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Abstract

Molecule generation ideally in its 3-D form has enjoyed wide applications in
material, chemistry, life science, etc. We propose the first quantum parametric
circuit for 3-D molecule generation for its potential quantum advantage especially
considering the arrival of Noisy Intermediate-Scale Quantum (NISQ) era. We
choose the Variational AutoEncoder (VAE) scheme for its simplicity and one-shot
generation ability, which we believe is more quantum-friendly compared with the
auto-regressive generative models or diffusion models as used in classic approaches.
Specifically, we present a quantum encoding scheme designed for 3-D molecules
with qubits complexity O(C log n) (n is the number of atoms) and adopt a von
Mises-Fisher (vMF) distributed latent space to meet the inherent coherence of the
quantum system. We further design to encode conditions into quantum circuits for
property-specified generation. Experimentally, our model could generate plausible
3-D molecules and achieve competitive quantitative performance with significantly
reduced circuit parameters compared with their classic counterparts.

1 Introduction

Beyond molecule graph generation, 3-D molecule generation which can often be more challenging
yet of practical value, e.g. for drug design, has received wide attention in recent years [1]. On
the one hand, the space of possible molecules and chemical compounds is vast, often described
as a “chemical space” with an immense number of dimensions, and data-driven methods relying
on machine learning (ML) have been introduced [2, 3]. On the other hand, quantum computing
has demonstrated strong expressive capabilities in various learning and optimization applications,
including solving [4], classification [5], and discovery [6]. Particularly, it has potential advantages in
tasks related to the microphysical world, such as chemistry simulation [7], prediction of molecular
properties [8], and approximation of ground-state energy [9]. Therefore, beyond classic ML, here
we dive into the quantum world for 3-D molecule generation with the arrival of the so-called NISQ
era. However, limited by the current development of quantum hardware, quantum machine learning
(QML) models, particularly quantum generative models, are still in their infancy stages, especially
when compared to the well-developed classic neural models, thus the current performance of QML
models may not match that of SOTA classic counterparts [10–13].

Recent efforts have been made to introduce quantum methods for molecule design. QGAN-HG [14] is
a hybrid model based on Generative Adversarial Network (GAN), consisting of a classic discriminator
and a hybrid generator. However, hybrid models cannot be implemented on NISQ devices, and
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Figure 1: Pipeline of QVAE-Mole and QCVAE-Mole with a vMF distributed latent space. We
first use amplitude encoding to get the initial quantum state vectors from classic data of molecules.
Then the quantum encoder learns the mean direction µ in the latent space, which is used to sample a
latent variable zi ∼ vMF(µ, κ). A subsequent quantum decoder decodes z trying to match the input
state vector. Then molecule is reconstructed from the output state vector of decoder. For conditional
generation, we have a condition vector for both input data and latent space, then we use condition
qubits as well as condition layers to encode the given conditions into the quantum circuit. Solid and
dashed arrows represent the training and inference phase, respectively.

QGAN-HG only utilizes quantum circuits to learn features with low dimensions, which actually
decreases the performance of classic neural networks. Another work SQ-VAE [15], a quantum
Variational AutoEncoder (VAE) approach, represents the molecular graph as a flattened adjacency
matrix and converts it into a quantum state through amplitude encoding. However, it is difficult
for its quantum circuit to reconstruct the topology structure by the inputted flattened adjacency
matrices [16]. Furthermore, SQ-VAE adopts a normal distributed latent space, where latent variables
remain unconstrained by normalization requirements. Nevertheless, the quantum state outputs of
SQ-VAE are subject to normalization, necessitating a linear mapping with classic parameters to map
the output into non-normalized latent variables. This indicates the incompatibility of the normal
distribution with quantum systems. In all, these two quantum methods are limited to generating
molecular graphs and fall short of generating 3-D molecules.

To address the above issues and explore a quantum version of VAE for 3-D data generation (which is
the first time in literature), we develop a full quantum VAE framework, especially for 3-D molecule
generation. Firstly, we introduce a quantum encoding scheme designed for 3-D molecules to fulfill
the normalization constraints by quantum states. This involves normalizing the 3-D coordinates,
atom types, and an auxiliary value associated with each atom. These normalized atom vectors are
then concatenated to form the initial quantum state. Secondly, we adopt von Mises-Fisher (vMF)
distribution, which lies in a hyperspherical space and can inherently meet the restrictions of quantum
systems (the norm of quantum state is 1).

In addition, the ultimate objective is to generate molecules directly with desired properties in various
domains [17]. For instance, there is a growing demand for molecules with a low HOMO-LUMO gap
in the field of organic semiconductor development [18]. To this end, we further present a conditional
version of quantum VAE named QCVAE-Mole, which have the ability to generate molecules with
multiple desired properties. Specifically, we introduce condition qubits as well as condition parametric
layers to encode given conditions into the proposed quantum ansatz, thus we can generate molecules
with desired properties by giving specific condition vectors. The contributions are:

1) We propose the first fully (to our best knowledge) quantum VAE for 3-D data generation and
detailed quantum circuits compatible with NISQ devices. For generated quantum states, we fulfill its
inherent normalization requirement via the vMF distribution in a spherical latent space.

2) Our conditional VAE version manages to encode the conditions into the quantum circuit, which is,
to our best knowledge, the first fully quantum circuit capable of conditional VAE-based generation.

3) We conduct all the experiments in a TorchQuantum-based simulation environment in line with
many QML works [8, 19, 20]. Extensive results on the QM9 benchmark show that our model
outperforms all other quantum (or hybrid) methods [14, 15] and delivers comparable results to several
classic methods [21–23] with significantly reduced parameters.
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2 Preliminaries
Quantum machine learning. A quantum bit (qubit) is the unit of quantum information and com-
puting, which exists in the superposition state of both 0 and 1, as denoted by |ψ⟩ = α|0⟩ + β|1⟩,
where α and β are complex coefficients. |α|2 and |β|2 are the probability amplitudes for the qubit
being in basis states (|0⟩ or |1⟩). For n-qubit system, there are 2n basis states. Quantum gates are
the building blocks that manipulate quantum states. These gates are represented by unitary matrices.
Parameterized quantum gates are quantum gates with one or more parameters. See Appendix B for
the single-qubit and double-qubit parameterized quantum gates used in this paper.

