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ABSTRACT

Data centers are a major source of power demand growth in the 21st century. Ar-
tificial Intelligence has accelerated this trend with power demand by data centers
growing from 1.9% of total US power demand to 4.4% of US power in only six
years. While anecdotal evidence suggests that AI data centers are using enough
power to have substantial impacts on the U.S. power grids, there are no systematic
studies to quantify these effects. We utilize econometric techniques to determine
the impact of AI model training and inference on consumer electricity quality and
fossil fuel power demand. We find significant reductions in power quality and
significant increases in power demand near data centers both immediately before
and immediately after the publication of AI models. The largest impact worsens
power quality equivalent to an additional .5-1 power outages per year. We further
show these estimates can also be used for counterfactual analysis to assess impacts
of scaling for future model development.

1 INTRODUCTION

Figure 1: Projected data center growth over
time. Source: DOE.

Over the past six years, data centers have ex-
panded from consuming 1.9% to 4.4% of total
U.S. electricity demand (Figure 1, DOE). This
rapid growth—driven largely by artificial intelli-
gence—follows two decades of flat electricity con-
sumption and coincides with nationwide efforts to
electrify transport and heating. Together, these
trends are straining the power grid and raising con-
cerns about both reliability and affordability. Recent
anecdotal evidence, such as Nicoletti et al. (2024),
points to data centers reducing local power quality
and raising prices.

However, systematic empirical evidence on these
power-grid impacts remains scarce. Existing techno-economic assessments such as those from in-
ternational organizations, and industry-focused reports IEA (2024); EPRI (2024) broadly highlight
increasing share of AI workloads in the data center market. At the micro-level, some studies examine
the energy performance of different AI accelerators and identify workload management opportuni-
ties for reducing power consumptionShankar & Reuther (2022) and Patel et al. (2024). Last, a vast
body of computer science literature focuses on the compute, energy, and environmental costs of AI
model development and deployment Strubell et al. (2019); Schwartz et al. (2020); Wu et al. (2022);
Berthelot et al. (2024); Morrison et al. (2025). While these provide a strong basis for understand-
ing how AI models impact datacenter level demand and efficiency opportunities, in this work we
ask questions about the impact at the power-grid level with implications for energy reliability and
security.

Understanding these power grid level impacts is critical from the perspectives of energy reliability
and security. In this paper, we ask seek to answer three specific questions: 1) What are the effects of
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AI model releases on local power quality and power frequency? 2) How do AI training and inference
affect electricity consumption around data centers owned by model developers? 3) How to analyze
these grid impacts under counterfactual scenarios of efficiency and model use?

It is challenging, however, to quantify these macro grid-level impacts of AI models due to the lack of
fine-grained data about other contributing factors that are unobservable due to proprietary aspects or
otherwise prohibitively expensive to obtain. For example the power quality of a grid can be affected
by many external factors including seasonal trends, location effects and data center internal factors
such as other workloads which are unobservable proprietary information.

We employ econometric Difference-in-Differences (DiD) models to quantify the causal effects of AI
model deployments on power systems. By comparing data centers running AI models against control
groups of random data centers, and partitioning observations into pre- and post-model release peri-
ods, we isolate the impact of AI deployments while controlling for temporal and geographic factors.
Using publicly available data on datacenter locations, power grids, AI model releases, weather, and
market prices, we find that large AI models cause significant power quality deterioration (exceeding
half the standard deviation of US power-quality distributions) and increase fossil fuel demand by
terawatt hours—equivalent to powering 100,000 homes annually—during both training and infer-
ence phases. These estimates enable counterfactual projections for evaluating different scenarios’
effects on energy consumption and grid stability.

We apply this methodology using publicly available market data on datacenter locations, power
grid information, AI model release times, and other appropriate control data (e.g. weather, market
prices). Specifically, we learn these DiD regressors for predicting measures of both power quality
and demand. We find that large models cause significant power quality deterioration in nearby
areas (well above half the standard deviation of US power-quality distributions), and increase fossil
fuel demand in the order of terrawatt hours (equivalent to powering 100K homes a year) in both
training and inference. We also show how these estimates can be used to evaluate different scenarios,
enabling counterfactual projections of their effects on energy consumption and grid stability.

In summary, this work contributes (i) a methodology for assessing and monitoring the macro impacts
of AI models on the power grid even when specific fine-grained data maybe unavailable, and (ii) the
first quantitative estimates of these macro grid-level impacts of some major frontier models, adding
complementary evidence to the emerging literature on the environmental and system-level impacts
of AI data centers Murino et al. (2023); Guidi et al. (2024); Thangam et al. (2024).

2 BACKGROUND: DATACENTER CONCENTRATION AND POWER-QUALITY

The U.S. data centers are expanding rapidly, nearly tripling from its 2008 levels to 1489 active
sites in 2025, with another 1,359 on the horizon Aterio (2025). The market is dominated by hy-
perscalers—vertically integrated datacenters—owned by AI heavy companies such as Amazon, Mi-
crosoft, and Google, alongside a long tail of smaller operators. Hyperscalers afford companies cer-
tain economies of scale but greatly increase the geographic concentration of power demand on the
grids. Concentrated demand strains local grids in the area, raising congestion costs and sometimes
degrading power quality for neighboring consumers. Large, inflexible loads from AI hyperscalers
also reduce system reliability, elevate wholesale prices, and complicate renewable integration.

AI workloads affect power quality through three main mechanisms. First, data centers and AI com-
puting facilities add substantial baseload demand that can strain grid capacity and compromise
voltage regulation, especially during peak periods. Second, AI workloads fluctuate rapidly with
computational needs, creating unpredictable load variations that challenge stability and frequency
regulation. Third, the switching power supplies and electronics essential to AI hardware generate
harmonic distortion, introducing waveform distortions that spread through distribution networks and
degrade power quality. See Figure 7 in Appendix for an illustration of this harmonic distortion.

These dynamics interact with broader shifts in the electricity market: greater electrification and the
transition from fossil fuels to renewables. Because renewables are intermittent and less dispatchable,
rising data center loads coupled with greater renewable penetration place dual pressures on grids,
shaping both market outcomes and policy debates. It is therefore crucial to quantify how much
power AI uses, how it distorts quality, and the role of efficiency improvements.
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3 METHODOLOGY

3.1 PROBLEM

We analyze three primary effects of artificial intelligence (AI) data centers on the power market,
with a focus on how their presence and operations interact with grid stability and demand.

