Under review as a conference paper at ICLR 2026

LIGHTAGENT: LIGHTWEIGHT AND COST-EFFICIENT
MOBILE AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

7 With the advancement of multimodal large language models (MLLMs), building
GUI agent systems has become an increasingly promising direction—especially
for mobile platforms, given their rich app ecosystems and intuitive touch inter-
actions. Yet mobile GUI agents face a critical dilemma: truly on-device mod-
els (4B or smaller) lack sufficient performance, while capable models (starting
from 7B) are either too large for mobile deployment or prohibitively costly (e.g.,
cloud-only closed-source MLLMs). To resolve this, we propose LightAgent, a
mobile GUI agent system that leverages device-cloud collaboration to tap the
cost-efficiency of on-device models and the high capability of cloud models,
while avoiding their drawbacks. Specifically, LightAgent enhances Qwen2.5-
VL-3B via two-stage SFT—GRPO training on synthetic GUI data for strong
decision-making, integrates an efficient long-reasoning mechanism to utilize
historical interactions under tight resources, and defaults to on-device execu-
tion—only escalating challenging subtasks to the cloud via real-time complex-
ity assessment. Experiments on the online AndroidLab benchmark and diverse
apps show LightAgent matches or nears larger models, with a significant reduc-
tion in cloud costs. We have made our LightAgent available anonymously at:
https://anonymous.4open.science/r/LightAgent-E2D5/.

1 INTRODUCTION

The growing capability of multimodal large language models (MLLMSs) enables Al agents to perceive
and act within visual environments, particularly through Graphical User Interfaces (GUIs) (Wu et al.|
2024b; Q1 et al.| [2024). Mobile platforms offer a promising domain for this technology for two
reasons: first, their vast app ecosystems provide a realistic and diverse testbed, and second, their
touchscreen interactions are limited to an intuitive set of primitives, resulting in a compact action
space. Despite these advantages, mobile platforms introduce distinct challenges, chiefly severe
computational and memory limitations. In light of these factors, our goal is to develop an effective
mobile GUI agent, viewing it as a practical milestone toward general-purpose Al

Current research falls broadly into two groups. The first involves targeted training of open-source
MLLMs specifically for GUI-related tasks (Qin et al., 2025} [Dai et al.| 2025} [Liu et al., [2024).
These models are relatively compact in size and have achieved notable progress; for instance, Ul-
Tars-7B (Qin et al., [2025) outperforms the larger Qwen2.5-VL-32B (Bai et al., 2025) on mobile
GUI tasks. The second approach leverages general-purpose closed-source MLLMs by constructing
multi-agent systems and designing well-structured execution pipelines. Thanks to the powerful
multimodal comprehension capabilities of state-of-the-art (SOTA) closed-source MLLMs—such as
GPT-5 (OpenAl, 2025), Claude-Sonnet-4 (Anthropicl 2025)), and Gemini-2.5-Pro (Comanici et al.,
2025)—their performance on mobile GUI tasks can even surpass that of models specifically trained
for such tasks. However, there is no free lunch. Although the performance of models like UI-Tars-7B
is impressive given their 7B scale, MLLMs of this size still impose a prohibitive computational burden
on contemporary smartphones (Laskaridis et al.,2024). A more practical 2B—3B scale, by contrast,
typically yields MLLMs with limited capabilities (Lin et al., [2025). On the other hand, multi-agent
systems based on advanced closed-source MLLMs are plagued by high costs. SOTA closed-source
MLLM:s are often expensive, and spending several to dozens of dollars to complete a single mobile
task is financially impractical. The detailed discussion of related work is in Appendix

https://anonymous.4open.science/r/LightAgent-E2D5/

Under review as a conference paper at ICLR 2026

In response to the aforementioned challenges,
two immediate questions arise: Question 1: For
task-specific GUI models, can their size be fur-
ther reduced to become truly on-device models
capable of running on smartphones, while main-
taining acceptable performance levels on GUI
tasks? Question 2: For proprietary general-
purpose large models, which are indispensable as
cloud-based models due to their powerful capa-
bilities, can their usage costs be further reduced?

To answer to the aforementioned questions, we
propose a lightweight device-cloud collabora-
tive mobile GUI agent framework—LightAgent.
Specifically, for Question 1, based on a
lightweight open-source MLLM (i.e., Qwen2.5-
VL-3B), we employ a synthetic data generation
pipeline and conduct two-stage training compris-
ing supervised fine-tuning (SFT) and group rel-
ative policy optimization (GRPO), resulting in a
compact yet powerful on-device GUI agent that
achieves performance comparable to larger-scale
models. Concurrently, we design an efficient

60

Gemini-2.5-Pro

50

Usable Mobilel GLM-4.5V

g GUI Agent | AutoGLM-Mobile-98 40
o 40+ . Gemini-2.5-Flash
» V-Droid-8B n Claude-Sonnett4
>
= Ul-Tars-7B
% o) O L ¥ e Qwen2.5-VL-32B _ | 30— 30
g -
N
' > -
o L |Uama-3.1-88 (fr) CPT-5-mini
5 20 ! ® 20
\ 1
o & GPT-5-nano
10h LightAgent
! 10
1
.Q‘weHZ.S—VL—SB
05 ~ 2

4B 10 10

Model Cost (Log Scale, higher = more expensive)

Figure 1: Model GUI Capability vs. Cost. Meth-
ods in the on-device (gray) region lack usable
GUI capability, while basic-GUI-capability (blue)
ones are too large for on-device deployment or
too costly. Currently, there are no suitable ap-
proaches in the truly usable mobile GUI agent
(orange) region. A promising research direction
is combining gray and blue region methods, lever-
aging their complementary strengths to bridge the
gap for practical on-device GUI agents.

long-reasoning GUI agent paradigm, which is
capable of effectively processing historical operation information and endowing the agent with
reasoning capabilities to further enhance its performance.

