

000 001 002 003 004 005 LIGHTAGENT: LIGHTWEIGHT AND COST-EFFICIENT 006 MOBILE AGENTS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 τ With the advancement of multimodal large language models (MLLMs), building
029 GUI agent systems has become an increasingly promising direction—especially
030 for mobile platforms, given their rich app ecosystems and intuitive touch inter-
031 actions. Yet mobile GUI agents face a critical dilemma: truly on-device mod-
032 els (4B or smaller) lack sufficient performance, while capable models (starting
033 from 7B) are either too large for mobile deployment or prohibitively costly (*e.g.*,
034 cloud-only closed-source MLLMs). To resolve this, we propose LightAgent, a
035 mobile GUI agent system that leverages device-cloud collaboration to tap the
036 cost-efficiency of on-device models and the high capability of cloud models,
037 while avoiding their drawbacks. Specifically, LightAgent enhances Qwen2.5-
038 VL-3B via two-stage SFT \rightarrow GRPO training on synthetic GUI data for strong
039 decision-making, integrates an efficient long-reasoning mechanism to utilize
040 historical interactions under tight resources, and defaults to on-device execu-
041 tion—only escalating challenging subtasks to the cloud via real-time complex-
042 ity assessment. Experiments on the online AndroidLab benchmark and diverse
043 apps show LightAgent matches or nears larger models, with a significant reduc-
044 tion in cloud costs. We have made our LightAgent available anonymously at:
045 <https://anonymous.4open.science/r/LightAgent-E2D5/>.
046
047

048 1 INTRODUCTION

049 The growing capability of multimodal large language models (MLLMs) enables AI agents to perceive
050 and act within visual environments, particularly through Graphical User Interfaces (GUIs) (Wu et al.,
051 2024b; Qi et al., 2024). Mobile platforms offer a promising domain for this technology for two
052 reasons: first, their vast app ecosystems provide a realistic and diverse testbed, and second, their
053 touchscreen interactions are limited to an intuitive set of primitives, resulting in a compact action
054 space. Despite these advantages, mobile platforms introduce distinct challenges, chiefly severe
055 computational and memory limitations. In light of these factors, our goal is to develop an effective
056 mobile GUI agent, viewing it as a practical milestone toward general-purpose AI.

057 Current research falls broadly into two groups. The first involves targeted training of open-source
058 MLLMs specifically for GUI-related tasks (Qin et al., 2025; Dai et al., 2025; Liu et al., 2024).
059 These models are relatively compact in size and have achieved notable progress; for instance, UI-
060 Tars-7B (Qin et al., 2025) outperforms the larger Qwen2.5-VL-32B (Bai et al., 2025) on mobile
061 GUI tasks. The second approach leverages general-purpose closed-source MLLMs by constructing
062 multi-agent systems and designing well-structured execution pipelines. Thanks to the powerful
063 multimodal comprehension capabilities of state-of-the-art (SOTA) closed-source MLLMs—such as
064 GPT-5 (OpenAI, 2025), Claude-Sonnet-4 (Anthropic, 2025), and Gemini-2.5-Pro (Comanici et al.,
065 2025)—their performance on mobile GUI tasks can even surpass that of models specifically trained
066 for such tasks. However, there is no free lunch. Although the performance of models like UI-Tars-7B
067 is impressive given their 7B scale, MLLMs of this size still impose a prohibitive computational burden
068 on contemporary smartphones (Laskaridis et al., 2024). A more practical 2B–3B scale, by contrast,
069 typically yields MLLMs with limited capabilities (Lin et al., 2025). On the other hand, multi-agent
070 systems based on advanced closed-source MLLMs are plagued by high costs. SOTA closed-source
071 MLLMs are often expensive, and spending several to dozens of dollars to complete a single mobile
072 task is financially impractical. The detailed discussion of related work is in Appendix A.2.

In response to the aforementioned challenges, two immediate questions arise: **Question 1:** For task-specific GUI models, can their size be further reduced to become truly on-device models capable of running on smartphones, while maintaining acceptable performance levels on GUI tasks? **Question 2:** For proprietary general-purpose large models, which are indispensable as cloud-based models due to their powerful capabilities, can their usage costs be further reduced?

To answer to the aforementioned questions, we propose a lightweight device-cloud collaborative mobile GUI agent framework—LightAgent. Specifically, for **Question 1**, based on a lightweight open-source MLLM (*i.e.*, Qwen2.5-VL-3B), we employ a synthetic data generation pipeline and conduct two-stage training comprising supervised fine-tuning (SFT) and group relative policy optimization (GRPO), resulting in a compact yet powerful on-device GUI agent that achieves performance comparable to larger-scale models. Concurrently, we design an efficient long-reasoning GUI agent paradigm, which is capable of effectively processing historical operation information and endowing the agent with reasoning capabilities to further enhance its performance.

For **Question 2**, we observe that advanced general-purpose large models exhibit performance overkill on many simple GUI tasks—tasks that even small on-device models can handle competently. Moreover, for tasks that small models cannot fully complete, they often fall short only by a narrow margin. To this end, we devise a device-cloud collaboration paradigm that leverages the cost-efficiency of on-device models while compensating for their performance limitations through the powerful capabilities of cloud-based models, thereby identifying a sweet spot between performance and overhead. Through the task complexity assessment and a dynamic orchestration policy, our framework enables real-time monitoring of task execution progress and dynamic switching between on-device and cloud models as needed. Our main contributions can be summarized as follows:

- **Light-weight reasoning GUI agent.** We develop a lightweight on-device GUI agent by applying a two-stage training methodology to a compact MLLM, equipping it with efficient long-reasoning capabilities to contextualize historical interactions for effective decision-making. The resulting model achieves competitive performance with a minimal computational footprint, suitable for smartphone deployment.
- **Device-cloud collaborative agent system.** We propose a device-cloud collaborative agent system that dynamically orchestrates tasks between on-device and cloud models via real-time complexity assessment. This mechanism enables seamless switching to the cloud only when necessary, compensating for on-device limitations, achieving an optimal balance between high performance and significantly reduced operational costs.
- **Comprehensive Evaluation.** We evaluate LightAgent through online experiments on the Android-based AndroidLab benchmark, complemented by dozens of custom tasks across popular apps to assess real-world performance. Furthermore, we conduct extensive ablation studies and investigate the impact of different fine-tuning strategies on the lightweight MLLM’s capabilities.

2 METHODOLOGY

To effectively address mobile GUI agent tasks, we propose the LightAgent framework, which has three key modules. Section 2.1 covers strategies to mitigate compact MLLMs’ challenges in GUI tasks—limited capacity and constrained context length. Section 2.2 details a device-cloud collaborative agent system that dynamically schedules on-device and cloud models by task difficulty, balancing cloud resource consumption with GUI task completion rate. Section 2.3 outlines ways to fully leverage limited training data to maximize small MLLMs’ performance gains on GUI tasks.

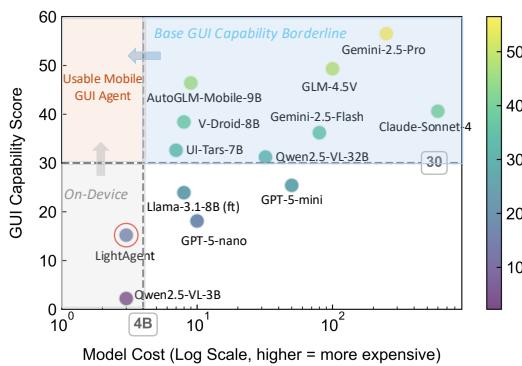


Figure 1: Model GUI Capability vs. Cost. Methods in the on-device (gray) region lack usable GUI capability, while basic-GUI-capability (blue) ones are too large for on-device deployment or too costly. Currently, there are no suitable approaches in the truly usable mobile GUI agent (orange) region. A promising research direction is combining gray and blue region methods, leveraging their complementary strengths to bridge the gap for practical on-device GUI agents.

