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Abstract
Efficient sampling of unnormalized probability
densities such as the Boltzmann distribution of
molecular systems is a longstanding challenge.
Next to conventional approaches like molecular
dynamics or Markov chain Monte Carlo, vari-
ational approaches, such as training normaliz-
ing flows with the reverse Kullback-Leibler di-
vergence, have been introduced. However, such
methods are prone to mode collapse and often
do not learn to sample the full configurational
space. Here, we present temperature-annealed
Boltzmann generators (TA-BG) to address this
challenge. First, we demonstrate that training
a normalizing flow with the reverse Kullback-
Leibler divergence at high temperatures is possi-
ble without mode collapse. Furthermore, we intro-
duce a reweighting-based training objective to an-
neal the distribution to lower target temperatures.
We apply this methodology to three molecular
systems of increasing complexity and, compared
to the baseline, achieve better results in almost all
metrics while requiring up to three times fewer
target energy evaluations. For the largest system,
our approach is the only method that accurately
resolves the metastable states of the system.

1. Introduction
Machine learning, and particularly generative models, have
become a transformative force across numerous domains. A
prime example of this impact is in structural biology, where
deep learning methods such as those in the AlphaFold family
(Jumper et al., 2021; Abramson et al., 2024) have revolu-
tionized our ability to predict protein structures. While a
big part of AlphaFold’s success can surely be attributed to
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an advanced methodology, a key factor also lies in the avail-
ability of abundant experimental data, such as that in the
Protein Data Bank (PDB) (Burley et al., 2021).

However, not all scientific domains benefit from such well-
curated and extensive experimental datasets. In areas where
data scarcity is a persistent challenge, computational sim-
ulations play an essential role. Molecular dynamics (MD)
and Markov chain Monte Carlo (MCMC) methods are the
primary tools used to explore complex biochemical and
physical systems and generate insights from limited experi-
mental information. Despite their utility, these classical sam-
pling approaches often come with significant computational
costs, as they rely on iterative trajectory-based exploration
of high-dimensional state spaces.

As a result, various approaches have been explored to speed
up these methods, including integrating machine learning
(ML)-based force fields (Reiser et al., 2022), enhanced sam-
pling techniques (Barducci et al., 2011), and data-driven col-
lective variables (Bonati et al., 2021). Furthermore, (trans-
ferable) generative models have been trained on equilibrium
samples from MD simulations (Noé et al., 2019; Mahmoud
et al., 2022; Zheng et al., 2024; Klein & Noe, 2024).

While these advancements have significantly improved the
efficiency and utility of traditional simulations, there is a
growing interest in rethinking the paradigm altogether. Vari-
ational sampling methods, rooted in generative modeling,
offer a compelling alternative to classical MD and MCMC.
These approaches aim to learn the underlying probability
distribution without the availability of training data, bypass-
ing the need for explicit trajectory-based sampling.

The most straightforward variational approach is to train a
likelihood-based generative model, such as a normalizing
flow, using the reverse Kullback-Leibler divergence (KLD).
However, this is known to yield mode collapse in many
scenarios (Midgley et al., 2023b; Felardos et al., 2023).
Recently, multiple variational sampling methods were de-
veloped (Blessing et al., 2024), based on normalizing flows
(Matthews et al., 2022; Midgley et al., 2023b), diffusion
models (Zhang & Chen, 2021; Richter & Berner, 2023;
Berner et al., 2023; Vargas et al., 2023; Zhang et al., 2023;
Akhound-Sadegh et al., 2024; Sendera et al., 2024), and
flow matching (Woo & Ahn, 2024).
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Despite their promise to accelerate sampling, the applicabil-
ity and scalability of variational sampling methods remain
limited, and the field is in its early stages of development
compared to the wealth of research on hybrid MD/ML ap-
proaches. To the best of our knowledge, the only variational
approach that has successfully been applied to the sampling
of molecular systems with non-trivial multimodality, such
as the popular benchmark system alanine dipeptide, is Flow
Annealed Importance Sampling Bootstrap (FAB) (Midgley
et al., 2023b).

In this work, we propose a novel and scalable flow-based
framework to efficiently sample complex molecular sys-
tems without mode collapse. We train a normalizing flow
at increased temperature using the reverse KLD, which we
show reliably circumvents mode collapse. Since one is
typically interested in the equilibrium distribution at lower
temperatures, e.g. at room temperature, we introduce a
reweighting-based training objective to iteratively anneal
the distribution of the normalizing flow down to the target
temperature. We demonstrate the capability and scalability
of this methodology using three peptide systems of increas-
ing complexity and achieve superior sampling efficiency
and accuracy compared to baseline approaches.

Our contribution is threefold:

• We show that, in contrast to current literature, the re-
verse KLD is surprisingly powerful at learning the
Boltzmann distribution of molecular systems with-
out mode collapse, but only at increased temperatures
where barriers between different free energy minima
are lower and the probability distribution maxima are
interconnected.

• We introduce an iterative reweighting-based training
strategy to anneal the flow distribution to arbitrary tar-
get temperatures.

• We introduce two complex molecular systems as new
benchmarks that go far beyond the size of the typi-
cally used benchmark system alanine dipeptide, and
we demonstrate that our approach scales to those sys-
tems without mode collapse.

2. Related Work
Leveraging the improved mode-mixing behavior when sam-
pling at higher temperatures is not a completely novel ap-
proach, as it was introduced as an accelerated sampling
technique for MCMC and MD simulations before. Replica
exchange Markov chain Monte Carlo (RE-MCMC) and
molecular dynamics (REMD) use multiple parallel trajec-
tories (replicas) at different temperatures, while allowing
repeated exchanges of configurations between the replicas.

This essentially makes the high-temperature simulations
help the lower-temperature simulations in overcoming slow
energy barriers in the system.

Invernizzi et al. (2022) present a variation of replica ex-
change molecular dynamics using a normalizing flow that
maps from the highest temperature directly to the target tem-
perature. This allows direct exchanges and circumvents the
need for intermediate replicas in the simulation. However,
this still requires performing MD simulations at the bound-
ary temperatures and it is not clear how well the method
scales to larger systems.

Dibak et al. (2022) use a normalizing flow that is trained
on samples from high-temperature molecular dynamics sim-
ulations. Using a special flow architecture, they show that
the flow can be adapted to output low-temperature samples,
even though it was only trained at the high temperature.
Draxler et al. (2024) recently showed that the volume-
preserving coupling layers used in that work are not univer-
sal, making the approach unsuitable for complex systems.

To solve this issue, Schebek et al. (2024) propose to use
a normalizing flow with explicit conditioning on the tem-
perature T and pressure P . The prior of the normalizing
flow is formed by samples from an MD simulation at a ref-
erence thermodynamic state (T0, P0). The normalizing flow
is subsequently trained to be able to sample across a range
of thermodynamic states (T, P ) using the reverse KLD.

Similarly, Wahl et al. (2025) train a temperature-conditioned
flow at increased temperature using samples from MD, and
the correct temperature scaling to lower temperatures is ob-
tained by matching the gradient of the unnormalized proba-
bility density of the flow with respect to the temperature to
the gradient of the known target energy function.

So far, all mentioned approaches use (a large amount of)
MD samples at at least one temperature, and transfer this
to a different (lower) temperature. While a multitude of
variational sampling methods that do not rely on samples
from MD have been proposed, to the best of our knowledge,
the only approach that has so far been successfully applied to
non-trivial molecular systems is Flow Annealed Importance
Sampling Bootstrap (FAB) by Midgley et al. (2023b).

Instead of the reverse KLD, FAB uses the α-divergence
with α = 2 for energy-based training. The α-divergence is
estimated using annealed importance sampling (AIS) (Neal,
2001) from qX to p2

X

qX
, where Hamiltonian Monte Carlo

(HMC) (Duane et al., 1987) is used to transition between
intermediate distributions. While AIS sampling is costly
in terms of energy evaluations, it proved effective in learn-
ing complex probability distributions. They successfully
learned the Boltzmann distribution of alanine dipeptide, a
common benchmark molecular system, without mode col-
lapse. However, how well this method scales to more com-
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Figure 1. (a) Illustration of Boltzmann generators based on normalizing flows. The goal is to learn the equilibrium Boltzmann distribution
of the 3D conformations of a molecular system. We focus on data-free training, where only the unnormalized probability density is known.
(b) Illustration of our workflow. (1) To avoid mode collapse, we first train the flow at high temperature with the reverse KLD. (2-4) Then,
the learned distribution is iteratively annealed to the target temperature by sampling at the current temperature, reweighting these samples
to a lower temperature, and subsequently performing forward KLD training at this lower temperature. This is repeated multiple times
until the desired target temperature is reached. (5) In the end, samples are drawn from the flow for evaluation. (c) Visualization of the
three peptide molecular systems used in this work.

plex systems is unclear, and we will address this in this work
when comparing our approach to FAB.