For Question 2, we observe that advanced general-purpose large models exhibit performance overkill
on many simple GUI tasks—tasks that even small on-device models can handle competently. More-
over, for tasks that small models cannot fully complete, they often fall short only by a narrow margin.
To this end, we devise a device-cloud collaboration paradigm that leverages the cost-efficiency of
on-device models while compensating for their performance limitations through the powerful capa-
bilities of cloud-based models, thereby identifying a sweet spot between performance and overhead.
Through the task complexity assessment and a dynamic orchestration policy, our framework enables
real-time monitoring of task execution progress and dynamic switching between on-device and cloud
models as needed. Our main contributions can be summarized as follows:

* Light-weight reasoning GUI agent. We develop a lightweight on-device GUI agent by applying a
two-stage training methodology to a compact MLLM, equipping it with efficient long-reasoning
capabilities to contextualize historical interactions for effective decision-making. The resulting
model achieves competitive performance with a minimal computational footprint, suitable for
smartphone deployment.

* Device-cloud collaborative agent system. We propose a device-cloud collaborative agent system
that dynamically orchestrates tasks between on-device and cloud models via real-time complexity
assessment. This mechanism enables seamless switching to the cloud only when necessary,
compensating for on-device limitations, achieving an optimal balance between high performance
and significantly reduced operational costs.

* Comprehensive Evaluation. We evaluate LightAgent through online experiments on the
Android-based AndroidLab benchmark, complemented by dozens of custom tasks across popular
apps to assess real-world performance. Furthermore, we conduct extensive ablation studies and
investigate the impact of different fine-tuning strategies on the lightweight MLLLM’s capabilities.

2 METHODOLOGY

To effectively address mobile GUI agent tasks, we propose the LightAgent framework, which
has three key modules. Section [2.T] covers strategies to mitigate compact MLLMs’ challenges in
GUI tasks—Iimited capacity and constrained context length. Section details a device-cloud
collaborative agent system that dynamically schedules on-device and cloud models by task difficulty,
balancing cloud resource consumption with GUI task completion rate. Section [2.3]outlines ways to
fully leverage limited training data to maximize small MLLMSs’ performance gains on GUI tasks.

Under review as a conference paper at ICLR 2026

O Use Tiktok to open the LALIGA account and find the video of
the Real Madrid vs. Barcelona match.

| {E Data Generation Pipeline} Reasoning

User = l Dataset
‘_ D History [=]) | LLM
Instruction (&J + Screenshot + s ‘
oS Record @ Q | @
O [P ——Pi -
{ oo i Goer ioncall Ml | < action 1 action 2 action 3, ...
+ {History } + {Function Call} || I Trajectory s
| step 1 step 2 step 3 stepn | Screen
- _—
¢ BN~
Let me walk through this step by step... @ e <, %, [o-o-'oGroup Relative Policy Optimization J
Looking at the history... / & _J_ - \O@ A (@)
Now, the user must decide... Since the task is to... / g’z}w ('\\(‘ - o \L’QV @3‘};
The required action is... < m,gv° / '9 \ % (o @
This aligns with the task requirements... [< [- = %,
O Instruction: Use Setting to set current time of my \ \nghtAgent/ / 9= Dynamic Agent Orchestration: ((;D)
5. ~ — o(®@): i =
phone to 2024-5-1. Device—Gloud V; &O: Whether to switch to cloud model =

User

Collaborative Agen
A gent”

T4 Task Complexity Assessment:
% 1. Which step to intervene.

&3 | 2. Frequency of monitoring.
Cloud

<
- L - e

\Step %\r

1Step 5 oaestme |

Edge

AN 14
~ —
- ~
—_——— ~S—— } Online Android Test é
B~ SN | Environment UQ
=~ \
<

0a”

(L]

Figure 2: Overall framework of the proposed LightAgent.

2.1 EFFICIENT REASONING GUI AGENT

The on-device GUI agent faces two key challenges. First, mobile devices’ limited computing power
necessitates small-sized MLLMs (e.g., Qwen2.5-VL-3B (Bai et al.| 2025))), which currently lack
sufficient performance for mobile GUI tasks. To tackle this, LightAgent enhances the GUI agent with
extended chain-of-thought (CoT) reasoning (Wei et al., |2022) during testing, using test-time scaling
laws (Snell et al.| [2024) to boost its capability. Second, limited on-device resources impede long-
context handling: high-resolution GUI images take up much available context length, and managing
the agent’s execution history is challenging. To alleviate this, LightAgent uses an efficient text-based
summarization scheme—compressing each step’s state into compact textual representations—to
support the agent’s long historical context. The output format template is presented in Figure[3] and

the detailed instruction template is provided in Appendix [A:41]

2.1.1 LONG-HORIZON REASONING ENHANCEMENT

Mobile GUI tasks are often difficult and complex, and humans also
use step-by-step reasoning for such operations. Motivated by the
success of CoT reasoning and test-time scaling laws, it is natural to
apply similar long-form reasoning enhancements to GUI agents.

