
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEARCH INSPIRED EXPLORATION
FOR REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Exploration in environments with sparse rewards remains a fundamental challenge
for reinforcement learning (RL). Existing approaches such as curriculum learn-
ing and Go-Explore often rely on hand-crafted heuristics, while curiosity-driven
methods risk converging to suboptimal policies. We propose Search-Inspired Ex-
ploration in Reinforcement Learning (SIERL), a novel method that actively guides
exploration by setting sub-goals based on the agent’s learning progress. At the be-
ginning of each episode, SIERL chooses a sub-goal from the frontier (the bound-
ary of the agent’s known state space) before the agent continues exploring toward
the main task objective. The key contribution of our method is the sub-goal selec-
tion mechanism, which provides state-action pairs that are neither overly famil-
iar nor completely novel. It assures that the frontier is expanded systematically
and that the agent is capable of reaching any state within it. Inspired by search,
sub-goals are prioritized from the frontier based on estimates of cost-to-come and
cost-to-go, effectively steering exploration towards the most informative regions.
In experiments on challenging sparse-reward environments, SIERL outperforms
dominant baselines in both achieving the main task goal and generalizing to reach
arbitrary states in the environment.

1 INTRODUCTION

Reinforcement learning (RL) holds the promise of enabling agents to master complex tasks by in-
teracting with their environments. Yet applying RL in realistic domains remains challenging due to
the combination of high-dimensional state–action spaces and sparse reward signals. In many envi-
ronments, meaningful feedback is obtained only after completing long sequences of actions, making
standard RL algorithms highly data-inefficient.

A central obstacle is the exploration–exploitation dilemma: agents must discover novel behaviors
while simultaneously leveraging what they already know to make progress. Existing methods often
overlook the problem of how an agent can actively direct its exploration to collect the most infor-
mative experiences (Amin et al.). Addressing this challenge is crucial for developing RL agents
that learn more stably and scale to environments with delayed or infrequent rewards. We argue that
progress requires shifting from agents that passively process environment feedback to those that
deliberately seek out information in a principled way.

Several approaches have been proposed to address the challenge of exploration in sparse-reward
reinforcement learning. Curriculum Learning (CL) introduces tasks of increasing difficulty to grad-
ually shape agent behavior, but it relies on carefully hand-crafted difficulty metrics and is prone
to negative transfer if the curriculum is poorly designed (Fang et al.; Liu et al.). Intrinsic motiva-
tion methods reward novelty or curiosity, encouraging the agent to seek unexplored regions of the
state space. However, these methods are often a form of reward shaping, which can bias the learn-
ing process and lead to suboptimal policies. They are also susceptible to the “noisy-TV problem,”
where agents are distracted by stochastic but irrelevant features (Burda et al.; Ladosz et al.). Go-
Explore (Ecoffet et al.) explicitly remembers and returns to promising states, but depends heavily
on domain-specific heuristics and requires careful selection of interesting states.

Goal-Conditioned Reinforcement Learning (GCRL), particularly when combined with Hindsight
Experience Replay (HER), offers another principled framework for overcoming these limitations
by explicitly training agents to reach arbitrary states. We build on this paradigm to automatically

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

generate sub-goals that extend progressively farther from the start state. In doing so, our method
effectively constructs a curriculum without requiring manually designed tasks or environments of
varying difficulty.

In this work, we introduce Search-Inspired Exploration (SIERL), a novel approach that guides ex-
ploration by setting sub-goals informed by the agent’s learning progress. Our main contributions are:
1. We propose a principled sub-goal selection mechanism that systematically expands exploration by
defining a frontier of experience and prioritizing sub-goals using cost-to-come and cost-to-go esti-
mates. 2. We design a novel Hallway environment that enables fine-grained control over exploration
difficulty by varying the length of action sequences required to succeed. 3. We show that SIERL
leads to more efficient exploration in discrete sparse-reward settings. 4. We present an empirical
study that disentangles the contributions of individual components and identifies which mechanisms
most effectively improve exploration for goal-conditioned agents. NEW

The remainder of this paper is organized as follows: section 2 reviews related literature; section 3 in-
troduces the necessary preliminaries; section 4 details our algorithm; section 5 presents experimental
results; and sections 6 and 7 discuss conclusions and future directions.

2 RELATED WORK

A wide range of exploration methods have been proposed for reinforcement learning (RL). These
methods can be broadly categorized along several axes: whether they rely on extrinsic rewards
or intrinsic exploration bonuses, employ memory or are memory-free, learn autonomously or
from demonstrations, act randomly or deliberately (goal-based), or adopt an optimism-driven strat-
egy (Amin et al.; Ladosz et al.).

Novelty and optimism-based methods. Novelty-bonus and optimism-based approaches encourage
exploration by augmenting rewards with bonuses for visiting new or uncertain states. These methods
are particularly useful in sparse-reward environments, where intrinsic signals provide more consis-
tent feedback than delayed extrinsic rewards. In the bandit setting, the well-known Upper Confi-
dence Bounds (UCB) algorithm balances exploration and exploitation by favoring actions with high
value uncertainty (Auer et al.). In reinforcement learning, count-based techniques extend this prin-
ciple by quantifying novelty through visitation counts over states or state–action pairs (?). Practical
implementations rely on approximations such as hashing (Tang et al.), pseudo-counts (Ostrovski
et al.), or elliptical episodic bonuses (Henaff et al.), all of which assign higher exploration bonuses
to rarely visited regions of the state space. Pseudo-count methods in particular have demonstrated
strong performance on hard-exploration benchmarks, notably achieving state-of-the-art results on
Montezuma’s Revenge (?). To avoid the limitations of explicit counting, Random Network Distilla-
tion (RND) (Burda et al.) introduces a scalable alternative: a predictor network is trained to match
the outputs of a fixed, randomly initialized target network, and the prediction error serves as an in-
trinsic reward. Novel states typically yield higher prediction errors, thus guiding exploration toward
regions where the agent’s predictive model is least accurate. Broader novelty-driven methods extend
beyond counts: optimistic initialization assumes unseen state–action pairs yield high returns, biasing
agents toward exploration under the “Optimism in the Face of Uncertainty” principle (Treven et al.).

Goal-based exploration methods. Goal-based methods frame exploration as a deliberate process
rather than relying on random or purely novelty-driven signals. By defining or generating explicit
goals within the environment, these methods encourage the agent to learn policies that reach strate-
gically important or unexplored states. This structured exploration typically involves three com-
ponents: a mechanism for goal generation (e.g., sub-goals), a policy for goal discovery, and an
overall strategy that coordinates exploration around these targets. Notable examples include Go-
Explore (Ecoffet et al.), which achieves strong performance by explicitly remembering and return-
ing to promising states before exploring further. Other approaches incorporate planning techniques,
either within model-based RL frameworks (Hayamizu et al.) or by substituting policy search com-
ponents with kinodynamic planners to better direct exploration (Hollenstein et al.). Planning Ex-
ploratory Goals (PEG) (Hu et al.) leverages learned world models to sample exploratory “goal
commands” predicted to unlock novel states, from which the agent then explores.