3. Preliminaries
3.1. Normalizing Flows

Normalizing flows use a latent distribution qZ(z), typically
a Gaussian or uniform distribution, which is transformed
to the target space using an invertible transformation x =
g(z; θ), z = f(x; θ) = g−1(x; θ) (Figure 1a).

The transformed density of the flow can be expressed using
the change of variables formula (Dinh et al., 2015):

qX(x; θ) = qZ (f(x; θ)) |det Jx 7→z| (1)

with the Jacobian Jx 7→z =
∂f(x; θ)

∂xT

The most common approach to parameterize the invertible
function is to use invertible coupling layers. In each cou-
pling layer, the input x1:D is split into two parts x1:d and
xd+1:D. The first part is transformed elementwise condi-
tioned on the second part, while the second part is kept

identical (see Figure 4 in the appendix for an illustration).
If the elementwise transformation is invertible (monotonic),
the whole transformation becomes invertible. Furthermore,
the Jacobian matrix of such a coupling transform is lower
triangular and can be efficiently computed (Durkan et al.,
2019).

Training with Samples. The key property of normalizing
flows is that the likelihood (Equation 1) is directly available,
typically at the cost of a forward pass. This allows data-
based maximum likelihood training (forward KLD):

KLθ [pX∥qX ] = C −
∫
pX(x) log qX(x; θ) dx (2)

= C − Ex∼pX
[log qZ (f(x; θ)) + log |det Jx7→z|] (3)

Training by Energy. Next to data-based training, a nor-
malizing flow can be trained by energy if only the target
density pX(x) is known. In case of physical systems, such
as the molecules studied in this work, this is the Boltzmann
distribution pX(x) ∼ exp (−E(x)/(kBT )). Here, x is the
3D configuration of the molecule, for example, the Carte-
sian coordinates of all atoms, kB is the Boltzmann constant,
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T is the temperature, and E(x) is the energy of the given
configuration, evaluated either using quantum mechanics,
e.g. with density functional theory, or, as in this work, using
a parameterized force field. While other data-free training
objectives exist (such as the α = 2 divergence used in FAB),
the reverse KLD is the most straightforward objective to
fit the distribution of the flow to the target density, using
samples from the flow itself:

KLθ [qX∥pX ] = KLθ [qZ∥pZ ] (4)

= C −
∫
qZ(z) log pZ(z; θ) dz (5)

= C − Ez∼qZ [log pX (g(z; θ)) + log |det Jz 7→x|] (6)

Importance Sampling Since normalizing flows provide
the likelihood of the generated samples, one can perform
importance sampling to the true distribution pX using the
importance weights w(x) = pX(x)

qX(x;θ) . When estimating an
expectation value of an observable h(x) using samples xn
from the flow distribution qX , this offers asymptotically
unbiased estimates (Martino et al., 2017; Noé et al., 2019):

N∑
n=1

w(xn)∑N
i=1 w(xn)

h (xn) −−−−→
N→∞

∫
h(x)pX(x)dx (7)

While diffusion models and continuous normalizing flows
can provide likelihoods by computing divergences of the
involved vector field, this is often prohibitively expensive in
practice, already for relatively small systems (Klein & Noe,
2024).

While Equation 7 theoretically allows unbiased estimates,
this is limited in practice by the actual overlap between
the flow distribution qX and the target distribution pX . A
helpful measure, here, is the effective sample size (ESS),
defined as the number of independent samples needed from
the target distribution pX to achieve the same variance in
estimating expectation values as when using the flow dis-
tribution qX (Martino et al., 2017). The reverse ESS is an
approximation of the ESS, where samples from the flow
are used (see Section E in the appendix). The ESS is thus
only estimated within the support of the flow, meaning that
a high ESS can still be achieved if only parts of the true
distribution are covered. Therefore, the reverse ESS value
needs to always be interpreted together with other metrics.

4. Methods
4.1. Flow Architecture

Analogous to previous works (Midgley et al., 2023b; Schop-
mans & Friederich, 2024), we use an internal coordinate

representation based on bond lengths, angles, and dihedral
angles to represent the molecular conformations. This in-
corporates the symmetries of the potential energy, which is
invariant to translations and rotations of the whole molecule.
For all experiments, we use a normalizing flow built from 16
monotonic rational-quadratic spline coupling layers (Durkan
et al., 2019) with fully connected parameter networks in the
couplings. Dihedral angles are treated using circular splines
(Rezende et al., 2020) to incorporate the correct topology.
Details can be found in Sections A and B of the appendix.

4.2. Temperature-Annealed Boltzmann Generators

Our approach to learn the Boltzmann distribution of molecu-
lar systems can be separated into two phases (see Figure 1b):
First, we learn the distribution at a high temperature using
the reverse KLD (step 1 in Figure 1b). Due to decreased
barrier heights, this can be done without mode collapse. Sec-
ondly, the distribution is iteratively annealed using the mass-
covering forward KLD with importance-sampled datasets
to obtain the distribution at the target temperature. We now
explain both steps in detail and discuss why they avoid the
challenges described above.

Training by Energy: Avoiding Mode Collapse

The mode-seeking behavior of the reverse KLD has been
discussed and observed in multiple previous publications
(Midgley et al., 2023b; Felardos et al., 2023; Soletskyi et al.,
2024). Once the flow collapsed to a mode, meaning that
some remaining modes of the target distribution are not
within the support of the flow, it will generally not escape
this collapsed state if the remaining modes are too far sepa-
rated from the collapsed mode. This is not surprising, since
the reverse KLD is evaluated using an expectation value
with samples from the flow distribution qX itself, which
will only cover the collapsed modes.

At the typical target temperature for molecular systems,
i.e. 300 K, modes are too far separated to be successfully
covered with the reverse KLD. However, when sampling at
increased temperature, the modes become more connected.
Eventually, one can use the reverse KLD to efficiently learn
the distribution. In this work, we performed the reverse
KLD experiments at 1200 K, which allows a relatively small
batch size and number of gradient descent steps to be used
without mode collapse (see Section F.3 in the appendix for
an extended ablation and discussion regarding choosing the
starting temperature).

Using any loss function that directly includes the target en-
ergy of a molecular system can be challenging. If two atoms
overlap sufficiently, the repulsive van der Waals energy di-
verges, leading to unstable training. Following previous
work (Midgley et al., 2023b), we thus use a regularized
energy function for training (see Section C in the appendix).
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Figure 2. Visualization of the iterative annealing process, showing the free energy F = −kBT ln p(ϕi, ψi) of backbone dihedral angles
(Ramachandran plots) in each iteration. After learning the distribution at 1200 K using the reverse KLD, the distribution is annealed
step by step to the target temperature 300 K. Note that not all annealing iterations are shown. Since the tetrapeptide has three pairs of
backbone dihedral angles, and the hexapeptide five, we selected one pair of dihedral angles for this illustration. The annealing of all pairs
of backbone dihedrals can be found in Figures 13 and 16 in the appendix. We used 1 × 107 samples for the Ramachandran plots at 300 K
and 1 × 106 samples for the rest.

This avoids very high values in the loss function and sta-
bilizes training. Furthermore, analogous to previous work
(Schopmans & Friederich, 2024), we found that removing a
small fraction of the largest energy values in the loss contri-
butions of each batch stabilizes training.

Reweighting-Based Annealing

As explained, we use the reverse KLD as a first step to learn
the Boltzmann distribution at increased temperature. To
obtain the distribution at a lower target temperature, here
300 K, we utilize importance sampling (Equation 7). While
one could do importance sampling directly from Tstart =
1200 K to Ttarget = 300 K, this will yield bad overlap and
sampling efficiency (see Figure 5 in the appendix).

Instead, we perform importance sampling using multiple
temperatures T1 = Tstart, T2, T3, . . . , TK−1, TK = Ttarget,
where T1 ≥ T2 ≥ T3 ≥ . . . ≥ TK . In one annealing
iteration, we perform the following steps:

1. Sample a dataset Di = {xj}Nj=1 of N samples xj ∼
qX(xj ; θ) from the flow at the current temperature Ti.

2. Calculate importance weights w(xj) =
pX,T=Ti+1

(xj)

qX(xj ;θ)

for each sample xj in Di to transition to Ti+1.

3. According to these importance weights, resample a
dataset Wi+1 with replacement from Di.

4. Perform forward KLD training on Wi+1.

Throughout this annealing workflow, we keep updating the
flow parameters, without reinitialization. In this way, we
can anneal the distribution of the flow step by step toward
the target temperature Ttarget (see steps 2-4 in Figure 1b).
Since we use the mass-covering forward KLD objective
based on importance-sampled datasets, mode collapse is not
a problem during the annealing.