Specifically, the GUI agent’s reasoning—encompassing all factors
for task completion—follows a multi-step process: First, it analyzes
actionable elements on the current interface and, using historical
data, assesses if prior actions met their goals. Next, it evaluates
progress toward the user’s task goal and identifies necessary follow-
up actions. Lastly, it selects from available functions and their
parameters to generate the final output. Notably, if historical data
shows prior operations failed to yield expected results, the model
proactively reflects and adjusts its approach—avoiding repeated
errors and potential loops.

2.1.2 EFFICIENT MEMORY MANAGEMENT

@&

[Analyze current screen, history record,
task progress, chosen action rationale,
and expected outcome.]

<REASONING>

</REASONING>

<STATE_ASSESSMENT>

[Current state, task progress, next
required action, expected outcome, and
potential issues.]

</STATE_ASSESSMENT>

<CALLED_FUNCTION>
[Single function call only.]

</CALLED_FUNCTION>

Figure 3: Output Template.

On-device GUI agents also face the challenge of efficiently managing historical contextual informa-
tion. For MLLMs in particular, high-resolution images (which preserve valuable details) require a

Under review as a conference paper at ICLR 2026

large number of tokens—making raw screenshot storage in history impractical. As a result, systems
can only retain a limited number of recent images, leading to the loss of long-term historical data.

To address this, LightAgent uses a textual summarization approach: at each step, it distills all
information relevant to future actions. As shown in the <STATE_ASSESSMENT> field of Figure E[,
these summaries include the current interface state, task progress, the agent’s inferred next action,
expected post-action outcome, and potential issues. Much of this content comes from condensing
the <REASONING> section—critical for effective stepwise reasoning, especially reflective error
correction. Crucially, textual summaries use far fewer tokens than images, enabling long-term history
retention (e.g., 10-20 steps) as contextual input, even in resource-constrained mobile environments.

2.1.3 OVERALL PROCESS

Formally, the process is a sequential decision-making framework. At each time step ¢ € Ny (with
t = 0 denoting the initial step) the agent receives a task instruction 7 € 7 and observes a screen
screenshot s; € S. The history h; belongs to H = (J;—, A", where A° = {¢} and € denotes the
empty sequence. The history h; is the sequence of previous state assessments ay, € A for k < ¢; each
assessment a; € A is a structured summary of the interface state, task progress, the next action, the
expected outcome, and potential issues. When ¢t = 0 we have hy = € (no historical data).

The reasoning function R maps the current history, the current observation, and the task instruction to
a new assessment and a function to execute:

R:HXSEXT > AxF, 1)
(at, fr) = R(h¢, 5¢,7), at €A, fi €F, (2
where F is the space of executable functions. The history is then updated by concatenation:
hiy1 = hy o ay, 3)
with o denoting sequence concatenation and hy = €. The process repeats for t = 0,1, 2, ... until

the task is completed or a predefined termination condition is met. We report the action space of
LightAgent in Appendix[A.3]

2.2 DEVICE-CLOUD COLLABORATIVE AGENT SYSTEM

Despite recent advances in small-scale MLLMs, their performance remains insufficient for handling
complex GUI-based tasks. As illustrated in Figure 4] even the GUI model UI-Tars-7B—fine-
tuned on a substantial amount of GUI task data—exhibits significantly poorer performance com-
pared to larger cloud-based models. Furthermore, the performance of more deployment-viable
3B-parameter models (e.g., Qwen2.5-VL-3B) falls well below a practically usable threshold.

This limitation necessitates the incorporation of more pow-
erful cloud-based LLMs (such as Gemini-2.5-Pro, GPT-5, 801 £ oios sl (09 56.5%
or Claude-Sonnet-4) to achieve satisfactory task completion 50 R Ondsrbe hodel (78) 2%
and user experience. However, frequent invocation of cloud

models leads to high operational costs. A careful analysis of

401
32.6%

30r 24.6%

Success Rate (%)

on-device model failures reveals that many tasks fail only at 20(

the final step. Motivated by this observation, we propose a 10}

collaborative device-cloud agent system that dynamically or- oLEn _
Qwen2.5-VL GLM-4.1V Ul-Tars GLM-4.5-VGemini-2.5-Pro

chestrates between local and cloud agents based on real-time

task progress. This approach significantly reduces cloud Figure 4: GUI Performance on An-
invocations and associated costs while maintaining high task droidLab: On-Device Models vs.
success rates. Cloud Models.

The system functions via an integrated workflow with two core components: a task complexity
assessment mechanism (to decide when and how often to monitor agent performance) and a dynamic
orchestration policy (to trigger agent switching when needed). The entire process is summarized in
Algorithm [T} which merges these two components into a unified adaptive framework.