The concept of Variational Quantum Algorithms (VQA) was proposed by [24], which utilizes
quantum advantages to solve ML problems on NISQ devices. Then, Parameterized Quantum Circuits
(PQCs) serve as the specific implementations of these VQAs, with the parameterized quantum gates
mentioned above being key components of PQCs. The parameters θ can be optimized by a classic
optimizer to minimize loss function L(θ), which evaluates the dissimilarity between the output of
QPC and the target result. Even if the measurement itself does not provide gradient information, the
gradients of θ can be directly estimated by perturbing θ slightly. For instance, the Parameter Shift
Rule [25] is a popular technique used to achieve the gradients in many QML models [19, 26]. Also
using gradient backpropagation, classic learning models are adapted into their quantum version, e.g.
QCNN [27], QRNN [19], QGAN [12], QLSTM [28], and etc, They are highly recognized for their
intellectual novelty as well as their potential in the NISQ era.

Variational autoencoder. Variational autoencoders (VAEs) [21] are a class of generative models that
combine autoencoders with variational inference techniques. VAEs provide a principled approach to
learning latent representations and generating new data samples. Formally, VAE is represented by an
inference network (i.e., encoder) qϕ(z|x) and a generator network (i.e., decoder) pθ(x|z), where z
denotes the latent variables. The intractable true posterior pθ(z|x) is approximated by the inference
network qϕ(z|x), which is parameterized by a neural network and outputs a probability distribution
for each data point x. Given the training set D = {xi}Ni=1 and the prior p(z), the final objective is to
minimize the negative of Evidence Lower Bound (ELBO):

min
θ,ϕ
LELBO(θ, ϕ;x) = −Ez∼qϕ(z|x) [log (pθ(x|z))] +DKL [qϕ(z|x)∥p(z)] . (1)

It serves as a proxy for the log-likelihood of the data with a regularizer. The first term is known as
reconstruction loss, and the second is the Kullback-Leibler (KL) divergence.

3 Methodology

We leave a detailed discussion on related works in Appendix A, including classic methods for
molecule generation and quantum generative learning. In this section, we first introduce how to
encode classic data into a quantum state and then elaborate on the quantum architecture of QVAE-
Mole and QCVAE-Mole. Fig. 1 shows the pipeline.

3.1 Encoding 3-D Molecule to Initial Quantum State
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Figure 2: Classic data encoding. We encode 3-D
molecules with 3-D coordinates and atom types
through three steps: 1)introduce an auxiliary value,
2) normalize to a norm 1.0, and 3) convert into a
quantum state vector via amplitude encoding.

We use an attributed point cloud {(vi, ai)}n−1
i=0 to

represent a 3-D molecule with n atoms, where
each point represents an atom. Here vi ∈ R3

denotes the 3-D coordinates of the atom and
ai ∈ {0, 1}k denotes the atom type (k is the
number of atom types). To encode the molecules
into quantum states, we normalize them in two
aspects: 1) Each 3-D molecule can undergo ar-
bitrary translations and rotations, and there is no
inherent ordering among atoms, which requires
us to fix the order of atoms and the molecular
conformation to obtain unique encoding. 2) The
amplitudes of quantum states require us to keep
the input data of the molecule within the positive
octant. See details of normalization in Appendix C.
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We will introduce how to encode the normalized 3-D molecules into quantum states. It converts the
given classic data sample x into its corresponding quantum state |ψx⟩. Here, we choose amplitude
encoding, which allows us to utilize the exponentially large Hilbert space compared with angle
encoding. The data of length N is encoded into the amplitudes of q = ⌈log2N⌉ qubits. In this case,
we need to encode each atom with its 3-D coordinates as well as the one-hot form of atom types.

As amplitude encoding demands a state vector with the unit norm, inspired by [29], here we introduce
an auxiliary value

√
3− x2i − y2i − z2i for each normalized atom ṽi = (xi, yi, zi) as a constant

normalization factor. Therefore, we need 4 + k entries for each atom (3 for 3-D coordinates, k for
one hot embedding, 1 for auxiliary value), and the total number of entries is n ∗ (4 + k). See Fig. 2
for our encoding. Furthermore, the state vector size is always a power of 2, so we fill the remaining
entries with zeros (padding entries) and obtain a state vector of size 2q . The norm of the state vector
is 1, thus we need to normalize all values by 2

√
n. We get the initial quantum state of a molecule by:

|ψ0⟩ =
1

2
√
n

n−1∑
i=0

(
xi|ri⟩+ yi|ri + 1⟩+ zi|ri + 2⟩+ 1|ri + 3 + ti⟩

+
√
3− x2i − y2i − z2i |ri + k + 3⟩

)
+

2q−1∑
j=(n∗(4+k))

0|j⟩,
(2)

where ri = (k + 4) ∗ i and ti is the atom type of i-th atom. The discussion of the initial state
preparation can be found in Appendix C.

Qubits complexity analysis. The number of qubits in our proposed framework comes to q =
⌈log2(nmax ∗ (4 + k)⌉ = O(C log n), where nmax represents the maximum number of atoms. The
qubits complexity analysis of other quantum methods can be seen from Appendix C.

3.2 Full Quantum Architecture

We propose QVAE-Mole, a fully quantum circuit-based VAE for 3-D molecule generation. Like
many works on QML, e.g. QCNN [27],QGAN [12], QLSTM [28], we follow the architecture of its
classic design, the VAE in our case, which generally includes encoder, decoder, and latent space. In
fact, proposing a quantum counterpart as well as its detailed quantum circuits compatible with NISQ
devices is nontrivial, especially for 3-D data (molecule) generation.

3.2.1 Encoder
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Figure 3: The ansatz of our quantum encoder. It takes the initial
quantum state |ψ0⟩ as input and outputs the mean direction µ of
vMF distribution. Each layer includes a single-qubit layer Us and
an entanglement layer Uent. In the end, we trace out the state of
the last qB qubits: qB = q − qA.

We present the encoder network
of our QVAE-Mole. Similar
to classic neural networks, the
PQC is built layer by layer,
where each layer consists of the
same arrangement of quantum
gates with different trainable pa-
rameters. Fig. 3 depicts the
general framework of the quan-
tum encoder ansatz. Denote
Us(θ

l
s),Uent(θ

l
ent) as the l-th

single-qubit layer and entangle-
ment layer with trainable param-
eters, respectively. The unitary
matrix of the proposed encoder
can be formulated as follows, where L denotes the total number of layers.

U(θ) = Us(θ
L+1
s )

L∏
l=1

(
Uent(θ

l
ent)Us(θ

l
s)
)
, (3)

Specifically, the l-the trainable single-qubit layer is formulated as:

Us(θ
l
s) =

q⊗
p=1

(
Rz

(
θ(p,l)
z1

)
Ry

(
θ(p,l)
y

)
Rz

(
θ(p,l)
z2

))
, (4)
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where θ(p,l)
z1 ,θ(p,l)

z2 denote the parameter of the first and second Rz gate at the l-th layer on the p-th
qubit, respectively. And the l-th entanglement layer can be formulated as:

Uent(θ
l
ent) =

q∏
p=1

(
CRx

(
p, (p+ 1)%q,θ

(p,l)
ent

))
, (5)

where CRx is the controlled Rx gate, p denotes the control qubit, (p + 1)%q denotes the target
qubit, and θ

(p,l)
ent denotes the corresponding trainable paramenter. The quantum state after the encoder

ansatz is |ψE⟩ = U(θ)|ψ0⟩. Detailed discussions and the theoretical analysis of the expressive power
of the designed quantum circuit are shown in Appendix E.

