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ABSTRACT

The prediction of long sequences has always been a challenge in time series
forecasting tasks. Due to Mamba’s sequence selection capability, many Mamba-
based models have been proposed, achieving state-of-the-art results in long se-
quence prediction problems. However, much research has focused on integrating
mamba-ssm into specific model structures for better performance, while the core
of mamba-ssm, its sequence selection capability, has not been deeply explored.
We believe there is significant potential in Mamba’s sequence selection capa-
bility and propose a Repetitive Contrastive Learning (RCL) method to enhance
it. Specifically, we utilize Repeating Sequence Augmentation to expand the se-
quence while introducing Gaussian noise, thereby enhancing the Mamba block’s
sequence selection capability through both inter-sequence and intra-sequence con-
trastive techniques. Then our methods transfer parameters directly from a single
pretrained Mamba block to a variety of Mamba-based models. This approach pro-
vides superior initialization for forecasting tasks. Our experiments consistently
demonstrate that this technique improves the forecasting performance of many
Mamba-based models, without imposing additional memory requirements.

1 INTRODUCTION

Time series forecasting (TSF) has become indispensable across a range of critical domains, including
financial markets [Li et al.| (2023)), traffic management |Cheng et al.| (2023)), electricity consumption
prediction Sun & Zhang| (2023)), scientific computing [Cruz-Camacho et al.| (2024), and weather
forecasting [Zhang et al| (2022a). TSF leverages sequential data, often of varying lengths, from
past observations to predict future trends. However, fully reliable predictors remain elusive due to
the unknown generative mechanisms underlying time series data. Compounding this challenge are
issues such as uneven sampling, missing or duplicate data points, and inherent irregular noise, which
complicate the forecasting tasks.

Deep learning has made significant strides in the time series domain, with much of the focus centered
on model architecture design, particularly for transformer-based models Wen et al.| (2023)) . These
models now play a pivotal role in forecasting tasks, yet they are often hindered by the quadratic
complexity of their attention mechanisms. While time series data share some structural similarities
with natural language, transformers typically underperform in this domain compared to traditional
backbones like CNNs and MLPs Zeng et al.[(2022). Despite the limitations of traditional backbones
in capturing long-range dependencies, they are more effective at addressing the sequential and high-
noise characteristics of time series data, which contributes to their better performance.

The emergence of the Mamba model |Gu & Dao|(2024) has attracted researchers from diverse fields,
including those focused on multi-modal and multi-dimensional data, thanks to its unique selective
state-space mechanism Huang et al.| (2024); [Li et al.| (2024). Mamba’s selective mechanism not
only resolves the quadratic time complexity of transformer attention mechanisms but also maintains
comparable long-distance propagation capabilities. Recent applications of Mamba in TSF, such as
TimeMachine |[Ahamed & Cheng|(2024)) and Bi-Mamba [Liang et al.| (2024), have primarily focused
on refining Mamba’s block architecture. However, these efforts have overlooked the critical chal-
lenge of teaching models how to effectively select and prioritize key moments in time series data.

One major reason for this gap is rooted in the training objectives used for TSF. Most existing models
focus on straightforward prediction tasks, analogous to causal and masked language modeling in
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NLP. Although these methods have yielded undeniable success in natural language processing, they
may not be as effective for time series data. NLP tasks often rely on models to grasp contextual
knowledge, such as common sense, syntax, and semantics, from the input text. In contrast, time
series data lack generalized knowledge, focusing instead on sequential and often sparse patterns.
Unlike NLP data, which can be pre-processed to remove noise and ensure consistency, time series
data is marked by irregular and noisy sampling points that are often imperceptible to humans and
can only be effectively classified by models during training.

Thus, directly applying modules, which are designed for NLP tasks, to time series data without
adapting the training goals leads to predictable failures. Recent experiments have shown that relying
solely on prediction tasks does not enable Mamba to fully resolve the complexities of time series
data|Zhang et al.|(2024)). These results suggest that prediction tasks alone are insufficient for models
to gain a deep understanding of the underlying structure and dynamics of time series. In such cases,
models often struggle to selectively focus on relevant moments, instead over-integrating all available
information in an attempt to capture causal relationships.

Drawing from these insights, we propose that the central task in time series processing should em-
phasize teaching models effective selection mechanisms. By leveraging Mamba’s new selective
space models module, we believe it has the potential to surpass other models in handling selec-
tion tasks on sparse time series data. To address existing challenges, we introduce a new training
paradigm aimed at optimizing Mamba’s selection process.

Technically, our approach enhances time series data through Repeating Sequence Augmentation and
pretrains the original models using Repetitive Contrastive Learning. During the augmentation stage,
each token in the time series is duplicated and augmented with Gaussian noise. In the learning stage,
we implement intra-sequence contrast, which forms positive and negative pairs from corresponding
tokens between the augmented sequence and the original sequence, and inter-sequence contrast,
which derives positive and negative pairs from within the augmented sequence itself.

We substitute Mamba Block parameters across various Mamba-based models with those obtained
from the pre-trained Mamba block and evaluate the resulting performance improvements relative
to the original models. Our work also details effective block substitution methods and parameter-
freezing strategies.

In summary, our main contributions are as follows:

* We propose a data augmentation method called Repeating Sequence Augmentation,
which generates extended time series and forms token-level contrastive samples.

* We introduce Repetitive Contrastive Learning, which compares original and repeated se-
quences within a Mamba block to obtain initialization parameters with enhanced sequence
selection and robustness.

* We transfer pretrained parameters to different Mamba-based models, demonstrating a gen-
eralized approach that consistently improves the predictive capability of these models on
various datasets.

* We analyze effective parameter replacement methods, parameter freezing techniques, and
the impact on training time and memory overhead.

2 PRELIMINARY

2.1 MULTIVARIATE TIME SERIES FORECASTING

Multivariate time series forecasting involves predicting future values of multiple interrelated time-
dependent variables based on their historical data. Unlike univariate time series forecasting, which
focuses on a single variable, multivariate forecasting accounts for interactions and correlations be-
tween multiple variables to improve prediction accuracy and insightfulness.

A multivariate time series forecasting problem can be formally represented with an input time series
denoted as X € RTaxF where T}, is the input sequence length (number of time steps) and F'
represents the number of features or variables at each time step. The prediction target is represented
as Y € RTxF where T,, denotes the output sequence length for which forecasts are made.
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Figure 1: Process of the proposed method. Including Repeating Sequence Augmentation and Repeti-
tive Contrastive Learning (RCL), with RCL consisting of Intra-sequence contrast and Inter-sequence
contrast.

2.2  TIME SERIES AND INVERTED TIME SERIES

In the latest research, treating the features of a time series as tokens and embedding along the time
has proven effective for multivariate time series prediction problems.Liu et al.|(2024) Consequently,
many models utilize an inverted time series as input. Here, F' represents the number of features or
variables in the time series. To facilitate distinction between sequences, we define the inverted time
series as X1 € R*Ti which is obtained by transposing the original time series X € RTu>*F",

3 METHOD

Our proposed repetitive contrastive pre-training method involves three main steps. First, we con-
struct augmented data by repeating time steps and introducing noise, defining positive and negative
sample pairs in the process. Next, a Mamba block undergoes pretraining through contrastive learn-
ing to enhance its ability to select relevant time series features. Finally, the pretrained parameters of
the Mamba block are transferred to various Mamba-based models for fine-tuning.

3.1 REPEATING SEQUENCE AUGMENTATION

One significant reason why Mamba performs exceptionally well in time series prediction tasks is
its selective structure. To enhance the selection capability of the Mamba Block, we designed the
Repeating Sequence Augmentation. Specifically, as shown in Fig. |1} for each time step in each time
series, we sequentially repeat this time step with repetition count n;.

repeat

Xi —_— Xi>1, ---7Xi,nt

)
Xrep = {Xl,la '-'7X1,nta-"7 Xi,17 AR Xi,nta LA XS,17 LA XS/I’H}

where X; is the i-th step in time sequence, and s is the length of the sequence. For the time
series X € RT*F s = T, the corresponding X, € RM*T)XF  Ag for inverted time series
X! e RFXT s = F, the corresponding XL e R(me*F)xT

rep

Then, we add Gaussian noise of increasing intensity, from weak to strong, to the repeated time steps.
In our experiments, we choose n; = 3, each time step X; is repeated and obtain X; 1, X; 2, X; 2.
We then sample a strong Gaussian noise and a weak Gaussian noise, and add them to the repeated
time steps in increasing order of intensity, from weak to strong.
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Noise,, ~ N(0,02)
Noises ~ N(0,07)
00 <03
X];,g = X 2 + Noise,, 2)

Xi,g = Xl‘73 —+ NOiSG[}
Xaug,i = {Xi,hXi,%Xi,?;}
Xavg = Xaug,1[| Xaug,2|l - - - | Xaug,s

where Noise,, and Noiseg represent weak and strong Gaussian noise, controlled by the variances o,
and og. Since the effect of noise accumulates progressively with the sequential modeling, gradually
increasing the noise effectively enlarges the distance between time steps, enhancing the difficulty of
the subsequent contrastive learning task.