First, we consider the effects of AI models on the index of power quality and power frequency
distortions in the vicinity of data centers. Power quality reflects the stability and reliability of the
grid, particularly in terms of voltage and frequency deviations. The intensive and often irregular
power draw of data centers—especially during periods of large-scale training runs—can generate
fluctuations that degrade local power quality. Frequency stability is a central component of reliable
electricity supply, and distortions can indicate imbalances between supply and demand. Because AI
training loads are highly concentrated in time and location, they may create stress points in the grid
that elevate the risk of such distortions.

To this end, we evaluate whether the deployment of new frontier models, which require extraordi-
nary computational resources, coincides with measurable declines in regional power quality indices,
thereby signaling potential challenges for grid operators. Similarly, by linking model release time-
lines to observed patterns in frequency deviations, we assess the extent to which the roll-out of
individual models exacerbates local power quality issues beyond baseline fluctuations.

Second, we consider the effects of both training and inference workloads on overall power demand
in the vicinity of data centers. Training runs, while episodic, are energy-intensive and can produce
sharp spikes in consumption, whereas inference tends to generate a steadier but still substantial level
of ongoing demand. Both activities alter local load profiles, raising questions about the adequacy
of transmission capacity, the role of long-term contracts for renewable energy procurement, and
the broader implications for regional electricity markets. By distinguishing between training and
inference, we highlight how different stages of the AI lifecycle place unique and evolving pressures
on power systems.

Finally, we provide analysis of the impacts of improvements in AI efficiency on power quality and
power demand nearby to data centers. AI efficiency broadly defined represents improvements that
can be made to reduce the energy required by models without significant corresponding decreases in
quality. AI efficiency represents the main lever computer scientists have at their disposal to reduce
the power consumption of AI models. We utilize our econometric estimates to determine real-world
impact and combine with experimental data on the effects of hardware choices for AI to extrapolate
lab estimates to meaningful impact.

3.2 ECONOMETRIC MODEL

Quantifying these effects is difficult given limited data on key variables. To overcome this, we draw
on econometric methods, which allow credible inference even when proprietary data are unavailable.

Figure 2: Difference-in-differences estima-
tion visualized.

For example, Hausman (1997) infers telecom de-
mand from price and quantity variation, Fowlie et al.
(2012) evaluate environmental regulation in elec-
tricity using emissions and price data, and Card &
Krueger (1994) study minimum wage effects via
cross-state employment variation. Similarly, Green-
stone & Hanna (2014) analyze Indian pollution pol-
icy using ambient monitors rather than industry dis-
closures. These show that when markets transmit
the mechanisms of interest, public data can yield the
only feasible evidence. Our study follows this tradi-
tion: by exploiting observable shifts in prices, load,
and capacity, we infer data center impacts that would
otherwise remain opaque.

The particular econometric tool we use to analyze the impacts of specific AI models is Difference-in-
Differences (DiD). Originally popularized in empirical economics through applications such as Card
(2022) on training programs and Card et al. (1994) on minimum wages, difference-in-differences

3
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has become one of the most widely used methods for causal inference with observational data. The
technique estimates treatment effects by comparing the change in outcomes over time for a treated
group to the change for a control group, as illustrated in Figure 2. In our application, this translates
to estimating the change in generator-level power demand within a ten–square–mile radius of a data
center before and after the release of a major AI model. Formally, we estimate

Yit = α+ β (Treatmenti × Postt) + γi + δt + εit, (1)

where Yit is power demand for generator i at time t, Treatmenti indicates proximity to a data center,
and Postt captures periods after the release of a major AI model. The coefficient of interest, β,
measures the causal impact of model releases on local power demand. By differencing across both
groups and periods, DiD controls for unobserved factors that are constant over time or shared across
groups, with validity relying on the “parallel trends” assumption. The data learns the coefficient
of interest by taking the difference between the average change from the initial baseline between
treated and untreated regions.

3.3 POWER QUALITY MODEL

To analyze the effects of data centers on local power quality, we conduct two primary statistical
analyses. First, we draw on Whisker Labs’ measures of power quality and total harmonic distortion
(THD) to estimate difference-in-differences regressions that capture the impact of AI model releases.
For example, if Meta were to release a new model at a specific data center, and this activity had a
causal effect on nearby power quality, we would expect to observe greater deterioration in local
indices relative to areas not exposed to the release. The difference-in-differences framework allows
us to test precisely this comparison by linking data on data center locations, AI model release dates,
and retail electric authority service areas with Whisker Labs’ measures. DiD methodology also
allows us to control for sources of endogeneity. See Section 4 for more details on the data used.

Our econometric framework uses a standard difference-in-differences design to estimate the causal
effects of AI model releases on grid quality. Regions with model launches serve as the treatment
group, while those without form the control group. The pre-treatment period is the six months
before a release, and the post-treatment period is the six months after. For demand regressions,
we shorten the window to three months given the higher granularity and longer time series of the
demand dataset. By contrast, power quality data are more limited, so we cannot run pre-treatment
regressions, though robustness checks for alternative time intervals are provided in the appendix.

As shown in Equation 2, we model the effect on the Consumer Power Quality Index, while Equa-
tion 3 examines total harmonic distortion.

PowerQualityrt = α+ β (Postt × Treatmentr) + γr + δt + εrt (2)

TotalHarmonicDistortionrt = α′ + β′ (Postt × Treatmentr) + γ′
r + δ′t + ε′rt (3)

The key interaction term Postt × Treatmentr captures the difference between treatment and control
regions in the post-treatment period relative to the pre-treatment period. This double-differencing
approach allows us to isolate the causal effect of AI model launches by controlling for: (1) time-
invariant regional characteristics through region fixed effects γr (or γ′

r), and (2) common temporal
trends affecting both treatment and control regions through time fixed effects δt (or δ′t).

The estimated coefficients β and β′ therefore represent the average treatment effect—the causal
impact of AI model releases on power quality and harmonic distortion in treatment regions during
the post-treatment observation period, net of what would have occurred absent the AI launch.

3.4 POWER DEMAND MODEL

Power demand is a composite over fossil fuels, nuclear, and other renewables. Here we focus on
fossil fuel demand partly because we have access to the necessary generator-level data and to avoid
additional complexities that arise in modeling nuclear and renewable demands1.

1It is common in economic analyses to focus on fossil fuel demand in part because renewable generation is
unresponsive to demand shocks

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We assess causal effects of major AI model releases on the demand for fossil fuel generation using
generator-level EPA data. From here on, demand and fossil demand are used interchangeably. A
key challenge in this setting is the endogeneity problem2: electricity demand and prices are jointly
determined in the supply–demand system, so simple regressions may conflate the effect of AI model
releases with supply-related price-driven fluctuations in generation.