2.2.1 COLLABORATIVE CONTROL FRAMEWORK

Task Complexity Assessment. Before task execution begins, LightAgent estimates the difficulty of
the task using aggregated historical performance data of the on-device model. An assessment function

NI I A]

— e e
AW R = S

Under review as a conference paper at ICLR 2026

Sassess analyzes the task description and context to determine two key parameters: the step - at which
monitoring should begin, and the monitoring interval w. This preemptive configuration allows the
on-device agent to fully utilize its capability without premature—and costly—cloud intervention.

Dynamic Orchestration Policy. During task execution, the system monitors the agent’s behavior
once the step counter reaches 7 and at every w steps thereafter. A switching function Fyich evaluates
the current GUI state and execution history—including previous actions, state transitions, and
task progress—against three criteria: (1) presence of repetitive action patterns, (2) deviation from
the expected task trajectory, or (3) inadequate action quality. If any criterion is met, the system
switches the current agent from the on-device model M geyice to the cloud model M. ouq, and no
further monitoring is performed. This mechanism minimizes unnecessary cloud calls while ensuring
reliability through conditional fallback to a more capable cloud model.

The instruction templates for these two components are reported in Appendices[A.4.2]and[A.4.3]

2.2.2 INTEGRATED EXECUTION FLOW

The overall workflow of the device-cloud collaborative agent system is detailed in Algorithm|[I] The
algorithm begins by invoking Fess to determine -y and w. The execution loop uses the current agent
M urrent (initialized to M gevice) to perform the function f and update the assessment a and the history
h. If the step condition is satisfied and switching has not yet occurred, Fyyicch(+) is evaluated. Upon
switching, the cloud agent takes over and continues until task completion. This approach ensures
cost-efficient execution while maintaining robust performance.

Algorithm 1: Adaptive Device-Cloud Agent Switching Algorithm

Input: Task 7, On-device agent Mgeyice, Cloud agent Mcioud
Output: State sequence {sy, }, History {h,}

(7, w) ¢ Fassess (T, Maevice) // ~: monitoring start step, w: monitoring
frequency
t <+ 07 Mcurrem — Mdevice, Cswilched — false, Ccompleted — false, Cterminaled <~ false;
while “Ccompleled A “thrminaled do
if ~“Clyirchea A (t > v) A ((t —7) mod w == 0) then
if Foviren(az, fe, ht) == True then
Mcurrem <~ Mcloud;
C’switchcd < true;
end
end
at,ft <_Mcurrem(ht75t77_); // Eqg.
hi+1 < ht o ay; // Eq.
t+—t+1;
update(Ceompleteds Cterminated); // Update Ccompretea and Chrerminateds Via environment
end

2.3 LIGHTWEIGHT MLLM TUNING FOR ON-DEVICE AGENTS

Unlike existing GUI agent methods, we use a smaller MLLM (i.e., Qwen2.5-VL-3B) to mitigate
mobile resource constraints and boost practicality. However, fine-tuning such a compact MLLM
for usable GUI agent performance poses notable challenges. Small MLLMs naturally have limited
capabilities; to enhance their GUI manipulation ability, we leverage the test-time scaling law—via
long-chain reasoning during inference—to improve performance, as detailed in Section 2.1.1]

A key challenge in GUI agent training is the scarcity of high-quality data, which depends heavily
on expensive manual annotation. To tackle this, we design an automated synthetic data pipeline:
it optimally uses limited human-annotated examples to generate augmented instances with explicit
reasoning chains. Using this generated data, we propose a two-stage fine-tuning paradigm to elicit
long-chain reasoning in small MLLMs, allowing them to analyze, reflect, and ultimately generate
high-quality responses.

Under review as a conference paper at ICLR 2026

2.3.1 SYNTHETIC DATA GENERATION PIPELINE

Human-annotated GUI trajectory datasets usually include only task instructions, screen snapshots,
and ground-truth actions. Lightweight MLLMs struggle to gain long-chain reasoning and reflective
capabilities from this limited supervision. Thus, high-quality data with explicit reasoning chains are
essential to activate their reasoning capacity. Based on this, we design a data-generation pipeline.

Specifically, we first use an advanced MLLM (e.g., Gemini-2.5-Pro) to generate chain-of-thought
reasoning using the task instruction, target function, and historical interaction context. A powerful
LLM (e.g., Qwen3-32B) then uses this MLLM-generated reasoning, along with the original task
instruction, to synthesize the needed training instances, as specified in Figure [3| The instruction
template for reasoning data generation is provided in Appendix [A.4.4]

2.3.2 TWO-STAGE TRAINING PROTOCOL

Model training has two stages: supervised fine-tuning (SFT) followed by group relative policy
optimization (GRPO) (Shao et al., [2024)). In the first stage, chain-of-thought annotations in synthetic
training data impart basic reasoning skills and foundational GUI task competence to the small MLLM.
This supervised grounding generates meaningful intermediate behaviors, preventing the subsequent
reinforcement learning stage from facing overly sparse or uninformative rewards. The second stage is
a reinforcement-style policy optimization phase: well-designed reward functions here directly boost
the correctness of the model’s output actions and align its behavior with GUI task completion goals.