3.2 MAMBA BLOCK AND IMAMBA BLOCK

The Mamba block, |Gu & Dao| (2024), consists of two parts : selection and State Space Model
(SSM), as shown in Fig. [2| Firstly, the input X undergoes a one-dimensional convolution (Conv1d)
to extract local features, followed by Linear Projection that maps it to matrices B, C, and A.

X. = o(Convld(X))
B =fc(X,.), C=fc(X,) 3)
A = softplus(fc(X,.) + A)

where o is SiLU activation function and softplus means the Softplus activation functions, and A is
an optimizable matrix. Then, matrices A and B are discretized into A, B,

. 4
— (exp (AA) — I)(AA) "' (AB)

Finally, Mamba inputs A, B, C, A and X into the SSM, and uses residual connections.
H = SSM(Z, B, A X) - o(fe(X)) 5
where fc is fully connected layers, and o is SiLU activation function.

The iMamba block retains the same structural design as the traditional Mamba block; however, the
Mamba block processes embedded time vectors along the feature dimension. In contrast, iMamba
operates on an inverted time series X !, where each token represents a feature in the time series data.
The resulting output is the corresponding sequence H'. This output is then passed through linear
layers applied to the embedded time vectors to achieve the desired output length.

3.3 REPETITIVE CONTRASTIVE LEARNING

We input both the original sequence X and its augmented version X, into the same Mamba
Block, comparing their respective outputs H and H,,, to evaluate the Mamba Block’s modeling
capabilities across both sequences. As illustrated in Fig[l] Repetitive Contrast Learning (RCL)
encompasses two types of comparisons: intra-sequence contrast and inter-sequence contrast. Firstly,
we define the output at any time step ¢ with a repetition count n; of the original sequence X; as H,
and the output at the subsequent time step as H; ;. The outputs of the augmented sequence are
represented as { H;.,, aug}> H (i, +1,aug}> - - - » H {sm,+n;—1,aug} }» While the output at the next time
step is {H{(i—s-l)-nt,aug}v H{(i—&-l)-nt—&-l,aug}v BERE) H{(i+1)-nt+nt—1,aug}}'

Intra-sequence contrast We hypothesize that if the Mamba Block possesses strong sequence se-
lection capabilities, then the outputs { H;.1,, aug} > H {in,+1,aug}s - - - » H {iny+n,—1,aug} } Of the aug-
mented sequence at the same time step should exhibit high similarity, while ignoring progressively
increasing noise. Conversely, the outputs H;.,,, .ue) at the current time step and H ;1 1).n,,aug} 8t
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Figure 2: (a) The structure of the Mamba block. (b) Pre-training MambaPB and iMambaPB. (c)
Parameter replacement during fine-tuning.

the subsequent time step should have low similarity. Therefore, we define outputs at the same time
step as positive examples, while outputs at the current and subsequent time steps serve as negative
examples. The objective is to minimize the distance between positive examples and maximize the
distance between negative examples within the sequence, thereby enhancing the Mamba Block’s
sequence selection capabilities. Specifically, we use H;.p,, aug) as an anchor to form n; — 1 positive
samples and one negative sample, measuring similarity between samples using cosine similarity and
employing the InfoNCE loss function |Oord et al.|(2018)).

s—2 ne—1

1 1
EIntra: _;Zntfl Z lo

z=1

e eXp(Sim(H{i-nt,aug}7 H{i-nt+z,aug})/7—)
exp(Sim(H{iﬂt,aug}a H{(i+1)~nt,aug})/7')

(6)

where s is the sequence length, 7 is the time step index, n; is the repetition count, 7 is a temperature
coefficient controlling the distinction of negative samples, and sim(-, -) denotes the cosine similarity
function, defined as:

hi-h;
sim(hi, hy) = Tt (7)
lahie|
Intra-sequence contrast allows the Mamba Block to disregard noisy, repetitive time steps while pri-
oritizing meaningful and effective ones, thereby strengthening its selection capabilities and noise
resilience.

Inter-sequence contrast The inter-sequence contrast further enhances contrastive learning ef-
fects while preserving selection capability and temporal correlations on the original se-
quence, ensuring that the Mamba Block does not overfit to augmented data. Here,
{Hin, aug)s Hiin+1,aug}s -+ > H{im,+n,—1,aug) } and H; are defined as positive samples since
they both represent the same time step and should maintain consistency across different time se-
ries lengths. Simultaneously, H; and H;; are defined as negative samples to maintain selection
capability on the original sequence.

5—2 nyg—1 .
1 1 t exp(sim H»L,H ingtz, T
Linter = ——— E — E log ( ( { + aug})/ ) ®)
s—1 et exp(sim(H;, H;+1)/7)

where s, 4, ns, 7, and sim(+, -) are defined as above.

The overall optimization objective for Repetitive Contrastive Learning is:

l:rc = EIntra + ['Inter (9)
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It is noteworthy that the pre-training process for Repetitive Contrastive Learning is conducted exclu-
sively on a single Mamba Block rather than the entire Mamba model. Even when sequence length is
repeated, the memory usage and training time are typically lower than what is required for the entire
model.

3.4 REPLACE AND INFERENCE

Based on different input sequences, we categorize Mamba blocks pre-trained with the input time se-
ries X and the inverted time series X! as MambaPB and iMambaPB, respectively. These two types
of Mamba blocks can be integrated into the majority of existing Mamba-based models. For example,
in the Origin Mamba model |(Gu & Dao| (2024), we substitute the parameters of the Mamba block
with MambaPB. Similarly, for the IMamba model, we replace the block’s parameters with iMam-
baPB. In the case of the TimeMachine model |Ahamed & Cheng| (2024), we also utilize iMambaPB
for parameter substitution.

Since the pre-trained Mamba block is designed to achieve enhanced selection capabilities, we freeze
the matrix A, which governs the Mamba’s selectivity, during the inference stage. Other parame-
ters, however, can be adjusted to suit the requirements of specific prediction tasks. Our experiments
include a comparison of various parameter-freezing methods to illustrate the impact on model per-
formance.

Additionally, Mamba-based models are often constructed with multiple stacked blocks, and select-
ing which blocks to replace with pre-trained parameters plays a crucial role in performance improve-
ment. We replace the parameters of the Mamba SSM in all blocks with MambaPB and iMambaPB,
and our experiments compare the results of different replacement ratios to highlight their effect on
model performance.

4 EXPERIMENT

We conducted extensive experiments to validate the effectiveness of our method. In Section[4.1] we
compared the prediction performance of various Mamba-based models—Mamba |Gu & Dao|(2024),
iMamba, TimeMachine /Ahamed & Cheng| (2024), and Bi-Mamba |Liang et al.| (2024)—with and
without pre-trained parameters across multiple datasets: ETTh1l, ETTh2, ETTm1, ETTm2, Traffic,
and Electricity. In Section [4.2] we used the 4-layer Mamba model as a baseline to demonstrate
that our pre-training method consistently enhances performance across a range of Mamba block pa-
rameters. Section compares different replacement methods and parameter-freezing strategies,
offering recommendations for optimal parameter replacement and freezing. In Section [#.4] we ex-
amined the time and memory overhead with and without pre-training. Details regarding the models,
datasets, metrics, and training settings are provided in the appendix.