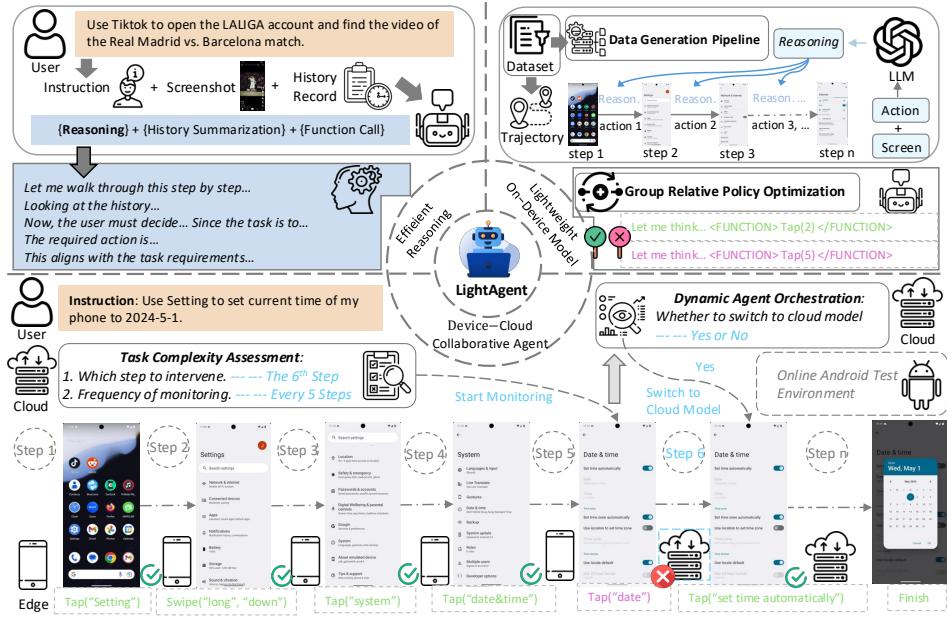


Figure 2: Overall framework of the proposed LightAgent.

2.1 EFFICIENT REASONING GUI AGENT

The on-device GUI agent faces two key challenges. First, mobile devices' limited computing power necessitates small-sized MLLMs (e.g., Qwen2.5-VL-3B (Bai et al., 2025)), which currently lack sufficient performance for mobile GUI tasks. To tackle this, LightAgent enhances the GUI agent with extended chain-of-thought (CoT) reasoning (Wei et al., 2022) during testing, using test-time scaling laws (Snell et al., 2024) to boost its capability. Second, limited on-device resources impede long-context handling: high-resolution GUI images take up much available context length, and managing the agent's execution history is challenging. To alleviate this, LightAgent uses an efficient text-based summarization scheme—compressing each step's state into compact textual representations—to support the agent's long historical context. The output format template is presented in Figure 3, and the detailed instruction template is provided in Appendix A.4.1.

2.1.1 LONG-HORIZON REASONING ENHANCEMENT

Mobile GUI tasks are often difficult and complex, and humans also use step-by-step reasoning for such operations. Motivated by the success of CoT reasoning and test-time scaling laws, it is natural to apply similar long-form reasoning enhancements to GUI agents.

Specifically, the GUI agent's reasoning—encompassing all factors for task completion—follows a multi-step process: First, it analyzes actionable elements on the current interface and, using historical data, assesses if prior actions met their goals. Next, it evaluates progress toward the user's task goal and identifies necessary follow-up actions. Lastly, it selects from available functions and their parameters to generate the final output. Notably, if historical data shows prior operations failed to yield expected results, the model proactively reflects and adjusts its approach—avoiding repeated errors and potential loops.

2.1.2 EFFICIENT MEMORY MANAGEMENT

On-device GUI agents also face the challenge of efficiently managing historical contextual information. For MLLMs in particular, high-resolution images (which preserve valuable details) require a

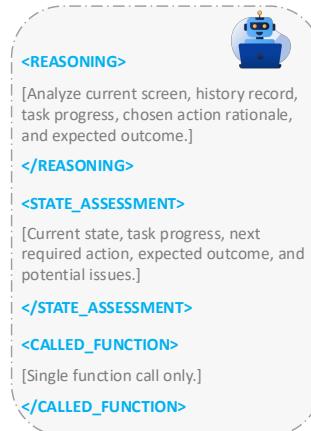


Figure 3: Output Template.

162 large number of tokens—making raw screenshot storage in history impractical. As a result, systems
 163 can only retain a limited number of recent images, leading to the loss of long-term historical data.
 164

165 To address this, LightAgent uses a textual summarization approach: at each step, it distills all
 166 information relevant to future actions. As shown in the `<STATE_ASSESSMENT>` field of Figure 3,
 167 these summaries include the current interface state, task progress, the agent’s inferred next action,
 168 expected post-action outcome, and potential issues. Much of this content comes from condensing
 169 the `<REASONING>` section—critical for effective stepwise reasoning, especially reflective error
 170 correction. Crucially, textual summaries use far fewer tokens than images, enabling long-term history
 171 retention (e.g., 10–20 steps) as contextual input, even in resource-constrained mobile environments.
 172

2.1.3 OVERALL PROCESS

173 Formally, the process is a sequential decision-making framework. At each time step $t \in \mathbb{N}_0$ (with
 174 $t = 0$ denoting the initial step) the agent receives a task instruction $\tau \in \mathcal{T}$ and observes a screen
 175 screenshot $s_t \in \mathcal{S}$. The history h_t belongs to $\mathcal{H} = \bigcup_{k=0}^{\infty} \mathcal{A}^k$, where $\mathcal{A}^0 = \{\epsilon\}$ and ϵ denotes the
 176 empty sequence. The history h_t is the sequence of previous state assessments $a_k \in \mathcal{A}$ for $k < t$; each
 177 assessment $a_t \in \mathcal{A}$ is a structured summary of the interface state, task progress, the next action, the
 178 expected outcome, and potential issues. When $t = 0$ we have $h_0 = \epsilon$ (no historical data).
 179

180 The reasoning function R maps the current history, the current observation, and the task instruction to
 181 a new assessment and a function to execute:

$$R : \mathcal{H} \times \mathcal{S} \times \mathcal{T} \rightarrow \mathcal{A} \times \mathcal{F}, \quad (1)$$

$$(a_t, f_t) = R(h_t, s_t, \tau), \quad a_t \in \mathcal{A}, f_t \in \mathcal{F}, \quad (2)$$

182 where \mathcal{F} is the space of executable functions. The history is then updated by concatenation:
 183

$$h_{t+1} = h_t \circ a_t, \quad (3)$$

184 with \circ denoting sequence concatenation and $h_0 = \epsilon$. The process repeats for $t = 0, 1, 2, \dots$ until
 185 the task is completed or a predefined termination condition is met. We report the action space of
 186 LightAgent in Appendix A.3.
 187

2.2 DEVICE-CLOUD COLLABORATIVE AGENT SYSTEM

188 Despite recent advances in small-scale MLLMs, their performance remains insufficient for handling
 189 complex GUI-based tasks. As illustrated in Figure 4, even the GUI model UI-Tars-7B—fine-
 190 tuned on a substantial amount of GUI task data—exhibits significantly poorer performance com-
 191 pared to larger cloud-based models. Furthermore, the performance of more deployment-viable
 192 3B-parameter models (e.g., Qwen2.5-VL-3B) falls well below a practically usable threshold.
 193

194 This limitation necessitates the incorporation of more pow-
 195 erful cloud-based LLMs (such as Gemini-2.5-Pro, GPT-5,
 196 or Claude-Sonnet-4) to achieve satisfactory task completion
 197 and user experience. However, frequent invocation of cloud
 198 models leads to high operational costs. A careful analysis of
 199 on-device model failures reveals that many tasks fail only at
 200 the final step. Motivated by this observation, we propose a
 201 collaborative device-cloud agent system that dynamically or-
 202 chestrates between local and cloud agents based on real-time
 203 task progress. This approach significantly reduces cloud
 204 invocations and associated costs while maintaining high task
 205 success rates.
 206

207 The system functions via an integrated workflow with two core components: a **task complexity**
 208 **assessment mechanism** (to decide when and how often to monitor agent performance) and a **dynamic**
 209 **orchestration policy** (to trigger agent switching when needed). The entire process is summarized in
 210 Algorithm 1, which merges these two components into a unified adaptive framework.
 211

2.2.1 COLLABORATIVE CONTROL FRAMEWORK

212 **Task Complexity Assessment.** Before task execution begins, LightAgent estimates the difficulty of
 213 the task using aggregated historical performance data of the on-device model. An assessment function

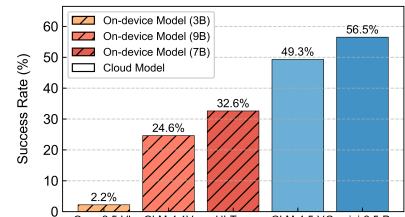


Figure 4: GUI Performance on [AndroidLab](#): On-Device Models vs. Cloud Models.

