysis on (1) level of spuriousness (Fig. 6), (2) number of training data (Fig. 7), and (3) number of
samples during inference (Fig. 8).

Summary. (1) Under different levels of spurious information, our CFT method consistently outperforms the SFT method by
a significant margin. (2) Even with more data provided, our model CFT consistently outperforms the blackbox methods
(SFT). However, we observe that when enough data is provided, there is a saturation point where SFT and CFT methods
become indistinguishable for this particular OOD task. (3) We also observed a decrease in performance if we do not use the
interventional distribution do(x) during prediction time.

In this section, we first present results of the Yelp semi-synthetic example. We observed a similar trend as Fig. 4

Figure 5. Box-plot over 5 runs for 4 methods (SFT, CFT, CFT-N and CFT-C). Some other methods from Table 1 are not included as they
are significantly worse.

Next, we present an analysis of the impact of the level of spurious information, based on the Amazon semi-synthetic example.
We tried to inject different levels of spurious features: “-1” is the same as the experiment in Section 5.1; “-2” means we
double the proportion of spurious features, i.e. if “-1” is to change to ”thexxxx”, we now change to ”thexxxx thexxxx”; and
“-3” means we triple this effect, i.e. we inject ”thexxxx thexxxx thexxxx”. We observe that the CFT method consistently
outperforms the SFT method under various of spurious information levels.

We also analyze the impact of the training dataset size. While the CFT method consistently outperforms the SFT method,
we notice that, as the dataset size increases, the performance gap between CFT and SFT narrows. Specifically, the difference
becomes insignificant when approaching 7,000 data points per class using the BERT model in our experimental setup
described in Section 5.1. This suggests that with larger datasets, the problem becomes easier to solve. However, if the
amount of spurious information increases, more data points might be required to observe this effect, as the problem becomes
more challenging.

Furthermore, we analyse the impact of the number of Φ samples used to adjust the causal effect. We can observe from the
CFT-N results in Table 1 and 2 that, if we do not adjust for Φ, we get worse results. Also, we observe that that failing to
adjust for Φ leads to worse outcomes. Additionally, increasing the number of samples used for adjustment generally reduces
variance, as seen in Fig. 8.
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Figure 6. Different spurious level based on the semi-synthetic Amazon data, from “-1” (similarly to the setting in Section 5.1) to “-2” and
“-3” with strong spurious features, the CFT consistently outperforms SFT in the OOD settings.

Figure 7. Different training data sizes of 4000, 5000 and 5500 per class of the binary sentiment analysis tasks. The CFT method
consistently outperforms SFT in OOD settings.
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Figure 8. Different inference samples of 1, 5 and 20 for CFT. The variance is reduced in the OOD scenario when using more than 1
sample.

F. Proof of Theorem I.6

p(y | do(x)) = p(y | do(x), do(r0), do(r1), do(Φ))︸ ︷︷ ︸
Assumption I.1

= p(y | do(r0), do(r1), do(Φ), do(c))︸ ︷︷ ︸
Implied by c = p(c|r1) and r1 = p(r1|x)

= p(y | do(c))︸ ︷︷ ︸
Implied by structural assumptions

=
∑
Φ′

p(y | Φ′, c)p(Φ′)︸ ︷︷ ︸
Backdoor criterion (Pearl, 2009)

=
∑
Φ′,x′

p(y | Φ′, c)p(Φ′ | x′)p(x′).□

G. CFT Algorithms

Algorithm 1 CFT Training
Input: D = {(xi, yi)}Ni=1, pre-trained model p(r0|x)
Output: Learned p(y|Φ, c), p(Φ|x), p(r1|x), and p(c|r)
Step 1: Initialize p(r1|x) from p(r0|x), and initialize p(y|Φ, c), p(Φ|x), p(c|r)
for each (xi, yi) in mini-batch of D do

Step 2: Sample x̃i and x̄i from D which have the same label as yi
Step 3: Update p(r1|x) on (x̃i, yi) based on Equ 2.
Step 4: Obtain r̄0 = p(r0|x̄i) and r̄1 = p(r1|x̄i)
Step 5: Update p(c|r) using r̄0 and r̄1 based on Equ 3
Step 6: Obtain r1 = p(r1|xi), c = p(c|r1) and Φ = p(Φ|xi)
Step 7: Shuffle Φ within the mini-batch to get Φ′