For all experiments, we chose 9 temperature annealing itera-
tions. To ensure a similar overlap between two consecutive
distributions, we choose the temperatures Ti using a geomet-
ric progression between Tstart and Ttarget (Sugita & Okamoto,
1999) (see Section F.3 in the appendix for a comparison
with a linear temperature schedule):

Ti = Tstart

(
Ttarget

Tstart

) i−1
K−1

(8)

Furthermore, we added a final fine-tuning iteration, where
we sample at 300 K and reweight to 300 K (TK−1 = TK =
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Ttarget). Since the temperature is not lowered in this fine-
tuning step, the effective sample size of the training dataset
is higher, which empirically improves the final metrics ob-
tained at 300 K. For the hexapeptide system, we added such
a fine-tuning iteration with Ti+1 = Ti after each anneal-
ing iteration (see Equation 14 in the appendix). While this
increases the total number of target potential energy evalua-
tions, it improves the obtained results substantially. For the
two less complex systems, intermediate fine-tuning was not
necessary. We refer to Section F.3 of the appendix for an
extended discussion and ablations regarding the fine-tuning
iterations.

Variations

We note that our buffered reweighting approach is not the
only option to anneal the temperature of a normalizing flow.
As discussed in Section 2, a concurrent study (Wahl et al.,
2025) uses a temperature-conditioned normalizing flow with
a temperature scaling loss to learn the Boltzmann distribu-
tion at the target temperature. While this approach achieves
promising results, it requires the repeated estimation of
the partition function Z using importance sampling with
the flow distribution. Obtaining a low-variance estimate of
Z can be computationally expensive, especially for high-
dimensional systems such as the hexapeptide studied here.
However, a systematic comparison of different temperature
scaling approaches is an interesting avenue for future work.

We further experimented with variations of our reweighting
approach. For example, we tried training a temperature-
conditioned flow with a reweighting-based objective contin-
uously on the whole temperature range. This is described
in more detail in Section 11 of the appendix. In practice,
we found the iterative buffered annealing workflow to be
superior, both in terms of accuracy and sampling efficiency.

5. Experiments
We now describe the conducted experiments to evaluate our
temperature-annealing approach. The objective is to learn
the Boltzmann distribution of three molecular systems, in-
creasing in complexity (see Figure 1c). The first molecule is
alanine dipeptide, a popular system that previously served
as a benchmark for variational sampling (Midgley et al.,
2023b), but also other related tasks such as transition path
sampling (Holdijk et al., 2023; Seong et al., 2024). We fur-
ther evaluate on two higher-dimensional and more complex
systems, alanine tetrapeptide and alanine hexapeptide. All
three systems have complex metastable high-energy regions
that make up only a small fraction of the entire state space,
which makes them suitable hard objectives for benchmark-
ing.

While the focus of our work is on molecular systems due to

their challenging potential energy surface, TA-BG can also
be applied to other sampling tasks. We refer to the appendix,
Section K, for additional experiments on a Gaussian mixture
system.

5.1. Baseline Methods

To judge the performance of our approach, we compare it to
baseline methods. First, we trained a normalizing flow with
the forward KLD using MD data from the target distribution.
While this is not a variational sampling approach, it serves as
a good baseline to show the expressiveness of the flow if data
is available. Next, we trained a normalizing flow with the
reverse KLD, targeting the Boltzmann distribution at 300 K.
As the final and most powerful baseline, we trained Flow
Annealed Importance Sampling Bootstrap (FAB) (Midgley
et al., 2023b). As already discussed, to the best of our
knowledge, this is the only method that so far has shown
success without mode collapse on our smallest test system
alanine dipeptide. It therefore serves as a strong baseline.

5.2. Metrics

To evaluate the distribution of the normalizing flow at the
target temperature 300 K, we use a combination of multiple
metrics. First, we use the negative log-likelihood (NLL)
calculated on the ground truth test dataset. This is a good
overall measure of the learned distribution. We note that
since the metastable regions of our systems form only a
small part of the ground truth test datasets, seemingly minor
differences in the NLL can be decisive, especially when
assessing mode collapse or the quality of the description of
the metastable region.

To better assess potential mode collapse, we additionally
evaluate the free energy F = −kBT ln p(ϕi, ψi) of the back-
bone dihedral angles (Ramachandran plots). Since these
are the main slow degrees of freedom of the peptide sys-
tems, mode collapse will be directly visible here. To assess
the quality of the Ramachandran plot, we calculate the for-
ward KLD between the probability distribution given by
the Ramachandran plot of the ground truth and the one of
the flow distribution (RAM KLD). Since the tetrapeptide
and hexapeptide have multiple pairs of backbone dihedral
angles, we report the mean of their RAM KLD values. Fur-
thermore, we repeat the calculation of the RAM KLD also
using the Ramachandran plots obtained from importance
sampling.

Last, to evaluate the sampling efficiency, we report the re-
verse effective sample size (ESS) (see Section 3).

6. Results
Figure 2 shows how the Ramachandran plots of each of
the three systems are annealed to the target temperature,
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showing four exemplary steps of the annealing workflow.
Both the distribution at 1200 K learned with the reverse
KLD and the distribution at the target temperature 300 K
match the ground truth obtained from MD.

We now compare the obtained distribution at 300 K with
that from the baseline methods by evaluating the introduced
metrics (Table 1). Furthermore, Figure 3 shows the Ra-
machandran plots at 300 K obtained by all methods side-by-
side. Figure 12 in the appendix shows the same comparison,
but with importance sampling to the target distribution.

We start with the smallest system, alanine dipeptide. All
methods, except for the reverse KLD, are able to learn the
distribution without mode collapse (Figure 3). While the
reverse KLD covers the high-energy region to some extent,
partial mode collapse is visible. In terms of metrics, FAB
and TA-BG obtain comparable results. Our method achieves
better NLL and ESS values, while FAB achieves slightly
lower RAM KLD values. Our approach only uses approxi-
mately a third of the target energy evaluations of FAB. We
further note that the metrics we obtained with FAB on ala-
nine dipeptide are slightly better but mostly comparable to
those in the original publication.

Similar results can be observed for the tetrapeptide system.
The reverse KLD training now collapses almost fully to the
main mode, missing most of the metastable region (Fig-
ure 3). Both TA-BG and FAB achieve a good match with
the ground truth distribution, fully resolving the metastable
region. The metrics of TA-BG and FAB are again close,
our approach achieves slightly better NLL and RAM KLD
values, while FAB has a lower reweighted RAM KLD value
and slightly higher ESS. Our approach again uses approxi-
mately a third of the target energy evaluations of FAB.

In the case of the most complex investigated system, alanine
hexapeptide, the distribution of the reverse KLD training
again almost entirely collapses. While FAB is partially
able to resolve the metastable states, they differ in shape
compared to the ground truth distribution. In contrast, our
approach covers all metastable states without mode collapse
and resolves them accurately with only small imperfections.
This is also reflected and quantified by the metrics: Com-
pared to FAB, our approach achieves better results in all
metrics, while requiring 3.08 × 108 target energy evalua-
tions compared to 4.2 × 108 used by FAB.

A tradeoff exists between the accuracy of the obtained dis-
tribution and the number of target evaluations. This is es-
pecially true for FAB, where the number of intermediate
AIS distributions and the number of HMC steps can be var-
ied. We present corresponding variations in Table 11 in the
appendix. For FAB applied to the hexapeptide, even when
using almost 3 times as many target evaluations compared
to our approach, we still achieve a lower NLL value.

7. Discussion
To summarize, TA-BG achieves better results in most met-
rics compared to the baselines and thus learns the Boltzmann
distribution of the investigated systems more accurately,
while requiring significantly fewer target energy evaluations.
We note that force field evaluations in our current setup
are relatively inexpensive. With more accurate and com-
putationally costly target evaluations, such as ML-based
foundation models or density functional theory, the energy
evaluation cost becomes dominant. In such cases, the higher
sampling efficiency of our method will translate into signif-
icantly reduced computational cost. We refer to Section J
in the appendix for a detailed analysis of the computational
cost of TA-BG in comparison with FAB.

Next, we would like to point out the surprisingly good re-
sults we obtained by simply training with the reverse KLD
at 300 K for alanine dipeptide (Figure 3). Even though
at 300 K the metastable states are only connected to the
global minimum by a very low-probability transition region,
only partial mode collapse is observed. Next to our results
of being able to successfully learn the distribution at high
temperatures with the reverse KLD, this further shows the
effectiveness of simple reverse KLD training.

Furthermore, previous work showed that not only training
a normalizing flow from scratch with the reverse KLD is
prone to mode collapse, but also fine-tuning a pre-trained
flow to a target distribution with the reverse KLD typically
collapses (Felardos et al., 2023). This is a not well under-
stood phenomenon and has only recently been investigated
theoretically (Soletskyi et al., 2024). While Felardos et al.
(2023) proposed a solution to this problem, it is not clear
how well it scales to larger systems. As described before,
after our annealing workflow reaches 300 K, we fine-tune
the flow distribution at 300 K by performing forward KLD
training with a buffered dataset from the flow distribution,
reweighted to the target distribution. This offers a simple yet
effective solution to the problem of fine-tuning pre-trained
flows and can also be used in other scenarios. For exam-
ple, one can train a flow on biased MD simulation data that
is not properly equilibrated, and then fine-tune with our
buffered reweighting approach to obtain an unbiased flow
distribution.