4.1 MAIN RESULT

| ETThl | ETTh2 |  ETTml |  ETTm2 | Traffic | Electricity
| MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE  MSE

w/o 0.6546  0.7672 | 1.4013  2.8442 | 0.5053 0.5432 | 0.5763 0.6008 | 0.4939 1.0279 | 0.4205  0.3863
Mamba w 0.5974  0.6542 | 1.1536  2.0506 | 0.4798 0.4946 | 0.5646  0.5677 | 0.4604 0.9076 | 0.4168  0.3879
up-rate% | 8.7382  14.729 | 17.676  27.902 | 5.0465 8.9470 | 2.0302 5.5093 | 6.7827 11.704 | 0.8799 -0.4142

w/o 0.4987  0.4928 | 0.6926  0.9084 | 04316 0.3998 | 0.4160 0.3666 | 0.3234  0.6538 | 0.2627  0.1857
iMamba w 0.4472 04278 | 0.6833  0.8595 | 0.3970 0.3669 | 0.3304 02469 | 0.2913  0.6003 | 0.2597  0.1827
up-rate% | 10.327 13.190 | 1.3428 53831 | 8.0167 8.2291 | 20.577 32.651 | 9.9258 8.1829 | 1.1420  1.6155

w/o 03905 0.3833 | 0.3344  0.2911 | 0.3606  0.3342 | 0.2525 0.1746 | 0.3064 0.4983 | 0.2611  0.1872
TimeMachine w 0.3869  0.3787 | 0.3298  0.2822 | 0.3458 03179 | 02508 0.1731 | 0.2991 0.4844 | 0.2586  0.1826
up-rate% | 0.9219  1.2001 | 1.3756  3.0574 | 41043 4.8773 | 0.6733  0.8591 | 2.3825 2.7895 | 0.9575  2.4573

wio | 03948 03813 | 03443 02937 | 04680 05775 | 0.2704 0.1883 | 0.2786 0587 | 0.2629  0.185
Bi-Mamba w 03893 0.3794 | 03462 02955 | 0.4634 05701 | 02707 0.1857 | 0.2761 05787 | 0.2611  0.1818
up-rate% | 13931 04983 | -0.5518 -0.6129 | 0.9829 1.2814 | -0.1109 13808 | 0.8973 14140 | 0.6847  1.7280

Table 1: Comparison of performance improvement by replacing parameters obtained by RCL. w/o
denotes no parameter replacement, w denotes parameter replacement, and up-rate represents the
improvement rate.
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We validated the performance improvements brought by the parameters of the pre-trained Mamba
block across multiple Mamba-based models, as shown in Table |I} By leveraging the pre-trained
Mamba block parameters, the Mamba model demonstrated substantial gains across various datasets,
with the Mean Squared Error (MSE) reduced by up to 27.9% and the Mean Absolute Error (MAE)
improved by up to 17.7%, averaging an improvement of over 5%. For the iMamba model, the MAE
showed gains of up to 20.6%, while the MSE improved by up to 32.7%, with an average performance
increase exceeding 8%. These results indicate that the Mamba block parameters, refined through
Repetitive Contrastive Learning, significantly enhance the predictive capabilities of the Mamba and
iMamba models in time series tasks, yielding average improvements of 5% to 8%.

For the TimeMachine model, MSE improved by up to 4.88% and MAE by up to 4.10%, with an
average improvement of 2%. While these gains are smaller compared to the Mamba and iMamba
models, they remain noteworthy given that Bi-Mamba and TimeMachine are already state-of-the-art
models for long-term sequence prediction. Achieving an additional 1% to 2% improvement solely
by replacing the Mamba block parameters represents a meaningful advancement.

In summary, the parameters of the Mamba block, learned through the Repetitive Contrastive Learn-
ing method, consistently enhance the performance of various Mamba-based models. This under-
scores our method’s efficacy in improving the sequence selection capability of the Mamba block
and highlights its adaptability and potential for broad application.

4.2 IMPROVEMENTS UNDER DIFFERENT PARAMETERS

Dataset \ ETThl \ ETTh2 | ETTml | ETTm2
dstate | MAE MSE | MAE  MSE | MAE MSE | MAE  MSE
wio | 06546 07672 | 14013  2.8442 | 05053 0.5432 | 0.5763  0.6008
MambaDs16 | W 05974  0.6542 | 1.1536  2.0506 | 0.4798 0.4946 | 05646  0.5677

up-rate% | 8.7382  14.7289 | 17.6764 27.9024 | 5.0465 8.9470 | 2.0302 5.5093

wio | 06394 07359 | 12478 23706 | 0.5246 05729 | 0.6106  0.6778
MambaDs32 | W 05741 06369 | 12137 22131 | 04958 05182 | 05199  0.5106
up-rate% | 102127  13.4529 | 27328  6.6439 | 54809 9.5479 | 14.8542  24.6680

wio | 06382 07424 | 11759  2.1532 | 04961 05562 | 0.5803  0.5379
MambaDs64 | W 06247 07280 | 1.1323  2.0257 | 04828 05124 | 0.5771  0.5289
up-rate% | 2.1153 19397 | 3.7078 59214 | 2.6809 7.8749 | 0.5514  1.6732

Table 2: Comparison of Mamba’s performance under different dstate. Mamba-DsN represents
Mamba with dstate set to N.

Dataset | ETThl | ETTh2 |  ETTml | ETTm2 | Traffic
dmodel | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE  MSE
wio | 0.6096 07107 | 12655  2.6822 | 0.7123 09830 | 0.6630 0.7246 | 0.4959  1.0047
MambaDm32 w 05993  0.6707 | 10751  2.0090 | 0.6628 09166 | 05739  0.6602 | 04865  0.9621
up-rate% | 1.6896  5.6283 | 150454 25.0988 | 6.9493 6.7548 | 13.4389 8.8877 | 18955  4.2401
wio | 06243 07188 | 12142 22030 | 07026 10190 | 0.5793  0.6063 | 0.3347  0.6652
MambaDm64 w 0.6000 0.6778 | 1.1267  1.8989 | 0.6959 0.9642 | 0.5580 0.5635 | 0.2976  0.5976

up-rate% | 3.8924  5.7040 7.2064  13.8039 | 0.9536 5.3778 | 3.6769  7.0592 | 11.0846 10.1624

wio | 0.6546 07672 | 14013  2.8442 | 0.5053 0.5432 | 0.5763  0.6008 | 0.4791  0.9903
MambaDm128 | W 05974 06542 | 11536  2.0506 | 04798 04946 | 0.5646 05677 | 0.4622  0.9467
up-rate% | 87382 14.7289 | 17.6764 27.9024 | 5.0465 8.9470 | 2.0302 55093 | 3.5274  4.4027

Table 3: Comparison of Mamba’s performance under different dmodel. Mamba-DmN represents
Mamba with dmodel set to N.

To further illustrate the generality of our method, we evaluated its enhancement capabilities on the
Mamba model with varying parameters. Specifically, we standardized all Mamba models to contain
four Mamba blocks and compared their performance under different values of dgite and dioge;- Ta-
ble2]presents a performance comparison of the model across various d¢q¢. values. While Mamba’s
performance varied depending on dg.¢. for the same dataset, our method consistently delivered im-
provements, achieving an average increase of over 5% and a maximum gain of 24.67%. Similarly,
we assessed the improvement effects of our method under different values of d,;,q4e;, as detailed in
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Table [3| Across multiple datasets, every tested d,,.qe; €xhibited significant improvements, with a
maximum gain of 27.9% and an average increase of 6%.

These experiments demonstrate that our method is robust and unaffected by specific model parame-
ters, consistently providing performance enhancements regardless of parameter variations. Results
across diverse datasets and parameter settings reinforce this conclusion. Furthermore, within the
same dataset, our method effectively narrows performance gaps caused by parameter variations,
aligning results closer to optimal performance. This not only boosts the stability and robustness of
Mamba-based models but also reduces the time and effort required for parameter tuning.