Step 8: Update p(y|Φ, c) using (c, yi,Φ
′)

end for

H. Further Preliminaries
We build a predictor optimized for a distribution invariant to σ. We will achieve this by: (i) considering the hypothetical
model where σ = do(x) (Pearl, 2009), operationalized as fixing X = x regardless of the value of U ; (ii) showing that,
under our assumptions, we can learn a predictor based on p(y | x;σ = do(x)) using data from σ = train; (iii) using
domain-dependent knowledge, proceed with the adoption of p(y | x;σ = do(x)) instead of p(y | x;σ = train) for the
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Algorithm 2 CFT Inference
Input: D = {(xi)}Ni=1, learned p(r1|x), p(c|r), p(Φ|x) and sample size K
Output: Label D = {(xi, yi)}Ni=1

for each xi in mini-batch of D do
Step 1: Obtain r = p(r1|xi), c = p(c|r) and Φ = p(Φ|xi)
for k in sample size K do

Step 2: Shuffle Φ within the mini-batch to get Φ′
k

end for
Step 5: Compute the causal estimate P (y|do(x)) using Equation 4
and then assign y = argmaxy P (y|do(x))

end for

target environment p(y | x;σ = test) if we judge that performance under the predictor optimized for p(y | x;σ = do(x))
will be the better one.

Step (ii) is challenging under the structure of Figure 2(a). Unfortunately, it is a well-known result that, assuming no more
than the Markovian factorization implied by Figure 2(a), this is not the case: it follows from the completeness of Pearl’s
do-calculus (Pearl, 2009). To that effect, in the sequel we will assume a more fine-grained structure for X , as well as making
explicit use of fine-tuning data.

Step (iii) is often poorly discussed in the literature beyond naı̈ve worst-case analysis, with notable exceptions such as
(Salaudeen et al., 2024). To understand it more precisely, prediction based on the proposed causal structure amounts to
averaging p(y | x, U) over U ∼ p(u | x;σ). Under σ = do(x), this means averaging over p(u) (Pearl, 2009). Under the
target regime σ = test, we need to consider the implications of using the predictor optimized for do(x). A sufficient
condition for a predictor that minimizes expected loss with respect to p(u) to do better than one where the expectation is
over p(u | x;σ = train) is when p(u | x;σ = test) is “closer” to p(u) than p(u | x;σ = train) in some sense. The lack of
clarity about this trade-off is one of the main sources of confusion and controversy when making claims about the robustness
of “causal features” in prediction problems (e.g, Nastl & Hardt, 2024). This pushes for further refinements of the high-level
causal structure of Figure 2(a).

Important notation remark. In what follows, regime variables σ will not affect X as a whole, but only subcomponents of
it. Following a notation more closely related to Pearl’s original notation, we will sometimes use p(y | do(x)) as a shorthand
notation for p(y | x;σ = do(x)) even if p(y | x;σ = test) in general will not change the distribution of all components of
X with respect to p(y | x;σ = train).

I. Structural Assumptions
Assumption I.1 (Functional Decomposition). We assume access to a triplet of measurements (R0, R1,Φ) = f(X) for
some function f defined nonconstructively as follows: (i) (R0, R1) is a paired representation of X . The mapping to R0

is learned from a pre-training environment – in our context, this is taken from the PLM. The R1 mapping is a by-product
of supervised fine-tuning, assumed to take place under the training environment σ = train; (ii) local features Φ are
token-level features implied by the fine-tuned model (e.g., combinations of token embeddings). This comes in addition to
sentence-level representation R1. □

In the sequel, we will explicitly describe the computational procedure that constructively defines this mapping (R0, R1,Φ) =
f(X). It is to be noted that an intervention do(x) translates to do((R0, R1,Φ) = f(x)), which we will sometimes denote as
do(r0), do(r1), do(Φ).

Under this choice of abstraction, we postulate a causal structure with (R0, R1,Φ) as indirect measurements of “causal”
latent variables C and two sets of “spurious” latent variables S0 and S1, in the sense that only C is a causal parent for output
Y . We frame pre-training as out of the scope of any training/test distribution shift, and define S0 as the latent spurious
features of pre-training. S1 are the latent spurious features affected by the environment index σ. The generative model
contains these two feature sets as latent variables, along with structural assumptions about how σ, R0, R1, Φ and Y are
connected. Assumptions are graphically summarized in Fig. 2 (b), and detailed as follows.