216 f_{assess} analyzes the task description and context to determine two key parameters: the step γ at which
 217 monitoring should begin, and the monitoring interval ω . This preemptive configuration allows the
 218 on-device agent to fully utilize its capability without premature—and costly—cloud intervention.
 219

220 **Dynamic Orchestration Policy.** During task execution, the system monitors the agent’s behavior
 221 once the step counter reaches γ and at every ω steps thereafter. A switching function $\mathcal{F}_{\text{switch}}$ evaluates
 222 the current GUI state and execution history—including previous actions, state transitions, and
 223 task progress—against three criteria: (1) presence of repetitive action patterns, (2) deviation from
 224 the expected task trajectory, or (3) inadequate action quality. If any criterion is met, the system
 225 switches the current agent from the on-device model $\mathcal{M}_{\text{device}}$ to the cloud model $\mathcal{M}_{\text{cloud}}$, and no
 226 further monitoring is performed. This mechanism minimizes unnecessary cloud calls while ensuring
 227 reliability through conditional fallback to a more capable cloud model.
 228

229 The instruction templates for these two components are reported in Appendices A.4.2 and A.4.3.
 230

231 2.2.2 INTEGRATED EXECUTION FLOW

232 The overall workflow of the device-cloud collaborative agent system is detailed in Algorithm 1. The
 233 algorithm begins by invoking $\mathcal{F}_{\text{assess}}$ to determine γ and ω . The execution loop uses the current agent
 234 $\mathcal{M}_{\text{current}}$ (initialized to $\mathcal{M}_{\text{device}}$) to perform the function f and update the assessment a and the history
 235 h . If the step condition is satisfied and switching has not yet occurred, $\mathcal{F}_{\text{switch}}(\cdot)$ is evaluated. Upon
 236 switching, the cloud agent takes over and continues until task completion. This approach ensures
 237 cost-efficient execution while maintaining robust performance.
 238

239 **Algorithm 1:** Adaptive Device-Cloud Agent Switching Algorithm

240 **Input:** Task τ , On-device agent $\mathcal{M}_{\text{device}}$, Cloud agent $\mathcal{M}_{\text{cloud}}$
 241 **Output:** State sequence $\{s_n\}$, History $\{h_n\}$

242 1 $(\gamma, \omega) \leftarrow \mathcal{F}_{\text{assess}}(\tau, \mathcal{M}_{\text{device}})$; // γ : monitoring start step, ω : monitoring
 243 frequency
 244 2 $t \leftarrow 0, \mathcal{M}_{\text{current}} \leftarrow \mathcal{M}_{\text{device}}, C_{\text{switched}} \leftarrow \text{false}, C_{\text{completed}} \leftarrow \text{false}, C_{\text{terminated}} \leftarrow \text{false};$
 245 3 **while** $\neg C_{\text{completed}} \wedge \neg C_{\text{terminated}}$ **do**
 246 4 **if** $\neg C_{\text{switched}} \wedge (t \geq \gamma) \wedge ((t - \gamma) \bmod \omega == 0)$ **then**
 247 **if** $\mathcal{F}_{\text{switch}}(a_t, f_t, h_t) == \text{True}$ **then**
 248 $\mathcal{M}_{\text{current}} \leftarrow \mathcal{M}_{\text{cloud}};$
 249 $C_{\text{switched}} \leftarrow \text{true};$
 250 **end**
 251 **end**
 252 10 $a_t, f_t \leftarrow \mathcal{M}_{\text{current}}(h_t, s_t, \tau);$ // Eq. 2
 253 11 $h_{t+1} \leftarrow h_t \circ a_t;$ // Eq. 3
 254 12 $t \leftarrow t + 1;$
 255 13 $\text{update}(C_{\text{completed}}, C_{\text{terminated}});$ // Update $C_{\text{completed}}$ and $C_{\text{terminated}}$ via environment
 256 **end**

257 2.3 LIGHTWEIGHT MLLM TUNING FOR ON-DEVICE AGENTS

258 Unlike existing GUI agent methods, we use a smaller MLLM (*i.e.*, Qwen2.5-VL-3B) to mitigate
 259 mobile resource constraints and boost practicality. However, fine-tuning such a compact MLLM
 260 for usable GUI agent performance poses notable challenges. Small MLLMs naturally have limited
 261 capabilities; to enhance their GUI manipulation ability, we leverage the test-time scaling law—via
 262 long-chain reasoning during inference—to improve performance, as detailed in Section 2.1.1.
 263

264 A key challenge in GUI agent training is the scarcity of high-quality data, which depends heavily
 265 on expensive manual annotation. To tackle this, we design an **automated synthetic data pipeline**:
 266 it optimally uses limited human-annotated examples to generate augmented instances with explicit
 267 reasoning chains. Using this generated data, we propose a **two-stage fine-tuning paradigm** to elicit
 268 long-chain reasoning in small MLLMs, allowing them to analyze, reflect, and ultimately generate
 269 high-quality responses.

2.3.1 SYNTHETIC DATA GENERATION PIPELINE

Human-annotated GUI trajectory datasets usually include only task instructions, screen snapshots, and ground-truth actions. Lightweight MLLMs struggle to gain long-chain reasoning and reflective capabilities from this limited supervision. Thus, high-quality data with explicit reasoning chains are essential to activate their reasoning capacity. Based on this, we design a data-generation pipeline.

Specifically, we first use an advanced MLLM (e.g., Gemini-2.5-Pro) to generate chain-of-thought reasoning using the task instruction, target function, and historical interaction context. A powerful LLM (e.g., Qwen3-32B) then uses this MLLM-generated reasoning, along with the original task instruction, to synthesize the needed training instances, as specified in Figure 3. The instruction template for reasoning data generation is provided in Appendix A.4.4.

2.3.2 TWO-STAGE TRAINING PROTOCOL

Model training has two stages: supervised fine-tuning (SFT) followed by group relative policy optimization (GRPO) (Shao et al., 2024). In the first stage, chain-of-thought annotations in synthetic training data impart basic reasoning skills and foundational GUI task competence to the small MLLM. This supervised grounding generates meaningful intermediate behaviors, preventing the subsequent reinforcement learning stage from facing overly sparse or uninformative rewards. The second stage is a reinforcement-style policy optimization phase: well-designed reward functions here directly boost the correctness of the model’s output actions and align its behavior with GUI task completion goals.

Reward Design. In the GRPO algorithm, the total reward $\mathcal{R}_{\text{total}}$ combines accuracy and format components as defined in the following equation:

$$\mathcal{R}_{\text{total}} = \mathcal{R}_{\text{acc}} \cdot \underbrace{\begin{cases} 1, & \text{if } f_{\text{pred}} = f_{\text{gt}} \text{ (operations)} \\ 1, & \text{if } \text{sim}(a_{\text{pred}}, a_{\text{gt}}) \geq \lambda \text{ (queries)} \\ 0, & \text{otherwise} \end{cases}}_{\text{Accuracy Reward } \mathcal{R}_{\text{accuracy}}} + \underbrace{\mathcal{R}_{\text{fmt}} \cdot \frac{k}{3} \cdot \psi^c}_{\text{Format Reward } \mathcal{R}_{\text{format}}} \quad (4)$$

R_{acc} and R_{fmt} denote the rewards for answer accuracy and formatting correctness, respectively, during reinforcement learning. By default, both values are set to 1.

(i) **Accuracy Reward.** $\mathcal{R}_{\text{accuracy}}$ is task-dependent: for *operation* tasks like "Tap(index)", it requires strict matching between predicted output f_{pred} and ground truth f_{gt} , while for *query* tasks like "Finish(answer)", it employs embedding-based similarity between predicted answer a_{pred} and ground truth a_{gt} , granting reward only when $\text{sim}(a_{\text{pred}}, a_{\text{gt}}) \geq \lambda$, with the reward being 0 when these conditions are not satisfied.

(ii) **Format Reward.** $\mathcal{R}_{\text{format}}$ provides a base reward of $\mathcal{R}_{\text{fmt}} \cdot \frac{k}{3}$ based on adherence to Figure 3's three-block structure, where k measures the degree of conformity (full reward requires complete adherence with $k = 3$), and applies a multiplicative penalty ψ^c with coefficient $\psi < 1$ based on the amount of content c outside the template, a mechanism specifically designed to mitigate irrelevant generation common in small-scale MLLM training.