To address endogeneity in our price-demand relationship, we employ instrumental variables (IV)
regression using a two-stage least squares (2SLS) framework. Since supply and demand form a
system with price as the common variable, simple regression cannot separate demand from supply
shocks. We thus use instruments to separately identify supply and demand movements. For ex-
ample, if we want to estimate how consumers respond to the price of apples, a frost that damages
orchards raises prices through supply but is not directly related to consumer demand. Our instru-
ments—generator heat rates and natural gas costs—strongly influence electricity prices through gen-
eration costs but vary independently of AI model releases, similar to how frost affects apple prices
through supply but not consumer demand. These instruments’ validity is established by their use in
supply-side analyses in the economics literature such as Knittel et al. (2015) and Cicala (2022). In
the first stage, we instrument price and AI activity variables using these exogenous factors. In the
second stage, we regress fossil fuel demand on the predicted values ̂AITrainingit and ̂AIReleaseit,
along with instrumented price p̂, controls Xit, generator fixed effects γi, and time fixed effects δt.
This approach isolates exogenous variation while controlling for weather, location, and time effects,
with the price coefficient serving both as a control and for comparing dollar-equivalent effects of
AI-driven demand changes.

As shown in the second-stage Equation 4, the first specification estimates the causal impact of AI
training activity prior to model releases on fossil fuel demand. Another second-stage, Equation 5
then examines the post-release effects of AI activity on demand.

FossilDemandit = α+ β
(

Pret × ̂AITrainingit

)
+ θXit + ηp̂+ γi + δt + εpre

it (4)

FossilDemandit = α′ + β′
(

Postt × ̂AIReleaseit
)
+ θXit + ηp̂+ γ′

i + δ′t + εpost
it (5)

The coefficients of interest, β and β′, capture the average causal impact of AI activity on fossil fuel
demand in the pre- and post-release periods, respectively.

3.5 COUNTER-FACTUAL ANALYSIS

Finally, we investigate the impacts of AI efficiency improvements on both power quality and power
demand by running counterfactual analyses. The key idea is to construct regressors that capture
changes in model efficiency—such as reductions in the number of parameters or computational
intensity—and trace how these shifts would alter local grid outcomes. Our baseline framework
already estimates how power quality responds to the release of frontier AI models; we build on
this by simulating how hypothetical improvements in efficiency would change these responses. To
implement this, we regress our econometric estimates on varying levels of efficiency allowing us to
isolate how efficiency gains propagate into changes in electricity demand and power quality. We also
extrapolate experimental data to larger models to apply estimates at the micro-scale to our estimates
on impacts on power demand and quality.

3.6 DATACENTER ASSUMPTIONS

We test result robustness by varying treated population definitions, estimating specifications with
alternative geographic boundaries to confirm consistency. This demonstrates findings reflect gen-
uine causal impacts rather than arbitrary boundary choices. While we lack data on which models
run at specific centers, our DiD methodology accounts for this by using publication dates as exoge-
nous treatment, utilizing minimal geographic and temporal treatment windows. We plan robustness
checks restricting treatment to larger data centers most likely involved in AI training. To verify treat-
ment effects aren’t noise-related, we include appendix robustness checks with randomized treatment
dates as additional evidence that effects relate to model releases.

2The endogeneity problem is one where a model’s errors are not random but correlated with observed or
unobservable characteristics- thus making traditional estimates biased Gordon (2015)
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4 DATA

Table 1 summarizes the datasets we use to address each of our three research questions, distinguish-
ing between variables of interest and the control variables described above. For variables of interest,
we rely on Aterio, which provides comprehensive information on the location and history of data
centers. The Aterio dataset documents when and where centers have been established, expanded, or
retired, along with details on ownership and operational capacity (in MW). This allows us to identify
data centers owned by specific hyperscalers and to quantify their scale over time. We then combine
these data with external sources that provide the necessary controls.

Table 1: Data sources for each analysis question.
Source Content Use in Analysis # Instances

Q1: Difference-in-Differences (Power Quality)

Aterio Data center locations, history, owner-
ship, capacity (MW)

Define treatment regions; link AI
model releases

3862 data centers

Whisker Labs CPQI (consumer reliability); THD
(waveform distortion)

Outcome variables for DiD regressions 2684 utility-months

EIA Retail service territory maps Define treatment/control boundaries 72 utilities

Q2: Instrumental Variables (Fossil Demand)

EPA CAMPD Hourly generator demand; heat rates Fossil demand outcome; heat rate as in-
strument

22 million generator-hours

S&P Capital IQ Natural gas prices Instrument and fuel-cost control 12 Million location-day prices
Aterio Data center proximity to generators Treatment near releasing-company cen-

ters
3862 data centers

Meteostat Temperature, precipitation Demand and renewable controls 22 million location-hours
ISOs Zonal wholesale prices Market controls 54 zones

Q3: Counterfactual Analyses (Scaling & Efficiency)

Whisker Labs CPQI; THD Baseline power quality impacts for
scaling projections

Epoch Model parameters, FLOPs, release
dates

Scaling regressions; efficiency counter-
factuals

75 Models

4.1 VARIABLES OF INTEREST

We use three primary datasets. First, the Consumer Power Quality Index (CPQI) from Whisker
Labs (2024) provides a composite measure of consumer-facing reliability events (surges, sags,
brownouts, interruptions), summarizing frequency and severity of power deviations at the house-
hold level. Second, Total Harmonic Distortion (THD) data from Whisker Labs (2024) offers a
technical measure of waveform distortion, quantifying voltage deviation from a clean 60-Hz sine
wave. Elevated THD indicates grid stress, reduces motor efficiency, and shortens equipment lifes-
pan. Figure 7 illustrates how harmonics alter voltage sine waves, reducing power reliability. Since
THD data are more recent than CPQI, fewer model releases are available for THD analysis. Finally,
we incorporate generator demand from EPA’s CAMPD database, providing hourly plant-level de-
mand that captures local operating characteristics. CAMPD data span 2021–2023, constraining
analysis to AI model releases within that period.