At the end of the encoder circuit, we introduce a measure to reduce the dimension of the output
quantum state. Inspired by [30], we divide the encoder circuit into two subsystems, namely subsystem
A with qA qubits and subsystem B with qB qubits, and qA + qB = q. Therefore, the output quantum
state of the encoder ansatz becomes |ψE⟩AB = U(θ)|ψ0⟩AB .

3.2.2 Latent space

To convert to latent space, here we discard the information contained in the subsystem B via tracing
out the state of qB qubits. This approach integrates quantum non-linearity into the encoder, thereby
enriching the transformation process with a layer of complexity beyond that of a mere unitary
transformation. Formally, the partial trace is:

ρA = Trb(ρAB) =
∑
j

(IA ⊗ ⟨j|B) ρAB (IA ⊗ |j⟩B) , (6)

where IA is the identity matrix, |j⟩B ∈
(
C2
)⊗qB are all basis states of subsystem B and ρAB =

|ψ⟩AB⟨ψ|AB . The diagonal of ρA contains the squared amplitudes of |ψA⟩, as can be converted
into the output quantum state of encoder |ψE⟩A =

∑
j
√
ρAjj
|j⟩. Then, we perform quantum

tomography [31] rather than random measurements on the encoder. The output is the vector of the
latent space of dimension 2qA . More discussions about tracing out and quantum state tomography are
given in Appendix F.

In common VAEs, normal distributions are assumed for the distribution of the latent variables during
training. However, normal distributions are unsuitable for data with a latent hyperspherical structure.
The quantum state vector requires its L2 norm to be equal to 1, which lies in a hypersphere space.
Instead we adopt using a von Mises-Fisher (vMF) distribution, leading to hyperspherical latent space.
Formally, the distribution is:

qϕ(z|x) = vMF(µ, κ) = Cd,κe
κ⟨µ(x),z⟩, (7)

where ∥µ∥ = 1 denotes the mean direction. κ denotes the concentration parameter, which is
commonly set as a constant during training [32]. The normalization constant Cd,κ is equal to
1/
∫
Sd−1 e

⟨ξ,x⟩dSd−1, where ξ ∈ Rd is a predefined parameter vector and Sd−1 is the sample space
{x|x ∈ Rd, ∥x∥ = 1}. We set that the quantum state |ψE⟩A seamlessly functions as µ for learning
the vMF distribution. In addition, rejection sampling [33, 32] is utilized to efficiently sample latent
variable z from the vMF distribution in the latent space:

z ∼ vMF(||ψE⟩A|, κ) = Cd,κe
κ⟨||ψE⟩A|,z⟩, (8)

which represents that the latent variable z is sampled from the vMF distribution with mean direction
µ = ||ψE⟩A| in the latent space.

3.2.3 Decoder

The decoder takes z sampled from the vMF distribution as input and outputs the reconstructed
quantum state, which can be further converted to a molecule. The input z has a dimension of 2qA ,
and the reconstructed quantum state should have the same dimension as the initial quantum state,
which is 2q . This means that the quantum decoder needs to map from a lower-dimensional space to a
higher-dimensional one using a unitary transform. We achieve this by first turning z into the state
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|ψD⟩A via amplitude encoding and then expanding |ψD⟩A with qubits of B, which are reset to |0⟩B .
Now we get the initial quantum state of the decoder:

|ψD0 ⟩ = |ψD0 ⟩AB = |ψD⟩A ⊗ |0⟩B . (9)

We design the quantum ansatz of the decoder the same as that of the encoder, then the reconstructed
quantum state results in |ψr⟩ = U(θ′)|ψD0 ⟩, here θ′ denotes the learnable parameters in decoder.

We can get the output quantum state |ψr⟩ denoted as (α0, . . . , α2q−1). Now, we convert this vector
back into classic data, representing a molecule, which serves as the inverse process of encoding:

(x′, y′, z′) = (αri , αri+1, αri+2), (10)

t′i = argmax(αri+3, . . . , αri+3+(k−1)), (11)

ri = (k + 4) ∗ i, i = 1, . . . , n− 1, (12)

where x′, y′, z′ are the reconstructed coordinates of each atom, t′i is the reconstructed atom type,
and n is the number of atoms. Note that n is known in training but can be arbitrary at inference.
Therefore, we need to infer the number of atoms in the generated molecule from the output state
vector. We set the following criteria: if (αr+3 + . . .+ αr+3+(k−1)) < T for a certain i, we consider
all subsequent entries to be padding items instead of carrying valid information, and the number of
atoms in this generated molecule comes to n = i. The hyperparameter T denotes the threshold.

Remark. We further discuss why choosing amplitude encoding instead of angle encoding from the
perspective of encoding and reconstruction. For angle encoding, we obtain the initial quantum state
by converting input information into the rotation angles of qubits. Although it is friendly to initial
state preparation, it becomes intractable to reconstruct the input angles from the entangled quantum
state, which is the output of the decoder. On the contrary, if we encode the input into the amplitudes
of qubits, we can directly reconstruct the input information from the output quantum state vector.

3.2.4 Training

Recall the objective function in Eq. 1, we use a uniform vMF prior p(z) = vMF(·, 0) on the latent
space. The vMF prior prevents the KL collapse typically observed in Gaussian VAE settings [34]. In
fact, the KL term in our loss term is constant and only depends on the chosen variance κ, which is a
hyperparameter in our model. Thus, we can simplify the Eq. 1 to:

min
θ,ϕ
LELBO(θ, ϕ;x) = −Ez∼qϕ(z|x)[log(pθ(x|z)). (13)

In other words, we only need to calculate the reconstruction loss. Here, we can calculate the loss of
|ψ0⟩ and |ψr⟩ in two ways. One is to design the reconstruction loss based on converted classic data,
while the other is to construct the loss using the fidelity of the quantum state (we denoted as fidelity
loss in experiments). The former can achieve better model performance but requires transferring the
data to a classic computer for computation, while the latter can be computed by the quantum circuit,
e.g. the swap test circuit. Details of loss function design can be found in Appendix D.

3.3 Conditional Generation
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Figure 4: The ansatz of QCVAE-Mole: it incorporates m ad-
ditional condition qubits for m target properties and additional
condition layers. At the end of the circuit, we further trace out the
state of m condition qubits.