GRPO Training. GRPO eliminates the need for additional value function approximation, as seen in PPO (Schulman et al., 2017), and instead utilizes the average reward from multiple sampled outputs generated in response to the same question as its baseline. Specifically, for each question $q \sim \mathcal{Q}$, a group of outputs $\{o_1, o_2, \dots, o_G\}$ is sampled from the old policy π_{old} . The model is optimized by maximizing the following objective:

$$J(\theta) = \mathbb{E}_{q \sim \mathcal{Q}} \left[\mathbb{E}_{o_1, \dots, o_G \sim \pi_\theta(\cdot | q)} \left[\frac{1}{G} \sum_{i=1}^G \min \left(\rho_i(\theta) A_i, \text{clip}(\rho_i(\theta), 1 - \epsilon, 1 + \epsilon) A_i \right) \right] - \beta D_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}) \right]. \quad (5)$$

In this equation, ϵ and β are hyper-parameters, and A_i is the advantage calculated based on relative rewards of the outputs inside each group only:

324
325
326
327
328

$$A_i = \frac{r_i - \frac{1}{G} \sum_{j=1}^G r_j}{\sqrt{\frac{1}{G} \sum_{j=1}^G \left(r_j - \frac{1}{G} \sum_{k=1}^G r_k \right)^2}}. \quad (6)$$

329 GRPO's group-relative approach to calculating advantages aligns seamlessly with the comparative
 330 nature of reward models—usually trained on datasets with output comparisons for the same question.
 331 Additionally, GRPO incorporates regularization by directly adding the KL divergence (between the
 332 trained and reference policies) to the loss function. The KL divergence loss used here follows an
 333 unbiased estimator (Hershey & Olsen, 2007):

$$D_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}) = \mathbb{E}_{o \sim \pi_\theta(\cdot | q)} \left[\frac{\pi_{\text{ref}}(o | q)}{\pi_\theta(o | q)} - \log \frac{\pi_{\text{ref}}(o | q)}{\pi_\theta(o | q)} - 1 \right] \quad (7)$$

334 The complete optimization procedure for the GRPO algorithm is provided in the Appendix A.5.
 335

339 3 EVALUATION

341 3.1 EXPERIMENTAL SETUP

343 In line with existing work on mobile GUI agents (Liu et al., 2024), we evaluate LightAgent on the
 344 academic benchmark **AndroidLab** (Xu et al., 2024), and further collect four common AndroidLab-
 345 based mobile apps for evaluation. Benchmark details are in Appendix A.6.

346 **Baseline Methods.** Comparisons use two primary model groups: (1) General-purpose vision-capable
 347 large models: closed-source ones (GPT series (Hurst et al., 2024): GPT-4o, GPT-5-nano, GPT-
 348 5-mini; Gemini family (Comanici et al., 2025): Gemini-1.5-Pro, Gemini-2.5-Pro; Claude family:
 349 Claude-3.5-Haiku, Claude-Sonnet-4) and open-source multimodal models (Qwen2.5-VL (Bai et al.,
 350 2025), Llama-3.1 (Dubey et al., 2024), GLM series (Hong et al., 2025)); (2) GUI-specialized/fine-
 351 tuned models: AutoGLM, AutoGLM-Mobile (Xu et al., 2025), UI-Tars family Qin et al. (2025),
 352 V-Droid (Dai et al., 2025), UI-Genie-Agent (Xiao et al., 2025), MobileUse (Li et al., 2025), and two
 353 lightly fine-tuned open-source variants (Llama-3.1-8B (ft), GLM-4-9B (ft)).

354 **Evaluation Metrics.** Building on Android-Lab's rule-based task evaluation, we develop an LLM-
 355 based task assessment implementation. A task is complete only if the agent outputs `finish()` to confirm;
 356 task completion is then evaluated using intermediate step logs, final screenshots, and outputs. **Success**
 357 **Rate (SR)** measures the success percentage, and Android-Lab includes 138 total tasks.

358

359 3.2 ONLINE AGENT EVALUATION

360

361 Using the AndroidLab benchmark, we perform
 362 online GUI task evaluations in an Android en-
 363 vironment, with results in Table 1. Here, "Ours
 364 w/o *Cloud LLM*" uses only the on-device small
 365 model LightAgent, while "Ours w *Cloud LLM*"
 366 refers to the device–cloud collaborative frame-
 367 work where the on-device agent partners with a
 368 cloud LLM for task completion. In the "Agent
 369 Mode" column, "Simple" means the model di-
 370 rectly outputs GUI actions, and "Reason" means
 371 it uses a long-horizon reasoning mode. Key find-
 372 ings are as follows:

373 **(i) Small-but-Mighty.** The on-device light
 374 model LightAgent delivers "small-but-mighty"
 375 performance, matching models one size larger
 376 (e.g., Qwen2.5-VL-7B-Instruct, GLM-4-9B(ft))
 377 and even some older/lightweight closed-source
 378 LLMs (e.g., GPT-5-nano, Claude-3.5-HaiKu,
 Gemini-1.5-Pro). This stems from our

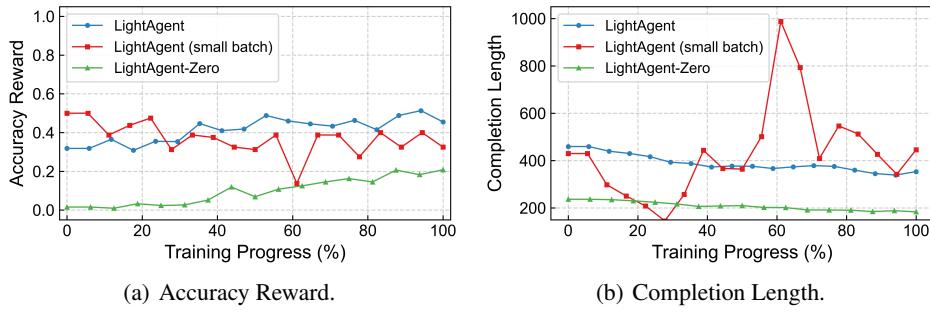
379 **Table 1: Main Result of Online Agent Evaluation.**

Model	Agent Mode	Input	Size	SR
General Models				
Gemini-2.5-Pro	Reason	Screen	-	56.5
GLM-4.5-V	Reason	Screen	-	49.3
Claude-Sonnet-4	Simple	Screen	-	40.6
Gemini-2.5-Flash	Reason	Screen	-	36.2
Qwen2.5-VL-32B	Reason	Screen	32B	31.2
GPT-4o	Simple	Screen	-	31.2
GPT-5-mini	Reason	Screen	-	25.4
GLM-4.1V-9B-Thinking	Simple	Screen	9B	24.6
Gemini-2.5-Flash	Simple	Screen	-	22.5
Claude-3.5-HaiKu	Reason	Screen	-	19.6
Gemini-1.5-Pro	Simple	XML	-	18.8
GPT-5-nano	Simple	Screen	-	18.1
GPT-5-nano	Reason	Screen	-	2.9
GUI Models				
AutoGLM-Mobile	-	Screen + XML	9B	46.4
MobileUse	-	Screen	72B	44.2
UI-Genie-Agent	-	Screen + XML	72B	41.3
UI-Tars-1.5	-	Screen	-	38.4
V-Droid	-	XML	8B	38.4
AutoGLM-2024-10	Simple	Screen + XML	-	36.2
UI-Tars-7B	-	Screen	7B	32.6
Llama-3.1-8B (ft)	Simple	XML	8B	23.9
GLM-4-9B (ft)	Simple	XML	9B	21.0
Our Model				
Ours w Gemini-2.5-Pro	Reason	Screen	-	47.1
Ours w Gemini-2.5-Flash	Reason	Screen	-	31.2
Ours w/o Cloud LLM	Reason	Screen	3B	15.2

378 lightweight MLLM training for on-device
 379 agents: we first inject GUI-specific knowledge
 380 via SFT, then align the training objective with
 381 GUI task goals using GRPO. Notably, though LightAgent and GLM-4-9B(ft) share training data,
 382 LightAgent—despite being much smaller—does not lag significantly. Additionally, our designed
 383 reasoning paradigm helps the small MLLM efficiently use historical context and tap its reasoning
 384 capabilities, boosting GUI task performance.

385 **(ii) Favorable Performance-cost Tradeoff.** When LightAgent is deployed in a device-cloud setup
 386 with a powerful closed-source LLM (e.g., Gemini-2.5), performance degradation vs. using the closed-
 387 source LLM alone is minimal. This approach leverages the on-device model effectively, achieving
 388 a strong performance-cost tradeoff. Enabled by our collaborative control framework (combining
 389 pre-task complexity assessment and runtime dynamic orchestration), the system adaptively switches
 390 between on-device and cloud models based on task difficulty and runtime conditions—maintaining
 391 task effectiveness while cutting cloud LLM calls and overall costs.

392 3.3 ABLATION STUDY



404 (a) Accuracy Reward. (b) Completion Length.