Frontier- and confidence-driven exploration. Several recent methods refine goal-based explo-
ration by explicitly reasoning about the frontier of reachable states or by incorporating measures of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

confidence. Latent Exploration Along the Frontier (LEAF) (Bharadhwaj et al.) learns a dynamics-
aware latent manifold of states, deterministically navigates to its frontier, and then stochastically
explores beyond it to reach new goals. Temporal Distance-aware Representations (TLDR) (Bae
et al.) exploit temporal distance as a proxy for exploration potential, selecting faraway goals to en-
courage coverage and training policies to minimize or maximize temporal distance as needed. In
reset-free settings, Reset-Free RL with Intelligently Switching Controller (RISC) dynamically al-
ternates between forward and backward exploration goals based on confidence in achieving them,
effectively balancing task-oriented progress with revisiting initial states to diversify experience.

Summary. Together, these exploration strategies illustrate a steady evolution in RL: from sim-
ple count-based and novelty-driven approaches to increasingly structured methods that incorporate
goal-setting, planning, and confidence-aware strategies. Novelty-based techniques provide intrinsic
motivation to reduce uncertainty and expand coverage, but as a form of reward shaping, they can bias
behavior and lead to suboptimal policies, in addition to being vulnerable to distractions such as the
“noisy-TV problem.” Goal-based approaches make exploration more intentional by defining explicit
targets such as distant states, frontier boundaries, or strategically planned points. However, they of-
ten rely on brittle heuristics, handcrafted difficulty metrics, or domain-specific knowledge that limits
generality. These drawbacks highlight an open gappx: how to design exploration methods that are
both systematic and robust, capable of scaling beyond hand-tuned heuristics while ensuring that
chosen exploratory targets remain novel but still reachable.

3 BACKGROUND AND PROBLEM SETUP

Exploration in reinforcement learning is especially challenging in environments with sparse rewards,
where agents must solve long sequences of actions before receiving feedback. To formalize this
setting, we focus on sequential decision-making problems with explicit goals, expressed through
Goal Markov Decision Processes (GMDPs). This framework highlights the difficulty of discovering
goals when reward signals are rare and emphasizes the role of the exploration–exploitation dilemma
in guiding agent behavior.

3.1 THE HARD-EXPLORATION PROBLEM

Hard exploration problems are a direct consequence of sparse rewards, often exacerbated by large
state and/or action spaces. When rewards are sparse, learning can be extremely slow because the
agent wanders aimlessly for long periods without any signal to guide its behavior (Ladosz et al.). If
the path to a reward is long and specific, random exploration strategies (like ε-greedy, with a small
ε) are unlikely to find it in a reasonable amount of time. The agent might get stuck in local optima
of familiar, non-rewarding behavior, or it might never encounter the critical states that lead to high
rewards. Therefore, in these problems, we need more sophisticated exploration strategies that can
intelligently seek out beneficial experiences for the agent to learn from.

3.2 GOAL MARKOV DECISION PROCESSES

We considered sequential decision-making problems that are formalized as Markov Decision Pro-
cesses (MDPs). An MDP is defined by a tuple ⟨S,A, Pa, r, γ⟩, where S is a finite set of possible
states,A is a finite set of actions available to the agent, Pa (s

′ | s, a) is a function S×A×S → [0, 1]
that returns the transition probability defining the likelihood of transitioning to state s′ after taking
action a in state s; r(s, a, s′) is the reward function S ×A× S → [0,∞) specifying the immediate
reward received after a transition, and γ ∈ [0, 1] is a discount factor that balances the importance of
immediate versus future rewards. The primary objective of an agent in an MDP is to learn a policy
π : S → A that maximizes the expected cumulative discounted reward (Eπ[

∑∞
t=0 γ

trt+1]), often
referred to as the value function.

A significant group of problems, particularly relevant in planning and many reinforcement learning
applications, are goal-oriented tasks. Such tasks can be formalized using Goal-MDPs or Shortest-
path MDPs (Bertsekas). In this formulation, there can be one or more designated goal states in
the environment, and the agent’s primary task at each point in time is to reach the current goal.
sG ⊆ S is the set of all possible (absorbing) goal states. The reward structure in Goal MDPs is often
adjusted to reflect this objective; a common setup involves a positive or zero reward upon reaching

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1: SIERL Algorithm (abridged - details in Appendix A)
Input: agent, sG

frontier ← {} // Initialize frontier
while training do

sSG = get subgoal(frontier) // Get sub-goal
while not timeout do

s′ ← Execute(π(s, sG))
frontier.update(s, a) // Insert (or not) in frontier
if should switch(s′, sG) then

sSG ← sG // Sub-goal reached or early switching

a goal state and zero and small negative rewards (costs) for all other transitions. Thus, instead of the
reward function r(s, a, s′), a cost function c(a, s), a map S × A → R, is used that specifies a cost
for each action. Goal states sG ∈ S can be absorbing, meaning Pa (sG | a, sG) = 1 for all a ∈ A,
and cost free, meaning c(a, sG) = 0 for all a ∈ A. This transforms the problem into one of finding
an optimal path or policy for each goal, with the objective of achieving a desired terminal goal or
condition. It has been shown that (partially observable) MDPs can be transformed into equivalent
(partially observable) Goal MDPs (Bertsekas)

3.3 EXPLORATION VS EXPLOITATION DILEMMA

In Goal-MDPs with sparse rewards, the exploration–exploitation dilemma is particularly acute. Ex-
ploitation leverages past knowledge but offers little benefit early on, when goal rewards remain
undiscovered. Exploration requires trying new actions and states without immediate payoff, often
at high cost, but is essential for locating rare reward signals. The central challenge is to balance ex-
tensive exploration with eventual convergence on an optimal policy: without sufficient exploration,
goals may never be found, but without exploitation, progress toward them cannot be consolidated.

4 METHOD

Our method, SIERL, introduces a principled way to perform deliberate exploration in reinforcement
learning through goal-conditioned sub-goal setting. The key premise is that state–action regions
become progressively less informative as they are explored more extensively: once the agent has
learned accurate value estimates locally, further exploration in the same region yields diminishing
returns. Instead, the agent should expand exploration toward novel but reachable states at the edge
of its current knowledge, thereby extending the frontier of explored regions.

To achieve this, we employ a two-phase exploration process. In the first phase, the agent follows
a goal-conditioned policy to reach selected frontier sub-goals, systematically expanding the bound-
ary of explored states. In the second phase, the agent uses the experience gained in Phase 1 to
explore efficiently toward the main task goal. This strategy combines systematic expansion with
goal-directed exploration, ensuring both stable learning of an optimal policy for the task goal and
improved generalization to alternative goals.