We further propose a frame-
work named QCVAE-Mole, ex-
tending upon our above QVAE-
Mole by adding certain con-
ditions. Unlike the classic
CVAE [35, 36], which achieves
conditional generation by sim-
ply adding specific condition
vectors to input data and la-
tent space. We design to en-
code conditions into the quan-
tum circuits of the encoder and
decoder. Specifically, suppose
there is a multi-condition vec-
tor [c1, c2, . . . , cm], where each
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item corresponds to the normalized value (ranging from 0 to 1) of one specific property. Then, we
use angle encoding to encode one property into the parameter of one quantum gate, and the initial
quantum state becomes:

|Ψci⟩ = Ry ((ci − 0.5)× 2π)× |0⟩. (14)

As shown in Fig 4, we extend the scale of the previous quantum circuit and encode the conditions in
the last qubits to construct our condition layer. The initial quantum state of the encoder becomes:

|ψ0⟩c = |ψ0⟩ ⊗ |Ψc1⟩ ⊗ · · · ⊗ |Ψcm⟩ . (15)

Similarly, the input of the decoder undergoes the same change. The unitary matrix of QCVAE is:

U(θ) = UL+1
s (θ)

∏L

l=1

(
Ul
ent(θ)U

l
s(θ)U

l
c

(
θ)), (16)

where the l-th condition layer can be formulated as:

Ul
c(θ) =

∏m

i=1

∏q

p=1
(CRx(q + i, p,θ(i,p,l)

c ). (17)

Note that every target property requires one more qubit for QCVAE-Mole, which means we have
more qubits than QVAE-Mole, but the output dimension of the encoder and decoder should remain
the same as vanilla QVAE-Mole, which can be achieved by tracing out the condition qubits at the
end of the quantum circuit. The process of training is similar to QVAE-Mole and the decoder of the
trained model generates molecules with the desired properties according to the given condition vector
along with the latent vector.

Remark. QCVAE-Mole can be regarded as solving the inverse problem of property prediction, as
particularly done in [8]. Indeed, generation could be much more challenging than prediction.

4 Experiments

In line with other QML works [8, 19, 20], our experiments are conducted in a simulation environment.
Specifically, we use a machine with an i9-10920X CPU, RTX 3090 GPU, and 128G RAM. The
source code is written by PyTorch, and TorchQuantum [37] is used as the quantum simulator. In
addition, the ansatz of QVAE and QCVAE are all hardware efficient, thus the model can be directly
trained on NISQ devices theoretically. Although our approach may involve initial state preparation
and quantum state tomography like [15, 29], there are many efficient solutions to address these two
challenges, such as [38–42], and this is not the focus of our paper. Detailed discussions of initial state
preparation and tomography can be found in Appendix C and F, respectively.

4.1 Setting

Data. We evaluate QVAE-Mole and QCVAE-Mole on QM9 [43], which is a popular dataset
that contains molecular properties and atom coordinates for 130k small molecules with up to 9
heavy atoms. We train our model to either randomly or conditionally generate molecules with 3-D
coordinates and atom types (C, N, O, F). We use the train/val partitions introduced in [44], which
consist of 100K/18K samples, respectively.

Actual number of qubits. When evaluating QM9, we need 7 qubits for random generation, 8 qubits
for single-condition generation, and 11 qubits for multiple conditions, respectively.

Metric. In line with [23, 45], all the generated 3-D molecules are converted to molecular graphs by
the method in [46], and the molecular graphs can be converted to SMILES deterministically with
the rdkit [47] toolkit. We use the chemical validity percentage (Valid), uniqueness (Unique), and
novelty (Novel) to evaluate the generation quality of QVAE-Mole. Validity measures the percentage
of molecules that comply with chemical valency rules, ensuring chemical plausibility. Uniqueness
assesses the proportion of distinct molecules generated, promoting structural diversity. Novelty
evaluates the fraction of molecules not found in the training data, indicating the model’s capacity to
generate new compounds. To evaluate the molecular geometry, we use the average Maximum Mean
Discrepancy (Avg.MMD) [48] distances of bond length distributions (see details in Appendix G).
Note that it is unreasonable to only consider novelty and uniqueness without validity [49]: like in the
extreme case if the model’s validity is only 1%, but these valid molecules are all unique from each
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Table 1: Comparison of different methods on QM9. All metrics were evaluated on 10K randomly
generated molecules. The method with † denotes it generates molecular graphs, not 3-D molecules,
and ∗ denotes it involves quantum computing. #C/Q denotes the number of classic and quantum
parameters respectively, and time denotes the inference time to generate one molecule.

Methods Model Class Valid Unique×Valid Novel×Valid # C/Q Params Time(s)

MLP-VAE [21] VAE One-shot 51.26% ± 1.1 3.43% ± 0.3 48.66% ± 0.4 360,448 / 0 0.04
E-NFs [22] Flow One-shot 41.14% 40.83% 34.91% 647,117 / 0 0.27
G-SchNet [50] Sampling Autoreg. 82.35% 73.29% 67.08% 902,111 / 0 0.41
G-SphereNet [23] Flow Autoreg. 82.63% ± 1.3 29.75% ± 1.6 37.77% ± 0.9 3,148,095 / 0 0.55
EDM [49] Diffusion One-shot 91.93% 90.72% 75.32% 5,340,921 / 0 0.86

SQ-VAE∗† [15] VAE One-shot 44.23% ± 1.0 7.24% ± 1.2 16.32% ± 0.8 128 / 224 0.15
QGAN-HG∗† [14] GAN One-shot 66.64% ± 0.3 8.08% ± 0.8 18.48% ± 1.0 453,644 / 38 0.04
P2-QGAN-HG∗† [14] GAN One-shot 17.64% ± 1.2 12.38% ± 2.1 9.54% ± 0.8 112,524 / 14 0.02

QVAE-Mole∗ VAE One-shot 78.13% ± 0.6 27.39% ± 0.8 57.38% ± 0.9 0 / 224 0.08
QVAE-Mole (fidelity loss)∗ VAE One-shot 74.39% ± 0.8 26.93% ± 1.0 31.50% ± 0.7 0 / 224 0.08

other and different from the training set, resulting in 100% for both uniqueness and novelty. Thus, we
adopt Unique×Valid and Novel×Valid as metrics.

Baseline. We adopt two kinds of methods as our baselines. One category is the classic generation
model for 3-D molecules, including MLP-VAE [21], E-NFs [22], G-SchNet [50], G-sphereNet [23]
and EDM [49]. Another category contains quantum model SQ-VAE [15] and hybrid model QGAN-
HG [14] (P2-QGAN-HG is a variant of QGAN-HG) for molecular graph generation. Note that
SQ-VAE still introduces several classic parameters since it needs a linear mapping in latent space. As
for QGAN-HG, it simply utilizes quantum circuits to output a feature vector for the classic generator
of MOLGAN [51]. To the best of our knowledge, we are the first full quantum model without any
classic parameters for 3-D molecule generation.