Assumption I.2 (Causal Latent Structure). Sentence-level features {R0, R1} are indirect measurement of mutually
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independent variables {S0, S1, C}. S0 can only cause R0 and S1 can only cause R1. Regime variable σ can only affect S1.
Morever, hidden confounders US are common parents of R1 and Φ, and independent hidden confounders UΦ are parents of
Φ and Y . □

This assumption aligns with prior work in causal learning (Tenenbaum & Freeman, 1996; Gong et al., 2016; Heinze-Deml &
Meinshausen, 2021; Mao et al., 2022). Intuitively, this abstracts the true complex causal graph into a coarser granularity,
encapsulating stable hidden confounders into C and any other (unstable) non-confounding variables into S0, S1. It also
postulates a principle: any dependency between S0 and S1 is solely attributed to common cause C.

This is also a critical assumption for identifying causal variables C by using paired representations R0 and R1 from two
representations of X , as motivated by the Theorem 4.4 in (Von Kügelgen et al., 2021). In our context, R0 can be learned
from the PLM (pre-training environment) and R1 from the supervised fine-tuning (training environment). This paired
representation framework enables identification of C from the observational distribution of {R0, R1,Φ, Y }, which would
otherwise remain unidentifiable (Von Kügelgen et al., 2021).

To introduce our choice of a predictor other than an ERM method on training data, we adopt the following assumption.

Assumption I.3 (Causal Structure of Distribution Shifts). Regime variable σ affects the system only via S. This also
implies that causal ancestors of Y do not interact with σ. □

This assumption postulates that, for any regime of interest where we deploy our system, the relationship between causal
ancestors and output Y is invariant. It is, however, not the case that we will be able optimize the empirical risk on the
training data without consequences, since conditioning on the entire input signal {R0, R1,Φ} will d-connect Y with σ (Pearl,
2009): this happens e.g. via the collider paths Y ← UΦ → Φ ← US → R1 ← S1 ← σ and Y ← C → R1 ← S1 ← σ.
This makes our predictions dependent on the value of σ, in the sense of (Dawid, 2021), which means being affected by
distribution shifts. In what follows, we will rely on the missing edge Φ→ Y and the ability of deterministically inferring C.
Those two points are formalized by the following assumption and theorem.

Assumption I.4 (Sufficient Mediator). The causal effect of Φ on Y is fully mediated through C. In other words, fixing C
makes fixing Φ conditionally independent of Y , that is p(y | do(Φ), do(c)) = p(y | do(c)). □

Justification. This assumption is sometimes known as a front-door structure (Pearl, 2009) for the effect of Φ on Y . It can be
interpreted as having C as ultimately the only variable driving Y directly, and relying on this desiderata as the operational
definition of C, implying no further latent sources confounding Φ and C, or C and Y , or any other path between Φ and Y
relying on further (implicit) hidden variables. We allow confounding between Φ an Y .

Theorem I.5 (Identification for Causal Features C). Assume the structural assumptions encoded in the causal graph in
Fig. 2 (b). Let the mapping between {S0, S1, C} and {R0, R1,Φ} obey the invertibility conditions of (Von Kügelgen et al.,
2021). According to Theorem 4.4 in (Von Kügelgen et al., 2021), we can identify C by learning the distribution p(c | r)
from R0 and R1.

Intuition. This theorem implies that if the causal latent variable C remains invariant across environments (Assumption I.3),
the distribution shift between representations R0 and R1 can be used to identify C. For a formal proof of this theorem,
please refers to Theorem 4.4 in (Von Kügelgen et al., 2021). In the sequel, we will learn this function using the idea
presented in Equation 3.

We will now show that we can identify p(y | do(x)) from the pre-trained and training fine-tuning data. The proof of this
result is short and presented in Appendix F.

Theorem I.6 (Identification for Causal Transfer Learning). Given the assumptions in the causal graph in Fig. 2 (b) and
Theorem I.5, the distribution of Y under do(x) can be computed as4

p(y | do(x)) =
∑
Φ′,x′

p(y | Φ′, c)p(Φ′ | x′)p(x′), (4)

where c is given by c = p(c|r1) and r1 = p(r1|x). □
4Φ′ is deterministically given by x′, but the above representation in terms of a probability p(Φ′ | x′) is useful as a way of understanding

how to generate Φ′.
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Invariance implication and pragmatic application. The difference between p(y | x;σ = test) and p(y | x;σ = do(x))
in our setup boils down to averaging p(y | c, UΦ) over p(uΦ | r0, r1,Φ, c;σ = test) in the former, and p(uΦ) in the latter.
When can we say that the latter is an improvement over p(uΦ | r0, r1,Φ, c;σ = train)? Our claim is that by virtue of the
confounder being a cause of local features Φ only, and not of the whole of X , the relevance of information passing through
(S0, S1) should be limited anyway, unless the test environment affects it drastically. In this case, we may be thrown away
too far from the original p(uΦ | r0, r1,Φ, c;σ = train) in unpredictable ways, and the safer bet (“worst-case”) is to think
of p(y | c) as being a random measure “pUϕ