A pseudo-code description of SIERL is provided in algorithm 1, with full implementation details in
Appendix A.

4.1 TWO-PHASE EXPLORATION STRATEGY

Formally, we assume a goal-conditioned policy π(a | s, g) that selects actions conditioned on the
current state s ∈ S and a goal g ∈ S. At the start of each episode, our method alternates between
two phases: frontier-reaching exploration and main-goal exploration.

Phase 1: Frontier Reaching and Expansion. In the first phase, the agent is assigned a frontier
sub-goal sSG ∈ F , where F denotes the frontier set extracted from the replay buffer RB (see
subsection 4.2). The agent then executes the goal-conditioned policy π(a | s, sSG) to deliberately
reach sSG. By incrementally selecting such frontier sub-goals, the agent systematically expands the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

explored region of the state space in a curriculum-like fashion, while simultaneously improving its
estimates of local dynamics and value functions.

Phase 2: Main-Goal Exploration. After reaching the frontier sub-goal sSG, the agent transitions
to the second phase and executes π(a | s, sG), where sG denotes the main task goal. Starting ex-
ploration from sSG makes reaching sG more efficient, as the agent benefits from previously acquired
experience near the boundary of known states.

Phase Switching Strategy. The transition between phases is governed by a hybrid determinis-
tic–stochastic mechanism: 1. Predefined horizons: Each phase i ∈ {1, 2} is assigned a max-
imum number of steps Hi, ensuring balanced allocation of exploration. 2. Probabilistic early
termination: If during Phase 1 the agent encounters a novel state s with a visitation count
ofNRB(s) ≤ Nthr (Nthr = 1 in our experiments), it may switch immediately to Phase 2 with
probability pswitch ∈ (0, 1), even if H1 has not yet been exhausted.

4.2 FRONTIER EXTRACTION

A critical aspect of our method is the identification of the frontier F from which the sub-goal is
selected for the first phase. Those sub-goals are represented as state-action pairs (s, a), instead of
plain states. We initially filter the agent’s past experiences from the replay buffer to select the best
candidates. State-actions considered less novel or “very well known” are filtered out at this stage.
In practice, we first rank the visited state-actions based on a familiarity score F and exclude the
familiar ones with a score above a threshold F thr

π . The motivation is to maintain the focus of the
exploration away from the increasingly more visited states, whose transitions will be occupying an
increasingly larger part of the experience replay buffer. Formally, this filter can be expressed as:

F = {(s, a) ∈ RB : Fπ(s) < F thr
π } (1)

The potential sub-goals are obtained from the same state-actions being inserted in the replay buffer
RB, which are filtered to maintain a continuously updated frontier, in the same manner an Open list
and a Closed list is used in search. The frontier is populated with all state-actions that have been
visited at least once and have a familiarity score below a threshold F thr

π , as well as those actions
on the newly states that have not yet been tried. More specifically, when a new state s is visited for
the first time, we insert all possible state-action pairs (s, ai) for all available actions ai ∈ A into the
frontier. For the edge-case when the frontier set obtained happens to be empty, we populate it with NEW
only the main goal, effectively turning that episode into a typical main-goal pursuit.

For each frontier state-action pair, the additional relevant information recorded is its visitation
counts, N(s, a), as well as its familiarity score, F (s).
Definition 1 (State Familiarity). LetRB denote the replay buffer containing all past experiences of
an agent, and let NRB(s, a) be the visitation count of a state–action pair (s, a) ∈ S×A withinRB.
The familiarity of s with respect toRB is defined as

FRB(s, a) =
1

1 +NRB(s, a)−1
. (2)

Such definition ensures that FRB(s, a)→ 1 as (s, a) becomes frequent in RB, and FRB(s, a)→ 0
when (s, a) is rare. Besides state familiarity, we also define trajectory familiarity.
Definition 2 (Trajectory Familiarity). For a trajectory τ = ⟨s1, s2, . . . , sk⟩ resulting from running
goal-conditioned policy π for a goal sk, the familiarity of the terminal state sk is defined recursively
as

Fπ(sk) =

k∏
i=1

1

1 +NRB(si)−1
. (3)

Assuming that we learn consistently and that policy π conditioned on state sk−1 results in trajec-
tory ⟨s1, s2, . . . , sk−1⟩, we can calculate trajectory familiarity for state sk using the current state’s
visitation counts and trajectory novelty the previous one: Fπ(sk) =

1
1+N(sk)−1Fπ(sk−1).

Motivation for such a definition is that when reaching a sub-goal, if the current policy succeeds
in reaching it through familiar states, that should indicate that the agent has mastered reaching

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

that state and can focus on further states. Using products in the calculation ensures the balance
of the influence of trajectory length and the effect of familiarity of individual states. This strategy,
particularly when combined with the probabilistic early switching mechanism, ensures that while the
frontier is gradually populated with states near the expanding boundary of the familiar region, the
agent concurrently gains experiences in states that are adjacent and relevant to each chosen sub-goal.
This promotes a more consistent and thorough exploration.

4.3 SUB-GOAL SELECTION

The remaining state-action pairs that form the frontier F after the filtering are then ranked and
prioritized. This prioritization is determined by minimizing a combination of the following cost
factors:

Novelty Cost cn This cost penalizes more novel states, thereby favoring those familiar states that are
more visited while still not overly familiar (since they have passed the initial filtering stage). This is
based on the idea that the agent should first focus on mastering sub-goals it already practices before
continuing further. Additionally, states visited extremely infrequently might be outliers or part of
highly stochastic regions not yet suitable for directed exploration.

Cost-to-Come cc (from the initial state to the sub-goal): This is estimated directly using the learned
Q-values, representing the expected cumulative reward (or cost, in our negative reward setting) to
reach the potential sub-goal from the episode’s starting state, calculated as maxa∈A Q(sI, sSG).

Cost-to-Go cg (from sub-goal to main goal): This is the estimated cost from the potential sub-goal
to the ultimate task goal, again derived from the learned Q-values as maxa∈A Q(sSG, sG).

Thus, the score used for prioritizing the filtered goals can be formulated as the sum of each one’s
cost-to-come cc and cost-to-go cg, weighted by w, multiplied by the novelty cost, which is also
weighted with a weight-exponent wn. The sub-goal is sampled with probability assigned by applying
a softmin to this set of scores for the frontier state-actions: NEW

P
(
(s, a) = (sSG, aSG)

)
= softmin

(s,a)∈F

(
cn(s, a)

wnw⊺c(s)
)
. (4)

Where:

cn(s, a) = σ(z(−N(s, a))),

w⊺ = [wc wg] ,

c(s) = [cc(s) cg(s)]
⊺
,

z(x) =
x− E[X]

Var(X)
.

Thus, the state with the optimal combined score is selected as the next sub-goal for the agent in
Phase 1.