4.2 Random 3-D Molecule Generation

The results are shown in Table 1, reported as the mean with standard deviation across three runs. The
training details and results of the MMD distance comparison are shown in Appendix G.

Compare with classic methods. The results show that QVAE-Mole surpasses classic MLP-VAE with
a notable margin in all metrics, indicating the potential advantages of quantum circuits over classic
MLPs. However, there is still a performance gap between our method and the other SOTA baselines,
especially EDM, a method based on the diffusion model. On the other hand, when assessing the
efficiency of the model, it is also necessary to consider the number of parameters utilized. We can
see that our results are very close to the auto-regressive method G-SphereNet and even superior
to E-NFs to some extent, which uses 3,148,095 and 647,117 parameters, respectively. In contrast,
our model only uses 224 quantum parameters instead. Furthermore, our model has an advantage in
inference speed over all the classic models except for the simple VAE. In terms of training cost, our
model (even when executed on a simulator) achieves convergence within 2 hours with only a few
epochs, which is significantly faster compared to classic methods (according to the original paper on
EMD [49], it takes approximately 3.2 days on a 1080Ti GPU to complete 1100 epochs).

Compare with quantum methods. Our model outperforms all other quantum or hybrid approaches
by a significant margin in all metrics. SQ-VAE uses amplitude encoding for molecular graphs
(attributed topology), while the input of our model is a 3-D molecular structure (attributed 3-D point
cloud). This indicates that amplitude encoding cannot model topology as effectively as for 3-D
point clouds. Furthermore, we utilize a larger latent space compared with SQ-VAE and adopt vMF
distribution instead of a normal one, with vMF distribution naturally fitting the inherent and strict
normalization requirement of output vectors. The performance of QGAN-HG is poor, probably
because the quantum circuits in the hybrid model are unable to fully leverage potential advantages or
due to the complex and unstable training process of GAN itself.

4.3 Conditional 3-D Molecule Generation

The objective here is to generate molecules with specific desired properties. We train QCVAE-
Mole (as discussed in Sec. 3.3) conditioning on four properties: synthetic accessibility score (SA),
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Table 2: The results of QCVAE-Mole under single condition given. Each result is the percentage
of the number of molecules that, when rounded up, have the same value as the given condition.

SA ↑ QED logP gap

Condition 0.4 0.5 0.3 0.4 0.0 1.0 3.0 4.0

QVAE-Mole 29.8 19.8 40.2 52.5 49.8 2.6 0.1 3.1
QCVAE-Mole 44.1 23.4 42.8 75.2 57.8 45.6 6.4 22.7

∆QCVAE-QVAE 14.3 3.6 2.6 22.7 8.01 43.0 6.3 19.6

QVAE-Mole QCVAE-Mole

Method

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Q
ED

Method

0.0

0.2

0.4

0.6

0.8

SA

Method

3

2

1

0

1

2

Lo
gP

Method

2

4

6

8

10

H
U

M
O

-L
U

M
O

 G
A

P

QVAE
QCVAE

Comparison of QVAE-Mole and QCVAE-Mole with Multi-condition Generation

QVAE-Mole QCVAE-Mole QVAE-Mole QCVAE-Mole QVAE-Mole QCVAE-Mole

Figure 5: Distribution of four properties of generated molecules under multi-condition. Dashed
lines represent the given condition values.

-VAE -VAE -QVAE -QVAE
Methods

0

20

40

60

80

Pe
rc

en
ta

ge
 (%

)

Valid 
Unique×Valid 
Novel×Valid 

0

1

2

3

4

5

Av
g.

 M
M

D

Avg. MMD 

(a)

1 0 1 2
Log 

0

20

40

60

80

Pe
rc

en
ta

ge
 (%

)

Valid 
Unique×Valid 
Novel×Valid 

0

1

2

3

4

5

Av
g.

 M
M

D

Avg. MMD 

(b)
Figure 6: a) Comparison of a normal distribution (N -) or a vMF one (S-) in the latent space of
MLP-VAE (VAE in short) and QVAE-Mole (QVAE in short). b) Different κ in vMF distribution.

quantitative estimation of drug-likeness (QED), octanol-water partition coefficient (logP), and
HOMO-LUMO gap (gap). See details in Appendix G.

Single condition. We train our model with SA, QED, logP, and gap, respectively, resulting in four
models. For each model, we compare the conditional generation (QCVAE-Mole) with random
generation (QVAE-Mole) and the corresponding results are shown in Table 2. Each column in
Table 2 indicates the percentage of molecules whose properties, when rounded up, match the specified
condition. For instance, for the condition logP = 0.0, the results show that 57.8% of generated
molecules have logP values within the range [-0.5, 0.5). The results demonstrate that QCVAE-Mole
can improve the proportion of generated molecules with desired properties for all given conditions,
the improvement even reaches 43% when we give the condition with logP= 1.

Multiple conditions. We train the proposed QCVAE-Mole under multiple conditions, which means
we give SA, QED, logP, and gap these four properties simultaneously. To evaluate under a combination
of multiple conditions, following [52], we select a reference molecule and adopt its property values
as our multi-condition. Here we choose “CC1=C=C=C(N=O)C1=O", and the property values are:
{SA = 0.52,QED = 0.38, logP = 0.92, gap = 4.45}. Fig. 5 illustrates the comparison with random
generation, demonstrating that QCVAE-Mole is capable of achieving multi-condition generation,
albeit with less pronounced improvement compared to single-condition generation.
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4.4 Ablation Study

Normal distribution vs vMF distribution. We study adopting normal distribution and von Mises-
Fisher (vMF) distribution in classic VAE and quantum VAE, corresponding to Euclidean space and
hyperspherical space, respectively. Here we conduct experiments under random generation setting.
Fig. 6(a) shows QVAE with hyperspherical latent space performs the best validity, which reveals the
advantages of using vMF distribution in QVAE. In addition, we found that compared to N -VAE,
N -QVAE can generate relatively reasonable 3-D coordinates, ensuring that the distances between
atoms fall within the range of chemical bond lengths. However, the atom numbers and atom types
generated by N -QVAE are relatively homogeneous, resulting in lower scores for novel and unique
compared to N -VAE. We also observe that utilizing normal distribution leads to better performance
in classic VAE than using the von Mises-Fisher distribution.