4.2 CONTROL VARIABLES

For the power quality regressions, we use a parsimonious specification with only time and ge-
ographic fixed effects, which absorb seasonal patterns, long-run trends, and location-specific dif-
ferences, allowing us to test whether data center activity coincides with reliability declines beyond
geography and time. In contrast, the generator demand regressions employ a richer set of controls
to address endogeneity, using generator heat rates from EPA CAMPD and natural gas prices from
S&P Capital IQ Global as instruments in a two-stage least squares framework, along with CAMPD’s
hourly generator demand data (2021–2024). We also incorporate Meteostat weather variables (tem-
perature, dewpoint, precipitation) to capture demand and renewable variability, and ISO market data
based on boundary maps to ensure spatial consistency. Finally, EIA retail service territory files
reconcile generator-, zonal-, and retail-level observations into a consistent framework.

6
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4.3 COMBINING DATA SOURCES

To integrate datasets, we harmonize spatial and temporal units across sources. Data center loca-
tions from Aterio are mapped to ISO zones, EIA territories, and counties, enabling linkage with
Whisker Labs reliability indexes (CPQI and THD) and CAMPD generator demand. CPQI has 2,683
observations (mean 0.52, s.d. 0.42), while THD is more dispersed (mean 1.81, s.d. 6.77). CAMPD
generator demand averages 218 MW (s.d. 158), and wholesale prices average $51/MWh (s.d. 148).
Weather data capture local conditions (mean temperature 17°C, precipitation 0.12 mm), and time
series are aligned at hourly or monthly resolution. External controls—natural gas prices, weather,
and ISO market data—are merged by geography and time, yielding a unified panel suitable for
difference-in-differences and IV regressions.

Our demand model focuses on deregulated markets in the Eastern Interconnection and ERCOT,
where data on zones and prices are readily available, while our power quality model draws on
Whisker Labs data from 72 retail utilities nationwide (monthly, 2022–2025). The demand regres-
sions use hourly data for several thousand generators (2021–2023). We concentrate on hyperscaler
AI companies—including Meta, Microsoft, Amazon, and Google—with Anthropic linked to Google
due to its cloud partnership. Appendix materials include maps, sample descriptions, and data tables.

5 RESULTS

5.1 POWER QUALITY IMPACTS

Figure 3 shows the estimated impact of the release of various AI models on the local consumer
power quality index (CPQI) as measured by Whisker Labs over time. The DiD coefficients (on the
y-axis) represent the difference between the change in CPQI in retail electric zones with hyperscaler
data centers and the change in CPQI in zones without following the release of the corresponding
AI models. Higher values for the coefficients indicate deterioration in power quality that is causally
attributable to the AI model releases (modulo the exhaustiveness of the controls modeled). Most
coefficients are positive and significant at the 1% level with several negative but mostly insignificant
coefficients.

The CPQI is an index of the expected number of surges, power outages, and brownouts weighted by
the impact of the event on the home. It typically ranges from 0 to 1.2 with higher values indicating
worse power quality. The most recent yearly national average CPQI was .69 with a .45 standard
deviation of the power quality index distribution in U.S. The GPT-4.5 release had an estimated
power quality index impact of .327. This level of deterioration in CPQI corresponds to moving
from a typical U.S. area toward the bottom quartile of power quality—roughly the difference be-
tween ∼ 1 outage/year and ∼ 1.5–2 outages/year for the average customer3—and implies more
frequent voltage anomalies that make motors and electronics run less efficiently and age faster.

Further, the continued scaling of AI models signals persistent and worsening impacts on power
quality. As models grow and queries rise, these effects intensify. If the trend holds, areas near
data centers may face a one standard deviation drop in power quality within a few years, implying
over one day of outages annually—far above the engineering standard of one outage every ten years
of Regulatory Utility Commissioners (2009). While off-peak periods in Spring and Fall may mask
deterioration, regions like the Southern U.S. and PJM—already strained by summer heat—could
experience outages exceeding one per month, heightening grid stress and risks of widespread fail-
ures North American Electric Reliability Corporation (NERC) (2025); Thompson (2024), as current
Whisker Labs outage data suggest.

Figure 4 shows how larger AI models increase Harmonic Frequency deviations in retail electric
zones with hyperscaler data centers compared to zones without. Claude 3.7 Sonnet and GPT 3.5
both worsen the Total Harmonic Distortion (THD) index by .436, pushing neighborhoods from safe
power limits to dangerous levels. This increase causes home appliances like refrigerators and air
conditioners to run hotter and less efficiently, potentially halving their lifespan IEE (2014); Laughner
et al. (2024). The pattern indicates that larger commercial AI model deployments correlate with
measurable power quality degradation, increasing consumer costs and straining the electrical grid.

3These are calculated based on Whisker Labs description of the CPQI Score with a description of derivation
in the appendix.
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Figure 3: Impact of selected AI models on
power quality over time. Plot shows substan-
tial deterioration in power quality for recent
models.

Figure 4: Impact of selected AI models
on Whisker Labs’ total harmonic distortions
metric over Time. Plot shows increasing im-
pact over time.

Figure 5: Impact of selected AI models on
power demand for training.

Figure 6: Impact of selected AI models on
power demand for inference.

5.2 POWER DEMAND EFFECTS

Figures 5 and 6 visualizes our estimates of changes in power usage in MWh in the first three months
before and after the release of specific large language models respectively. The pre-treatment coeffi-
cients reflect power usage (i.e. demand) of training the models, and post-treatment ones reflect that
of inference.

The estimates represent the aggregate difference between the change in the demand for genera-
tors in the ten square miles surrounding data centers compared to other areas after accounting
for controls. We see substantial increases in power demand significant at the 1% level both during
training (pre-treatment), and inference (post-treatment) as shown by the large coefficient values for
most models. The smaller coefficients found for some models (both positive and negative) are not
statistically significant.

The largest effect on power demand is in the order of terawatt hours (i.e. millions of megawatt-
hours). GPT-3.5 and DALL-E, for instance, are estimated to have increased aggregate electricity
demand by over one million and nearly three million megawatt-hours respectively in the post-
treatment period. To put this into perspective, the average U.S. household consumes about 10 to
11 megawatt-hours per year according to EIA (2024). This means the additional electricity demand
attributable to GPT-3.5 in the three months post release is roughly equivalent to powering 100,000
homes for a full year, while the impact of DALL-E corresponds to nearly 300,000 homes’ annual
electricity use. These changes represent the net effects of the model release including both adoption
and use of models by the public.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.3 COUNTERFACTUAL ANALYSES

Here we show an example of a counterfactual analysis that we can conduct based on the data and
models we have developed. In particular, we can combine data on model size (i.e. parameter counts)
and our estimates of power quality and demand to fit separate trend lines. We can then use these
trend lines to extrapolate power quality impacts and demand change at other model sizes. Specific
regression details in terms of model-fit and coefficient values can be found in the appendix.