Reward Design. In the GRPO algorithm, the total reward Ry, combines accuracy and format
components as defined in the following equation:

1, if forea = fo (Operations)

Riotal = Race - § 1, if SiIIl(apred7 agt) > A (queries) 4+ Rime - g . wc)
0, otherwise — ,

Format Reward R o

Accuracy Reward Raccuracy

Ry and Ry, denote the rewards for answer accuracy and formatting correctness, respectively,
during reinforcement learning. By default, both values are set to 1.

(i) Accuracy Reward. Rccuracy 1S task-dependent: for operation tasks like "Tap (index) ", it
requires strict matching between predicted output f,.q and ground truth f,, while for query tasks
like "Finish (answer) ", it employs embedding-based similarity between predicted answer apreq
and ground truth a, granting reward only when sim(apred, @g) > A, with the reward being 0 when
these conditions are not satisfied.

(ii) Format Reward. Romq provides a base reward of Ry - % based on adherence to Figures
three-block structure, where k& measures the degree of conformity (full reward requires complete
adherence with & = 3), and applies a multiplicative penalty ¢/ with coefficient 1) < 1 based on the
amount of content c outside the template, a mechanism specifically designed to mitigate irrelevant
generation common in small-scale MLLM training.

GRPO Training. GRPO eliminates the need for additional value function approximation, as seen in
PPO (Schulman et al.,[2017), and instead utilizes the average reward from multiple sampled outputs
generated in response to the same question as its baseline. Specifically, for each question ¢ ~ Q, a
group of outputs {01, 02, ...,0g} is sampled from the old policy 7oq. The model is optimized by
maximizing the following objective:

J(0) =Eqno |:E017-»-70G"7"9(“Z)
G &)
[é Z min (pi (0)Ai, clip(pi(0),1 —€,1+ e)Ai)

im1

— BDxw(mo || Wref):| .

In this equation, € and /3 are hyper-parameters, and A; is the advantage calculated based on relative
rewards of the outputs inside each group only:

Under review as a conference paper at ICLR 2026

. 1 G .
Ti =G 2.5=1"J

A= .
2
VESE (- a5)

GRPO’s group-relative approach to calculating advantages aligns seamlessly with the comparative
nature of reward models—usually trained on datasets with output comparisons for the same question.
Additionally, GRPO incorporates regularization by directly adding the KL divergence (between the
trained and reference policies) to the loss function. The KL divergence loss used here follows an
unbiased estimator (Hershey & Olsen, [2007)):

(©)

Tret(0 | @)
mo(o | q)

Tret(0 | @) _
mo(o | q)

O]

DL (7r9 I 7rref) =Eonrg(la)

The complete optimization procedure for the GRPO algorithm is provided in the Appendix[A.3]

3 EVALUATION

3.1 EXPERIMENTAL SETUP

In line with existing work on mobile GUI agents (Liu et al.,|[2024), we evaluate LightAgent on the
academic benchmark AndroidLab (Xu et al.l [2024), and further collect four common AndroidLab-
based mobile apps for evaluation. Benchmark details are in Appendix [A.6]

Baseline Methods. Comparisons use two primary model groups: (1) General-purpose vision-capable
large models: closed-source ones (GPT series (Hurst et al., [2024): GPT-40, GPT-5-nano, GPT-
5-mini; Gemini family (Comanici et al., [2025): Gemini-1.5-Pro, Gemini-2.5-Pro; Claude family:
Claude-3.5-Haiku, Claude-Sonnet-4) and open-source multimodal models (Qwen2.5-VL (Bai et al.,
2025), Llama-3.1 (Dubey et al., [2024), GLM series (Hong et al., [2025)); (2) GUI-specialized/fine-
tuned models: AutoGLM, AutoGLM-Mobile (Xu et al.| [2025)), UI-Tars family Qin et al.| (2025)),
V-Droid (Dai et al., 2025), UI-Genie-Agent (Xiao et al., 2025)), MobileUse (Li et al., |2025)), and two
lightly fine-tuned open-source variants (Llama-3.1-8B (ft), GLM-4-9B (ft)).

Evaluation Metrics. Building on Android-Lab’s rule-based task evaluation, we develop an LLM-
based task assessment implementation. A task is complete only if the agent outputs finish() to confirm;
task completion is then evaluated using intermediate step logs, final screenshots, and outputs. Success
Rate (SR) measures the success percentage, and Android-Lab includes 138 total tasks.

3.2 ONLINE AGENT EVALUATION

Using the AndroidLab benchmark, we perform

online GUI task evaluations in an Android en- Iable 1: Main Result of Online Agent Evaluation.