5 EXPERIMENTS

For our experiments we aimed to set up situations which require deliberate exploration and a more
thorough coverage of the state space to be solved. We strove to answer the following: (a) Does
SIERL enable consistently succeeding in environments where goal discovery is non-trivial? (b)
In which cases and in which aspects SIERL is more promising than its competitors? (c) Which
components enable SIERL to perform well?

5.1 SETUP

Our experiments are designed to evaluate the performance of SIERL in scenarios that demand de-
liberate exploration and a comprehensive understanding of the state space. We use discrete state
and action environments, where goal discovery is non-trivial due to sparse rewards and deceptive
rewards from “trap” obstacles. We adjusted the rewards such that a signal of -1 is given for each
step, and a reward of 0 upon reaching the goal, effectively turning the task into a shortest path

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

problem. During evaluation, we run 10 main-goal reaching episodes as well as 10 random-goal
reaching episodes for each method, reporting the mean success rate and standard error, in order to
capture the methods’ capacity to generalize while learning with a specific goal. All methods are
run with 10 seeds to account for variance. The environments used are a subset of the MiniGrid
framework (Chevalier-Boisvert et al.) and the experiments were set up using RLHive (Patil et al.).

2-steps long
Hallway

4-steps long
Hallway

6-steps long
Hallway

FourRooms BugTrap

Figure 1: The MiniGrid room variants.

These MiniGrid environments are minimalistic 2D grid worlds set up with a discrete action space
representing moving left, right, up, or down. The state space is fully observable, with the agent’s goal
being to reach a specific static goal state. The agent’s observation is a grid containing information
about its location, the walls/obstacles, and the goal location. We specifically used several custom-
made variants of a Hallway room, the FourRooms room, and a typical BugTrap room.

Hallway variants: These are challenging environments, containing a hallway flanked with “slip-
pery” unidirectional tiles along the sides, as shown in Figure 1. The goal lies at the end of each
corridor and the agent is required to perform a precise (albeit repetitive) sequence of actions to reach
its end.

BugTrap: In this room, the agent has to navigate around a concave enclosure to reach the goal
on the other side. Being more open requires the agent to progressively explore a larger region of
state-action space until reaching the goal.

FourRooms: The agent is required to navigate from one corner of a square space comprised of
4 rooms to the diagonally opposite corner, through doors between the rooms. Reaching arbitrary
locations in this more segregated space is a harder task than in the other cases.

5.2 RESULTS

Main goal success rates: The evaluation performance in the success rate for reaching the main goal
is shown in the upper part of Figure 2. In all three Hallway variants SIERL performed on par with the
most competitive baselines, such as Novelty bonuses, while outperforming HER, and Q-Learning.
More details about the baselines are presented in Appendix C. Specifically, on the small enough
2- and 4-step long Hallways, Random-goals Q-learning performs similarly as well; however, its
performance is hampered on the larger 6-step long variant, following closely behind that of Novelty
bonuses, whose performance is also impacted, albeit to a smaller degree. Nonetheless, SIERL is
always able to discover and learn the main goal for all seeds.

In FourRooms, SIERL performs comparably well to HER but less so compared to Novelty bonuses.
It is notable that succeeding in such an environment requires systematic coverage of the state-action
space, which is accomplished via intrinsic rewards but not by relying solely on random exploration.
This indicates SIERL is able to learn on the less accessible parts of the state space and, contrary
to Novelty bonuses, it accomplishes that without tampering with the reward signal, but rather by
guiding the agent’s exploration and thus adjusting the experience distribution to improve learning.

Random goal success rates: The success rate during evaluation for reaching uniformly sampled
random goals is shown in the lower part of Figure 2. In all cases, the only methods capable of solving
for arbitrarily set goals are SIERL and Random-goals Q-learning. In the smallest 2-step Hallway

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Main-goal (top row) and random-goal (bottom row) performance for the Hallway variant
in columns. SIERL achieves a remarkable performance for both criteria at the same time, matched
by no other method.

variant SIERL outperforms Random-goals, while this is less pronounced in the harder variants,
where the latter continues improving at a slower pace. Notably, on the two larger environments of
BugTrap and FourRooms, SIERL clearly outperforms every baseline. Arguably, the capacity of the
Q-value network’s architecture imposes a limit on the simultaneous learning of both a wide range
of goals and a specific main goal. Both SIERL, and a random-goal focused method leverage this
capacity better than the other methods, while each trading off main-goal and random-goal focus in
different degrees.

This behavior can possibly be attributed to having a more diverse goal distribution in the experi-
ences’ transitions. It is also notable that SIERL is able to reach, learn on, and set sub-goals from a
larger portion of the state space than HER, without relying on augmenting its experiences. The more
systematic training with goals in a gradually expanding subset of the state space might prove bene-
ficial to such generalization, provided those sub-goals are feasible, while at the same time managing
to consistently learn to reach a main goal.

5.3 ABLATION STUDIES

To identify the crucial components enabling SIERL’s success, we performed a series of ablation
studies on the most challenging environment variant, to observe performance differences in several
aspects. The main-goal, random-goal, and sub-goal (during training) performance of all variants
was examined. The core ideas of SIERL are: guiding the exploration by gradually expanding the
state space’s well-learned region, while pursuing sub-goals towards the most promising direction of
expansion of the region’s frontier.

The first aspect we ablated was the early switching mechanism of the first phase of exploration. This
way, the agent’s experience gathering when pursuing sub-goals will extend without constraints fur-
ther past the frontier of the familiar region, which contains the prospective sub-goals. Subsequently,
focused on the contribution of the frontier extraction from experience filtering using the familiarity
measure. By removing the extraction, the state-actions of which will be prioritized (the frontier)
consist now of the complete set of experiences the agent has gathered, including all frequently tried
state-actions. Lastly, we ablated the prioritization strategy of SIERL. In this case, the filtered states
are not subjected to any scoring, and the sub-goal is picked at random with uniform probability. The
aim is to evaluate the effectiveness of the prioritization strategy.

The ablation experiments’ results are shown in Figure 3. While random-goal performance seems
unaffected for all variants, barring one, all of them exhibit a negative impact on either the ramp-up
time or stability in reaching the main goal. Specifically, removing frontier prioritization for select-
ing sub-goals results in notably worse performance on learning for the main goal in FourRooms.
Likewise, ablating early-switching slightly worsens main-goal performance, although random-goal
performance appears more stable on 6-steps Hallway. The seemingly better case of ablating the fron-
tier filtering shows better random-goal performance, which is expected as the agent is consistently
provided with a wider range of goal-conditioned experiences; however, it struggles to consistently
learn on the main-goal. These observations further reinforce our understanding that SIERL demon-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

strates the capacity to stably balance learning on both types of goals with the same sample-efficiency
as other competitive single-goal focused methods. NEW

Figure 3: Success rate for reaching: the main goal (top), and random goals (bottom) for ablated vari-
ants, in 6-steps Hallway (left) and FourRooms (right). Most notably, removing frontier filtering or
prioritization worsens SIERL’s main-goal success, while removing early switching shows a smaller
negative influence.