To illustrate this we fit a line to power quality impacts of three models: Llama-3.1 (405 B), PaLM
(540B), and Llama 4 Behemoth (2T). Using this line we see that going from a 2 Trillion model (the
largest in our data set) to say a 4 Trillion model would result in a change in power quality impact
from 0.321 to 0.434, a deterioration of about 0.113 units, or just over 35 percent relative to the 2
trillion baseline. Furthermore, the relationship is exponential (the line is over log parameter counts),
so a 100 billion parameter decrease has a more significant percentage-wise impact at 400 Billion
parameters than at 800 Billion. The larger models become, the greater the required decrease in
parameters for the same percentage decrease in power quality impact.

Using a similar process as above, we also extrapolate demand. We find that each 1% parameter
increase leads to 0.15% higher power demand within three months of model release. Scaling
from say 540 billion to one trillion parameters would increase total power demand by 10.5%. For
DALL-E, halving parameters would reduce inference demand by ∼300 GWh, equivalent to the
annual consumption of 27–30 thousand homes.

Training compute requirements also have measurable effects: a one percent increase in FLOPs is
associated with a .1 percent increase in power demand. For GPT-3.5, halving training compute
FLOPs is equivalent to reducing usage by enough energy to power 8 to 10 thousand US homes
for a year. Other counterfactuals could be performed including regressing inference coefficients on
reported model queries to determine the scaling effect of additional queries on model demand or
determining the impacts of changing model size on carbon emissions based on the emissions mix
from the data.

6 CONCLUSION

Understanding how AI models impact U.S. power grids is critical for ensuring energy reliability
and security. This work introduces an econometric methodology to overcome the lack of fine-
grained data about contributing factors. In particular, we use a difference-in-differences regressions
to provide econometric estimates of the amount of power being used by specific AI models as well
as the power distortions being caused by AI. We find evidence that AI is making power quality
significantly worse and increasing fossil fuel power demand. We provide estimates of the potential
impacts of increasing efficiency of AI on the power draw of data centers.

Our approach differs from the approach traditionally taken by the computer science energy efficiency
literature, which tends to focus on the micro-scale to build up estimates of the costs of training a
model in a specified way a specified number times. Our estimates of power demand impacts are
significantly higher than previous literature estimates. Our approach also differs from the current
approach amongst energy economists who tend to utilize changes from baseline simulation models
to determine the impacts of external demand shocks. By focusing on market data, our approach
is able to achieve estimates that are in between these levels of analysis. Our estimation is able to
agnostically consider all electricity adds from AI model activities, which provides a more realistic
estimate of AI life-cycle power demand. We believe this approach is also applicable for other other
opaque impacts—such as the effect of large model releases on network congestion or cooling water
demand—wherever direct usage data from providers is inaccessible.

While informative, this approach inherits the limitations of all Difference-in-Differences experimen-
tal designs. It relies on the parallel trends assumption, which may be violated if treated and control
regions were already diverging or if generators anticipated model releases. Timing is also criti-
cal—effects may emerge gradually or with lags, complicating interpretation. Finally, contempora-
neous shocks such as weather or other industrial expansions can confound results, and the treatment
itself (a model release) may not map cleanly onto actual deployment. Ideally, we would like a longer
power quality dataset with more granularity to make cleaner statements about long-term trends.

9
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A APPENDIX

A.1 TOTAL HARMONIC DISTORTION

Figure 7: Total harmonic dis-
tortion representation.

Figure 7 illustrates the distortions in the power frequencies. The
green lie shows the clear voltage curve, which is cleanly sinusoidal,
whereas with huge loads can produce harmonic distortions shown
as the dotted yellow curve. This dirtier voltage can adversely af-
fect the operation and lifetime of household appliances and other
products that use electricity.
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A.2 RESULTS TABLES

Table 2: Estimated Impact of AI Model Releases on Power Quality
Model Provider Coefficient Std. Error R2

GPT-4.5 Microsoft 0.327*** 0.087 0.327
Llama 4 Behemoth (preview) Facebook 0.325*** 0.074 0.313
Claude 3 Opus Google 0.278*** 0.043 0.462
Gemini 1.5 Pro Google 0.223*** 0.026 0.451
GPT-4o Microsoft 0.198*** 0.044 0.331
GPT-4 Microsoft 0.176*** 0.033 0.408
Claude 3.7 Sonnet Google 0.161*** 0.041 0.357
Chinchilla Google 0.143*** 0.038 0.570
PaLM (540B) Google 0.142*** 0.029 0.587
LaMDA Google 0.134** 0.044 0.564
PaLM 2 Google 0.133*** 0.024 0.465
Claude 3.5 Sonnet Google 0.126*** 0.036 0.378
OPT-175B Facebook 0.104*** 0.023 0.467
Gemini 1.0 Ultra Google 0.103*** 0.021 0.409
Llama 3.1-405B Facebook 0.052 0.034 0.315
Minerva (540B) Google 0.031 0.023 0.519
Parti Google 0.031 0.023 0.519
GPT-4 Turbo Microsoft 0.030* 0.017 0.308
GPT-3.5 Microsoft -0.049** 0.018 0.390
Flan-PaLM 540B Google -0.051* 0.026 0.508
U-PaLM (540B) Google -0.051* 0.026 0.508
Amazon Titan Amazon AWS -0.086*** 0.016 0.380

Notes: Robust standard errors in parentheses. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 3: Difference-in-Differences Estimates of Data Center Announcements on Cumulative Total
Queue Capacity (MW)

(1) (2)
No FE County & Year FE

Post Announcement 714.459** 150.741*
(293.890) (87.001)

Intercept 366.406*** -188.142***
(19.361) (13.395)

Observations 128,700 128,700
R2 0.010 0.780
Adj. R2 0.010 0.777
Fixed Effects No County & Year

Cluster-robust standard errors in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 4: Difference-in-Differences Estimates of Data Center Announcements on Cumulative Gas
Queue Capacity (MW)

(1) (2)
No FE County & Year FE

Post × Announced Capacity 0.324*** 0.250**
(0.105) (0.117)

Intercept 175.718*** -43.457***
(18.388) (13.229)

Observations 16,380 16,380
R2 0.012 0.610
Adj. R2 0.012 0.604
Fixed Effects No County & Year

Cluster-robust standard errors in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 5: Difference-in-Differences Estimates of Data Center Announcements on Cumulative Gas
Queue Capacity (MW), No Interaction