4.3 COMPARATION OF REPLACEMENT AND FREEZING METHODS

\ ETTml \ ETTm?2

| None | FrozenA | None | FrozenA
| MAE MSE | MAE  MSE | MAE MSE | MAE MSE
| wio | 05053 05432 | 0.5053 0.5432 | 0.5763 0.6008 | 0.5763 0.6008
w 04921 05394 | 04921 0.5393 | 0.6609 0.7902 0.5611 0.5696
layer-25% | up-rate% | 2.6123  0.6996 | 2.6123  0.7180 | -14.6799 -31.5246 | 2.6375 5.1931
( w 04798  0.4946 | 04976 0.5548 | 0.6021 0.6230 0.6389 0.7423
layer-50% | up rate% | 5.0465  8.9470 | 1.5238 -2.1355 | -4.4768  -3.6951 | -10.8624 -23.5519
] . w 04816 05256 | 04816 0.5255 | 0.5299 0.5366 0.5646 0.5676
layer-75% | up-rate% | 4.6903 32401 | 4.6903 32585 | 8.0514  10.6858 | 2.0302  5.5260
w 05106 05692 | 0.5016 0.5658 | 0.5486 0.5735 0.5296 0.5258
layer-100% | yp-rate% | -1.0489  -4.7865 | 0.7322 -4.1605 | 4.8065 4.5439 8.1034  12.4834

Table 4: Comparison of Replacement and Freezing Methods. The “layer-x%" indicates that the first
x% of layers were replaced by pre-trained blocks.

A Mamba-based model typically comprises multiple Mamba blocks. Each Mamba block contains a
matrix A, which is defined in 3.2. The parameters are responsible for controlling the block’s selec-
tivity towards information before. To evaluate the impact of parameter replacement and parameter
freezing during the inference stage, we used a 4-layer Mamba model as a baseline. The replacement
strategy involved substituting 25%, 50%, 75%, and 100% of the Mamba blocks, while the parame-
ter freezing strategy was categorized into no freezing (None) and freezing of matrix A (FrozenA).
Freezing matrix A helps preserve the enhanced selectivity gained during pre-training.

As shown in Table [4 the optimal parameter replacement and freezing strategies differ across
datasets. For the ETTml dataset, replacing 50% of the Mamba blocks without freezing any pa-
rameters yielded the greatest improvement, while replacing 100% of the blocks resulted in the low-
est performance. This suggests that the selection capabilities of the pre-trained parameters do not
fully align with the prediction target. By replacing only 50% of the Mamba blocks, the model can
better encode the time series, while the remaining blocks focus on fitting the specific prediction
requirements of the dataset, ultimately enhancing model performance.

Conversely, for the ETTm?2 dataset, the greatest improvement was achieved by replacing all Mamba
blocks and freezing matrix A. In this case, the selective enhancements from pre-training aligned
well with the dataset’s prediction targets. This approach preserved the pre-trained parameters’ se-
lectivity while allowing the remaining parameters to adjust to fit the prediction targets effectively.

Similar results were observed across other datasets. Broadly, the findings can be grouped into two
effective strategies: replacing 50% of the Mamba blocks without freezing any parameters and re-
placing 100% of the Mamba blocks while freezing matrix A. We recommend choosing between
these two approaches during the inference phase for optimal performance.

4.4 ANALYSIS OF TIME AND MEMORY OVERHEAD

Sequence repetition and Repetitive Contrastive Learning introduce additional memory and time
overhead. To better understand the implications, we analyze the time and space complexity of the
entire training process. The memory overhead for Mamba is determined by the number of blocks,
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\ Memory(Unit: MB) \ Time(Unit: S)
ETTh1 | Pretrain Inference Max Memory | Pretrain Inference Total
w/o - 11733 11733 - 1.69 1.71
w 13131 11470 13131 5 1.62 6.54
Traffic | Pretrain Inference Max Memory | Pretrain Inference Total
w/o - 1602 1602 - 2.67 2.68
w 1994 1298 1994 6 2.54 8.54

Table 5: Peak memory consumption and average time overhead. The batch size for the ETThl
dataset is 2000, while for the Traffic dataset it is 100.

np, and sequence length, s;, yielding a complexity of O(s;n;). During pre-training, only a single
Mamba block is utilized, with input sequence lengths n;s and s, resulting in a space complexity
of O((ny + 1)s). Meanwhile, the memory consumption during inference is represented as O(sny).
Table [5] details the memory consumption for Mamba training with n; = 3 and n;, = 4 layers, illus-
trating that the peak memory overhead is comparable. As the number of Mamba layers increases,
the memory requirement for pre-training remains significantly lower than that of the inference stage.

Due to Mamba’s unique computational optimizations, the time complexity of a Mamba block is
linear with respect to the sequence length s;, denoted as O(s;). During pre-training, the sequence
length is n;s, whereas during inference, it is s. As such, the training time with pre-training is
approximately n; + 1 times longer compared to training without pre-training. Table [5] shows that
when n; = 3, the pre-training time consumption is about three times that of inference, which is
consistent with our theoretical analysis.

5 RELATED WORK

5.1 MODELS IN DEEP TIME SERIES FORECASTING

There has been extensive research focused on solving time series forecasting problems, with most
works aiming to propose new models that improve prediction accuracy. Based on their model
backbones, the research can be categorized into five primary groups: Transformer-based, RNN-
basedHochreiter & Schmidhuber| (1997), CNN-based, MLP-based, and Mamba-based models.
While each of these approaches may emphasize different aspects, the key improvements revolve
around addressing the specific challenges of time series tasks.

TimesNetWu et al.| (2023)), a CNN-based model, utilizes different periodical segmentations in both
the frequency and time domains, helping models extract features from inter-period variations and
infer patterns from intra-period variations. TimeMixetWang et al.| (2024)), which relies solely on
MLP and pooling layers, outperformed all previous models by focusing on decomposing and mixing
multi-scale time series data.

Transformer-based and Mamba-based models, on the other hand, mainly enhance the adaptability
of their respective architectures to better address time series tasks. LogTrans |Li et al.| (2020) and
Informer Zhou et al.| (2021) introduced sparse attention mechanisms tailored for serialized data,
allowing transformers to align more effectively with the nature of time series. Further advancements,
such as Autoformer Wu et al.| (2022) and FEDformer [Zhou et al.| (2022), demonstrated the critical
importance of decomposing time series into seasonal and trend components. This decomposition
serves as an instructive process, guiding models to better process data along the time dimension,
which is essential even for attention-heavy transformer models.

PatchTST Nie et al.| (2023)), by segmenting time series into fixed-length patches, significantly en-
hances models’ abilities to denoise and selectively process relevant information. Meanwhile, iTrans-
former |Liu et al.| (2024) introduces an innovative method by swapping the roles of features and
time in the series, passing the time dimension through a linear layer to create "time embeddings.’
Mamba-based approaches, like TimeMachingAhamed & Cheng(2024), unify channel-mixing and
channel-independence, enabling the model to effectively select the most relevant content for pre-
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diction. These methods underscore the importance of auxiliary mechanisms to enhance time series
selection and processing.

5.2 CONTRASTIVE LEARNING

Most contrastive self-supervised learning methods have been applied primarily in the fields of vi-
sionJaiswal et al.[(2021) and multimodal learningManzoor et al.[(2024). This is because the objects
used for contrast typically possess distinguishable high-level attributes that are easy for humans to
recognize and are less susceptible to being obscured by noise. For example, image data remains
interpretable to humans even when subjected to perturbations like color alterations or geometric
transformations. Similarly, multimodal contrastive learning leverages cross-modality correlations,
such as in visual-textual contrastive learning, where each modality provides intrinsic information to
enhance the contrastive task.

In contrast, the application of contrastive learning to unimodal sequential data has been less com-
mon, often requiring specialized features. For example, CodeRetrieverLi et al.| (2022)) employs a
similarity contrastive loss in code semantic spaces to capture nuances in code sequences. Other
contrastive methods, such as those used in sequential recommendationXie & Li| (2024) or text sum-
marizationXu et al.|(2022)), rely on distinct sequence representations and specific training techniques
to enhance contrastive performance in these domains.

In the time series domain, numerous works have focused on improving representation learning
through contrastive pre-training. TS2VedYue et al.| (2022) introduced a universal framework for
learning time series representations at arbitrary semantic levels, emphasizing context view augmen-
tation and hierarchical contrastive learning. Subsequently, TF-CZhang et al.|(2022b) proposed a dif-
ferent contrastive approach by aligning time-based and frequency-based representations to achieve
improved representations. Building upon this, InfoTS applied principles from information theory to
prioritize high-fidelity and diverse representations, presenting a novel contrastive learning method.
Meanwhile, SoftCLSLee et al.| (2024)) introduced soft assignments for instance-wise and temporal
contrastive losses, capturing both inter-sample and intra-temporal relationships.