405 Figure 5: Impact of different GRPO training variants.

406 To validate LightAgent’s introduced techniques,
 407 we perform comprehensive ablation studies. Ex-
 408 periments are split into two parts: ablations of on-
 409 device model training techniques and of reason-
 410 ing methods in the overall architecture. [The corre-
 411 sponding results are reported in Table 2, where SN
 412 denotes Success Number.](#)

413 **(i) Ablation study for on-device model.** As shown
 414 in Table 2, we sequentially ablate LightAgent’s
 415 key components. Removing historical context (LightAgent w/o History), GRPO training (LightAgent
 416 w/o GRPO), or SFT (LightAgent w/o SFT) each caused significant performance drops—confirming
 417 their necessity. Notably, LightAgent w/o SFT outperformed LightAgent w/o GRPO, showing GRPO
 418 can independently learn useful policies. This highlights an objective mismatch: while SFT optimizes
 419 next-token prediction, GUI tasks demand accurate final actions, which limits optimization for the
 420 GUI objective.

421 We also evaluate GRPO variants (summarized in Figure 5). Two key variants are: LightAgent (small
 422 batch), trained with smaller batch sizes (24–32 vs. typical 150–160); and LightAgent-Zero (equivalent
 423 to LightAgent w/o SFT), trained from scratch with only GRPO. Figure 5(a) shows larger batches
 424 are critical for stable GRPO training—smaller batches cause oscillating task-accuracy rewards and
 425 lower success rates. In contrast, LightAgent-Zero’s rewards rise steadily but learn slower, lacking
 426 SFT-injected GUI knowledge. Figure 5(b) further illustrates small-batch training leads to highly
 427 variable output lengths (especially in reasoning segments), while LightAgent-Zero struggles with
 428 stable long-form reasoning—slowing its learning and GUI task performance.

429 **(ii) Ablation study for reasoning methods.** As shown in Table 2, LightAgent w/o Reasoning (trained
 430 without reasoning segments) shows a marked performance drop vs. the full model. This shows
 431 reasoning annotations are critical for smaller models to unlock their potential and gain meaningful
 432 capability improvements. Agent mode comparisons in Table 1 offer further insights. Prompting

406 Table 2: Result of Ablation Study.

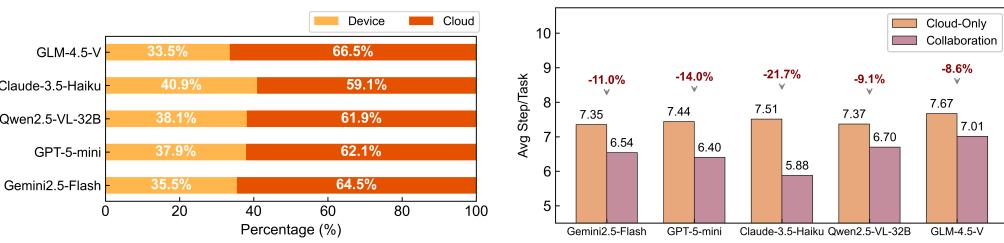
Variant	Agent Mode	SN	SR
LightAgent w/o Tuning	Reason	3	2.2
LightAgent w/o SFT	Reason	12	8.7
LightAgent w/o GRPO	Reason	10	7.2
LightAgent w/o Reasoning	Simple	12	8.7
LightAgent w/o History	Reason	6	4.3
LightAgent	Reason	21	15.2

Gemini-2.5-Flash for explicit reasoning significantly improves its GUI performance (SR: 22.5 → 36.2). In contrast, prompting GPT-5-nano for reasoning severely degrades its performance (SR: 18.1 → 2.9). These results reveal a limitation of reasoning techniques: they depend on a model’s baseline capability. For strong models like Gemini-2.5-Flash, reasoning boosts performance; for weaker ones like GPT-5-nano, however, adding reasoning requirements raises task difficulty and impairs results.

3.4 DEEP ANALYSIS OF DEVICE-CLOUD COLLABORATION

To validate the device-cloud collaboration system, we conduct an in-depth study assessing multiple MLLMs as cloud models, with tasks sampled on AndroidLab. For each MLLM, we document the average total steps to complete a task and the step distribution between the on-device and cloud models. We also measure the average steps for tasks run solely on cloud models to quantify the on-device model’s reduction in cloud invocations. Experimental results are shown in Figure 6.

Figure 6(a) shows the cloud still performs about 65% of steps, reflecting the on-device model’s limited capacity—due to its constrained size—requiring more frequent cloud intervention to sustain task completion rates. Figure 6(b) shows the device-cloud framework cuts cloud calls by roughly 10%. **The average number of steps for collaboration here includes the additional model invocation overhead introduced by the collaborative framework.** Notably, more capable cloud models (e.g., GLM-4.5V) exhibit a smaller relative reduction, as they handle a larger share of tasks the on-device model cannot.



(a) Percentage of steps in device and cloud models. (b) Cloud steps saved in device-cloud collaboration.

Figure 6: The result of deep analysis of device-cloud collaboration.

3.5 EFFICIENCY COMPARISON FOR ON-DEVICE AGENTS

Due to resource constraints on mobile devices, different-sized models show marked differences in on-device runtime efficiency. To quantify this, we assess the response efficiency of three LLMs—our LightAgent (3B), Qwen2.5-VL-7B (7B), and GLM-4.1V-9B (9B)—across two compute setups. Served via vLLM (Kwon et al., 2023), the models are tested on either one NVIDIA RTX 3090 (*Single*) or two (*Double*), with all other settings fixed. Results appear in Figure 7; notably, GLM-4.1V-9B cannot run on a single RTX 3090 while maintaining required context length, so that configuration’s results are omitted.

On a single RTX 3090, the 7B model’s response time is around 50% longer than our 3B LightAgent’s, and the 9B model is unusable. With two RTX 3090s, the 7B model remains about 30% slower than the 3B model, and the 9B model becomes usable but has over triple the 3B model’s latency. This confirms model size heavily affects runtime efficiency in resource-constrained environments: our 3B LightAgent, by virtue of its smaller size, delivers a clear efficiency edge while matching larger models in GUI task capabilities. We further note upgrading from one to two RTX 3090s reduces latency by only 15.5% for the 3B model but 27.1% for the 7B model, because the 7B model running near full capacity on a single 3090, amplifying inefficiencies. Thus, under the stricter compute constraints of real-world mobile devices, the efficiency gap between the 7B and 3B models will likely grow.

3.6 PERFORMANCE ON FREQUENTLY USED APPLICATIONS.

486 To evaluate the agent’s performance on daily mobile
 487 apps, we further select common apps, design matching
 488 tasks, and report results in Table 3. Experiments
 489 show our device-cloud collaborative framework per-
 490 forms well, with no performance degradation com-
 491 pared to a pure cloud-based agent. Moreover, our on-
 492 device LightAgent outperforms the larger GLM-4-9B
 493 (ft)—even though it underperforms on the original
 494 AndroidLab benchmark. We attribute this reversal to
 495 our enhanced training pipeline: unlike models fine-tuned directly on raw data, LightAgent is further
 496 optimized via GRPO reinforcement learning and augmented with a reasoning paradigm, which boosts
 497 the small model’s reasoning ability and generalization. A case of LightAgent ’s performance on
 498 TikTok is also reported in Appendix A.7.

Model	Baseline Methods				SR
	Agent Mode	Input	Size		
GLM-4.5-V	Reason	Screen	-	60.0	
Gemini-2.5-Flash	Reason	Screen	-	56.0	
GPT-5-mini	Reason	Screen	-	40.0	
UI-Tars-7B	-	Screen	7B	32.0	
Claude-3.5-Haiku	Reason	Screen	-	24.0	
GLM-4-9B (ft)	Simple	XML	9B	12.0	
LightAgent					
Ours w <i>Gemini-2.5-Flash</i>	Reason	Screen	-	64.0	
Ours w/o <i>Cloud LLM</i>	Reason	Screen	3B	20.0	

4 CONCLUSION

In this work, we propose LightAgent —a lightweight device-cloud collaborative framework specifically designed to strike an effective balance between performance and practicality for mobile GUI agents. By engineering a compact yet capable on-device agent and introducing a dynamic orchestration policy, it greatly diminishes reliance on costly cloud models, all while preserving the efficacy of task completion. Comprehensive evaluations demonstrate that LightAgent delivers a favorable trade-off between operational cost and performance, thereby rendering advanced GUI automation more accessible. It marks a meaningful step towards practical and efficient mobile AI agents.

507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
543 open agentic framework that uses computers like a human. *arXiv preprint arXiv:2410.08164*,
544 2024.

545 Anthropic. Introducing the model context protocol. In [https://www.anthropic.com/news/model-546 context-protocol](https://www.anthropic.com/news/model-context-protocol), 2024.