Furthermore, while our method generally yielded better
results with fewer target energy evaluations for the hexapep-
tide, the results we obtained using FAB are still relatively
close in terms of accuracy, especially for the other two sys-
tems. This establishes it as a powerful method for variational
sampling. Therefore, a combination of our temperature-
annealing approach with FAB is an interesting avenue for
future work. Instead of using the reverse KLD for train-
ing at increased temperatures, FAB can be used and the
distribution can be subsequently annealed with our TA-BG
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Figure 3. Comparison of the free energy F = −kBT ln p(ϕi, ψi) of the backbone dihedral angles (Ramachandran plots) at 300 K obtained
by the different methods. Since the tetrapeptide has three pairs of backbone dihedral angles, and the hexapeptide five, we selected the pair
with the largest visible deviation among the methods. The Ramachandran plots for all pairs of backbone dihedral angles can be found in
the appendix, Figures 14 and 17.

workflow. If and when this can be better than simple reverse
KLD training at high temperatures needs to be investigated.

Our results indicate that other variational sampling ap-
proaches, such as those based on diffusion models, might
benefit from sampling at higher temperatures and anneal-
ing the temperature afterwards. Other objectives will likely
also benefit from the reduced mode separation at elevated
temperatures.

In this work, we used a relatively simple flow architecture
based on neural splines and internal coordinates. Recent
improvements in flow architectures (Zhai et al., 2024; Tan
et al., 2025) can be leveraged in the future to improve the
obtained results and scale to larger systems. Furthermore,
the use of an internal coordinate representation can be a
limitation, since it is not transferable between systems and
it does not incorporate the permutation invariance of iden-
tical particles. A transferable equivariant normalizing flow
has recently been proposed (Midgley et al., 2023a). Using
the TA-BG methodology in a transferable setting is an in-
teresting avenue for future work, which may also allow a
hybrid approach where data-free training is combined with
data-based training (Lewis et al., 2024).

8. Conclusion
We introduced temperature-annealed Boltzmann generators,
a technique that uses a combination of high-temperature
reverse KLD pre-training and a subsequent annealing work-
flow to efficiently sample the Boltzmann distribution of
molecular systems at room temperature. On the molecular
systems investigated, our approach achieves better results in
almost all metrics, while requiring up to three times fewer
target energy evaluations compared to the baselines. Further-
more, it was the only variational approach that accurately
resolved the metastable region of the most complex sys-
tem studied, demonstrating its scaling capabilities from toy
examples to application-relevant systems.

Similar to how replica exchange molecular dynamics is
an established method in the toolbox of computational sci-
entists, we are confident that high-temperature sampling
with temperature-annealing is a powerful approach that will
move the field of variational sampling forward.
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Table 1. Comparison of metrics obtained for all three peptide systems. The table shows the number of potential energy evaluations (PE
EVALS), the negative log-likelihood (NLL), the reverse effective sample size (ESS), the (mean) Ramachandran KLD (RAM KLD), and
the (mean) Ramachandran KLD with reweighting (RAM KLD W. RW). All metrics are reported as the mean and standard error obtained
from four independent experiments. The best-performing variational method for each metric is highlighted in bold.

SYSTEM METHOD PE EVALS ↓ NLL ↓ ESS ↑ RAM KLD ↓ RAM KLD W. RW ↓

DIPEPTIDE

FORWARD KLD 5 × 109 −213.581 ± 0.000 (82.16 ± 0.09) % (2.21 ± 0.05) × 10−3 (1.99 ± 0.07) × 10−3

REVERSE KLD 2.56 × 108 −213.609 ± 0.006 (94.11 ± 0.21) % (1.75 ± 0.28) × 10−2 (1.65 ± 0.29) × 10−2

FAB 2.13 × 108 −213.653 ± 0.000 (94.81 ± 0.04) % (1.50 ± 0.03) × 10−3 (1.25 ± 0.01) × 10−3

TA-BG (OURS) 7.56 × 107 −213.665 ± 0.002 (95.61 ± 0.14) % (1.97 ± 0.08) × 10−3 (1.39 ± 0.03) × 10−3

TETRA-
PEPTIDE

FORWARD KLD 4.2 × 109 −330.069 ± 0.001 (45.29 ± 0.08) % (2.26 ± 0.06) × 10−3 (2.50 ± 0.03) × 10−3

REVERSE KLD 2.56 × 108 −329.191 ± 0.122 (74.88 ± 3.65) % (3.00 ± 0.35) × 10−1 (2.87 ± 0.40) × 10−1

FAB 2.13 × 108 −330.100 ± 0.002 (63.59 ± 0.23) % (6.89 ± 0.25) × 10−3 (1.25 ± 0.01) × 10−3

TA-BG (OURS) 7.56 × 107 −330.114 ± 0.004 (62.36 ± 0.46) % (2.61 ± 0.20) × 10−3 (1.94 ± 0.12) × 10−3

HEXA-
PEPTIDE

FORWARD KLD 4.2 × 109 −501.598 ± 0.005 (10.97 ± 0.11) % (4.16 ± 0.26) × 10−3 (7.69 ± 0.03) × 10−3

REVERSE KLD 2.56 × 108 −497.378 ± 0.277 (22.22 ± 1.44) % (5.41 ± 0.38) × 10−1 (5.32 ± 0.38) × 10−1

FAB 4.2 × 108 −501.268 ± 0.008 (14.64 ± 0.08) % (2.09 ± 0.02) × 10−2 (1.12 ± 0.02) × 10−2

TA-BG (OURS) 3.08 × 108 −501.511 ± 0.013 (14.71 ± 0.18) % (8.63 ± 0.66) × 10−3 (8.77 ± 0.47) × 10−3

Software and Data
The source code to reproduce our experiments can be found
at https://github.com/aimat-lab/TA-BG. Fur-
thermore, the ground truth datasets from MD simulations are
provided at https://doi.org/10.5281/zenodo.
15526429.
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A. Internal Coordinate Representation
As discussed in the main text, we use an internal coordinate representation based on bond lengths, angles, and dihedral
angles to represent the conformations of the molecular systems. As discussed in the next section, we use splines as the
invertible transformations in our coupling blocks. These splines are only defined for mappings from the interval [0, B] to
[0, B]. Therefore, we scale all internal coordinates to fit in this range (here, B = 1).

To achieve this, we divide all dihedral angles by 2π. Furthermore, bond lengths and angles are transformed as

η′i = (ηi − ηi;min)/σ + 0.5 . (9)

Here, ηmin is the value of the corresponding degree of freedom from a minimum energy structure obtained from minimizing
the initial structure with the force field. σ was empirically chosen as 0.07 nm for bond length dimensions and 0.5730 rad for
angle dimensions.

For the peptides studied in this work, two chiral forms (mirror images) exist. In nature, one almost exclusively finds only
one of the two (L-form). However, since the potential energy is invariant to the mirror symmetry, there is no preference
given by the energy model itself. Previous work (Midgley et al., 2023b; Schopmans & Friederich, 2024) simply filtered the
“wrong” R-chirality during training. In contrast, we directly constrain generation to the L-chirality by restricting the output
bounds of the splines that generate the dihedrals of the hydrogens at the chiral centers to the range [0.5, 1.0]. For this, we
transform the corresponding dimensions as ηi → ηi · 0.5 + 0.5 after the flow generated them. This entirely removes the
R-chirality from the space the flow can generate.

Furthermore, there is no preference given for the permutation of hydrogens in CH3 groups. However, since the ground
truth molecular dynamics simulations start from a given starting configuration, a preference does exist in the ground truth.
Therefore, we restrict the generated distribution of the flow to this preference, by constraining the spline output range of the
respective dihedral angles, analogous to how we constrain the chirality (see above).

B. Architecture

Figure 4. Illustration of a normalizing flow coupling layer.

For the normalizing flow architecture, we use an architecture similar to previous works (Midgley et al., 2023b; Schopmans
& Friederich, 2024). As the invertible transformation in the coupling layers, we use monotonic rational-quadratic splines
(Durkan et al., 2019) that map the interval [0, 1] to [0, 1] using monotonically increasing rational-quadratic functions with
K = 8 bins.

We use 8 pairs of neural spline coupling layers. In each pair, we use a randomly generated mask to decide which dimensions
to transform and which dimensions to condition the transformation on (see Figure 4). In the second coupling of each pair,
the inverted mask is used. The dimensions of the dihedral angles are treated using circular splines (Rezende et al., 2020) to
incorporate the correct topology. After each coupling layer, we add a random (but fixed) periodic shift to the dihedral angle
dimensions.

The latent distribution qZ of the normalizing flow is a uniform distribution in the range [0, 1] for the dihedral angle
dimensions, and a Gaussian distribution with σ = 0.5 and σ = 0.1, truncated to the range [0, 1], for the bond length and
angle dimensions.
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As the conditioning network (NN1 in Figure 4), we use a fully connected neural network with hidden dimensions
[256,256,256,256,256] and ReLU activation functions. Previous works used a fully connected neural network with a
skip connection (Midgley et al., 2023b; Schopmans & Friederich, 2024), however, we found no benefit in this and therefore
did not use a skip connection. To incorporate their periodicity, dihedral angles are represented as (cosψ, sinψ)⊤ before
being passed as input to the neural network.