These methods primarily target enhanced representation learning of time series, resulting in strong
performance on classification tasks but limited applicability to forecasting tasks. In contrast, our
approach focuses on pre-training mamba models to capture the characteristics of recurrent noise
patterns within time series. Consequently, the pre-trained parameters can be directly applied to
downstream forecasting models, marking a significant point of distinction and novelty compared to
existing methods.

6 CONCLUSION

In this paper, we propose a novel training paradigm called Repititive Contrastive Learning (RCL)
for Mamba-based models in time series tasks. The sequence selection ability of mamba block was
enhanced by sequence repetition and intra-sequence and inter-sequence comparison. We conducted
extensive experiments to demonstrate the efficacy of the Mamba block within the broader Mamba
architecture. Our results highlight the capability of our approach in capturing the key characteristics
inherent to time series data. To further substantiate our findings, we applied the method across
various Mamba-based models, consistently observing significant improvements in generalization.
Additionally, we evaluated resource consumption and found our method does not create additional
memory burden, and the time consumption only increases linearly. Future work will aim to refine
noise addition techniques and reduce training overhead to further enhance task performance.
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Appendix

A  BASIC INFORMATION

Al

MAMBA-BASED BASELINE

* Mamba Gu & Dao (2024): Mamba is a new Selective State Spaces model proposed by
Albert Gu and Tri Dao in 2024. It demonstrates outstanding performance in sequence
modeling through its selective state space formulation, effectively capturing long-range
dependencies while maintaining computational efficiency.

e iMamba: An enhancement of Mamba, iMamba builds upon the principles of the iTrans-
former, where features are treated as tokens. This model is tailored specifically for time
series forecasting tasks, offering improved flexibility in feature tokenization.

* TimeMachine /Ahamed & Cheng|(2024): TimeMachine, introduced by Md Atik Ahamed
and Qiang Cheng in 2024, is designed for long-term sequence forecasting. By integrating
channel-independent and channel-mixed modeling approaches, it achieves state-of-the-art
performance. The architecture incorporates four Mamba blocks, optimizing predictive ca-
pability over extended sequences.

e Bi-Mamba Liang et al.| (2024): Proposed in 2024, Bi-Mamba extends the Mamba frame-
work by adaptively capturing both internal and inter-series dependencies in multivariate
time series data. The model introduces forget gates, enabling it to retain relevant historical
information over extended time periods, thereby enhancing its forecasting accuracy.

A.2 DATASET

Frequency, number of features, adn time point information of the datasets.

Dataset Frequency | Features | Time Points Split

ETThl Hour 7 17420 60%/20%/20%

ETTh2 Hour 7 17420 60%/20%/20%

ETTml 15 Minutes 7 69680 60%/20%/20%

ETTm2 | 15 Minutes 7 69680 60%/20%/20%

Traffic Hour 862 17544 60%/20%/20%
Electricity Hour 321 26304 60%/20%/20%

A.3 METRIC

Mean Absolute Error (MAE):

I _
MAE = 5Z|yz — G
i=1

Mean Squared Error (MSE):

1 — 5
MSE = — i — Ui
nE (yi — 9i)

i=1

A.4 MODEL SETTINGS

The parameter settings for the Mamba block during pre-training are as follows: The model dimen-
sion (d,,odel) is set to values [16, 32, 64], and the state dimension (dtate) is set to [16, 64, 128].
The convolution dimension (d.onv) is fixed at 4, and pad,ocabsize,,ultiple is set to 8 to ensure
consistent padding sizes. The expansion factor (expand) is configured to 2, with convyias enabled
(set to True) and bias disabled (set to False). The repeat time, denoted as n, is set to 3, while noise
variance is varied between [0.001, 0.01]. During the inference phase, the Mamba Selective State
Space Model (SSM) parameters are aligned with the corresponding pre-trained block parameters to
maintain consistency and leverage learned patterns effectively.
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A.5 TRAINING SETTINGS

The experiment was conducted on a server equipped with four NVIDIA GeForce RTX 3090 GPUs
and an AMD EPYC 7282 16-Core Processor. During the pre-training phase, the number of layers
(njayer) is set to 1, the number of epochs (epoch) is 100, the learning rate (Ir) is configured to
le-4, and the regularization coefficient is also set to le-4. In the inference stage, the maximum
number of training epochs remains at 100, while n;ayer is increased to 4. The Mean Absolute Error
(MAE) serves as the loss function, and model selection is based on the lowest validation set loss.
The parameter frozentype is chosen as needed from the options [None, FrozenA], and the number
of layers used for parameter replacement is selected from [25%, 50%, 75%, 100%], according to
the specific experimental requirements. For the prediction length, we selected four different lengths:
[96, 192, 336, 720] and conducted a series of experiments. However, all results tables presented in
our paper, unless otherwise specified, use a prediction length of 96. This length was chosen because
it effectively illustrates the corresponding conclusions and provides a clear basis for our findings.

B VISUALIZATION

B.1 VISUALIZATION OF EMBEDDING IN AUGMENTATION SEQUENCE

To visually demonstrate the impact of our contrastive learning methods, we plotted the value of
consine simularity between embedding vectors of the same input sequence from ETTm]1 dataset
by heatmap for identical Mamba blocks—one trained without contrastive pre-
training and the other with it. The resulting variations in distribution highlight the influence of our
pre-training objectives, which enhance the model’s ability to selectively focus on relevant features.
The images show the differences in the embedding space (Figure [) and the refined distribution
achieved through contrastive learning (Figure 3).

It can be seen that the mamba model without RCL cannot effectively distinguish between invalid
noise and valid time steps, and cannot make an effective choice of time series. Meanwhile, the orig-
inal mamba cannot pull apart the difference between different time steps and keeps high correlation,
which indicates that the new time step information fails to introduce the coding effectively, but only
perturbs the coding. Mamba with RCL can effectively pull apart the difference between valid time
steps and filter the effect of noise, which can mitigate the effect of the long series and introduce
more valid information, thus better modeling the whole sequence.

Cosine Similarity Distance Matrix Cosine Similarity Distance Matrix

0123456 78 91011121314151617 18 19 20 21 22 23

0123456 78 91011121314151617 1819 20 2122 23

Figure 3: Visualization of model results after contrastive pre-training: the left image shows results
on repeated sequences, while the right image shows results on original sequences.

15



Under review as a conference paper at ICLR 2025

Cosine Similarity Distance Matrix Cosine Similarity Distance Matrix
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Figure 4: Visualization of model results from non-pretrained models.

UMAP Visualization of Contrastive Learning
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Figure 5: UMAP reduction results. Anchor points are randomly selected, and all other points are
related to the anchor.

B.2 VISUALIZATION OF CLUSTERING OF POSITIVE AND NEGATIVE CASES

We also visualized the detailed distribution of vectors using the UMAP technique for dimensional-
ity reduction, where the original dimensionality of the embedding vectors is 32. UMAP is based
on a theoretical framework rooted in Riemannian geometry and algebraic topology, resulting in a
scalable and practical algorithm suitable for contrastive learning datdMcInnes et al.| (2020). In the
visualizations (Figure[3)), we randomly selected embedding vectors from input sequences and plotted
the corresponding vectors for both positive and negative pairs in our method.

From the results of clustering, the model can effectively distinguish between positive and negative
examples, clustering positive examples near the anchor and retreating negative examples farther
away. The significance of the distinction can be seen through the clustering results. This shows that
our method can better recognize valid and invalid time steps, and possesses stronger differentiation
and selection ability.
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C COMPARISON

C.1 COMPARISON WITH TEMPORAL MODEL

We compared our approach with existing state-of-the-art time series prediction models, as shown in
Table [6l TimeMachine* and Bi-Mamba* refer to the TimeMachine and Bi-Mamba models initial-
ized with parameters obtained using RCL. We set all input lengths to 96 and conducted experiments
across multiple prediction horizons T = {96, 192, 336, 720}. Our method achieves optimal results
across various datasets and prediction horizons. For datasets with fewer data channels, our approach
consistently achieves the best Mean Absolute Error (MAE) results across all prediction horizons,
and Mean Squared Error (MSE) results are generally among the top two. For datasets with more
channels, such as traffic and electricity, our method shows more significant improvements for longer
prediction targets. This indicates enhanced stability in long-sequence predictions, attributed to the
parameters obtained through RCL, which enable the Mamba block to have stronger selectivity for
time series data.