547 Anthropic. System card: Claude opus 4 and claude sonnet 4. In <https://www-cdn.anthropic.com/>,
548 2025.

549 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
550 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
551 2025.

552 Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-
553 line Lin, and Pavlo Molchanov. Small language models are the future of agentic ai. *arXiv preprint
554 arXiv:2506.02153*, 2025.

555 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
556 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
557 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
558 *arXiv preprint arXiv:2507.06261*, 2025.

559 Gaole Dai, Shiqi Jiang, Ting Cao, Yuanchun Li, Yuqing Yang, Rui Tan, Mo Li, and Lili Qiu.
560 Advancing mobile gui agents: A verifier-driven approach to practical deployment. *arXiv preprint
561 arXiv:2503.15937*, 2025.

562 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
563 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
564 *arXiv e-prints*, pp. arXiv–2407, 2024.

565 Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
566 Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
567 multi-agent system for solving complex tasks. *arXiv preprint arXiv:2411.04468*, 2024.

568 John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between
569 gaussian mixture models. In *2007 IEEE International Conference on Acoustics, Speech and Signal
570 Processing-ICASSP'07*, volume 4, pp. IV–317. IEEE, 2007.

571 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
572 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
573 with scalable reinforcement learning. *arXiv e-prints*, pp. arXiv–2507, 2025.

574 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
575 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
576 arXiv:2410.21276*, 2024.

577 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
578 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
579 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems principles*,
580 pp. 611–626, 2023.

581 Stefanos Laskaridis, Kleomenis Katevas, Lorenzo Minto, and Hamed Haddadi. Melting point: Mobile
582 evaluation of language transformers. In *Proceedings of the 30th Annual International Conference
583 on Mobile Computing and Networking*, pp. 890–907, 2024.

584 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. Camel: Com-
585 municative agents for "mind" exploration of large language model society. *Advances in Neural
586 Information Processing Systems*, 36:51991–52008, 2023.

587 Ning Li, Xiangmou Qu, Jiamu Zhou, Jun Wang, Muning Wen, Kounianhua Du, Xingyu Lou, Qiuying
588 Peng, and Weinan Zhang. Mobileuse: A gui agent with hierarchical reflection for autonomous
589 mobile operation. *arXiv preprint arXiv:2507.16853*, 2025.

594 Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Stan Weixian
 595 Lei, Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui
 596 visual agent. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 597 19498–19508, 2025.

598

599 Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
 600 Iong, Jiadai Sun, Jiaqi Wang, et al. Autoglm: Autonomous foundation agents for guis. *arXiv*
 601 *preprint arXiv:2411.00820*, 2024.

602

603 Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
 604 Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents by
 605 reinforcement learning. *arXiv preprint arXiv:2503.21620*, 2025.

606

607 OpenAI. Introducing gpt-5. In <https://openai.com/zh-Hant/index/introducing-gpt-5/>, 2025.

608

609 Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
 610 Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curriculum
 reinforcement learning. *arXiv preprint arXiv:2411.02337*, 2024.

611

612 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 613 Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
 614 agents. *arXiv preprint arXiv:2501.12326*, 2025.

615

616 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 617 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

618

619 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 620 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 621 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

622

623 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 624 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

625

626 Linxin Song, Yutong Dai, Viraj Prabhu, Jieyu Zhang, Taiwei Shi, Li Li, Junnan Li, Silvio Savarese,
 627 Zeyuan Chen, Jieyu Zhao, et al. Coact-1: Computer-using agents with coding as actions. *arXiv*
 628 *preprint arXiv:2508.03923*, 2025.

629

630 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 631 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 632 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

633

634 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 635 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 636 neural information processing systems*, 35:24824–24837, 2022.

637

638 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
 639 Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
 640 conversations. In *First Conference on Language Modeling*, 2024a.

641

642 Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
 643 Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
 644 agents. *arXiv preprint arXiv:2410.23218*, 2024b.

645

646 Han Xiao, Guozhi Wang, Yuxiang Chai, Zimu Lu, Weifeng Lin, Hao He, Lue Fan, Liuyang Bian,
 647 Rui Hu, Liang Liu, et al. Ui-genie: A self-improving approach for iteratively boosting mllm-based
 648 mobile gui agents. *arXiv preprint arXiv:2505.21496*, 2025.

649

650 Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the
 651 weakness of large language model agents within a complex android environment. In *Proceedings
 652 of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 6061–6072,
 653 2024.

648 Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
649 Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android
650 autonomous agents. *arXiv preprint arXiv:2410.24024*, 2024.

651

652 Yifan Xu, Xiao Liu, Xinghan Liu, Jiaqi Fu, Hanchen Zhang, Bohao Jing, Shudan Zhang, Yuting
653 Wang, Wenyi Zhao, and Yuxiao Dong. Mobilerl: Online agentic reinforcement learning for mobile
654 gui agents. 2025. URL <https://arxiv.org/abs/2509.18119>.

655 Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
656 prompting unleashes extraordinary visual grounding in gpt-4v. *arXiv preprint arXiv:2310.11441*,
657 2023.

658

659 Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
660 Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Foundamental agents for gui automation.
661 *arXiv preprint arXiv:2508.15144*, 2025.

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX / SUPPLEMENTAL MATERIAL**
703704 **A.1 LLM USAGE STATEMENT**
705706 In the preparation of this paper, LLMs are used solely as an auxiliary tool for writing. Their
707 specific role was limited to text polishing—including enhancing the fluency and accuracy of language
708 expression—and assisting in the writing process such as organizing paragraph logic and optimizing
709 sentence structures. LLMs did not participate in research ideation, data analysis, or other core
710 research linkages.
711712 **A.2 RELATED WORK**
713714 **GUI Agent.** Autonomous agents show great promise in boosting human task performance. Digital
715 environments have inherently multimodal information (text, images, visual elements), adding com-
716 plexity and challenges for language models—this has in turn spurred more research on graphical
717 user interface (GUI) agents. Advancements in large-model technologies enable state-of-the-art gener-
718 alist models (*e.g.*, GPT-5 (OpenAI, 2025), Claude-Sonnet-4 (Anthropic, 2025), Qwen2.5-VL (Bai
719 et al., 2025)) to perform GUI tasks via visual understanding per specific instructions. These models
720 drive progress in visual perception, document parsing, object localization, and reasoning, laying a
721 foundation for multifunctional GUI agents. Meanwhile, many GUI-focused systems (Lu et al., 2025)
722 have emerged from such general models (*e.g.*, UI-Tars (Qin et al., 2025), an end-to-end GUI agent
723 built on Qwen-2-VL (Wang et al., 2024) with strong performance; V-Droid (Dai et al., 2025), which
724 enhances interactive UI element identification by parsing UI state XML and using an agent to verify
725 appropriate actions). Existing GUI agents are typically evaluated for computer and phone use. Phone
726 use introduces extra challenges: stricter on-device compute constraints and operations more reliant
727 on GUI capabilities than MCP (Anthropic, 2024) commands. To tackle these mobile-specific GUI
728 challenges, we propose LightAgent.
729730 **Multi-Agent System.** As autonomous agent research advances, multi-agent systems are drawing
731 attention, as monolithic approaches struggle with long-context, multimodal scenarios (Belcak et al.,
732 2025). A single agent often fails to handle high-level planning, deep reasoning, and low-level
733 execution. Thus, many studies (Fourney et al., 2024; Wu et al., 2024a; Li et al., 2023) use a
734 coordinator-agent framework: the coordinator interprets user intent and gives instructions, while
735 assistant agents execute tasks, greatly improving complex assignment completion. Systems such
736 as Mobile-Agent-V3 (Ye et al., 2025), CoAct-1 (Song et al., 2025), and Agent-S2 (Agashe et al.,
737 2024) have applied multi-agent architectures to GUI tasks, underscoring collaboration’s importance
738 in addressing complex challenges. Building on multi-agent collaboration advancements, LightAgent
739 introduces a device-cloud collaboration paradigm. It leverages on-device and cloud model strengths
740 to balance cost and performance optimally, better addressing phone-use GUI scenario constraints.
741742 **A.3 ACTION SPACE**
743744 **Table 4: Action Space for Mobile GUI Interaction**
745

Action	Parameters	Description
Tap	index:int	Tap the element with the given index number.
Type	input_str: str	Enter text into the currently focused input field.
Swipe	index: int, direction: str, dist: str	Swipe on the element with given index, direction and distance.
Long Press	index: int	Long press the element with the given index number.
Home()	none	Simulate the home button.
Wait	interval: int	Pauses execution for the specified number of seconds (default is 5 seconds).
Back()	none	Simulate the back button.
Finish	message: str (optional)	End the session with an optional message.