We used the same architecture for all experiments of all methods. The number of parameters in the architecture of each
system can be found in Table 2. All experiments used the Adam optimizer (Kingma & Ba, 2017) to train the flow.

Table 2. Number of parameters in the normalizing flow architecture for each system.

ALANINE DIPEPTIDE ALANINE TETRAPEPTIDE ALANINE HEXAPEPTIDE

NUMBER OF PARAMETERS 7 421 512 9 452 376 12 124 616

To implement the normalizing flow models and the internal coordinate representations, we used the bgflow (Noé, 2024) and
nflows (Conor Durkan et al., 2020) libraries with PyTorch (Paszke et al., 2019).

C. Molecular Systems

Table 3. Overview of the molecular systems. The number of constrained bonds is given in brackets.

NAME SEQUENCE NO. ATOMS NO. HYDROGENS NO. BONDS NO. ANGLES NO. TORSIONS

ALANINE
DIPEPTIDE ACE-ALA-NME 22 12 21 20 19
ALANINE

TETRAPEPTIDE ACE-3·ALA-NME 42 22 19 (+ 22) 40 39
ALANINE

HEXAPEPTIDE ACE-5·ALA-NME 62 32 29 (+ 32) 60 59

To avoid diverging van der Waals energies due to atom clashes, we train with a regularized energy function (Midgley et al.,
2023b):

Ereg.(E) =
E, if E ≤ Ehigh,

log(E − Ehigh + 1) + Ehigh, if Ehigh < E ≤ Emax,

log(Emax − Ehigh + 1) + Ehigh, if E > Emax.

(10)

For all systems, we used the energy regularization parameters Ehigh = 1 × 108 and Emax = 1 × 1020.

Throughout this work, we use visualizations of the free energy F = −kBT ln p(ϕi, ψi) of the backbone dihedral angles
of the systems (Ramachandran plots). For all Ramachandran plots, we used 1 × 107 samples if not otherwise specified.
Furthermore, the axes are in scaled internal coordinates in the range [0, 1].

D. Force Field and Ground Truth Simulations
All ground truth simulations have been performed with OpenMM 8.0.0 (Eastman et al., 2024) using the CUDA platform.
Ground truth energy evaluations during training have been performed with 18 workers in parallel using the OpenMM CPU
Platform.

Details on the performed simulations and force field parameters for each system can be found in Table 4. For all systems,
we used variants of Amber force fields (D.A. Case et al., 2023). For alanine dipeptide, the parameters are identical to the
ones used in the FAB publication (Midgley et al., 2023b). We use the dataset made available by Stimper et al. (2022) as our
test dataset. In addition to this ground truth test dataset, we performed another molecular dynamics simulation for alanine
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dipeptide at 300 K (see Table 4). We used 50 ns for equilibration and a production simulation time of 5 µs. The small time
step of 1 fs was chosen since this system does not use hydrogen bond length constraints. This additional simulation was
used for training the forward KLD experiments and to create a separate validation dataset.

The force field parameters of the alanine tetrapeptide system match those used in the temperature steerable flow publication
(Dibak et al., 2022). However, no public dataset for this system was available, which is why we performed two replica
exchange molecular dynamics (REMD) simulations to obtain 300 K ground truth data. The hexapeptide system was, to the
best of our knowledge, not used in previous publications, so we also here performed REMD simulations to obtain a ground
truth dataset for evaluation. All REMD simulations used 200 ns equilibration without exchanges, 200 ns equilibration with
exchanges, and 1 µs for the production simulation. For both the tetrapeptide and hexapeptide, we used one simulation for the
ground truth test dataset and the other simulation to form the training dataset for the forward KLD experiments and to create
a separate validation dataset.

Additionally to the simulations at 300 K, we performed high-temperature simulations at 1200 K to create validation datasets
for the reverse KLD pre-training (see Table 4).

All datasets were subsampled randomly from the total production MD trajectories. The ground truth test datasets at 300 K
contain 1 × 107 samples, the datasets used for the forward KLD experiments contain 1 × 106 samples. The additional
validation datasets at 300 K and 1200 K contain 1 × 106 samples.

Table 4. Overview of the molecular dynamics simulations performed to obtain the ground truth datasets. We only specify the production
simulation time. In the case of REMD simulations, this is the simulation time for each replica.

SYSTEM FORCE FIELD CONSTRAINTS T / K SIM. TIME / µs TIME STEP / fs

ALANINE
DIPEPTIDE

AMBER FF96
WITH OBC1

IMPLICIT SOLVATION
NONE

300
1200 5.0 1.0

ALANINE
TETRAPEPTIDE

AMBER99SB-ILDN
WITH AMBER99 OBC

IMPLICIT SOLVATION

HYDROGEN
BOND LENGTHS

300, 332, 368, 408, 451, 500 (REMD)
1200

1.0
2.5

2.0
1.0

ALANINE
HEXAPEPTIDE

AMBER99SB-ILDN
WITH AMBER99 OBC

IMPLICIT SOLVATION

HYDROGEN
BOND LENGTHS

300, 332, 368, 408, 451, 500 (REMD)
1200

1.0
2.5

2.0
1.0

E. Metrics Details
RAM KLD To obtain comparable results to those in the original FAB publication (Midgley et al., 2023b), we evaluated the
forward KLD of the Ramachandran plots in the same way. First, we calculated the probability density of the Ramachandran
plot of the ground truth and that of the flow distribution on a 100x100 grid, using 1 × 107 samples for both. Then, the
forward KLD is calculated between the two distributions.

RAM KLD W. RW We repeat the same procedure to assess the obtained Ramachandran plot after reweighting to the
target distribution. Here, analogous to Midgley et al. (2023b), we clipped the 0.01 % highest importance weights to the
lowest value among them. This is necessary because of outliers in the importance weights due to flow numerics.

ESS The ESS was calculated according to the following equation (Midgley et al., 2023a):

ne,rv
N

=
1

N
∑N

i=1 w̄ (xi)
2

(11)

with xi ∼ qX (xi; θ) , w̄(xi) =
w(xi)∑N
i=1 w(xi)

Also here, we clipped the 0.01 % highest importance weights to the lowest value among them. Furthermore, the ESS was
calculated with respect to the regularized energy function (Equation 10).
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While one can also calculate the forward ESS, which uses samples from the ground truth (Midgley et al., 2023a), in practice
we found this metric to yield spurious results, depending heavily on the chosen importance weight clipping value. Therefore,
we chose to only use the reverse ESS, even though it does not capture mode collapse.

F. TA-BG
F.1. Workflow Variations

As described in the main text, next to our buffered iterative annealing workflow, we also tried training a temperature-
conditioned normalizing flow on the whole continuous temperature range. To fix the distribution at 1200 K to the distribution
learned by the reverse KLD, we used a split architecture to train with temperature-conditioning:

• A base flow generates samples at 1200 K. This was trained with the reverse KLD at 1200 K, and the model parameters
of this base were frozen afterwards.

• A temperature-conditioned head flow is added to the base flow, which transforms the high-temperature samples to
lower temperatures. The spline couplings of the head flow are scaled in such a way that they always output the identity
for T = 1200 K.

In each batch, we sampled a support temperature Tsupport and a target temperature Treweight and performed reweighted forward
KLD training:

Lreweight = − E
x∼qX(x;Tsupport;θ)

exp( −E(x)
kBTreweight

)

qX(x;Tsupport; θ)︸ ︷︷ ︸
Stopped gradients

log qX(x;Treweight; θ) (12)

We also used this training objective with self-normalized importance weights within each batch, and with resampling each
batch according to the importance weights.

The training objective in Equation 12 is similar to the one introduced by Wahl et al. (2025), but does not require the estimate
of the partition function. In practice, we found the iterative annealing workflow to yield more accurate results, while also
being more sampling efficient compared to using Equation 12.

A systematic comparison of using Equation 12 and using the training objective introduced by Wahl et al. (2025) can be
explored in future work.

F.2. Hyperparameters of Main Experiments

Table 5. Hyperparameters of the TA-BG experiments, annealing from 1200 K to 300 K. The cosine annealing learning rate scheduler is
applied within each annealing iteration, so the learning rate resets in the beginning of each new annealing iteration. “Annealing iteration“
here also refers to the fine-tuning iterations with Ti+1 = Ti.