Model | Ti | Bi-Mamba* | Bi-Mamba | iTransformer | TimeMixer | CrossFormer | PatchTST | TimesNet | FEDFormer | Informer
Metric MAE  MSE s MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE
96 | 0387 0379 | 03 . X 0379 [ 0395 0381 | 0.405 0386 | 0.400 0375 | 0448 0.423 [ 0419 0.414 [ 0402 0384 [ 0419 0376 | 0713 0.865

0425 | 0428 0427 | 0436 0441 | 0.421 0429 | 0474 0471 | 0.445 0.460 | 0429 0.436 | 0.448 0.420 | 0.792 1.008

192 | 0420  0.440
0.482 0.481 | 0.459 0.484 | 0458 0487 | 0.458 0484 | 0.546 0.570 | 0.466 0.501 | 0.469 0.491 | 0.465 0.459 | 0.809 1.107

ETThL | 336 | 0.442

720 | 0.466  0.488 0.496 | 0.496 0516 | 0491  0.503 | 0.482 0.498 | 0.621 0.653 | 0.488 0.500 | 0.500 0.521 | 0.507 0.506 | 0.865 1.181
96 | 0330  0.282 0.300 | 0.349 0.307 | 0.349 0.297 | 0.341  0.289 | 0.584 0.745 | 0.348 0.302 | 0.374 0.340 | 0.397 0358 | 1.525 3.755
192 | 0.382  0.355 0373 | 0.398 0.377 | 0.400 0.380 | 0.392 0.372 | 0.656 0.877 | 0.400 0.388 | 0.414 0.402 | 0.439 0.429 | 1.931 5.602
ETTh2 336 | 0420 0412 0.434 | 0434 0435 | 0432 0428 | 0.414 0.386 | 0.731 1.043 | 0433 0426 | 0.452 0452 | 0487 0.496 | 1.835 4.721
720 | 0430  0.412 0.731 | 0597 0.715 | 0.445 0427 | 0434 0412 | 0.763 1.104 | 0.446 0.431 | 0.468 0.462 | 0.474 0.463 | 1.625 3.647
96 | 0.346  0.318 0332 | 0364 0.332 | 0368 0.334 | 0357 0.320 | 0.426 0.404 | 0.367 0.329 | 0.375 0.338 | 0.419 0379 | 0.571 0.672
192 | 0.377 0.375 0.369 | 0.389 0.378 | 0.391 0.377 | 0.381 0.361 | 0.451 0.450 | 0.385 0.367 | 0.387 0.374 | 0.441 0.426 | 0.669 0.795

ETTml 336 | 0.387  0.39
720 | 0.429 0.4

1173 .175 . 0.186 | 0270 0.188 | 0.264  0.180 | 0.258 0.175 | 0.366 0.287 | 0.259 0.175 | 0.267 0.187 | 0.287 0.203 | 0453  0.365

0.404 | 0412 0405 | 0.420 0426 | 0.404 0.390 | 0.515 0.532 | 0.410 0.399 | 0.411 0.410 | 0.459 0.445 | 0.871 1.212
0.458 | 0452 0466 | 0.459 0491 | 0.441 0.454 | 0.589 0.666 | 0.439 0.454 | 0.450 0.478 | 0.490 0.543 | 0.823 1.166

96 | 0251 0.
192 [ 0293  0.238 . .23 313 0254 | 0315 0257 | 0.309 0250 | 0.299 0.237 | 0492 0414 | 0.302 0.241 | 0.309 0.249 | 0328 0269 | 0.563 0.533
ETTm2 | 336 | 0333 0.9 .33 .3 0.316 | 0.387 0.392 | 0.348 0311 | 0340 0.298 | 0.542 0.597 | 0.343  0.305 | 0.351 0.321 | 0.366 0.325 | 0.887 1.363
720 | 0.392 0.40: .3 . 1413 0404 | 0430 0429 | 0407 0412 | 0396 0391 | 1.042 1.730 | 0.400 0.402 | 0.403 0.408 | 0.415 0421 | 1.338 3.379
96 | 0299  0.484 3 . . 0.579 | 0279 0.587 | 0.268 0.395 | 0.285 0.462 | 0.290 0.522 | 0.359 0.544 | 0.321 0.593 | 0.366 0.587 | 0.368 0.274
) 19210273 0.412 ¥ . . 0.625 | 0.306 0.630 | 0.276  0.417 | 0296 0.473 | 0.293 0.530 | 0.354 0.540 | 0.336  0.617 | 0.373 0.604 | 0.386 0.296
Traffic 336 | 0.279  0.429 ¥ 33 .3 0.666 | 0.307 0.659 | 0.283 0.433 | 0296 0.498 | 0.305 0.558 | 0.358 0.551 | 0.336  0.629 | 0.383 0.621 | 0.394 0.300
720 | 0.298  0.459 .3 67 .33 0.689 | 0.338 0.702 | 0.302 0.467 | 0313 0.506 | 0.328 0.589 | 0.375 0.586 | 0.350 0.640 | 0.382 0.626 | 0.439 0.373
96 | 0259  0.183 . . . 0.182 | 0263 0.185 | 0.240  0.148 | 0.247 0.153 | 0.314 0219 | 0.285 0.195 | 0.272 0.168 | 0.308 0.193 | 0.391 0.719
L 192 | 0.246  0.152 . . 0.188 | 0272 0.191 | 0253  0.162 | 0.256 0.166 | 0.322 0.231 | 0.289 0.199 | 0.289 0.184 | 0.315 0.201 | 0.379 0.696
Electricity | 336 | 0.261  0.169 . . 0.200 | 0290 0.212 | 0269 0.178 | 0.277 0.185 | 0.337 0.246 | 0.305 0.215 | 0.300 0.198 | 0.329 0.214 | 0.420 0.777
720 | 0.295  0.201 . . 0.255 | 0.323 0.259 | 0317 0.225 | 0310 0.225 | 0.363 0.280 | 0.337 0.256 | 0.320 0.220 | 0.355 0.246 | 0.472 0.864

Table 6: Comparison results with temporal model. Bolded numbers indicate optimal results and
underscores indicate sub-optimal results.

C.2 COMPARISON WITH PRE-TRAINING METHODS

Model | TimeMachine* | Bi-Mamba* | Mamba* | iMamba* | InfoTS(TS2Vec) | SoftCLS(TS2Vec) | SoftCLS(Mamba) | InfoTS(Mamba)
Metric | MAE MSE | MAE MSE | MAE MSE | MAE MSE |[MAE MSE |MAE MSE |MAE MSE |MAE MSE

96 | 0.387 0379 | 0389 0379 | 0.575 0.657 | 0.499 0.493 | 0.623  0.736 | 0.616 0.704 0.696 0.891 0816  1.147
ETThl 192 | 0.420 0440 | 0421 0425 | 0.602 0.713 | 0.508 0.532 | 0.690  0.857 | 0.670 0.810 0.737 0.959 0.835  1.186
336 | 0.442 0482 | 0456 0.481 | 0.608 0.715 | 0.513 0.550 | 0.769  1.024 | 0.740 0.950 0.640 1.064 0.861 1.231

96 | 0.330 0.282 | 0.347 0.300 | 1.228 2.124 | 0.693 0.908 | 0.754  0.936 | 0.799 1.015 0.997 1.542 0.897  1.219
ETTh2 192 | 0.382 0355 | 0.394 0373 | 1.237 2.164 | 1.023 1.821 | 1.112 2,022 | 1.251 2.559 1.343 2.820 1.251  2.506
336 | 0420 0412 | 0429 0434 | 1234 2.153 | 1.073 2.042 | 1.264 2482 | 1.312 2.639 1.402 2.952 1327 2.733

96 | 0.346 0318 | 0.358 0.332 | 0.492 0.528 | 0.432 0.400 | 0.540  0.602 | 0.534 0.581 0.623 0.808 0.741  0.985
ETTml 192 | 0.377 0375 | 0.384 0.369 | 0.513 0.587 | 0.450 0.439 | 0.575  0.649 | 0.569 0.635 0.654 0.849 0.756  1.014
336 | 0.387 0.396 | 0407 0404 | 0.817 1.457 | 0491 0.509 | 0.622  0.729 | 0.610 0.697 0.681 0.885 0.770  1.040