Compact of κ. In Sec. 3.2.2, we have mentioned the concentration parameter κ in vMF distribution
is commonly set as a constant during training. To further explore its impact on the quality of random
generation, here we vary κ from 0.1 to 100 and the results are shown in Fig. 6(b). We observe
that the smaller the κ value, the higher the validity, but the uniqueness and novelty will decrease
correspondingly. This indicates a trade-off in the selection of κ: when we need high accuracy, we
should choose a smaller κ, while diverse molecules are in need, we should opt for a larger κ.

5 Conclusion, Limitation, and Outlook
We have proposed the first fully quantum VAE for 3-D molecule generation, to the best of our
knowledge, featuring a von Mises-Fisher distributed latent space. Moreover, we have designed a
conditional version for target molecule generation. Numerical experiments show that our model
could generate plausible 3-D molecules, which outperform all other quantum (or hybrid) methods,
and achieve competitive performance with significantly reduced parameters compared with their
classic counterparts. Though we provide detailed quantum circuits compatible with NISQ devices,
due to hardware constraints, so far we have not implemented our proposed quantum circuits on real
quantum devices. We leave it for future work and further collaboration with hardware groups where
tailored hardware error correction may be needed.
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Appendix

A Related Work

Classic methods for molecule generation. Classic deep learning for molecule generation can be
roughly divided into two categories. The first category focuses on generating molecular graphs, which
has been extensively studied in the research community. These methods include generating the node
type and adjacency matrix of the graph all at once [51, 53–55], or generating molecular graphs using
fragments or motifs [56–59], or sequentially adding nodes and edges to molecular graph [60–62].
Another category focuses on a relatively under-investigated domain, which involves generating the
3-D molecular structure. G-SchNet [50] and G-SphereNet [23] use auto-regressive models to generate
molecules in a step-by-step manner via progressively connecting atoms. E-NF [22] introduces an
equivariant normalizing flow that incorporates a differential equation. Recently, with the emergence
and success of diffusion models (DM) [63–65], there has been a notable shift towards utilizing DMs
for 3D molecule generation [49, 66].

Quantum generative learning. There are four types of quantum generative models: Quantum
Circuit Born Machines (QCBMs) [67, 68], Quantum Boltzmann Machines (QBMs) [69], Quan-
tum Generative Adversarial Networks (QGANs) [70, 12], and Quantum Variational Autoencoders
(QVAEs) [71, 72]. The complexity of QCBM-based and QBM-based methods is high, which makes
them difficult to implement on NISQ devices. QGAN conceptualized by [70] discusses the potential
merits of QGANs when either the generator, the discriminator, or both are implemented on quantum
computers. However, balancing the training rates of quantum generators and discriminators remains
a critical challenge. The QVAE introduced by [71] adopts a classic VAE structure [21, 73] and a
quantum prior distribution in the latent space realized by a QBM model. However, it remains an open
question whether there is a quantum circuit realization of QBM. In contrast, we explicitly present a
full quantum VAE circuit. As for quantum generative learning for molecule design, QGAN-HG [14]
introduces a hybrid model upon MOLGAN, and SQ-VAE [15] proposes a circuit-based QVAE, which
is more hardware efficient compared to QVAE based on QBM model. In this paper, we follow the
paradigm of circuit-based quantum VAE and propose a fully quantum VAE for 3-D molecule genera-
tion with the capacity of conditional generation. Although SQ-VAE is also designed for molecular
generation, our methodological framework is fundamentally different. Specifically, our input and
output are tailored for 3D molecular structures, reflected in the encoding of input information. And
the sampling of latent space variables and the final measurement method of the quantum circuit are
also different. Moreover, we propose a full quantum neural network capable of multi-conditional
control as encoder/decoder while SQ-VAE uses a hybrid quantum-classical layer. In defining the
latent variable space, we employ the vMF distribution to harness the inherent properties of quantum
states, while they simply imitate a classical VAE using a Gaussian distribution.

B Quantum Computing and Parameterized Quantum Gates

Quantum states are typically represented using bracket notation. It is common practice to create linear
combinations of these states, known as a superposition, exemplified by |ψ⟩ = α|0⟩+ β|1⟩. In formal
terms, a quantum system composed of n qubits is represented by an n-fold tensor product Hilbert
spaceH =

(
C2
)⊗d

, which has a dimension of 2d. For any state |ψ⟩ withinH, its conjugate transpose
is denoted as ⟨ψ| = |ψ⟩†. The inner product ⟨ψ|ψ⟩ = |ψ|22 calculates the square of the 2-norm of
ψ. The outer product |ψ⟩⟨ψ| forms a rank 2 tensor. The computational basis states are defined as
|0⟩ = (1, 0) and |1⟩ = (0, 1), while composite basis states, such as |01⟩ = |0⟩ ⊗ |1⟩ = (0, 1, 0, 0),
extend these definitions.

The single-qubit and double-qubit parameterized quantum gates used in this paper contain:

Ry(θ) =

[
cos( θ

2
) − sin( θ

2
)

sin( θ
2
) cos( θ

2
)

]
,Rz(θ) =

[
e−i θ

2 0

0 ei
θ
2

]
,

CRx(θ) =

1 0 0 0
0 1 0 0
0 0 cos( θ

2
) −i sin( θ

2
)

0 0 −i sin( θ
2
) cos( θ

2
)
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Similar to a classical computer, a quantum computer is constructed using a quantum circuit composed
of wires and basic quantum gates, which facilitate the transport and manipulation of quantum
information. Each quantum gate represents a unitary operation, denoted as U, on a Hilbert spaceH.
When simulating a quantum circuit on a classical computer, the complete unitary transformation is
achieved by tensoring and multiplying these unitary gate operators together.

A projective measurement involves an observable, denoted as M , which is a Hermitian operator
acting on the state space of the observed system. This observable can be broken down into a spectral
decomposition, represented as M =

∑
mmPm, where each Pm is the projector onto the eigenspace

ofM corresponding to the eigenvaluem. When the state |ψ⟩ is measured, the probability of obtaining
the result m is determined by p(m) = ⟨ψ |Pm|ψ⟩.

C Encoding Details

The dataset is a set of M molecules, which we represent as M 3-D point clouds, each with nj nodes.
To ensure that molecules can be uniquely encoded to a quantum state vector, we need to fix the
order of atoms and the molecular conformation during input. Furthermore, the probability vector
containing the amplitudes restricts the generated vector to the positive octant, which requires us to
keep the input data of molecule within the positive octant as well.

To fix the order of atoms, we first convert the 3-D molecules to canonical SMILES strings using rdkit.
We then encode the coordinates and atom type of each atom onto the quantum state vector according
to the canonical SMILES strings. As for the molecular conformation, we first align the center of mass
of the entire molecule to zero and then rotate the position of the first atom in the SMILES string onto
the z-axis. Now molecules in dataset with arbitrary conformations and atom orders can be uniquely
represented by [{(vji ,a

j
i )}

nj−1
i=0 ]M−1

j=0 .