DIPEPTIDE TETRAPEPTIDE HEXAPEPTIDE

GRADIENT DESCENT STEPS
PER ANNEALING ITERATION

30 000 20 000 20 000

LEARNING RATE 5 × 10−6 1 × 10−5 5 × 10−6

BATCH SIZE 2048 4096 2048
LR SCHEDULER COSINE ANNEALING - -

BUFFER SAMPLES DRAWN PER
ANNEALING ITERATION

5 × 106 5 × 106 1 × 107

BUFFER RESAMPLED TO 2 × 106 2 × 106 2 × 106

In all TA-BG experiments, we used the following annealing iterations:

16



Temperature-Annealed Boltzmann Generators

1200 K︸ ︷︷ ︸
T1

→ 1028.69 K︸ ︷︷ ︸
T2

→ 881.84 K → 755.95 K → 648.04 K → 555.52 K

→ 476.22 K → 408.24 K → 349.96 K → 300.0 K︸ ︷︷ ︸
TK−1

→ 300.0 K︸ ︷︷ ︸
TK=Ttarget

(13)

As described in the main text, the hexapeptide additionally used intermediate fine-tuning iterations after each annealing
iteration, not only in the very end:

1200 K︸ ︷︷ ︸
T1

→ 1028.69 K︸ ︷︷ ︸
T2

→ 1028.69 K → 881.84 K → 881.84 K → 755.95 K → 755.95 K

→ 648.04 K → 648.04 K → 555.52 K → 555.52 K → 476.22 K → 476.22 K → 408.24 K → 408.24 K
→ 349.96 K → 349.96 K → 300.0 K︸ ︷︷ ︸

TK−1

→ 300.0 K︸ ︷︷ ︸
TK=Ttarget

(14)

As described in the main text, in each iteration of the annealing workflow, we use a buffered dataset for training, resampled
according to the importance weights. Similarly to how we clipped the importance weights to calculate the forward KLD
of the reweighted Ramachandrans, also here we clipped the highest 0.01 % of the importance weights to the lowest value
among them. This can prevent overemphasizing outliers in the importance weights, though the effect is minimal.

We further note that instead of using only the training buffer dataset of the current annealing iteration, one can also reuse
older samples that correspond to previous annealing iterations by reweighting them to the current target temperature. To
simplify the workflow, we did not pursue this option in our experiments, but it might further increase sample efficiency.

F.3. Ablation Experiments

In this section, we discuss several ablation experiments to analyze the impact of different hyperparameter choices. To keep
the computational cost down, we performed each ablation experiment only once (except for the ablation experiments on
starting temperatures). All ablation experiments start from the hyperparameters chosen in the main experiments, changing
only the hyperparameters specified.

When ablating choices in the annealing workflow, we start all experiments from the same checkpoint pre-trained with reverse
KLD at high temperature, to remove variations in the pre-training.

Direct Importance Sampling Figure 5 shows the result when directly performing importance sampling from 1200 K to
300 K, without using the iterative annealing workflow. As one can see, the overlap between the two distributions is very
small, resulting in a very noisy result due to the small effective sample size. This shows that a multistep annealing workflow
is necessary.

Starting Temperature As discussed in the main text, we perform high-temperature reverse KLD training in the beginning
of our workflow to pre-train the flow distribution. The starting temperature T1 at which reverse KLD training is performed
needs to be chosen high enough such that minima are less separated and mode collapse is avoided.

In Figure 6, we analyze the propensity for mode collapse for each of the three studied systems. For each temperature, we
performed four reverse KLD experiments and display the fraction of experiments with mode collapse among them (mode
collapse is defined here by manual visual inspection of the Ramachandran plots). As one can see, for each system, a critical
temperature exists above which mode collapse does not occur.

We note that the propensity for mode collapse not only depends on the temperature, but also on the chosen batch size and
the number of gradient descent steps. The experiments in Figure 6 were performed with a batch size of 1024 and 250 000
gradient descent steps. Generally, when increasing the target temperature beyond the so-obtained critical temperature, one
can use a smaller batch size and fewer gradient descent steps without obtaining mode collapse. This allows more efficient
training in terms of target energy evaluations. For our main experiments, we thus chose a relatively large initial temperature
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REV KLD 1200K IS 1200K → 300K Ground truth (300K)
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Figure 5. Free energy F = −kBT ln p(ϕi, ψi) of dihedral angles (Ramachandran plots), reweighted directly from 1200 K to 300 K. We
used 1 × 106 samples for importance sampling (middle).

T1 = 1200 K. A tradeoff exists: Increasing T1 allows cheaper reverse KLD training without mode collapse, but also requires
more annealing steps to reach the desired target temperature.

Temperature Schedule As discussed in Section 4, we used a geometric progression between Tstart and Ttarget as the
temperature schedule for our main experiments. We compare this choice with a linear temperature schedule for alanine
dipeptide in Figure 7, and for the hexapeptide in Figure 8. As one can see, the geometric temperature schedule is able to
keep an approximately constant buffer ESS and therefore overlap between two consecutive distributions, while the buffer
ESS drops down significantly for the linear schedule. In the future, also adaptive schedules can be explored (Goshtasbpour
et al., 2023) to further improve the transition from one temperature level to the next.

Final Fine-Tuning As described in Section 4, all TA-BG experiments used a final fine-tuning iteration with TK−1 = TK .
Importance sampling to the same temperature (without lowering the target temperature) yields higher overlap between the
two distributions, as is evident from the increased buffer ESS in the final iteration shown in Figure 7. We found empirically
that such a final fine-tuning iteration with increased buffer ESS is helpful to improve the final metrics for all systems, as is
summarized in Table 6.

Intermediate Fine-Tuning For the hexapeptide system, we additionally added intermediate fine-tuning iterations after
each annealing iteration, instead of only in the very end. We compare the impact of such intermediate fine-tuning for all
systems in Table 7. As we can see, the impact is the largest for the hexapeptide system, where including intermediate
fine-tuning iterations significantly boosts the final ESS (see also Figure 9). Since such intermediate fine-tuning costs
additional target energy evaluations, we did not include them for the two smaller systems.

NO. Annealing Iterations For our main experiments, we annealed the temperature 9 times for all systems. We summarize
the impact of the number of annealing iterations on the final metrics for alanine dipeptide in Table 8. Choosing the number
of annealing iterations is a tradeoff between improving the final metrics and lowering the number of target evaluations.
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NO. Samples Per Annealing Iteration Also the number of samples drawn to form the training buffer datasets in each
annealing iteration forms a tradeoff between improving the final metrics and lowering the number of target evaluations. This
is summarized in Table 9 for alanine dipeptide, where we draw the specified number of samples and resample this dataset to
the same size for training in each annealing iteration.
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Figure 6. Ablation of starting temperature T1: Fraction of reverse KLD experiments with mode collapse at a given temperature.
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Figure 7. The ESS of the training buffer datasets W used to anneal from Ti to Ti+1, comparing a linear and geometric temperature
schedule for alanine dipeptide. The increase of the buffer ESS in the end is due to the final fine-tuning iteration with Ti+1 = Ti.
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Figure 8. The ESS of the training buffer datasets W used to anneal from Ti to Ti+1, comparing a linear and geometric temperature
schedule for alanine hexapeptide. Note that the hexapeptide system includes intermediate fine-tuning iterations (Ti+1 = Ti), where the
buffer ESS is increased due to better overlap compared to the iterations where the temperature is lowered (Ti+1 < Ti).

Table 6. Impact of final fine-tuning step on final metrics per system.

SYSTEM INTERMED. FINE-TUNING FINAL FINE-TUNING NLL ESS / %

ALANINE
DIPEPTIDE

WITHOUT WITH -213.667 95.85
WITHOUT WITHOUT -213.666 95.55

ALANINE
TETRAPEPTIDE

WITHOUT WITH -330.128 62.57
WITHOUT WITHOUT -330.087 57.57

ALANINE
HEXAPEPTIDE

WITH WITH -501.510 15.38
WITH WITHOUT -501.461 13.37

Table 7. Impact of intermediate fine-tuning on final metrics per system.

SYSTEM INTERMED. FINE-TUNING NLL ESS / %

ALANINE
DIPEPTIDE

WITH -213.671 96.46
WITHOUT -213.667 95.85

ALANINE
TETRAPEPTIDE

WITH -330.176 68.93
WITHOUT -330.128 62.57

ALANINE
HEXAPEPTIDE

WITH -501.510 15.38
WITHOUT -499.580 7.56

Table 8. Impact of number of annealing iterations on final metrics for alanine dipeptide.

NO. ANNEALING ITERATIONS NLL ESS / %

3 -213.647 92.27
5 -213.663 95.06
7 -213.666 95.57
9 -213.667 95.85

11 -213.668 96.05
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Figure 9. The ESS of the training buffer datasets W used to anneal from Ti to Ti+1, comparing the case with and without intermediate
fine-tuning iterations for the hexapeptide system.

Table 9. Impact of number of samples drawn per annealing iteration on final metrics for alanine dipeptide.

NO. SAMPLES NLL ESS / %

500 000 -213.556 84.49
1 000 000 -213.649 92.47
2 000 000 -213.663 95.12
5 000 000 -213.670 96.43
10 000 000 -213.673 96.86
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F.4. Scaling to Higher Dimensions

Our proposed annealing workflow relies on importance sampling (IS) to anneal the distribution iteratively from Ti to Ti+1.
Since importance sampling does not scale well when increasing the dimensionality N of the problem, we want to shortly
discuss how annealed importance sampling (AIS) (Neal, 2001) can be used in place of IS in the future, and how this can
mitigate potential problems encountered with IS when scaling to larger systems.