6 CONCLUSION

In this work, we presented SIERL, a method for Search Inspired Exploration in RL. This method
is based on the principle that by gradually expanding the frontier of the explored region of the state
space using sub-goal setting, the agent is able to efficiently cover the state space while learning
a robust goal-conditioned behavior. In discrete settings, SIERL exhibits competitive performance NEW
in reaching the main goal, while simultaneously learns to reach any other state within range of its
familiar region; a property all of the baselines lack.

We demonstrated that this method is particularly suitable for hard exploration environments where
getting from start to goal requires strictly executing a sequence of actions. Through ablation stud-
ies, we have shown that keeping the exploration’s first phase within the familiar region (with early
switching) and by selecting its sub-goals by prioritizing states in a frontier, which is extracted by
filtering the agent’s experiences, are all crucial components for SIERL’s success.

7 LIMITATIONS

In its present implementation SIERL is limited to discrete-state action spaces as it relies on visita-
tion counts to define the notions of novelty. A measure that can provide a more generic notion of
novelty on any location in the state-action space, usable in continuous state-action spaces as well,
can enable SIERL to be used on a wider range of problems. This could be done by adopting one
of the approximate methods for pseudo-counts. We believe that regardless of the way in which the
visitation counting and novelty is replaced, the familiarity notion is preserved. The current imple-
mentation is also limited by the capacity of the replay buffer, depending on the state-action space
size, dimensionality, and discretization scheme.

Although they are intuitive, several hyper-parameters are pre-determined and environment-
dependent, providing opportunities for exploring more environment-agnostic definitions and adap-
tations. Determining the familiarity threshold is dependent on the size of the state-action space and
the distance between start and goal. A broader concept of familiarity would be linked more directly
to the degree the agent has learned about parts of the state-action space, rather than assuming this to
be so based on experience counting.

Similarly, there is room for improving the phase lengths and phase-switch timing. While also
presently environment-dependent and fixed, these parameters can benefit from an implementation

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

more reliant on the agent’s learning at each point during training. Ideally, selecting a new goal
and determining the right time to do so should be done, aiming to balance pursuing novelty and
providing “practicing” for a goal-conditioned agent.

LLM USAGE STATEMENT

During the preparation of this document, an LLM was used for grammar, punctuation, and wording
improvements. The core ideas, research, and conclusions are the authors’ own.

REFERENCES

Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Precup. A survey
of exploration methods in reinforcement learning. URL http://arxiv.org/abs/2109.
00157.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem*. 47(2):235–256. ISSN 08856125. doi: 10.1023/A:1013689704352. URL http:
//link.springer.com/10.1023/A:1013689704352.

Junik Bae, Kwanyoung Park, and Youngwoon Lee. TLDR: Unsupervised goal-conditioned RL via
temporal distance-aware representations. URL https://openreview.net/forum?id=
deywgeWmL5.

Dimitri P. Bertsekas. Approximate dynamic programming.

Homanga Bharadhwaj, Animesh Garg, and Florian Shkurti. LEAF: Latent exploration along the
frontier. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 677–
684. doi: 10.1109/ICRA48506.2021.9560922. URL https://ieeexplore.ieee.org/
document/9560922. ISSN: 2577-087X.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In 7th International Conference on Learning Representations (ICLR
2019), pp. 1–17. URL https://www.research.ed.ac.uk/en/publications/
exploration-by-random-network-distillation.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Mod-
ular & customizable reinforcement learning environments for goal-oriented tasks. In Advances in
neural information processing systems 36, new orleans, LA, USA.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First return,
then explore. 590(7847):580–586. ISSN 1476-4687. doi: 10.1038/s41586-020-03157-9. URL
https://www.nature.com/articles/s41586-020-03157-9. Publisher: Nature
Publishing Group.

Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight
experience replay. In Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc. URL https://proceedings.neurips.cc/paper/2019/hash/
83715fd4755b33f9c3958e1a9ee221e1-Abstract.html.

Yohei Hayamizu, Saeid Amiri, Kishan Chandan, Keiki Takadama, and Shiqi Zhang. Guiding
robot exploration in reinforcement learning via automated planning. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 31, pp. 625–633.
doi: 10.1609/icaps.v31i1.16011. URL https://ojs.aaai.org/index.php/ICAPS/
article/view/16011. ISSN: 2334-0843.

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Ex-
ploration via elliptical episodic bonuses. 35:37631–37646. URL https:
//proceedings.neurips.cc/paper_files/paper/2022/hash/
f4f79698d48bdc1a6dec20583724182b-Abstract-Conference.html.

10

http://arxiv.org/abs/2109.00157
http://arxiv.org/abs/2109.00157
http://link.springer.com/10.1023/A:1013689704352
http://link.springer.com/10.1023/A:1013689704352
https://openreview.net/forum?id=deywgeWmL5
https://openreview.net/forum?id=deywgeWmL5
https://ieeexplore.ieee.org/document/9560922
https://ieeexplore.ieee.org/document/9560922
https://www.research.ed.ac.uk/en/publications/exploration-by-random-network-distillation
https://www.research.ed.ac.uk/en/publications/exploration-by-random-network-distillation
https://www.nature.com/articles/s41586-020-03157-9
https://proceedings.neurips.cc/paper/2019/hash/83715fd4755b33f9c3958e1a9ee221e1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/83715fd4755b33f9c3958e1a9ee221e1-Abstract.html
https://ojs.aaai.org/index.php/ICAPS/article/view/16011
https://ojs.aaai.org/index.php/ICAPS/article/view/16011
https://proceedings.neurips.cc/paper_files/paper/2022/hash/f4f79698d48bdc1a6dec20583724182b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/f4f79698d48bdc1a6dec20583724182b-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/f4f79698d48bdc1a6dec20583724182b-Abstract-Conference.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jakob J. Hollenstein, Erwan Renaudo, Matteo Saveriano, and Justus Piater. Improving the explo-
ration of deep reinforcement learning in continuous domains using planning for policy search.
URL http://arxiv.org/abs/2010.12974.

Edward S. Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for exploration.
URL https://openreview.net/forum?id=6qeBuZSo7Pr.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
learning: A survey. 85:1–22. ISSN 1566-2535. doi: 10.1016/j.inffus.2022.03.003. URL https:
//www.sciencedirect.com/science/article/pii/S1566253522000288.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning: Prob-
lems and solutions. URL http://arxiv.org/abs/2201.08299.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. 518(7540):529–533. ISSN 1476-4687. doi: 10.1038/nature14236. URL
https://www.nature.com/articles/nature14236. Publisher: Nature Publishing
Group.

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and R. Munos. Count-based explo-
ration with neural density models. URL https://www.semanticscholar.org/paper/
Count-Based-Exploration-with-Neural-Density-Models-Ostrovski-Bellemare/
12f67fb182bc934fc95ce97acff553d83e2ca72e.