(1) (2)
No FE County & Year FE

Post Announcement 98.976 273.893***
(68.413) (79.284)

Intercept 176.560*** 63.585***
(18.656) (1.28e-11)

Observations 16,380 16,380
R2 0.003 0.522
Adj. R2 0.002 0.514
Fixed Effects No County & Year

Cluster-robust standard errors in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 6: Post-Treatment: Estimated Impact of AI Model Releases on Aggregate Electricity Demand
Model Provider Coefficient p-value R2 Aggregate Impact (MWh)

Switch Google 124.46 5.25× 10−13 0.628 4,154,379
DALL-E Microsoft 81.54 1.55× 10−15 0.627 2,910,208
GPT-3.5 Microsoft 76.08 7.31× 10−6 0.622 1,034,517
mT5-XXL Google 63.48 < 0.001 0.625 420,630
Megatron-Turing NLG 530B Microsoft 46.15 2.33× 10−4 0.628 1,692,209
Codex Microsoft 35.60 0.0211 0.630 2,132,043
Minerva (540B) Google 24.03 0.4305 0.624 1,372,621
Parti Google 20.14 0.4692 0.625 1,183,787
Flan-PaLM (540B) Google 17.36 0.0501 0.622 504,750
U-PaLM (540B) Google 17.36 0.0501 0.622 504,750
OPT-175B Facebook 12.85 0.0161 0.624 583,999
ByT5-XXL Google 1.28 0.9584 0.624 66,424
ProtT5-XXL Google -1.42 0.9370 0.629 -64,268
Meta Pseudo Labels Google -3.996 0.8284 0.628 -118,203
FLAN 137B Google -4.97 0.7971 0.624 -167,480
Chinchilla Google -23.54 0.0980 0.628 -834,056
PaLM (540B) Google -24.53 0.0714 0.628 -873,641
LaMDA Google -27.41 0.1362 0.626 -643,963
GLaM Google -27.76 0.3485 0.625 -750,319
Gopher (280B) Google -30.32 0.3113 0.625 -813,756

Notes: Coefficients and p-values are taken from post coefficient and post p value. Aggregate
impact uses post aggregate demand increase.
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Table 7: Pre-Treatment: Estimated Impact of AI Model Releases on Aggregate Electricity Demand
Model Provider Coefficient p-value R2 Aggregate Impact (MWh)

Switch Google 89.77 3.57× 10−4 0.628 268,851
DALL-E Microsoft 66.90 1.13× 10−5 0.627 43,755
GPT-3.5 Microsoft 39.60 < 0.001 0.622 1,501,640
Megatron-Turing NLG 530B Microsoft 35.96 0.0138 0.628 2,088,496
Codex Microsoft 28.63 0.0108 0.630 1,245,855
Minerva (540B) Google -22.51 0.0972 0.624 -781,775
Parti Google -22.94 0.1056 0.625 -734,906
Flan-PaLM (540B) Google 29.16 0.3543 0.622 1,475,972
U-PaLM (540B) Google 29.16 0.3543 0.622 1,475,972
OPT-175B Facebook -21.77 0.2825 0.624 -502,990
ByT5-XXL Google -6.20 0.7410 0.624 -177,165
ProtT5-XXL Google 101.54 2.26× 10−6 0.629 3,280,303
Meta Pseudo Labels Google 168.29 1.33× 10−13 0.628 4,122,856
FLAN 137B Google 3.41 0.8961 0.624 181,878
Chinchilla Google -23.61 0.4060 0.628 -583,230
PaLM (540B) Google -22.84 0.4174 0.628 -554,841
LaMDA Google -27.80 0.3750 0.626 -817,029
GLaM Google -12.52 0.4856 0.625 -413,053
Gopher (280B) Google -8.12 0.6566 0.625 -271,852

Notes: Coefficients and p-values are taken from pre coefficient and pre p value. Aggregate impact
uses pre aggregate demand increase. Dashes indicate missing values in the spreadsheet.

Figure 8: Data centers by state.

A.3 EXPANDED DATASET DESCRIPTION

Below, maps can be found providing more detail on the data cen-
ter dataset alongside tables on the datasets and the dataset sample
selection criteria.
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Figure 9: Map of zones for demand model.

Figure 10: Map of Retail Electric Utilities for Whisker Labs Data.
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Figure 11: Power Quality Impact for Counterfactuals.

A.4 COUNTERFACTUAL

Figure 11 shows the power quality line we fit for performing counterfactuals.

A.5 CALCULATION OF COMPARISONS

We calculate the household average energy usage based on data provided by EIA (2024). We simply
divide our estimates by the provided numbers to get the number of households for our comparisons.

A.6 MODEL

We present a model of the impacts of varying decision choices for carbon abatement by a large hy-
perscaler. We present a toy model to illustrate model functioning followed by a full model. We focus
on marginal carbon intensity (MCI) and average carbon intensity (ACI). MCI represents the emis-
sions from a particular hour while average carbon intensity represents the total emissions divided by
the total generation.

A.7 TOY MODEL

Agents and primitives. There are two periods t ∈ {1, 2} and three generator agents: a fossil
unit F , an existing renewable R1, and a potential renewable entrant R2. Figure 12 showcases the
agents and their interactions with the market. The hyperscaler has inelastic demand DM

t = 1 in

Figure 12: Agents in Model

each period, and there is no outside demand (DO
t = 0). Variable costs and emissions:

cF > 0, eF > 0, cR1 = cR2 = 0, eR1 = eR2 = 0.

Capacities/output (deterministic to highlight timing):

xR1,1 = 1, xR1,2 = 0; xR2,1 = 0, xR2,2 ∈ {0, 1};

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

xF,t ∈ {0, 1}.

Renewables are complementary in time: R1 only produces in t = 1, while R2 (if it enters) only
produces in t = 2. The fossil unit can meet any residual demand.

Dispatch and prices. Competitive dispatch follows merit order. If a renewable is available in t, it
clears the 1 MWh load at pt = 0; otherwise F clears at pt = cF . Hence, without R2 entry:

p1 = 0, p2 = cF , MCI1 = 0, MCI2 = eF .

With R2 entered, p2 = 0 as well.