The main problem of IS is that small local bias, e.g., the possibility of two atoms clashing locally in the proposal, gets
amplified due to the dimensionality of the problem. We consider a molecular system with N independent neighborhoods,
each with a chance η for a clash under the proposal distribution. A sample’s importance weight is 1 if no clashes occurred,

and 0 otherwise. The ESS is ESS =
(
∑M

i=1 wi)
2

M
∑M

i=1 w2
i

= 1
M

∑M
i=1 wi, so E(ESS) = (1−η)N . Thus, the ESS drops exponentially,

which captures the scaling problem of IS.

To demonstrate how AIS addresses this, we move to a continuous model (a similar example and analysis can be found in
(Midgley et al., 2023b)): The proposal distribution is an N -dimensional Gaussian with σ = 1.1, µ = 0, and the target
distribution is anN -dimensional Gaussian with σ = 1.0, µ = 0. This is a simplified model of a single annealing iteration. To
perform AIS in this toy example, we use a single step of HMC with 5 leap-frog steps to transition between two intermediate
distributions. We further scale the number of intermediate distributions T linearly with the dimensionality N , we chose
T = 5 ·N in this example.

We visualize the results of this toy example in Figure 10. As one can see, the ESS of vanilla IS drops exponentially. However,
when using AIS and scaling the number of intermediate distributions linearly with N , one can obtain an approximately
constant ESS. While this is, of course, a simplified setup, it still captures the essence of why IS fails for higher dimensions
and how AIS can mitigate this issue. We also refer to (Neal, 2001) for a theoretical analysis. While for molecular systems,
exact factorizability of the distribution is of course not given, AIS can still remove atom clashes, etc., which are often local
effects. Thus, by using AIS instead of IS, potentially arising scaling problems can be avoided in the future.
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Figure 10. Comparison of the empirical ESS as a function of the number of dimensions N for a Gaussian toy system, as obtained using
vanilla IS, AIS without increasing the number of intermediate distributions, and AIS when linearly scaling up the number of intermediate
distributions with N .
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G. FAB
G.1. Hyperparameters of Main Experiments

For the FAB experiments, we started from the hyperparameters reported in the original publication. To make the original
FAB hyperparameters a good starting point, we scaled our internal coordinates from the range of the splines [0,1] to [0,10],
which is the range used in the original FAB implementation. With this, we used an initial HMC step size of 0.05 for all
experiments. Since FAB obtained significantly better results by using a prioritized replay buffer, and we were able to
reproduce this finding, we chose the same replay buffer used originally by FAB for all experiments.

Table 10. Hyperparameters of the FAB experiments at 300 K. All experiments used a cosine annealing learning rate scheduler with a
single cycle.

DIPEPTIDE TETRAPEPTIDE HEXAPEPTIDE

GRADIENT DESCENT STEPS 50 000 50 000 50 000
LEARNING RATE 1 × 10−4 1 × 10−4 1 × 10−4

BATCH SIZE 1024 1024 1024
GRAD NORM CLIPPING 1000.0 1000.0 1000.0

LR LINEAR WARMUP STEPS 1000 1000 1000
WEIGHT DECAY (L2) 1 × 10−5 1 × 10−5 1 × 10−5

NO. INTERMED. DIST. 8 8 8
NO. INNER HMC STEPS 4 4 8

G.2. Ablation Experiments

As with most sampling approaches, the number of target evaluations and the accuracy of the obtained distribution form a
tradeoff. For the hexapeptide, FAB was not able to resolve the metastable high-energy region accurately. Therefore, we
performed additional experiments where we varied the number of intermediate distributions and the number of HMC steps.
This improves the results slightly, while requiring significantly more target energy evaluations (see Table 11).

For the smaller systems, alanine dipeptide and alanine tetrapeptide, we further performed experiments with smaller batch
sizes while using the same number of gradient descent steps. This lowers the number of required target energy evaluations.
However, as one can see from Table 11, this comes at the cost of further increasing the NLL.

Table 11. Impact of hyperparameter choices on the NLL of FAB. In bold are the hyperparameters that were used for the main experiments,
chosen as a trade-off between computational cost and accuracy. Only the main experiments were performed four times, all other
experiments were performed once.

SYSTEM BATCH SIZE
NO. INTERMED. NO. INNER PE EVALS ↓ NLL ↓

DIST. HMC STEPS

ALANINE
DIPEPTIDE

1024 8 4 2.13 × 108 −213.653 ± 0.000
512 8 4 1.07 × 108 −213.643
256 8 4 5.33 × 107 −213.623

ALANINE
TETRAPEPTIDE

1024 8 4 2.13 × 108 −330.100 ± 0.002
512 8 4 1.07 × 108 −330.019
256 8 4 5.33 × 107 −329.874

ALANINE
HEXAPEPTIDE

1024 8 4 2.13 × 108 −501.157
512 8 4 1.07 × 108 −500.857

1024 16 4 4.20 × 108 −501.255
1024 8 8 4.20 × 108 −501.268 ± 0.008
1024 16 8 8.34 × 108 −501.327
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H. Reverse KLD
H.1. Hyperparameters of Main Experiments

Table 12. Hyperparameters of the reverse KLD experiments. This includes the 300 K experiments, but also the 1200 K experiments used
to start the temperature-annealing workflow. All experiments used a cosine annealing learning rate scheduler with a single cycle.

DIPEPTIDE TETRAPEPTIDE HEXAPEPTIDE DIPEPTIDE TETRAPEPTIDE HEXAPEPTIDE
T 300 K 300 K 300 K 1200 K 1200 K 1200 K

GRADIENT DESCENT
STEPS

250 000 250 000 250 000 100 000 100 000 250 000

LEARNING RATE 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

BATCH SIZE 1024 1024 1024 256 256 512
GRAD NORM CLIPPING 100.0 100.0 100.0 100.0 100.0 100.0

LR LINEAR WARMUP
STEPS

1000 1000 1000 1000 1000 1000

WEIGHT DECAY (L2) 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5

NO. HIGHEST ENERGY
VALUES REMOVED

40 40 40 10 10 20

I. Forward KLD
I.1. Hyperparameters of Main Experiments

Table 13. Hyperparameters of the forward KLD experiments at 300 K. All experiments used a cosine annealing learning rate scheduler
with a single cycle.

DIPEPTIDE TETRAPEPTIDE HEXAPEPTIDE

GRADIENT DESCENT STEPS 100 000 100 000 120 000
LEARNING RATE 5 × 10−5 5 × 10−5 5 × 10−5

BATCH SIZE 1024 1024 1024
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J. Comparison of Computational Cost
In this section, we compare the computational cost of TA-BG and FAB, summarized in Table 14. We point out that neither
of the two implementations was optimized for speed, thus the wall times are only approximately indicative of the actually
achievable performance.

As already discussed, TA-BG is more efficient compared to FAB in terms of target energy evaluation. However, this
increased sampling efficiency comes with the cost of more flow evaluations, since we train for an extended period of time on
large buffer datasets. The force field evaluations of the benchmark systems in this work are relatively inexpensive. Thus, the
total wall time of FAB is currently slightly lower compared to TA-BG for the systems investigated here.

However, we note that while the force field evaluations are inexpensive, they are also not very accurate. When applying
our approach to systems with more expensive target evaluations, such as ones based on foundation model force fields or
density functional theory, target evaluations become dominant, favoring methods with improved sampling efficiency, such as
TA-BG.

Table 14. Computational cost of TA-BG and FAB, comparing the number of target evaluations, the number of flow evaluations (batched),
and the total wall time (excluding evaluation). To determine the wall times, we ran 4 experiments in parallel on a compute node with 2 ×
AMD EPYC Rome 7402 CPU (24 cores each) and 4 × NVIDIA A100 GPU.