vironment, with results in Table[T} Here, "Ours ~_Model | AgentMode | Imput | Size | SR
w/0 Cloud LLM" uses only the on-device small _ General Models
model LightAgent, while "Ours w Cloud LLM" Gy 33" Rewson Sereen 93
refers to the device—cloud collaborative frame- Claude-Sonnet-4 Simple Screen 40.6
. . Gemini-2.5-Flash Reason Screen - 36.2
work where the on-device agent partners with a Qwen2.5-vVL-32B Reason Screen 32B | 31.2
3 " GPT-40 Simple Screen - 31.2
cloud '!_,LM for tﬁslf comgletlon. In the Ageqt OPTsmind Rempe qoreen i
Mode" column, "Simple" means the model di- GLM-4.1V-9B-Thinking Simple Screen 9B | 24.6
. Gemini-2.5-Flash Simpl Sc - 22.5
rectly outputs GUI actions, and "Reason" means cjaue.s 5 Heika Roanr Sorcen 9%
it uses a long-horizon reasoning mode. Key find- ~ Gemini-1.5-Pro Simple XML 18.8
. GPT-5-nano Simple Screen 18.1
1ngs are as follows: GPT-5-nano Reason Screen 2.9
. . . . GUI Models
(i) Small-but-Mighty. The on-device light -
. . " . " AutoGLM-Mobile Screen+ XML | 9B 46.4
model LightAgent delivers "small-but-mighty MobileUse Screen 72B | 44.2
. : UI-Genie-Agent Screen + XML | 72B | 41.3
performance, matching models one size larger /=% Soreon Dyt
(e.g., Qwen2.5-VL-7B-Instruct, GLM-4-9B(ft)) V-Droid - XML 8B | 38.4
d 1d /1 h . ht cl d AutoGLM-2024-10 Simple Screen + XML - 36.2
and even some older/lightweight closed-source yr1us7 } Screen 7B | 326
_5- - - 1 Llama-3.1-8B (ft) Simple XML 8B 239
LLMs .(e. g., GPT-5 nano, Claude-3.5-HaiKu, GENE o5 (0 sme Xu e e
Gemini-1.5-Pro). This stems from our
Our Model
Ours w Gemini-2.5-Pro Reason Screen 47.1
Ours w Gemini-2.5-Flash Reason Screen - 31.2
"] Ours w/o Cloud LLM Reason Screen 3B 15.2

Under review as a conference paper at ICLR 2026

lightweight MLLM training for on-device

agents: we first inject GUI-specific knowledge

via SFT, then align the training objective with

GUI task goals using GRPO. Notably, though LightAgent and GLM-4-9B(ft) share training data,
LightAgent —despite being much smaller—does not lag significantly. Additionally, our designed
reasoning paradigm helps the small MLLM efficiently use historical context and tap its reasoning
capabilities, boosting GUI task performance.

(ii) Favorable Performance-cost Tradeoff. When LightAgent is deployed in a device-cloud setup
with a powerful closed-source LLM (e.g., Gemini-2.5), performance degradation vs. using the closed-
source LLM alone is minimal. This approach leverages the on-device model effectively, achieving
a strong performance-cost tradeoff. Enabled by our collaborative control framework (combining
pre-task complexity assessment and runtime dynamic orchestration), the system adaptively switches
between on-device and cloud models based on task difficulty and runtime conditions—maintaining
task effectiveness while cutting cloud LLM calls and overall costs.

3.3 ABLATION STUDY

-
o

1000 -

[—— LightAgent —e— LightAgent
© 08l ™ LightAgent (small batch) '%’ —=— LightAgent (small batch)
g —— LightAgent-Zero S 800 —— LightAgent-Zero
& 06} -
> S 600F
g 04f B
=] Q
3 £ 400f
< .l /\(f/*\/\‘/‘ 8
00— 1 f i 200, i T T ey
0 20 40 60 80 100 0 20 40 60 80 100
Training Progress (%) Training Progress (%)
(a) Accuracy Reward. (b) Completion Length.

Figure 5: Impact of different GRPO training variants.
To validate LightAgent ’s introduced techniques,

we perform comprehensive ablation studies. Ex- Table 2: Result of Ablation Study.
periments are split into two parts: ablations of on- varjant | Agent Mode | SN | SR
device model training techniques and of reason- ~4 oo Tuning Reason 3| 22
ing methods in the overall architecture. The corre- LightAgent w/o SFT Reason 12 | 87
sponding results are reported in Table[2] where SN LightAgent w/o GRPO Reason 10 | 72
denotes Success Number LightAgent w/o Reasoning Simple 12 8.7
u u ' LightAgent w/o History Reason 6 4.3
(i) Ablation study for on-device model. As shown LightAgent | Reason | 21 | 152

in Table [2] we sequentially ablate LightAgent ’s
key components. Removing historical context (LightAgent w/o History), GRPO training (LightAgent
w/o GRPO), or SFT (LightAgent w/o SFT) each caused significant performance drops—confirming
their necessity. Notably, LightAgent w/o SFT outperformed LightAgent w/o GRPO, showing GRPO
can independently learn useful policies. This highlights an objective mismatch: while SFT optimizes
next-token prediction, GUI tasks demand accurate final actions, which limits optimization for the
GUI objective.

We also evaluate GRPO variants (summarized in Figure[5). Two key variants are: LightAgent (small
batch), trained with smaller batch sizes (24-32 vs. typical 150-160); and LightAgent-Zero (equivalent
to LightAgent w/o SFT), trained from scratch with only GRPO. Figure [5(a)] shows larger batches
are critical for stable GRPO training—smaller batches cause oscillating task-accuracy rewards and
lower success rates. In contrast, LightAgent-Zero’s rewards rise steadily but learn slower, lacking
SFT-injected GUI knowledge. Figure further illustrates small-batch training leads to highly
variable output lengths (especially in reasoning segments), while LightAgent-Zero struggles with
stable long-form reasoning—slowing its learning and GUI task performance.