756 In Table 4, we present the action space from AndroidLab, which represents screen positions using
 757 bounding boxes aligned with XML data.
 758

759

760 A.4 INSTRUCTION TEMPLATES

761

762 A.4.1 INSTRUCTION TEMPLATE FOR THE ON-DEVICE MODEL.

763

764 In this subsection, we present the input instruction template for the on-device model, which is
 765 composed of three main components: **Available Functions**, **Required Output Format**, and **Guidelines**.
 766

767

768 Template : Instructions for the On-Device Model

769

770 You are an intelligent agent that performs smartphone tasks by interacting with UI elements labeled with
 771 numeric tags.

772

773 Available Functions

774 1. **tap(index: int)** - Tap UI element
 775 2. **text(input_str: str)** - Insert text (tap field first)
 776 3. **long_press(index: int)** - Long press UI element
 777 4. **swipe(index: int, direction: str, dist: str)** - Swipe element
 - direction: "up", "down", "left", "right"
 - dist: "short", "medium", "long"
 778 5. **back()** - Press back button
 779 6. **home()** - Press home button
 780 7. **(interval: int)** - Pause (default: 5 seconds)
 781 8. **finish(message: str)** - Complete task

782

783 Required Output Format

784 <REASONING>

785 *[Analyze current screen, task progress, chosen action rationale, and expected outcome]*

786 <STATE_ASSESSMENT>

787 *Current State: [Screen description]*

788 *Task Progress: [Completion status]*

789 *Next Required Action: [What's needed]*

790 *Expected Outcome: [Action result]*

791 *Potential Issues: [Risk considerations]*

792 </STATE_ASSESSMENT>

793 <CALLED_FUNCTION>

794 *[Single function call only]*

795 </CALLED_FUNCTION>

796 Guidelines

797 - Execute one action per step
 798 - Verify elements exist before interaction
 799 - Tap input fields before using text()
 800 - Monitor progress to avoid redundant actions
 801 - Use finish() only when task complete
 802 - Choose direct, efficient paths to completion

803 A.4.2 INSTRUCTION TEMPLATE FOR TASK COMPLEXITY ASSESSMENT.

804

805 In this subsection, we present the instruction schema used to evaluate task complexity — a key
 806 determinant of when monitoring begins and how frequently it runs in the edge–cloud collabora-
 807 tion system. The schema comprises the following sections: **Device Agent Capability Assessment**,
 808 **Task Complexity Indicators**, **Monitoring Strategy**, **Task-Specific Risk Assessment**, **Output Format**, and
 809 **Guidelines**.

810
811**Template : Instructions for Task Complexity Assessment**812
813
814

You are an intelligent strategic planning agent that determines the optimal monitoring strategy for smartphone task completion. Your goal is to maximize task completion rate while minimizing cloud model usage costs.

815
816
817
818
819**>Your Role**

Given a task instruction, determine:

1. When to start monitoring device agent performance
2. How frequently to monitor device agent performance
3. Whether to use cloud model from the beginning for high-risk tasks

820
821**Device Agent Capability Assessment****Critical Failure Apps (0-15% completion):**

- **Bluecoins**: Financial data entry, complex queries, multi-step forms - 0% success rate
- **Map.me**: Navigation, route planning, complex UI interactions - 0% success rate
- **PiMusic**: Complex music queries, data extraction, multi-screen navigation - 5% success rate

High Risk Apps (15-35% completion):

[...]

Task Complexity Indicators (High Risk Factors)**Immediate Cloud Usage Required:**

- Financial transactions or data entry
- Navigation and route planning
- [...]

Early Monitoring Required (Start from Step 2-3):

[...]

Monitoring Strategy**For Critical Failure Apps (0-15% success):**

- Start monitoring: Step 1 (immediate)
- Monitoring frequency: Every 2 steps
- Consider: Immediate cloud usage for complex tasks

For High Risk Apps (15-35% success):

[...]

Task-Specific Risk Assessment

Analyze the task instruction for these high-risk indicators:

1. **Financial/Data Entry**: "add transaction", "enter amount", "fill form"
2. **Navigation**: "find route", "navigate to", "get directions"
3. [...]

830
831
832**Output Format:**

Provide your decisions in the following exact format:

<MONITORING START FROM>

{Steps Number}

</MONITORING START FROM>**<MONITORING FREQUENCY>**

{Steps Number}

</MONITORING FREQUENCY>833
834
835
836
837
838
839
840
841
842**Guidelines**

- Prioritize task completion over cost optimization
- Use immediate cloud usage for critical failure apps with complex tasks
- [...]

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858**A.4.3 INSTRUCTION TEMPLATE FOR DYNAMIC ORCHESTRATION POLICY.**859
860
861

In this subsection, we present the instructions used for dynamically monitoring task progress to derive edge–cloud switching strategies. The instruction set primarily comprises the following components:

Decision Criteria, **Analysis Framework**, **Risk-Based Decision Making**, **Output Format**, and **Guidelines**.

864
865**Template : Instructions for Dynamic Orchestration Policy**866
867
868

You are an intelligent decision-making agent responsible for determining whether to switch from a device model to a cloud model for smartphone task completion. Your primary goal is to maximize task completion success rate.

869
870
871
872**Your Role**

Analyze the current smartphone screenshot, historical operation information, and task progress to decide if the cloud model should take over from the device model.

873
874
875
876
877
878
879
880
881
882
883
884
885

Decision Criteria Switch to CLOUD model when ANY of the following conditions are met:

1. Immediate Risk Indicators

- Critical App Detection: Current app is Bluecoins, Map.me, or PiMusic (0-5% success rate)
- Complex Task Pattern: Task involves financial data, navigation, or multi-step forms
- Early Failure Signs: Device model shows confusion in first 3 steps
- Wrong App Navigation: Device model navigated to completely irrelevant app

2. Progressive Failure Patterns

- Repetitive Operations: Same action repeated 2+ times without progress
- Navigation Confusion: Device model appears lost or confused about next steps
- Form Completion Issues: Reached correct screen but struggling with form fields
- State Misunderstanding: Device model misinterprets current app state or toggle positions

3. Task Progress Assessment

- [...]

4. Context and Timing Factors

- [...]

Analysis Framework**Immediate Assessment (First 3 Steps):**

- Is the device model on the right track?
- Does the current app/screen make sense for the task?
- Are there any obvious confusion signs?

Progressive Assessment (Steps 4-8):

- [...]

Critical Decision Points:

- [...]

Risk-Based Decision Making**High Risk Tasks (Financial, Navigation, Complex Forms):**

- Switch to CLOUD at first sign of struggle
- Prioritize completion over cost
- Intervene early rather than late

Medium Risk Tasks (Standard Operations):

- [...]

Low Risk Tasks (Simple Toggles, Basic Navigation):

- [...]

Output Format

After your analysis, output ONLY one of the following decisions:

CLOUD - Switch to cloud model (when intervention is needed)

DEVICE - Continue with device model (when current approach is working)

Guidelines

- **Prioritize Success:** Task completion is more important than cost optimization

- **Early Intervention:** Better to switch too early than too late

- **Context Awareness:** Consider the specific app and task complexity

- [...]

Your analysis should be thorough but your final output must be exactly one word: either "CLOUD" or "DEVICE".

913

914

A.4.4 INSTRUCTION TEMPLATE FOR REASONING DATA GENERATION.915
916
917

In this subsection, we present the instruction template for reasoning data generation, which is composed of **Reasoning Process**, **Input Structure**, **Expected Reasoning Output**, and **Your Task**.

918
919**Template : Instruction Formate for Reasoning Data Generation**920
921
922

You are an interface analysis assistant for smartphones. You are provided with a screenshot of a smartphone interface. The interactive elements within the UI are marked with numeric tags starting from 1.

For each operable UI element, include the following details:

1. **Type of action:** Describe the type of interaction available (e.g., navigation, text input, toggle, etc.).
2. **Text information:** Any visible text associated with the UI element (e.g., labels, placeholders, or descriptions).
3. **Action:** Summarize what happens when the element is interacted with (e.g., "Tap to navigate to settings," "Toggle to enable/disable Wi-Fi").
4. **State:** If the element has a state (e.g., switches for Bluetooth, Wi-Fi), specify whether it is currently "On" or "Off." If no state applies, write "None."
5. **Array Indexes:** If an element has multiple numeric tags, list all the indexes corresponding to that element.