Darshan Patil, Ali Rahimi-Kalahroudi, Hadi Nekoei, Sai Krishna Gottipati, Mohammad Reza Sam-
sami, Kshitij Gupta, Sriyash Poddar, Artem Zholus, Maryam Hashemzadeh, Xutong Zhao, and
Sarath Chandar. RLHive. URL https://github.com/chandar-lab/RLHive.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume 119 of ICML’20, pp. 7750–7761. JMLR.org.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. #exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc. URL https://proceedings.neurips.cc/paper_files/
paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html.

Lenart Treven, Jonas Hübotter, Florian Dorfler, and Andreas Krause. Efficient ex-
ploration in continuous-time model-based reinforcement learning. In Advances
in Neural Information Processing Systems, volume 36, pp. 42119–42147. URL
https://proceedings.neurips.cc/paper_files/paper/2023/hash/
836012122f3de08aeeae67369b087964-Abstract-Conference.html.

A SIERL IMPLEMENTATION

SIERL, presented in algorithm 2, implements the two-phase exploration strategy detailed previously.
The core of the algorithm operates in a continuous loop. Each iteration begins with the goal-setting
and switching logic, including initialization of the environment, yielding an initial state sI and the
main task goal sG. After a reset, the agent’s state is set to sI and its current sub-goal, agent.goal, is
set to sG, while the trajectory step counter t is initialized to zero at the start of each phase.

At the start of each iteration is the decision to switch sub-goals, determined based on the following
conditions: First, if the agent’s current state s′ matches the main goal sG, then a reset is performed
and a sub-goal is generated, thus starting Phase 1. The sub-goal is selected. Otherwise, if the current
state s′ matches the state component of the current agent.goal, then the Phase 1 sub-goal was just
reached and it is time to move to Phase 2 by directing the exploration towards sG. If that is not the

11

http://arxiv.org/abs/2010.12974
https://openreview.net/forum?id=6qeBuZSo7Pr
https://www.sciencedirect.com/science/article/pii/S1566253522000288
https://www.sciencedirect.com/science/article/pii/S1566253522000288
http://arxiv.org/abs/2201.08299
https://www.nature.com/articles/nature14236
https://www.semanticscholar.org/paper/Count-Based-Exploration-with-Neural-Density-Models-Ostrovski-Bellemare/12f67fb182bc934fc95ce97acff553d83e2ca72e
https://www.semanticscholar.org/paper/Count-Based-Exploration-with-Neural-Density-Models-Ostrovski-Bellemare/12f67fb182bc934fc95ce97acff553d83e2ca72e
https://www.semanticscholar.org/paper/Count-Based-Exploration-with-Neural-Density-Models-Ostrovski-Bellemare/12f67fb182bc934fc95ce97acff553d83e2ca72e
https://github.com/chandar-lab/RLHive
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3a20f62a0af1aa152670bab3c602feed-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/836012122f3de08aeeae67369b087964-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/836012122f3de08aeeae67369b087964-Abstract-Conference.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

case either, then if it is time for an early switch from Phase 1, or if the current trajectory length t has
reached a predefined maximum M , then the transition from Phase 1 to 2 takes place likewise.

Early switching from Phase 1 is performed by calling early switch() (algorithm 4) which samples
a random variable to determine whether to switch based on a predefined switching probability as
follows: if the agent encounters a state s′ it has never visited before (i.e., agent.visitations[s′] ==
0), a switch occurs with a probability Pswitch(state is novel = true). Otherwise, if the agent’s
state is not novel, the probability to switch to the next phase is Pswitch(state is novel = false)
(typically lower or zero).

The sub-goal for Phase 1 is obtained by calling get subgoal() (algorithm 3), which filters and pri-
oritizes states from the replay buffer. This is achieved by first calling the get frontier() method
(algorithm 5) to obtain a list of candidate frontier state-action pairs. By iterating through the agent’s
replay buffer, the pairs (s, a) whose familiarity agent.familiarity[s, a] is higher than the maxi-
mum threshold F thr

π , and those whose counts are above the minimum allowed percentile threshold
P10(N). Subsequently, for each candidate frontier (sf , af) pair from this list, a cost is calculated as
was described in subsection 4.2. The new sub-goal is then sampled, biased towards the state-action
pair with the minimum calculated cost (e.g., by using a softmin distribution over the costs).

Subsequently, the agent selects an action a based on its current state s and the active agent.goal
using its goal-conditioned policy (e.g., ε-greedy). Upon executing the action, the environment tran-
sitions to a new state s′ and provides a reward r. The agent then updates its internal model, its
Q-values or policy, using the experience (s, a, r, s′, agent.goal), as well as its familiarity for the
last state-action with update familiarity(), and the step counter t for the current phase is incre-
mented. In this update step the batch of randomly sampled experiences can contain transitions with
either the main goal or any other previous frontier sub-goal.

Finally, the agent’s current state s is replaced by s′, and the loop continues. This interplay between
pursuing generated sub-goals (Phase 1) and the main task goal (Phase 2), guided by the frontier
extraction and prioritization logic, allows SIERL to systematically expand the familiar region, while
moving towards the main goal.

Algorithm 2: SIERL Algorithm
Input: Agent agent; Environment env

while true do
if sG = null ∨ s = sG then

s, sG ← env.reset(); t← 0; f ← 0 // episode reset
agent.goal = agent.get subgoal(s)

else if s = agent.goal.s then
agent.goal← sG; t← 0 // sub-goal reached, switch

else if (agent.early switch(s) ∧ agent.goal ̸= sG) ∨ (t ≥M) then
agent.goal← sG; t← 0 // unwanted exploration or timeout

else
a← agent.π(s, agent.goal)
s′, r ← env.step(s, a)
agent.π.update(s, a, r, s′, agent.goal)
agent.familiarity[s, a]← update familiarity(s, a, f)
f ← agent.familiarity[s, a]
foreach a′ ∈ A do // add all possible (s′, a)

agent.frontier.insert(s′, a′)
end
if f < F thr

π then // exclude too familiar (s, a)
agent.frontier ← agent.frontier ∪ {(s, a)}

end
t← t+ 1
s← s′

end
end

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 3: get subgoal() method
Input: Current state: s

costs← {}
foreach (sf , af) ∈ agent.get frontier() do

c← σ(−z(agent.visitations[sf , af ]))wn // novelty cost
·σ(z(wragent.Q(s, sf)+ // cost-to-reach

wcagent.Q(sI, sf)+ // cost-to-come
wgagent.Q(sf , sG))) // cost-to-go

costs← costs ∪ {c}
end
subgoal← sample(softmin(costs)) // sample based on minimum cost
return subgoal

Algorithm 4: early switch() method
Input: Current state: s

Switching probabilities: Pswitch

state is novel← agent.visitations[s] == 0
early switch← random() < Pswitch(state is novel)
return early switch

Algorithm 5: get frontier() method

Input: Familiarity threshold: F thr
π

frontier ← agent.open list
foreach (s, a) ∈ frontier do

if agent.familiarity[s, a] > F thr
π then

frontier ← frontier \ {(s, a)} // exclude too familiar (s, a) pairs
end

end
foreach (s, a) ∈ frontier do

if agent.visitations[s, a] < P10(N) then
frontier ← frontier \ {(s, a)} // exclude too novel (s, a) pairs

end
end
return frontier

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B AGENT DETAILS
NEW

All agents for our experiments use DQN (Mnih et al.) as the base agent. The corresponding hyper-
parameters commonly used in all experiments are shown in Table 1. The additional hyperparameters
for SIERL are shown in Table 2.