(ii) Ablation study for reasoning methods. As shown in Table 2} LightAgent w/o Reasoning (trained
without reasoning segments) shows a marked performance drop vs. the full model. This shows
reasoning annotations are critical for smaller models to unlock their potential and gain meaningful
capability improvements. Agent mode comparisons in Table |1| offer further insights. Prompting

Under review as a conference paper at ICLR 2026

Gemini-2.5-Flash for explicit reasoning significantly improves its GUI performance (SR: 22.5 —
36.2). In contrast, prompting GPT-5-nano for reasoning severely degrades its performance (SR: 18.1
— 2.9). These results reveal a limitation of reasoning techniques: they depend on a model’s baseline
capability. For strong models like Gemini-2.5-Flash, reasoning boosts performance; for weaker ones
like GPT-5-nano, however, adding reasoning requirements raises task difficulty and impairs results.

3.4 DEEP ANALYSIS OF DEVICE-CLOUD COLLABORATION

To validate the device-cloud collaboration system, we conduct an in-depth study assessing multiple
MLLMs as cloud models, with tasks sampled on AndroidLab. For each MLLM, we document the
average total steps to complete a task and the step distribution between the on-device and cloud
models. We also measure the average steps for tasks run solely on cloud models to quantify the
on-device model’s reduction in cloud invocations. Experimental results are shown in Figure [6]

Figure [6(a)] shows the cloud still performs about 65% of steps, reflecting the on-device model’s
limited capacity—due to its constrained size—requiring more frequent cloud intervention to sustain
task completion rates. Figure [6(b)] shows the device-cloud framework cuts cloud calls by roughly
10%. The average number of steps for collaboration here includes the additional model invocation
overhead introduced by the collaborative framework. Notably, more capable cloud models (e.g.,
GLM-4.5V) exhibit a smaller relative reduction, as they handle a larger share of tasks the on-device
model cannot.

Device s Cloud 10k [Cloud-Only
Gl)_ 0 [0 Collaboration
LM-4.5-V
-8.6%
- -21.7%
Claude-3.5-Haiku E 1.0% 14.0% 7% 9.1% v
Qwen2.5-VL-32B | 58 s 744 751 7.37 767
en2.5-VL- b ; 670 7.01
GPT-5-mini f :(>” 6.54 6.40
6 5.88
Gemini2.5-Flash
0 20 40 60 80 100 5

Percentage (%) Gemini2.5-Flash ~ GPT-5-mini Claude-3.5-Haiku Qwen2.5-VL-32B GLM-4.5-V
(a) Percentage of steps in device and cloud models. (b) Cloud steps saved in device-cloud collaboration.

Figure 6: The result of deep analysis of device-cloud collaboration.

3.5 EFFICIENCY COMPARISON FOR ON-DEVICE AGENTS

Due to resource constraints on mobile devices,

different-sized models show marked differences in Single

on-device runtime efficiency. To quantify this, we @ 1507 — Double U
assess the response efficiency of three LLMs—our §

LightAgent (3B), Qwen2.5-VL-7B (7B), and GLM- £ 100} & U

4.1V-9B (9B)—across two compute setups. Served E 45.5% 629

via VLLM (Kwon et al},[2023), the models are tested @ so} 417 ,,, 459

on either one NVIDIA RTX 3090 (Single) or two < %

(Double), with all other settings fixed. Results appear 0.0 T

in Figure[7} notably, GLM-4.1V-9B cannot run on a Ours Qwen25VL-7B GLM-4.1v-98
single RTX 3090 while maintaining required context

length, so that configuration’s results are omitted. Figure 7: Result of efficiency comparison.

On a single RTX 3090, the 7B model’s response time is around 50% longer than our 3B LightAgent
’s, and the 9B model is unusable. With two RTX 3090s, the 7B model remains about 30% slower than
the 3B model, and the 9B model becomes usable but has over triple the 3B model’s latency. This
confirms model size heavily affects runtime efficiency in resource-constrained environments: our 3B
LightAgent, by virtue of its smaller size, delivers a clear efficiency edge while matching larger models
in GUI task capabilities. We further note upgrading from one to two RTX 3090s reduces latency by
only 15.5% for the 3B model but 27.1% for the 7B model, because the 7B model running near full
capacity on a single 3090, amplifying inefficiencies. Thus, under the stricter compute constraints of
real-world mobile devices, the efficiency gap between the 7B and 3B models will likely grow.

3.6 PERFORMANCE ON FREQUENTLY USED APPLICATIONS.

Under review as a conference paper at ICLR 2026

Table 3: Result of Frequently Used Apps.

To evaluate the agent’s performance on daily mobile

. Model | Agent Mode | Input | Size | SR

apps, we further select common apps, design match- Baseline Methods
ing tasks, and report results in Table 3] Experiments ~gryasv Reason | Sereen | -1 600
show our device-cloud collaborative framework per- ~ Gemini-2.5-Flash Reason | Screen | - | 560
. . GPT-5-mini Reason Screen - 40.0
forms well, with no performance degradation com- UL-Turs-7B - Screen | 7B | 320
Claude-3.5-Haiku Reason Screen - 24.0
parc?d to a pure cloud-based agent. Moreover, our on- V%63 Smple | XML | 9B | 120

device LightAgent outperforms the larger GLM-4-9B LightAgent

64.0

(fty—even though it underperforms on the original 55w GominizsFlash ‘
20.0

AndroidLab benchmark. We attribute this reversal to ~_Ours wio Cloud LLM
our enhanced training pipeline: unlike models fine-tuned directly on raw data, LightAgent is further
optimized via GRPO reinforcement learning and augmented with a reasoning paradigm, which boosts
the small model’s reasoning ability and generalization. A case of LightAgent ’s performance on
TikTok is also reported in Appendix