96 | 0251 0.173 | 0271  0.186 | 0.576 0.601 | 0.416 0.367 | 0.452  0.377 | 0.460 0.400 0.491 0.437 0.782  0.969
ETTm2 192 | 0293 0238 | 0313 0.254 | 0.667 0.847 | 0.497 0.495 | 0.560  0.542 | 0.580 0.587 0.591 0.590 0.857  1.152
336 | 0333 0.299 | 0364 0316 | 0.705 0.922 | 0.793 1.032 | 0.713  0.846 | 0.730 0.885 0.730 0.855 0.969  1.461

96 | 0259  0.183 | 0261 0.182 | 0.423 0.393 | 0.260 0.183 | 0.290  0.380 | 0.401 0.326 0.553 0.571 0.531  0.524
192 | 0.246  0.152 | 0270 0.188 | 0.430 0.405 | 0.280 0.205 | 0.293  0.383 | 0.403 0.327 0.555 0.573 0532 0.524
336 | 0.261  0.169 | 0.283  0.200 | 0.435 0.411 | 0298 0.222 | 0.311  0.396 | 0.416 0.344 0.565 0.581 0.540  0.538

Electricity

Table 7: Comparison results with pre-training methods. Bolded names with an asterisk indicate
models using our pre-training methods. Parentheses following InfoTS and SoftCLS denote the
backbone models utilized during pre-training. The best results for each metric are highlighted in
bold.

We conducted a series of experiments on the latest pre-training methods in the time series domain
Luo et al.| (2023); |[Lee et al.| (2024). The results, presented in Table [/, were derived from models
trained using official code on multivariate forecasting tasks. Two important aspects warrant atten-
tion. First, both methods are designed to enhance the representation learning of time series features
through contrastive pre-training, heavily relying on the capabilities of feature extraction modules.
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Specifically, their experiments utilized the TSEncoder from woTS2VecYue et al.|(2022) or TC from
CATCCEIldele et al.[(2023) as feature extractors. These models are structurally distinct from mamba-
based models, leading to a decline in performance when feature extraction is adapted to mamba
models. Second, these approaches primarily benefit classification tasks due to their ability to accu-
rately and effectively represent time series nodes, which aids classification but demonstrates limited
improvements in forecasting tasks especially in multivariate tasks. Consequently, during their pre-
diction stages, they use feature vectors from pre-training train a linear model to predict future values
instead of leveraging pre-trained modules to construct new models. In contrast, our pre-training ap-
proach guides mamba blocks to learn sampling rules inherent in natural time sequences and identify
meaningful historical information. This aligns with the requirements of forecasting tasks, allowing
us to directly leverage parameters in forecasting models for superior results.

C.3 ABLATION

| ETThl |  ETTh2
| MAE  MSE | MAE MSE

w/o intra-sequence contrast | 0.636  0.743 | 1.351  2.659
w/o inter-sequence contrast | 0.622  0.710 | 1.296 2.421
w/o noise 0.655 0.767 | 1.401 2.844

our approach 0.597 0.654 | 1.154 2.051

Table 8: Ablation results for our contrastive method settings, highlighting the effects of intra-
sequence, inter-sequence, and noise augmentation components, which correspond to the three key
parts of our model design.

\ ETThl \ ETTh2
\ MAE MSE \ MAE MSE
RCL w uniform noise 0.601 0.664 | 1.158 2.060

RCL w constant-intensity Gaussian noise | 0.600 0.660 | 1.155 2.059
RCL w increasing-intensity Gaussian noise | 0.597  0.654 | 1.154  2.051

Table 9: Ablation study on the design of increasing-intensity Gaussian noise. We conducted a series
of explorations examining different noise formats and their impact.

We conducted two ablation experiments to evaluate our proposed RCL method. All ablation ex-
periments used a 4-layer Mamba as the baseline model. In the first ablation experiment, as shown
in Table 8] we separately removed intra-sequence contrast, inter-sequence contrast, and noise. Re-
moving intra-sequence contrast significantly reduced prediction performance because this contrast
enhances the Mamba block’s ability to select time steps and denoise. Without it, the model’s ability
to select time steps diminishes. Similarly, removing inter-sequence contrast also led to performance
loss, as repeated time sequences can disrupt temporal consistency. The purpose of inter-sequence
contrast is to maintain consistency with the temporal features of the original sequence. Without it,
RCL cannot learn temporal features in broken sequences. The most significant performance drop
occurred when noise was removed. Without added noise, repeated time steps are indistinguishable
from the original ones, reducing task difficulty and failing to enhance the Mamba block’s ability to
resist noise and select time steps.

In the second ablation experiment, as shown in Table[9] we compared the effects of different types of
noise on performance. Specifically, we compared uniform noise, constant-intensity Gaussian noise,
and increasing-intensity Gaussian noise used in RCL. All three types of noise yielded good results,
with uniform noise performing slightly worse than constant-intensity Gaussian noise, and constant-
intensity Gaussian noise performing slightly worse than increasing-intensity Gaussian noise. The
increasing-intensity Gaussian noise further accentuates differences between repeated time steps,
increasing the difficulty of distinguishing effective information from noise, thereby enhancing pre-
training performance.
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C.4 DETAIL COMPARISON OF IMPROVEMENTS

\ ETThl | ETTh2 | ETTml | ETTm2 | Traffic | Electricity
| MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE  MSE
wio | 06546 07672 | 14013 28442 | 05053 05432 | 05763  0.6008 | 04939 1.0279 | 04205 03863

96 w 0.5974 0.6542 1.1536 2.0506 0.4798 0.4946 0.5646 0.5677 | 0.4604 0.9076 | 0.4168  0.3879

up-rate% | 8.7382 14.729 17.676 27.902 5.0465 8.9470 2.0302 55093 | 6.7827 11.704 | 0.8799 -0.4142

wlo 0.6298 0.7115 1.2371 2.1642 0.5126 0.5866 0.6670 0.8471 0.5617  1.1962 | 0.4298  0.4053

192 w 0.6021 0.7127 1.0509 1.9490 0.4970 0.5524 0.5655 0.5573 | 0.5610  1.1877 | 0.4288  0.4130

up-rate% | 43982  -0.1687 | 15.0513  9.9436 3.0433 5.8302 | 15.2174  34.2108 | 0.1246  0.7106 | 0.2327 -1.8998

Mamba wlo 0.6383 0.7210 1.2341 2.1528 0.8172 1.4569 0.7052 0.9220 | 0.6025  1.3079 | 0.4354  0.4108
336 w 0.6084 0.7145 1.0497 1.9485 0.8008 1.4479 0.6270 0.6842 | 0.5848  1.2560 | 0.4324  0.4176

up-rate% | 4.6843 0.9015 | 14.9421  9.4900 2.0069 0.6178 | 11.0891 25.7918 | 2.9378 3.9682 | 0.6890 -1.6553
wlo 0.6776 0.7727 1.2206 2.1005 0.8235 1.4557 0.7374 0.9942 | 0.4893 1.0108 | 0.4529  0.4326

720 w 0.6461 0.7556 1.0541 1.9537 0.8142 1.4588 0.6682 0.7811 0.4645 09189 | 0.4447  0.4320

up-rate% | 4.6488 2.2130 | 13.6408  6.9888 1.1293 -0.2130 | 9.3843  21.4343 | 5.0685 9.0918 | 1.8106  0.1387

wlo 0.4987 0.4928 0.6926 0.9084 0.4316 0.3998 0.4160 0.3666 | 0.3234  0.6538 | 0.2627  0.1857

96 w 0.4472 0.4278 0.6833 0.8595 0.3970 0.3669 0.3304 0.2469 | 0.2913  0.6003 | 0.2597  0.1827

up-rate% | 10.3268  13.1899 | 1.3428 5.3831 8.0167 8.2291 | 20.5769  32.6514 | 9.9258  8.1829 | 1.1420  1.6155

wlo 0.5075 0.5320 1.0228 1.8207 0.4500 0.4390 0.4973 0.4949 | 03129  0.6354 | 0.2801  0.2047