In addition, to keep the molecule within the octant, we define an axis-aligned bounding box
(vmin,vmax) across the entire dataset. This is done by defining the minimum and maximum
values along each axis.

vmin ,a = min
j=0,...,M−1
i=0,...,nj−1

vji,a, vmax ,a = max
j=0,...,M−1
i=0,...,nj−1

vji,a,

where vji,a ∈ R is the coordinate of vertex vji along axis a ∈ {x, y, z}. To further achieve isotropic
re-scaling, we turn the bounding box into a cube with side length s = maxa∈x,y,z vmax,a − vmin,a.
Then the coordinates of each atom can be shifted and re-scaled by

[{ṽji }
ni−1
i=0 ]M−1

j=0 = [{v
j
i − vmin

s
}nj−1
i=0 ]M−1

j=0

Now we get the final normalized dataset.

Initial state preparation. There are several techniques for encoding classical data into quantum
states, including basis encoding, angle encoding, and amplitude encoding [74]. We adopt the
amplitude encoding scheme to encode the input 3-D molecule or sampled classical latent variable
as a quantum state. The reason we adopt amplitude encoding is that it can encode 2n classical
values using only n qubits, offering an exponential encoding advantage. In the existing literature on
quantum algorithms, amplitude encoding is commonly employed to harness the power of quantum
computation [75]. The implementation of amplitude encoding is complex, but there are many
works dedicated to investigating how to efficiently encode information into amplitudes [38], such as
top-down encoding [39], bottom-top encoding [39], MPS encoding [76], or quantum architecture
search [77].

The qubits complexity analysis of QGAN-HG and SQ-VAE. QGAN-HG [14] is a hybrid model
with a classic discriminator and a hybrid generator, which utilize quantum circuits to generate feature
vectors. QGAN-HG obtains the output of the circuit through measurements and yields a q-bit string
(here q is the number of qubits). Thus the qubits complexity comes to q = d = O(d), where d is the
needed feature dimension.

SQ-VAE [15] uses amplitude encoding to encode molecular graphs. First, the molecular graph is
represented by a node matrix (n × k) and bond matrix (n × n × b), n is the number of atoms, k
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is the number of atom types and b is the bond types. Then, the node matrix and bond matrix are
flattened to get a vector with the dimension of n ∗ k + n ∗ n ∗ k. Thus the qubits complexity comes
to q = ⌈log2(n ∗ k + n ∗ n ∗ k)⌉ = O(C log(n2)) = O(C ′ log(n))

D Loss Function Design

Classic loss. The classic reconstruction loss consists of four parts: 3-D coordinate loss L1, atomic
classification loss L2, constraint loss L3, and auxiliary loss L4. We use geometric distance error
for 3-D coordinate loss, weighted cross entropy for atomic classification loss with weight wt and
one-hot label yt for each atom type t. Note that the sum of the probability of each atom type
si = α2

r+3 + . . . + α2
r+3+(k−1) should be as equal as possible for each i, with the expectation of

E[si] = ( 1
2
√
n
)2 = 1

4n . To this end, we design a constraint loss via mean square error. Furthermore,
the auxiliary loss is designed for the auxiliary value and the padding entries. In summary:

L1 =
∑
i

((
αr −

xi
2
√
n

)2

+

(
αr+1 −

yi
2
√
n

)2

+

(
αr+2 −

zi
2
√
n

)2
)1/2

, (18)

L2 = −
∑

i

∑
t
wtyit log(αit), L3 =

∑
i

(si −
1

4n
)2, (19)

L4 =
∑
i

∣∣∣∣∣αr+k+3 −
√

3− x2i − y2i − z2i
2
√
n

∣∣∣∣∣+
2q−1∑

j=(n∗(4+k))

|αj |. (20)

Specifically, L1 supervises the reconstruction of the molecule 3-D position by geometric distance
error, and L2 supervises the reconstruction of atom types by weighted cross entropy. L3 is used
to constrain the sum of the probability of all atom types for each atom to be the same, and we use
MSE loss here. Since we add padding entries to the input data, so L4 is designed to supervise the
reconstruction of these entries of zero. With M data samples in total, the final loss comes to:

L =
1

M

∑
(L1 + αL2 + βL3 + γL4), (21)

where α, β, γ are the hyperparameters to balance the losses. The best hyperparameter configuration
can be determined through grid search.

Fidelity loss. It quantifies the “closeness" between two quantum states, and the formal definition
between two quantum states ρ, σ is F (ρ, σ) = (tr

√√
ρσ
√
ρ)2. For pure states, ρ = |ψρ⟩⟨ψρ| and

σ = |ψσ⟩⟨ψσ|, the fidelity equals to ⟨ψρ|ψσ⟩. We construct the fidelity loss:
Lf = 1− F (ψ0, ψr) = 1− |⟨ψ0 | ψr⟩|2 . (22)

The design of fidelity loss does not consider the real physical meaning of the output quantum vector,
but instead treats the input and decoder output of the encoder as two quantum states, and then designs
the loss by calculating the fidelity between them.

E Discussion of Circuit Design
We choose Rz(θ)Ry(θ)Rz(θ) as the single-qubit trainable layer, and next we will introduce the
reason. An arbitrary single-qubit operator with the unitary matrix as U can be decomposed into a
sequence of Rz, Ry, and Rz gates, and a global phase [78].

U = eiαRz(θ2)Ry(θ1)Rz(θ0) (23)

Proof. A 2× 2 unitary matrix has the following general expression:

U = eiα
[
a −b∗
b a∗

]
= eiαV, (24)

where a, b are complex numbers, and α is a real number, eiα is the phase part, and V is also a unitary
matrix. Notice that the determinant of V satisfies detV = aa∗ + bb∗ = |a|2 + |b|2 = 1 (* denotes
the conjugate operator). Consequently, we have

detU = e2iα detV = e2iα. (25)
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Algorithm 1 vMF sampling
Input: dimension m, direction mean µ, constant κ.

1: sample v ∼ U
(
Sm−2

)
;

2: sample ω ∼ g(ω | κ,m) ∝ exp(ωκ)
(
1− ω2

) 1
2 (m−3)

;

3: z′ ←
(
ω;
(√

1− ω2
)
v⊤)⊤;

4: U ← Householder (e1, µ); {Householder transform}
5: Return: Uz′

Algorithm 2 Householder transform
Input: mean µ, modal vector e1.