Hyperparameter Value

cn, cc, cg [1.5, 1.0, 0.5]
Pswitch 100%
H1, H2 [episode length − 1, 1]
softmin temperature 0.5

Q-Network LR 3 ×10−4

Optimizer Adam
Target hard
update frequency episode length

Initial Collect Steps 128
Batch Size 128
Discount Factor 0.95

ϵ-greedy init value 1.0
ϵ-greedy end value 0.1
ϵ-greedy decay steps 20,000

Seeds

18995728, 64493317,
49789456, 22114861,
50259734, 99918123,
71729146, 10365956,
83575762, 35232230

Table 1: Common hyperparameters for all envi-
ronments.

Hyperparameter Value

H
al

lw
ay

2-
st

ep
s

F thr
π 0.9

Q-Network Conv(3×[16])
FC([16])

Replay Buffer 100,000
episode length 150

H
al

lw
ay

4-
st

ep
s

F thr
π 0.9

Q-Network Conv(3×[16])
FC([16])

Replay Buffer 100,000
episode length 300

H
al

lw
ay

6-
st

ep
s

F thr
π 0.95

Q-Network Conv(3×[16])
FC([16])

Replay Buffer 100,000
episode length 400

Fo
ur

R
oo

m
s F thr

π 0.8

Q-Network Conv(7×[16])
FC([16])

Replay Buffer 300,000
episode length 500

B
ug

Tr
ap

F thr
π 0.7

Q-Network Conv(7×[16])
FC([16])

Replay Buffer 300,000
episode length 500

Table 2: Environment-specific hyperparame-
ters.

B.1 EXPERIENCE AND FRONTIER MANAGEMENT

SIERL’s frontier is used in the same way as the Open list is used in search algorithms. However,
although the Open list is often formulated as being updated on the fly, with entries being added
and removed during every step, SIERL’s frontier population is optimized to minimize excessive list
manipulation actions, and redundant data storage to optimize memory use. In practice, the frontier
is obtained from the Replay Buffer in a “lazy” manner whenever it is required in order to obtain a
sub-goal.

To that end, a separate list is maintained containing a single entry for each unique state in the
Replay Buffer, along with additional metadata, and it is the only SIERL’s data structure that is being
updated after each agent’s step. This is a dictionary that contains the aforementioned unique state-
action arrays (converted to hash-able data types) as its entries’ indices or keys, and metadata such
as visitation counts and familiarity values for its entries’ values. After each step, the newly inserted
transition is used to update this list. This entails updating the transitions’ involved states’ metadata,
inserting new entries for newly visited states if needed, as well as removing entries that were last
pushed out of the Replay Buffer due to new transition insertions.

Therefore, using this dictionary that contains all relevant metadata about the agent’s experiences in
an easily traversable format, the frontier is generated on the fly. By iterating once over it, filtering
out all entries with a familiarity above the specified threshold, and inserting copies of the remain-
ing to a new object. Thus, owing to it’s “lazy” evaluation (applying filters while traversing long

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

pre-populated lists) SIERL’s frontier is obtained with as little computation and memory usage as
possible. The filtering algorithm is shown in pseudo-code in algorithm 5.

C BASELINES

To evaluate SIERL’s performance, we compared it’s performance against four baseline methods
with different exploration strategies. All baselines, like SIERL, are built upon a goal-conditioned
framework, meaning the agent’s policy takes both the current state and a desired goal as input. This
shared structure allows us to isolate the impact of different exploration and goal-selection strategies.

The first baseline is a Q-learning agent with ε-Greedy exploration, which is a well-established
method for discrete state-action spaces. The second baseline is Q-learning augmented HER. HER
addresses the sparse reward problem in goal-conditioned RL by re-purposing failed episodes by “re-
labeling” their transitions. When an agent fails to reach its intended goal, HER modifies a portion of
the transitions from that episode, but with their goal set to the state that the agent actually reached.
This turns both phases in a failed episode into a successful trajectory from a different perspective,
providing a less sparse reward signal and making learning more efficient.

The third baseline extends the Q-learning agent by adding a novelty-based exploration bonus. ε-
Greedy exploration is still used, but its goal-sampling strategy is guided by visitation counts. Dur-
ing training, the agent keeps track of how many times it has visited each state. It then augments
the reward signal by adding a bonus inversely proportional to the visitations for the visited state.
This intrinsic motivation encourages the agent to explore new and under-explored regions of the
environment, a strategy present in many state-of-the-art exploration methods. It is expected that
after a long enough exploration, the bonuses diminish and the value function converges to the true
values (Tang et al.). This method was selected as a representative of the intrinsic reward family of
methods. All such methods (pseudo-counts, intrinsic curiosity modules, random network distilla-
tion error) define a reward bonus that is high if the current state is different from the previous states
visited by the agent, and low if it is similar (Henaff et al.). These methods approximate the novelty
each to a different degree. Using counts (when possible) provides the most precise way to quantify
and reward novelty, compared to e.g. approximating surprise with RND. For this reason, and given
that count-based novelty bonuses has shown good performance in discrete state-action settings, we
used this method as an upper bound for all of them.

Our fourth baseline is another variation of Q-learning that uses the same setup but is trained ex-
clusively on random goals. Unlike our other baselines and SIERL, this agent does not have a fixed
“main goal” throughout the training. It samples all training goals uniformly at random from the state
space. This serves as a critical benchmarking study, as it helps us understand the importance of goal-
centric exploration. By comparing SIERL to this baseline, we can quantify the benefit of a method
that deliberately focuses on gradually discovering and achieving specific, potentially difficult, goals
as opposed to just exploring the entire state space uniformly at random.

D ADDITIONAL RESULTS

In addition to the main experiments presented in the main body of this work, we have conducted
additional experiments such as sensitivity studies on SIERL’s hyperparameters, running with prob-
abilistic transitions, and additional harder environments with a maze-like 9 room arrangement. Our
findings are presented in this appendix.

D.1 SENSITIVITY STUDIES

As can be seen from the results in figures 4, 5, 6, and 7. SIERL demonstrated robust performance.
Our results indicate that adjusting the weights, wn, wc, wg , has a negligible impact on outcomes.
However, the algorithm is moderately sensitive to the softmin temperature (specifically at larger
values) and more sensitive to the familiarity threshold.