You can call the following functions to interact with those labeled elements to control the smartphone:

- *[Action Space...]*

923

Reasoning Process

You will use a step-by-step reasoning process ("Chain of Thought") to determine the appropriate actions required to accomplish the task. Your reasoning should follow this structure:

1. Analyze Current State

- Determine whether the current page indicates that the task to be completed has been finished
- Review the current UI elements and their positions
- Identify relevant interactive elements for the task

2. History Assessment

- *[e...]*

3. State Assessment

- *[...]*

4. Plan Actions

- *[...]*

5. Determine Functions

- *[...]*

Your reasoning must explicitly connect your analysis to the function calls you'll make, ending with the exact function call that matches the provided <CALLED_FUNCTION>.

947

Input Structure

You will receive the following input components:

1. Task Instruction

A description of the task to be completed.

2. Screenshot**3. History Info**

Information about previous states, actions, and their intended goals.

4. Called Function

The specific function you need to justify through your reasoning.

Expected Reasoning Output

Example:

“

<REASONING>

- *[...]*

</REASONING>

“

Your Task

Based on the provided task instructions, screenshots, and history information, you will:

1. Analyze the information.
2. Evaluate previous actions and their outcomes.
3. Formulate a clear reasoning process.
4. Ensure your reasoning concludes with and justifies the exact function provided in CALLED FUNCTION.

Please output <REASONING>...</REASONING> part with Chain of Thought format step by step.

968

969

970

971

972 A.5 ALGORITHM FOR GRPO OPTIMIZATION
973974 **Algorithm 2:** Group Reward Policy Optimization

975 **Input:** Initial policy parameters θ_{init} , reward function $r(\cdot)$, question set \mathcal{Q} , group size G , clipping parameter
976 ϵ , KL penalty coefficient β

977 **Output:** Optimized policy parameters θ

978 1 Initialize $\theta \leftarrow \theta_{\text{init}}$

979 2 $\pi_{\text{ref}} \leftarrow \pi_{\theta}$; // Initialize the reference policy (fixed for KL divergence)

980 3 $\pi_{\text{old}} \leftarrow \pi_{\theta}$; // Initialize the old policy (for importance sampling)

981 4 **for** each training iteration **do**

982 5 **for** each question $q \in \mathcal{Q}$ (in mini-batch) **do**

983 6 $\{o_1, o_2, \dots, o_G\} \sim \pi_{\text{old}}(\cdot | q)$ // Sample outputs using the old policy

984 7 $\{r_1, r_2, \dots, r_G\}$ where $r_i \leftarrow r(o_i, q)$

985 8 $\mu_r \leftarrow \frac{1}{G} \sum_{i=1}^G r_i$ // Compute mean reward

986 9 $\sigma_r \leftarrow \sqrt{\frac{1}{G} \sum_{i=1}^G (r_i - \mu_r)^2}$ // Compute standard deviation of rewards

987 10 **for** each output o_i **do**

988 11 $A_i \leftarrow \frac{r_i - \mu_r}{\sigma_r}$ // Compute normalized advantage

989 12 $\rho_i(\theta) \leftarrow \frac{\pi_{\theta}(o_i | q)}{\pi_{\text{old}}(o_i | q)}$ // Compute probability ratio against the old

990 13 policy

991 13 $L_i^{\text{CLIP}} \leftarrow \min(\rho_i(\theta)A_i, \text{clip}(\rho_i(\theta), 1 - \epsilon, 1 + \epsilon)A_i)$ // Compute clipped

992 13 objective

993 14 **end**

994 15 $L \leftarrow -\frac{1}{G} \sum_{i=1}^G L_i^{\text{CLIP}} + \beta D_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}})$ // Total loss

995 16 **end**

996 17 Update parameters θ to minimize L (e.g., using gradient descent)

997 18 $\pi_{\text{old}} \leftarrow \pi_{\theta}$; // Update the old policy for next sampling

998 19 **end**

999 A.6 EXPERIMENTAL SETUP
1000

1001 **AndroidLab.** AndroidLab is an online GUI-task evaluation benchmark built on the Android platform.
1002 It comprises nine commonly used applications and 138 evaluation tasks, and supports two input
1003 modes: XML mode (Xing et al., 2024) and SoM (Set-of-Mark) mode (Yang et al., 2023). XML mode
1004 is tailored to text-only models, where the LLM selects target UI elements directly from the XML
1005 representation. SoM mode is intended for multimodal models and uses the Set-of-Mark method:
1006 each clickable or focusable element is assigned a unique index, and the LLM specifies elements
1007 by their index when issuing operations. Given the growing predominance of MLLMs for GUI
1008 tasks, LightAgent primarily adopts the SoM mode; accordingly, all experimental results reported are
1009 obtained using SoM mode.

1010 **Additional Frequently Used Applications.** Existing academic GUI benchmarks, limited by factors
1011 such as reproducibility, often neglect to test many of today’s most widely used mobile applications.
1012 To offer a more comprehensive evaluation of LightAgent, we augmented AndroidLab with four
1013 commonly used mobile apps, contributing a total of 25 tasks. The four apps included are Gmail,
1014 Chrome, Reddit, and TikTok. Table 5 lists four additional popular mobile apps (**Chrome**, **TikTok**,
1015 **Reddit**, and **Gmail**) and their corresponding tasks; of the 25 tasks in total, only 12 are presented here.

1016 A.7 CASE ON TIKTOK
1017

1018
1019
1020
1021
1022
1023
1024
1025

1026

1027

Table 5: Additional App Evaluation Tasks and Descriptions

App	Task ID	Task Description	Evaluation Type
Chrome Browser	chrome_1	Find the address and founding date of the University of ***	query_detect
Chrome Browser	chrome_2	Set to dark mode	operation
Chrome Browser	chrome_3	Enter bookmarks and find the website you saved in Mobile Bookmarks	query_detect
TikTok	tiktok_1	Go to the homepage of "IShowSpeed"	operation
TikTok	tiktok_2	Go to the homepage of "IShowSpeed" and check whether you follow this creator	query_detect
TikTok	tiktok_3	Search for videos about "iphone 17"	operation
Reddit	reddit_1	Join the ChatGPT discussion group	operation
Reddit	reddit_2	Check the Popular page	operation
Reddit	reddit_3	Search for posts related to "Qwen" and limit the time to "Today"	operation
Gmail	gmail_1	Edit an email addressed to user _test@gmail.com, with the subject "Inquire about academic collaboration opportunities," and the content "Can I have an online meeting with you at 5pm today to discuss this?" (no need to send)	operation
Gmail	gmail_2	Reply to an email titled "Ask about project progress" with the content "The main experimental part has been completed and the ablation experiment is underway." (no need to send)	operation
Gmail	gmail_3	Find the relevant email in your mailbox and answer: What is the date of the online meeting about TA's task?	query_detect

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

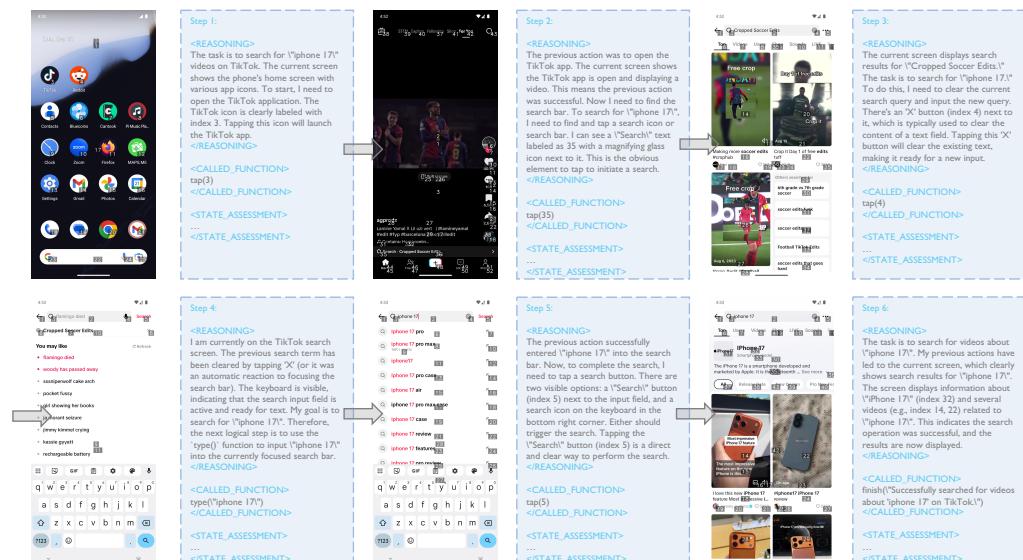


Figure 8: An example of a GUI agent operating on TikTok. The task instruction is *search for videos of "iPhone 17" on TikTok*. It illustrates the agent's reasoning and reflection process <REASONING> and how these lead to the final <CALLED_FUNCTION>.