REC mechanics and the timing parameter. Each MWh of renewable generates one REC in its
production period. Let St be REC supply, so without entry S1 = 1, S2 = 0; with entry S2 = 1.
The hyperscaler targets 100% coverage (ϕ = 1) under REC procurement with granularity parameter
h ∈ [0, 1]: h = 0 (annual matching, no timing), h = 1 (hourly matching). Let RG

t be granular
retirements and RA annual-bucket retirements. Feasibility:

RG
t ≥ hDM

t︸ ︷︷ ︸
granular

, RA ≥ (1− h)(DM
1 +DM

2 )︸ ︷︷ ︸
annual

,

Potential entrant R2. If R2 enters, it produces xR2,2 = 1 in t = 2. It pays entry cost I > 0
financed at 1 + r(σ2). We compare three procurement environments (which map to different cash-
flow risk for R2):

1. REC/merchant (no contract). R2 sells energy at p2 and its REC at pREC
2 .

2. PPA. R2 receives a fixed transfer p̄ per MWh in t = 2 (energy+REC bundled); residual
merchant exposure is zero in this toy case.

3. Colocation. R2 is fully contracted on-site at transfer p̃ per MWh in t = 2 (no market risk).

We keep discounting trivial (two periods, take β = 1) to focus on timing and entry.

Outcomes by procurement regime.

A.8 FULL MODEL

Agents and primitives. We study a market with a large data center hyperscaler (e.g. Microsoft)
and a set of generators indexed by owner k and technology l ∈ {R,F} (renewable or fossil).4 The
hyperscaler procures electricity to minimize expected total costs by choosing (i) a long-term power
supply arrangement i ∈ I and (ii) an emergency backup option j ∈ J .

Key objects.

• For each generator g: capacity Omax
g , variable cost cg , emissions rate eg , and stochastic

availability.
• For the hyperscaler: load {DM

t }2t=1, backup option j ∈ {none, diesel, storage}, and pro-
curement i ∈ {REC,PPA,Colocation}.

A.9 TIMING

Stage 0a (commitment): The hyperscaler commits to procurement i ∈ I and backup j ∈ J
(contract terms public).

Stage 0b (entry): A set of potential generators of both types observes (i, j) and decides whether to
enter. Entry costs are sunk upon entry.

Stages 1–2 (operations): In each period t = 1, 2, shocks realize (demand, renewable availability).
The energy market dispatches competitively; RECs are issued, banked, and retired subject to gran-
ularity rules (the “timing wedge”). Agents discount with factor β ∈ (0, 1) across the two operating
periods.

4Index individual plants by g when convenient; technology l(g) ∈ {R,F}.
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A.10 HYPERSCALER PROBLEM (COMMITMENT STAGE)

The hyperscaler chooses (i, j) to minimize expected total costs:

πhyper = min
i∈I, j∈J

[
Ccap

i + Cop
i + Pij C

out + C̄env
ij

]
, (6)

where Pij = PiPj is the probability that both the contracted source fails and the backup is unavail-
able, Cout is the outage loss, and C̄env

ij = E[f(∆Eij)C
env
ij ] is the expected reputational cost as a

function of the emissions delta ∆Eij ≡ Ewith DC − Ewithout DC.

Contract menu.

• REC/merchant (i = REC): the hyperscaler buys energy from the grid and retires RECs;
generators remain merchant for energy and REC revenue.

• PPA (i = PPA): a renewable generator sells a fixed quantity q̄ each period at price p̄;
residual is merchant.

• Colocation (i = Colo): a dedicated renewable unit (optionally with storage) physically
colocated with the data center delivers Qcolo

t ; residual met from the grid. Colocation fully
insulates the generator from market risk.

Backup. j ∈ {none, diesel, storage} affects both reliability (Pj) and emissions: diesel has ej > 0,
storage has ej = 0 if charged by colocated renewables.

A.11 ENTRY (STAGE 0B)

Potential entrants of type l ∈ {R,F} decide to enter before operations. Let Ig be the sunk entry
cost for plant g, and let r(σ2) be the project’s financing rate, strictly increasing in the variance of net
operating cash flows σ2 (a reduced-form cost-of-capital channel). For a renewable merchant entrant,

ΠR,merch
g = E

[
2∑

t=1

βt−1
(
(pt + pREC

t )xg,t − cgxg,t

)]
− (7)

Ig

(
1 + r(σ2

merch)
)
.

Under a PPA for q̄ ≤ Omax
g at price p̄,

ΠR,ppa
g =

2∑
t=1

βt−1
[
p̄ q̄ + (pt + pREC

t )(xg,t − q̄)+ − cgxg,t

]
− (8)

Ig

(
1 + r(σ2

ppa)
)
.

Under colocation (full revenue and REC certainty for the contracted amount),

ΠR,colo
g =

2∑
t=1

βt−1
[
p̃t Q

colo
t − cgxg,t

]
− Ig

(
1 + r(0)

)
, (9)

where p̃t is the contracted transfer for colocated output. For fossil F , replace (pt + pREC
t ) by pt.

Free entry. With a continuum of potential entrants and competitive supply of projects, free entry
implies zero-profit conditions for marginal entrants of each type/contract:

Πl,·
g ≤ 0 for all g, Πl,·

g = 0 if g enters, l ∈ {R,F}. (10)

Because r(σ2) increases in variance and colocation eliminates variance,

r(0) ≤ r(σ2
ppa) ≤ r(σ2

merch), ⇒ entrycolo ≥ (11)

entryppa ≥ entrymerchant (all else equal).
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A.12 OPERATIONS SUBGAME (TWO PERIODS t = 1, 2)

Demand. Total load each period is Dt = DM
t +DO

t . Net grid draw by the hyperscaler is

GM
t =

(
DM

t −Qcontract
i,t −Qcolo

t −Bj,t

)
+
, (12)

where Qcontract
i,t is the (possibly firm) delivery under i and Bj,t is backup output.

Availability. Each generator g is either fully available or off:

xg,t ∈ {0, Omax
g }, Pr(xg,t = Omax

g ) = αg,t. (13)

Energy dispatch and price. Given the set of available units Gt, the competitive dispatch solves

min
{xg,t}

∑
g∈Gt

cgxg,t s.t. (14)

∑
g∈Gt

xg,t +Bj,t +Qcolo
t = Dt, xg,t ∈ {0, Omax

g }.

Let λt be the energy balance multiplier. The locational marginal price (LMP) is pt = λt = cg∗(t),
where g∗(t) is the marginal unit at the optimum.

REC issuance, banking, and the timing wedge. Renewables mint one REC per MWh:

rg,t = 1{l(g) = R}xg,t, St =
∑
g

rg,t. (15)

A stock of banked RECs evolves:

Kt+1 = (1− δ)Kt + St −Rret
t , Kt ∈ [0, K̄], t = 1, (16)

with terminal K3 free (or bounded).