(y | c)” with a conservative prior p(uΦ) which comes from the model and is
agnostic to the environment.

J. Further Experiments
Data. We conduct experiments based on the real-world case study described above (and illustrated earlier in Fig. 1). As in
the first semi-synthetic experiment, we focus on sentiment analysis using a dataset built from Yelp and Amazon review.
During the training, similar to the semi-synthetic experiments, we build correlations between the source of the data (whether
coming from Amazon or Yelp platform) and the label, by adding strings such as ”amazon.xxx” or ”yelp.yyy” into the
sentences. More details can be found in Appendix B.3. We used 5000 samples per class for training and 2,000 samples per
class for testing. For training, we set the spurious correlation to be at a ratio of 90%, which remains the same for ID test;
and for the OOD test set, we adjust this ratio to be 70%, 50%, 30%, and 10%. Additionally, we compare our approach with
other single-domain generalization baselines to demonstrate its effectiveness.

Results. The results are consistent with our semi-synthetic experiments. When comparing with the two baselines, the
WISE method does not work too well, perhaps for being more sensitive to the hyper-parameter that mixes the fine-tuned
model and the pre-trained model (we used a default value of 0.5, which means they are equally weighted). The SWA method
worked quite well compared to SFT methods, suggesting that stopping at a flat region of the parameter space improves the
generalization of the model (Izmailov et al., 2018; Kaddour et al., 2022). However, its performance degraded significantly
under more severe distribution shifts (e.g. OOD ratio from 70% to 10%), highlighting its limitation in handling extreme
perturbations. In contrast, our proposed CFT approach consistently outperformed all baselines, demonstrating robustness
across all OOD settings.

Table 2. Main results for real-world experiments. Results reported in mean value based on 5 runs of different seeds.
Train F1 90% ID F1 90% OOD F1 70% OOD F1 50% OOD F1 30% OOD F1 10%

SFT0 87.74 87.78 69.57 51.46 33.42 15.26
SFT 94.01 91.39 78.05 64.75 51.36 37.78
SWA 99.99 91.26 80.34 69.63 58.59 47.41
WISE 92.87 91.34 76.59 61.77 46.96 31.83
CFT 97.46 90.59 80.32 70.08 59.68 49.22
CFT-N 91.36 89.98 71.31 52.66 33.96 15.05
CFT-C 95.60 91.07 78.93 66.80 54.62 42.25
CFT-Φ 90.92 89.81 70.49 51.24 32.03 12.60

Figure 9. Box-plot over 5 runs for 6 methods (SFT, SWA, WISE, CFT, CFT-N and CFT-C). Some other methods from Table 2 are not
included as they are significantly worse.
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K. Discussion: Detecting vs. Correcting Distribution Shifts
Our proposed causal adjustment strategy focuses on mitigating spurious correlations by disentangle stable causal feature
with respect to spurious, non-causal features. In contrast, an alternative and complementary perspective focuses on detecting
distribution shift, particularly by using deep latent variable models. This line of work, developed extensively in the context of
NLP applications by (Yu, 2023), uses variational inference to model predictive uncertainty and capture latent structure in text
data (Yu et al., 2021; 2022; 2023). For instance, classifiers built upon Bayesian neural networks or deep generative models
(e.g., VAEs) can produce uncertainty-aware predictions by marginalising over latent variables. When exposed to test-time
shifts, these models are often more cautious, yielding (relatively) calibrated confidence scores or identifying high-uncertainty
regions where distribution shifts may occur. Although in recent studies, we have noted that further calibration techniques
such as conformal inference are often required for better coverage (Yu et al., 2024). Unlike causal fine-tuning, these methods
do not explicitly model the causal graph or perform confounder adjustment, but they provide a practical mechanism for
detecting distribution shift and avoiding overconfident predictions.
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