192 w 0.4871 0.5143 0.9430 1.5825 0.4356 0.4174 0.4763 0.4557 | 03091 0.6335 | 02788  0.2025

up-rate% | 4.0197 3.3271 7.8021  13.0829 | 3.2000 4.9203 4.2228 7.9208 | 1.2144  0.2990 | 0.4641  1.0747

iMamba wlo 0.5125 0.5498 1.0727 2.0417 0.4909 0.5085 0.7932 1.0322 | 0.3233  0.6605 | 0.2987  0.2238
336 w 0.4750 0.4992 0.9913 1.7052 0.4677 0.4998 0.5854 0.6272 | 03216  0.6645 | 0.2975  0.2222

up-rate% | 7.3171 9.2033 7.5883  16.4814 | 4.7260 1.7109 | 26.1977  39.2366 | 0.5258 -0.6056 | 0.4017  0.7149

wlo 0.5418 0.5818 1.0534 1.8199 0.6238 0.7306 1.0698 2.0298 | 03486  0.7105 | 0.3342  0.2683
720 w 0.5391 0.5640 1.0172 1.7220 0.5120 0.5534 0.9936 1.5644 | 0.3475 0.7172 | 03323  0.2627
up-rate% | 0.4983 3.0595 3.4365 53794 | 17.9224 24.2540 | 7.1228  22.9284 | 03155 -0.9430 | 0.5685  2.0872

wlo 0.3905 0.3833 0.3344 0.2911 0.3606 0.3342 0.2525 0.1746 | 03064 0.4983 | 0.2611  0.1872
96 w 0.3869 0.3787 0.3298 0.2822 0.3458 0.3179 0.2508 0.1731 02991  0.4844 | 0.2586  0.1826
up-rate% | 0.9219 1.2001 1.3756 3.0574 4.1043 4.8773 0.6733 0.8591 23825  2.7895 | 0.9575  2.4573

wlo 0.4225 0.4401 0.3851 0.3685 0.3785 0.3787 0.2941 0.2381 0.2740  0.4170 | 0.2500  0.1580
192 w 0.4202 0.4399 0.3821 0.3551 0.3770 0.3750 0.2930 0.2381 02732 04115 | 02460  0.1520
up-rate% | 0.5444 0.0454 0.7790 3.6364 0.3963 0.9770 0.3740 0.0000 | 0.2920 1.3189 | 1.6000  3.7975

wlo 0.4458 0.4902 0.4281 0.4206 0.3937 0.4010 0.3371 0.3066 | 0.2810  0.4330 | 0.2680  0.1720
336 w 0.4419 0.4824 0.4201 0.4119 0.3867 0.3956 0.3327 02991 | 02790  0.4290 | 0.2610  0.1690
up-rate% | 0.8748 1.5912 1.8687 2.0685 1.7780 1.3466 1.3053 2.4462 | 0.7117  0.9238 | 2.6119  1.7442

wlo 0.4702 0.4959 0.4386 0.4243 0.4310 0.4670 0.3940 0.4073 | 0.3000 0.4670 | 0.2980  0.2070
720 w 0.4656 0.4883 0.4295 0.4119 0.4291 0.4552 0.3920 0.4018 | 0.2980  0.4590 | 0.2950  0.2010
up-rate% | 0.9783 1.5326 2.0748 2.9225 0.4408 2.5268 0.5076 1.3504 | 0.6667 1.7131 | 1.0067  2.8986

wlo 0.3948 0.3813 0.3443 0.2937 0.3641 0.3319 0.2704 0.1883 | 0.2786  0.587 | 0.2629 0.185
96 w 0.3893 0.3794 0.3462 0.2955 0.3578 0.3316 0.2707 0.1857 | 0.2761 0.5787 | 0.2611  0.1818
up-rate% | 1.3931 0.4983 1.7303 0.0904 0.9829 1.2814 -0.1109  1.3808 | 0.8973 1.4140 | 0.6847  1.7280

wlo 0.4280 0.4270 0.3977 0.3772 0.3894 0.3780 0.3145 0.2572 | 0.3057  0.6301 | 0.2715  0.1914

TimeMachine

192 w 0.4210 0.4250 0.3935 0.3733 0.3840 0.3692 0.3131 0.2544 | 0.3081  0.6250 | 0.2698  0.1881

up-rate% | 1.6355 0.4684 1.0561 1.0339 1.3867 2.3280 0.4452 1.0886 | -0.7851 0.8094 | 0.6262  1.7241

Bi-Mamba wlo 0.4593 0.4838 0.4340 0.4354 0.4119 0.4045 0.3871 0.3915 | 0.3068 0.6585 | 0.2896  0.2117
336 0.4563 0.4805 0.4286 0.4344 0.4069 0.4036 0.3644 0.3158 | 0.3107  0.6659 | 0.2831  0.1999

w
up-rate% | 0.6532 0.6821 1.2442 0.2297 1.2139 0.2225 5.8641 19.3359 | -1.2712  -1.1238 | 2.2445  5.5739

wlo 0.4963 0.5164 0.5970 0.7150 0.4517 0.4659 0.4300 0.4292 | 03384 0.7015 | 0.3228  0.2591
720 w 0.4960 0.4962 0.6020 0.7310 0.4413 0.4579 0.4131 0.4044 | 03364 0.6894 | 03174  0.2547
up-rate% | 0.0604 3.9117 -0.8375  -2.2378 | 2.3024 1.7171 3.9302 57782 | 0.5910 1.7249 | 1.6729  1.6982

Table 10: Detail Comparison of performance improvement by replacing parameters obtained by
RCL. w/o denotes no parameter replacement, w denotes parameter replacement, and up-rate repre-
sents the improvement rate.

To demonstrate that pre-training Mamba blocks with RCL can effectively enhance the temporal
prediction capabilities of Mamba-based models, we present the performance improvements of four
Mamba-based models after using pre-trained parameters. We conducted extensive testing on six
datasets, each with an input length of 96 and prediction lengths of {96,192, 336, 720}. To clearly
illustrate the performance improvements, we provide the percentage increase in MSE and MAE
when using pre-trained parameters compared to not using them, as shown by the up-rate in Table
L0}

The results indicate that, for the vast majority of datasets and prediction lengths, the parameters
obtained through our method enhance the predictive performance of Mamba-based models, demon-
strating that our approach is generally effective. By pre-training a Mamba block and using the
pre-trained parameters to initialize all mamba blocks in Mamba-based model, the original model’s
temporal prediction performance can be significantly improved.

D DEMONSTRATED ENHANCED SELECTIVITY

We demonstrate that our proposed RCL effectively enhances the time step selection capability of
the Mamba block by visualizing the Hidden state and Delta corresponding to the input time series
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Input Time Series

Value

Time step

Hidden state (with RCL)

0 2 4 6 810121416182022242628303234363840424446485052545658606264666870727476788082848588909294

Hidden state (without RCL)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94

0

Delta (with RCL)

2 4 6 E10121415182022242628303234363540424446485052545558606264566870727476798082348538909294

Delta (without RCL)

O 2 4 6 S10121416182022242628303234363540424446485052545658605264666570727476783082348688909294

Figure 6: Visualizing the Hidden state and Delta corresponding to the input time series

of the Mamba block. The visualization results are shown in Figure[6] According to the principles of
SSM, the Hidden state can be represented in a form similar to a recurrent neural network:

H; .1 = AH; + BX;1 (10

The matrix A determines how historical temporal information is retained. In the Mamba block,
the matrix A is determined by a fixed matrix A and A, where A influences part of the historical
information selection, and A influences another part. The visualization results indicate that without
initializing with RCL parameters, the Hidden state is almost directly proportional to the input, and
A is similarly proportional to the input. This suggests that directly training the Mamba block does
not effectively retain historical information; the matrix A nearly forgets all historical information,
retaining only the current information as the hidden state.

In contrast, when training with initialized parameters, the Hidden state exhibits more complex rep-
resentations, and A shows a more intricate temporal pattern. This indicates that the model learns
complex interdependencies between time steps. The matrix A learned by RCL demonstrates differ-
ent memory and forgetting patterns for historical information across various time steps. It retains
more of the input at critical time steps while preserving more historical information at non-critical
time steps, thereby significantly enhancing the Mamba block’s ability to select relevant information
from time series data.
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