To formalize matching granularity, fix a parameter h ∈ [0, 1]: h = 0 is annual bucket matching;
h = 1 is full hour/period matching. Let RM,G

t be the hyperscaler’s granular retirements in period t
and RM,A its annual bucket retirements. The hyperscaler targets a renewable share ϕ ∈ [0, 1] of its
total consumption. Feasibility and obligations:

(Granular requirement)

RM,G
t ≥ hϕDM

t ,

RM,G
t ≤ Squal

t , t = 1, 2,

(Annual requirement)

RM,A ≥ (1− h)ϕ (DM
1 +DM

2 ),

RM,A ≤ K1 + S1 + S2 − (RM,G
1 +RM,G

2 ),

where Squal
t ≤ St denotes RECs eligible by geography/tier. The timing wedge is the load not covered

by same-period renewable matching:

wt(h) = GM
t −RM,G

t (≥ 0 if h > 0 binds), (17)

W (h) =
∑2

t=1 E[wt(h)].
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REC market clearing and prices. Given banking equation 16 and obligations equation A.12–
equation A.12, the competitive REC allocation minimizes present cost of compliance:

min
{Rret

t ,K2,R
M,G
t ,RM,A}

2∑
t=1

βt−1pREC
t Rret

t +

2∑
t=1

βt−1pACP
t shortt

s.t. equation 16, equation A.12, equation A.12,

(18)

Rret
t = RM,G

t + 1{t = 2}RM,A +RLSE
t − shortt,

R· ≥ 0, shortt ≥ 0.

Let µ be the annual-constraint multiplier and νt the granular multipliers. Then the effective shadow
value of a qualifying REC used in t is

p̃REC
t = pREC

t + νt + 1{t = 2}µ. (19)

With interior banking, the Euler condition implies

pREC
1 = β(1− δ)E

[
pREC
2

]
, (20)

and pREC
t ≤ pACP

t with equality if shortfalls occur.

Emissions and carbon intensity. Total emissions in t are

Et =
∑
g∈Gt

egxg,t + ejBj,t. (21)

Define average and marginal carbon intensity:

ACIt =
Et∑

g xg,t +Bj,t
, MCIt = eg∗(t). (22)

Microsoft’s attributable marginal emissions under (i, j):

MMEi,j =

2∑
t=1

βt−1 E
[
MCIt ·GM

t

]
, (23)

with GM
t in equation 12.

A.12.1 EQUILIBRIUM

Given (i, j) and the set of entrants from Stage 0b, a competitive two-period operating equilibrium is
a tuple {

{xg,t}, {pt}, {pREC
t },K2, {RM,G

t }, RM,A
}
t=1,2

such that (i) dispatch equation 14 clears energy with pt = cg∗(t); (ii) REC is-
suance/banking/retirements satisfy equation 16, equation A.12–equation A.12, and REC prices sat-
isfy equation 20; and (iii) backup and colocation quantities meet equation 12. A subgame-perfect
equilibrium of the full game consists of (i∗, j∗) solving equation 6, a set of entrants satisfying free-
entry conditions, and a competitive operating equilibrium in each period.

A.12.2 MECHANISMS AND EQUILIBRIUM IMPLICATIONS

Three mechanisms drive outcomes. First, procurement choices shape operational emissions through
the timing wedge between load and renewable generation. Colocation with storage shrinks this
wedge by re-timing renewable energy into high-carbon hours; diesel backup increases emissions.

Second, contract type alters financing risk: PPAs reduce σ2 relative to RECs, and colocation elimi-
nates it. Lower variance reduces r(σ2), encouraging renewable entry.

Third, equilibrium carbon intensity reflects both the short-run operational effect and the long-run
investment effect.
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A.12.3 IMPLICATIONS

Our model provides a set of empirical predictions about how hyperscalers’ procurement choices
affect both costs and carbon intensity. On the demand side, as the spread between the cost of
procuring electricity from renewable sources and from the open market widens, hyperscalers are
more likely to turn to the open market and less likely to contract renewables. At the same time,
as hyperscaler demand for electricity grows, the environmental cost of their consumption rises,
and the benefits of carbon-free procurement mechanisms such as PPAs and colocation increase.
These benefits scale with both the overall carbon intensity of grid electricity and the size of the
hyperscaler’s load: the dirtier and larger the load, the greater the incentive to secure clean and
reputationally valuable supply.

On the supply side, the model emphasizes that because renewable generation is intermittent, incre-
mental data center demand tends to raise fossil generation unless there is sufficient storage to shift
renewable energy across periods. The timing mismatch between hyperscaler load and renewable out-
put—the “timing wedge”—is therefore central to understanding operational emissions outcomes.
Colocation with storage can shrink this wedge by re-timing renewable production to high-carbon
hours, while diesel backup increases emissions during outages.

These mechanics give rise to several testable implications. First, REC purchases on their own do
not alter short-run carbon intensity, since they are purely financial transfers. Their effect arises only
in the medium run, if REC demand raises REC prices and induces new renewable capacity to come
online. PPAs without firming behave similarly in operational terms, but they reduce generators’
revenue risk and financing costs, which increases renewable entry relative to REC-only arrange-
ments. Colocation has a more immediate impact: behind-the-meter renewable output reduces a
hyperscaler’s net grid draw exactly when the colocated plant is producing, lowering local marginal
emissions exposure. The effect is strongest when renewable output is correlated with hyperscaler
load. Adding storage to colocation further enhances this benefit by shifting surplus renewable pro-
duction to periods when demand is high and marginal carbon intensity is greatest, sharply reducing
emissions attributable to the data center. By contrast, reliance on diesel backup increases operational
emissions whenever it is deployed.

Finally, the model predicts an investment hierarchy driven by financing risk: colocation, by fully
eliminating revenue variance, induces the largest increase in renewable entry, followed by PPAs,
and then REC purchases. This creates a long-run ordering in expected carbon reductions. Moreover,
because colocated renewables reduce grid purchases at the hyperscaler’s node, emissions fall locally,
though congestion and flow adjustments may increase carbon intensity in neighboring nodes unless
total renewable capacity expands.

Together, these predictions imply that (i) REC purchases yield little immediate emissions reduc-
tion but may encourage new renewable entry; (ii) PPAs accelerate renewable deployment by reduc-
ing financing risk, though without firming they do not improve operational carbon intensity in the
short run; and (iii) colocation—especially when paired with storage—directly lowers hyperscaler-
attributable emissions by addressing the timing wedge between renewable generation and hyper-
scaler demand.
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