As expected, performance diminishes with a higher softmin temperature; this results in a “softer”
distribution and near-uniform random prioritization of sub-goals, which nullifies the benefits of this
method. Regarding the familiarity threshold: an excessively high value slows frontier expansion and

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 4: Success rate for the main-goal and random-goals in 4-step long Hallway for SIERL with
varying familiarity thresholds, F thr

π .

Figure 5: Success rate for the main-goal and random-goals in 4-step long Hallway for SIERL with
varying novelty weights, wn.

solution-trajectory discovery, though it maintains a stable random-goal success rate. Conversely,
a lower threshold promotes aggressive novelty-seeking at the expense of “practicing” in familiar
regions. This significantly reduces the random-goal success rate—while leaving main-goal success
largely unaffected—unless the environment is sufficiently difficult that such aggressive expansion
disrupts the learning process entirely.”

D.2 PROBABILISTIC TRANSITIONS

In order to evaluate SIERL’s performance outside of deterministic settings, we conducted an addi-
tional trial with probabilistic transitions. In particular, we used “slippery actions” such as those used
in other discrete state-action settings in the literature. In this case, when the agent chooses an action,
there is a small probability of executing another adjacent one. E.g., choosing to take the action “up”
will result in the action taken being up with 80% chance, while there is a 10% chance of it being
“right”, and 10%chance of it being “left”. The resulting performance of SIERL and all original
baselines can be seen in Figure 8 It can be observed that SIERL is outperforming all baselines here
as well. When compared to Figure 2, all baselines’ performance is observed to be more notably
impacted by the noisy actions than SIERL’s. In main-goal performance SIERL is now perform-
ing better that novelty bonuses, the leading baseline, while still achieving random-goal success-rate
above that of Random-goals Q-learning. Other than a slight decrease in main-goal success rate, no
other significant impact is noticeable.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 6: Success rate for the main-goal and random-goals in 4-step long Hallway for SIERL with
varying path costs’ weights, wc and wg.

Figure 7: Success rate for the main-goal and random-goals in 4-step long Hallway for SIERL with
varying softmin temperatures.

Figure 8: Success rate for the main-goal and random-goals in 4-step long Hallway with probabilistic
transitions based on “slippery actions”.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.3 THE MULTIROOM AND DOORKEY ENVIRONMENTS

We conducted additional experiments on more challenging environments, including the nine-room
variants of MultiRoom and DoorKey, as shown in Figure 9. These domains feature larger spatial
structure, longer horizons, and more complex navigation dependencies, providing a stronger test of
scalable exploration and generalization.

The results in Figure 10 show that, in terms of main-goal performance, SIERL matches the strongest
novelty-bonus baselines, which explore aggressively in these settings. Importantly, SIERL achieves
substantially better random-goal generalization, demonstrating that the frontier-based curriculum
supports broader mastery of the environment rather than focusing solely on the shortest path to the
main goal.

NineRooms NineRoomsLocked

Figure 9: The nine rooms variants of MultiRoom and DoorKey.

Figure 10: Success rate for the main-goal and random-goals in nine rooms environment from Mul-
tiRoom and DoorKey for SIERL and Novelty Bonuses.

D.4 COVERAGE

We additionally provide a coverage analysis to visualize how exploration progresses over time. Fig-
ure 11 shows state visitation counts in NineRoomsLocked for the novelty-bonus baseline (top) and
for SIERL (bottom) at 2k, 100k, 200k, 300k, 400k, 500k, and 600k environment steps. Visitation
frequencies are shown on a logarithmic scale. The agent starts in the top-left room, and the main
goal is located in the center room.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Under SIERL, coverage expands outward in a structured manner. After the agent first reaches the
main goal (around 100k steps), the frontier continues to grow, and regions farther from both the ini-
tial position and the goal receive progressively fewer visits. This reflects the incremental broadening
of mastered states induced by the frontier-based curriculum.

In contrast, the novelty-bonus baseline explores aggressively early on but rapidly collapses toward
the shortest path between the start and the goal, leading to limited coverage of alternative routes and
peripheral states.

Figure 11: State visitations in NineRoomsLocked for Novelty bonuses (top) and SIERL (bottom)
throughout training training, at 2k, 100k, 200k, 300k, 400k, 500k, and 600k steps. Agent starts in
the top left corner and the goal is in the center of the central room.

D.5 COMPARISON WITH MEGA EXPLORATION

MEGA (Maximum Entropy Gain Exploration) (Pitis et al.) is an exploration strategy that defines
exploration problem as distribution matching of achieved and encourages the agent to systematically
expand its knowledge by maximizing the entropy of its achieved goal distribution. Instead of relying
on random exploration or external rewards, the agent deliberately sets goals from low density regions
of achieved goal distribution. Instead of directly setting random goals that might not be reachable,
by successfully returning to these states and then exploring locally, MEGA allows to continually
increase entropy of achieved goal distribution, creating an automatic curriculum that bridges the gap
between the starting state and distant, difficult task goals.

MEGA’s desired behavior is fundamentally close to that of SIERL, albeit with a different sub-goal
selection strategy. In MEGA, The agent looks at all the goals it has successfully reached in the past
(stored in the replay buffer) and estimates how “crowded” or common each goal is using a density
model (i.e., a Kernel Density Estimator). Thus, MEGA’s frontier sampling involves selecting the
“most novel” goals with the lowest density. In addition, OMEGA extends MEGA by blending its
goal setting using uniformly random-goals, as MEGA’s original goal distribution matching become
more tractable.

Since MEGA relies on a KL divergence estimator which becomes increasingly demanding as the
number of experiences increases, it is a more computationally intensive method. However, aside
from the specific density estimation used, MEGA can be effectively implemented as a special case of
SIERL’s by adjusting hyperparameters accordingly. By setting the familiarity threshold to F thr

π =
1, in order to sample sub-goals from the whole replay buffer, the novelty exponent wn = −1 to
prioritize novelty instead, and the path weights to wc = wg = 0 to make the selection agnostic
to path cost estimates, we obtain an algorithm that closely emulates MEGA. To compare it with
SIERL, we evaluated its performance on the DoorKey environment in Figure 10. It’s performance
matches closely that of SIERL with a slightly higher noise in main-goal success.

19


	Introduction
	Related Work
	Background and Problem Setup
	The Hard-exploration Problem
	Goal Markov Decision Processes
	Exploration vs Exploitation dilemma

	Method
	Two-Phase Exploration Strategy
	Frontier Extraction
	Sub-goal Selection

	Experiments
	Setup
	Results
	Ablation Studies

	Conclusion
	Limitations
	SIERL Implementation
	Agent Details
	Experience and Frontier Management

	Baselines
	Additional Results
	Sensitivity Studies
	Probabilistic Transitions
	The MultiRoom and DoorKey Environments
	Coverage
	Comparison with MEGA exploration