1: u′ ← e1 − µ;
2: u← u′

∥u′∥ ;
3: U ← I− 2uu⊤;
4: Return: U

Let a = e−i θ0+θ2
2 cos θ12 and b = ei θ2−θ0

2 sin θ1
2 , then the unitary matrix V becomes:

V =

[
e−i θ0+θ2

2 cos θ12 −ei θ0−θ2
2 sin θ1

2

ei θ2−θ0
2 sin θ1

2 ei θ0+θ2
2 cos θ12

]
. (26)

Decomposing the matrix V , we can obtain:

V =

[
e−i θ22 0

0 ei θ22

] [
cos θ12 − sin θ1

2

sin θ1
2 cos θ12

] [
e−i θ02 0

0 ei θ02

]
. (27)

Due to

Ry(θ) =

[
cos( θ2 ) − sin( θ2 )
sin( θ2 ) cos( θ2 )

]
,Rz(θ) =

[
e−i θ2 0

0 ei θ2

]
, (28)

the matrix V can be decomposed as the sequence of parameterized rotation gates RzRyRz, i.e.,

V = Rz(θ2)Ry(θ1)Rz(θ0). (29)

Therefore, an arbitrary unitary matrix can be represented by a sequence of Rz, Ry and Rz gates, and
a phase eiα. Because it does not affect the outcome of our experiment, we discard the global phase as
consensus. Thus, we use the combination of Rz, Ry and Rz in the trainable layer.

F Discussions of Latent Space
Trace out and quantum state tomography The tracing out operation is similar to marginalizing out
specific qB binary dimensions of an q-dimensional probability distribution when treating the squared
amplitudes of |ψ⟩AB as a distribution. After tracing out qB qubits, the dimension of the quantum
state comes to 2qA .

Readout of the quantum state may require an exponentially large number of measurements. However,
there are many methods proposed to tackle this problem. For instance, Schmale et al. [40] propose an
efficient quantum state tomography with convolutional neural networks. Moreover, Rambach et al.
[42] provide a practical, efficient, and robust self-guided tomography for measuring high dimensional
quantum states.

Rejection Sampling Here we provide the sampling procedure in Algorithm 1.

G Supplementary Experiments

Metrics. Validity is defined as the percentage of molecular graphs that do not violate chemi-
cal valency rules. Uniqueness measures the proportion of molecules that have different SMILES
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Table 3: Hyperparameter choices of and the training phase settings.

Hyperparameters Values

A
ns

at
z # Quantum parametric layer (L) 8

# Qubits in subsystem B (qB) 2
Concentration parameter in vMF (κ) 10
Generate threshold (T ) 0.2

Tr
ai

ni
ng

Batch Size 512
# Epochs 50
Optimizer Adam
Learning Rate 0.01
Weight Decay 1e-4

Table 4: Comparison of MMD distances for bond length distributions in different methods.

Method MMD distances ↓
C-C C-N C-O C-F C=C N-N N-O C=O Average

MLP-VAE [21] 2.85 7.39 2.65 4.12 1.97 7.26 2.14 1.49 3.73
E-NFs [22] 0.56 0.18 1.02 3.31 2.99 1.05 0.69 1.76 1.45
G-SchNet [50] 0.18 0.08 0.32 0.184 5.34 0.25 0.25 1.58 1.02
G-SphereNet [23] 1.02 0.17 0.78 0.23 2.47 1.65 0.91 0.22 0.93
EDM [49] 0.04 0.03 0.06 0.34 5.14 0.17 0.07 1.32 0.90

QVAE-Mole 2.26 1.77 2.88 1.70 2.35 1.85 2.26 3.63 2.34
QVAE-Mole (fidelity loss) 2.69 2.38 1.79 3.42 3.05 3.41 3.34 4.46 3.07

strings (which implies that they are non-isomorphic). Novelty measures the proportion of generated
molecules that are not in the training set. To evaluate the generated molecular geometry, we evaluate
by the Maximum Mean Discrepancy (MMD) [48] distances of bond length distributions. Specifically,
for a specific type of bond, we extract its length distribution from both the generated geometries and
the dataset’s geometries individually. We then calculate the statistical discrepancy between these two
length distributions using the MMD distance. Avg.MMD is the average MMD of all bond types.

Target properties. SA represents the difficulty of drug synthesis, with higher values indicating
easier synthesis as it is normalized between 0 and 1. QED quantifies the likelihood of a molecule
being a potential drug candidate. LogP indicates the molecule’s partition coefficient between octanol
and water, where logP values between -0.4 and 5.6 are considered favorable for drug candidates [79].
HUMO-LUMO gap signifies the energy difference between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO).

Training Details. In the TorchQuantum simulator, it is known that the running of quantum circuits is
simulated with unitary operations, and the unitary operations can be implemented through PyTorch’s
underlying tensor operations. Thus obtaining the quantum state vector in the simulator only requires
one forward unitary computation, which makes the entire process differentiable in TorchQuantum.
In this way, we can directly get the gradient of quantum parameters, perform backpropagation, and
train the model. We use stochastic gradient descent with Adam optimizer [80] to train our model
for a maximum of 50 epochs with a batch size of 512 and a learning rate of 0.01. The choice of
hyperparameters is shown in Table 3. The parameters in both the training and inference stages of
QVAE-Mole and QCVAE-Mole remain the same.

Evaluate 3-D molecular geometry. Following [23], we compute the MMD distances on eight
most frequently appeared types of chemical bonds, including carbon-carbon single bonds (C-C),
carbon-nitrogen single bonds (C-N), carbon-oxygen single bonds (C-O), carbon-carbon double bonds
(C=C), nitrogen-nitrogen single bond (N-N), nitrogen-oxygen single bond (N-O), carbon-oxygen
double bond (C=O). All metrics are computed from 10k generated molecular geometries and the
results are shown in Table 4. Since SQ-VAE and QGAN-HG cannot generate 3-D molecules, here we
only compare QCVAE-Mole with classic SOTA methods.
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H Impact Statements

Quantum computing can play a significant role beyond molecule generation. Thus we shall be
cautious about this technology especially when quantum generative AI could have a broad impact on
society.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims are clearly presented in the abstract and introduction, and are
further elaborated and substantiated throughout the subsequent sections of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Refer to Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The qubits complexity analysis of our methods and other methods are shown
in Sec. 3.1 and Appendix C, respectively. The theoretical analysis of the expressive power
of the designed quantum circuit is shown in Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In this paper, we provide comprehensive descriptions for each step of the pro-
posed method, along with all necessary settings and training details to facilitate experiment
replication. Additionally, we commit to making the code publicly available by the time of
the camera-ready submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide comprehensive descriptions for each step of the proposed method,
along with all necessary settings and training details to facilitate experiment replication. The
source code will be made public upon acceptance.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Refer to Sec. 4.1 and Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean and variance of the experiment results.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Refer to Sec. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Refer to Appendix H.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines: The paper poses no such risks.

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators and original owners of all assets used in the paper are properly
credited and cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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