SYSTEM METHOD NO. TARGET EVALS NO. FLOW EVALS (BATCHES) WALL TIME

ALANINE
DIPEPTIDE

FAB 2.13 × 108 2.06 × 105 (AIS UPDATE BUFFER, BS 1024) 18.0 h
+ 5 × 104 (TRAINING, BS 1024)

= 2.56 × 105

TA-BG 2.56 × 107 (REV. KLD PRE-TRAINING) 1 × 105 (REV. KLD PRE-TRAINING, BS 256) 22.2 h
+ 5 × 107 (ANNEALING) + 5 × 107 / 4096 (BUFFER CREATION, BS 4096)

= 7.56 × 107 + 3 × 105 (FWD. KLD ANNEALING, BS 2048)
= 4.12 × 105

ALANINE
TETRAPEPTIDE

FAB 2.13 × 108 2.06 × 105 (AIS UPDATE BUFFER, BS 1024) 19.67 h
+ 5 × 104 (TRAINING, BS 1024)

= 2.56 × 105

TA-BG 2.56 × 107 (REV. KLD PRE-TRAINING) 1 × 105 (REV. KLD PRE-TRAINING, BS 256) 23.3 h
+ 5 × 107 (ANNEALING) + 5 × 107 / 4096 (BUFFER CREATION, BS 4096)

= 7.56 × 107 + 2 × 105 (FWD. KLD ANNEALING, BS 4096)
= 3.12 × 105

ALANINE
HEXAPEPTIDE

FAB 4.20 × 108 4.06 × 105 (AIS UPDATE BUFFER, BS 1024) 41.4 h
+ 5 × 104 (TRAINING, BS 1024)

= 4.56 × 105

TA-BG 1.28 × 108 (REV. KLD PRE-TRAINING) 2.5 × 105 (REV. KLD PRE-TRAINING, BS 512) 52.2 h
+ 1.8 × 108 (ANNEALING) + 1.8 × 108 / 4096 (BUFFER CREATION, BS 4096)

= 3.08 × 108 + 3.6 × 105 (FWD. KLD ANNEALING, BS 2048)
= 6.5 × 105
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K. 2D GMM System
Next to the molecular systems, we additionally consider the 40 Gaussian mixture density in 2 dimensions as introduced by
Midgley et al. (2023b). The ground truth distribution, as well as the results obtained with TA-BG and FAB, are visualized in
Figure 11.

Figure 11. Comparison of obtained distributions for the 2D GMM system. We visualize 1000 samples from the ground truth distribution,
TA-BG, and FAB. We additionally visualize the contour lines of the ground truth log probability.

We report the obtained NLL and ESS in Table 15. This table additionally contains results for diffusion-based samplers:
Path Integral Sampler (PIS, Zhang & Chen (2021)), Denoising Diffusion Sampler (DDS, Vargas et al. (2022)), and Iterated
Denoising Energy Matching (iDEM, Akhound-Sadegh et al. (2024)). For these methods, we show the results reported by
Akhound-Sadegh et al. (2024).

FAB (REAL NVP) in Table 15 refers to the original FAB results reported by Akhound-Sadegh et al. (2024), which are
based on the Real NVP coupling flow architecture (Dinh et al., 2017). We repeated experiments with FAB based on the
more expressive neural splines coupling flows (Durkan et al., 2019), reported as FAB (NEURAL SPLINES) in Table 15.
The same architecture was used for our TA-BG experiments.

As one can see both from Figure 11 and Table 15, TA-BG and FAB obtain strong results on the 2D GMM system,
outperforming or matching the considered diffusion-based baselines. The results of TA-BG and FAB are practically identical
and likely close to the optimal solution possible with the given architecture.

We note that the 2D GMM system is a very simple target, thus the inclusion here mostly serves illustrative purposes to show
that our methodology can also be applied to more traditional sampling tasks. Since the informative value of a systematic
comparison on this system is limited, we did not tune the results of TA-BG and FAB with respect to the number of target
energy evaluations.

TA-BG can, of course, also be applied to other sampling tasks considered in related literature. However, we purposely set
the focus of this work on molecular systems, where the potential energy is more correlated and complex compared to many
of the toy problems currently considered in the variational sampling literature. Symmetric target densities with identical
particles, such as DW-4, LJ-13, or LJ-55 (Akhound-Sadegh et al., 2024), should ideally be handled with an equivariant flow
architecture, thus we did not consider them here.

K.1. Details

Here, we specify hyperparameters and other details for TA-BG and FAB applied to the GMM system. We only specify
hyperparameters that differ from the ones used in our main experiments on the molecular systems.

Contrary to the experiments on the molecular systems, we did not use a regularized energy function for the GMM system.
Also, we did not clip importance weights when calculating the ESS. Following previous work, the ESS was calculated using
1000 samples from the model, the NLL was calculated using 1000 ground truth samples.
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Table 15. Comparison of metrics on the 2D GMM system. The best-performing method for each metric is highlighted in bold. For our
experiments (FAB (NEURAL SPLINES) and TA-BG (NEURAL SPLINES)), we specify the mean and standard deviation of the metrics
across four independent runs, the rest is reported with the mean and standard deviation over three independent runs.

METHOD NLL ↓ ESS ↑
FAB (REAL NVP) 7.14 ± 0.01 (65.3 ± 1.7) %

FAB (NEURAL SPLINES) 6.92 ± 0.00 (97.09 ± 0.58) %
TA-BG (NEURAL SPLINES) 6.91 ± 0.01 (96.89 ± 0.48) %

PIS 7.72 ± 0.03 (29.5 ± 1.8) %
DDS 7.43 ± 0.46 (68.7 ± 20.8) %

IDEM 6.96 ± 0.07 (73.4 ± 9.2) %

Architecture For all experiments on the GMM system, we used monotonically increasing rational-quadratic splines with
K = 16 bins in the range [−50, 50]. For the parameter networks, we used fully connected neural networks with hidden
dimensions [120, 120] and ReLU activation functions. We used 13 coupling layers, swapping the two dimensions after each
coupling. As the latent distribution qZ , we used a 2D normal distribution with µ = 0 and σ = 10.0, truncated to the range
[−50, 50].

FAB Hyperparameters We used a learning rate of 1 × 10−5, a batch size of 8192, and 50 000 gradient descent steps. We
scaled the coordinates from [−50, 50] to [−5, 5] to perform AIS. Contrary to the experiments on the molecular systems, we
set both the number of intermediate AIS distributions and the number of inner HMC steps to one. We further used 0.05 as
the initial HMC step size.

TA-BG Hyperparameters Reverse KLD pre-training was performed at T = 30.0, using a learning rate of 1 × 10−4, a
batch size of 128, and 50 000 gradient descent steps. Contrary to the reverse KLD experiments on the molecular systems,
we here did not remove the largest energy values in the loss contributions of each batch. We also did not use a learning rate
scheduler.

For the annealing, we used a learning rate of 5 × 10−5, a batch size of 8192, and no learning rate scheduler. We used the
following annealing iterations, following a geometric temperature schedule:

30.0 K︸ ︷︷ ︸
T1

→ 18.45 K︸ ︷︷ ︸
T2

→ 11.35 K → 6.98 K → 4.30 K → 2.64 K → 1.63 K → 1.0 K︸ ︷︷ ︸
TK−1

→ 1.0 K︸ ︷︷ ︸
TK=Ttarget

(15)

For each annealing iteration, we draw 2 000 000 samples, resample to 2 000 000 samples using the importance weights
(without clipping), and perform 20 000 forward KLD gradient descent steps.
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L. Additional Figures
L.1. All Systems (Reweighted)

Ground truth FWD KLD TA-BG FAB REV KLD
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Figure 12. Reweighted version of Figure 3. Comparison of the free energy F = −kBT ln p(ϕi, ψi) of selected dihedral angles (Ra-
machandran plots) at 300 K, reweighted to 300 K.
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L.2. Alanine Tetrapeptide

1200K (GT) 1200K (rev KLD) 882K 556K 408K 300K 300K (GT)
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Figure 13. Visualization of the iterative annealing process for the tetrapeptide, showing the free energy F = −kBT ln p(ϕi, ψi) of
backbone dihedral angles (Ramachandran plots) in each iteration. Note that not all annealing iterations are shown. We used 1 × 107

samples for the Ramachandran plots at 300 K and 1 × 106 samples for the rest.
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Ground truth TA-BG FAB REV KLD FWD KLD
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Figure 14. Comparison of the free energy F = −kBT ln p(ϕi, ψi) of the backbone dihedral angles (Ramachandran plots) of the
tetrapeptide at 300 K.
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Ground truth TA-BG FAB REV KLD FWD KLD
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Figure 15. Reweighted version of Figure 14. Comparison of the free energy F = −kBT ln p(ϕi, ψi) of the backbone dihedral angles
(Ramachandran plots) of the tetrapeptide at 300 K, reweighted to 300 K.
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L.3. Alanine Hexapeptide

1200K (GT) 1200K (rev KLD) 882K 556K 408K 300K 300K (GT)
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Figure 16. Visualization of the iterative annealing process for the hexapeptide, showing the free energy F = −kBT ln p(ϕi, ψi) of
backbone dihedral angles (Ramachandran plots) in each iteration. Note that not all annealing iterations are shown. We used 1 × 107

samples for the Ramachandran plots at 300 K and 1 × 106 samples for the rest.
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Ground truth TA-BG FAB REV KLD FWD KLD
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Figure 17. Comparison of the free energy F = −kBT ln p(ϕi, ψi) of the backbone dihedral angles (Ramachandran plots) of the
hexapeptide at 300 K.
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Ground truth TA-BG FAB REV KLD FWD KLD
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Figure 18. Reweighted version of Figure 17. Comparison of the free energy F = −kBT ln p(ϕi, ψi) of the backbone dihedral angles
(Ramachandran plots) of the hexapeptide at 300 K, reweighted to 300 K.
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