Reason Screen
Reason Screen

3B

4 CONCLUSION

In this work, we propose LightAgent —a lightweight device-cloud collaborative framework specifi-
cally designed to strike an effective balance between performance and practicality for mobile GUI
agents. By engineering a compact yet capable on-device agent and introducing a dynamic orchestra-
tion policy, it greatly diminishes reliance on costly cloud models, all while preserving the efficacy
of task completion. Comprehensive evaluations demonstrate that LightAgent delivers a favorable
trade-off between operational cost and performance, thereby rendering advanced GUI automation
more accessible. It marks a meaningful step towards practical and efficient mobile Al agents.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Anthropic. Introducing the model context protocol. In https://www.anthropic.com/news/model-
context-protocol, 2024,

Anthropic. System card: Claude opus 4 and claude sonnet 4. In https://www-cdn.anthropic.com/,
2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-
line Lin, and Pavlo Molchanov. Small language models are the future of agentic ai. arXiv preprint
arXiv:2506.02153, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Gaole Dai, Shiqi Jiang, Ting Cao, Yuanchun Li, Yuqing Yang, Rui Tan, Mo Li, and Lili Qiu.
Advancing mobile gui agents: A verifier-driven approach to practical deployment. arXiv preprint
arXiv:2503.15937, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
multi-agent system for solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between
gaussian mixture models. In 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing-ICASSP’07, volume 4, pp. IV-317. IEEE, 2007.

Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
with scalable reinforcement learning. arXiv e-prints, pp. arXiv—2507, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems principles,
pp. 611-626, 2023.

Stefanos Laskaridis, Kleomenis Katevas, Lorenzo Minto, and Hamed Haddadi. Melting point: Mobile
evaluation of language transformers. In Proceedings of the 30th Annual International Conference
on Mobile Computing and Networking, pp. 890-907, 2024.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for" mind" exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008, 2023.

Ning Li, Xiangmou Qu, Jiamu Zhou, Jun Wang, Muning Wen, Kounianhua Du, Xingyu Lou, Qiuying
Peng, and Weinan Zhang. Mobileuse: A gui agent with hierarchical reflection for autonomous
mobile operation. arXiv preprint arXiv:2507.16853, 2025.

11

Under review as a conference paper at ICLR 2026

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Stan Weixian
Lei, Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui
visual agent. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
19498-19508, 2025.

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang, Hanlin Zhao, Iat Long
Tong, Jiadai Sun, Jiaqi Wang, et al. Autoglm: Autonomous foundation agents for guis. arXiv
preprint arXiv:2411.00820, 2024.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents by
reinforcement learning. arXiv preprint arXiv:2503.21620, 2025.

OpenAl Introducing gpt-5. In https://openai.com/zh-Hant/index/introducing-gpt-5/, 2025.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xuegiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curriculum
reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Linxin Song, Yutong Dai, Viraj Prabhu, Jieyu Zhang, Taiwei Shi, Li Li, Junnan Li, Silvio Savarese,
Zeyuan Chen, Jieyu Zhao, et al. Coact-1: Computer-using agents with coding as actions. arXiv
preprint arXiv:2508.03923, 2025.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversations. In First Conference on Language Modeling, 2024a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024b.

Han Xiao, Guozhi Wang, Yuxiang Chai, Zimu Lu, Weifeng Lin, Hao He, Lue Fan, Liuyang Bian,
Rui Hu, Liang Liu, et al. Ui-genie: A self-improving approach for iteratively boosting mllm-based
mobile gui agents. arXiv preprint arXiv:2505.21496, 2025.

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the
weakness of large language model agents within a complex android environment. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6061-6072,
2024.

12

Under review as a conference paper at ICLR 2026

Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android
autonomous agents. arXiv preprint arXiv:2410.24024, 2024.

Yifan Xu, Xiao Liu, Xinghan Liu, Jiaqi Fu, Hanchen Zhang, Bohao Jing, Shudan Zhang, Yuting
Wang, Wenyi Zhao, and Yuxiao Dong. Mobilerl: Online agentic reinforcement learning for mobile
gui agents. 2025. URL |https://arxiv.org/abs/2509.18119|

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Foundamental agents for gui automation.
arXiv preprint arXiv:2508.15144, 2025.

13

https://arxiv.org/abs/2509.18119

Under review as a conference paper at ICLR 2026

A APPENDIX / SUPPLEMENTAL MATERIAL
A.1 LLM USAGE STATEMENT

In the preparation of this paper, LLMs are used solely as an auxiliary tool for writing. Their
specific role was limited to text polishing—including enhancing the fluency and accuracy of language
expression—and assisting in the writing process such as organizing paragraph logic and optimizing
sentence structures. LLMs did not participate in research ideation, data analysis, or other core
research linkages.

A.2 RELATED WORK

GUI Agent. Autonomous agents show great promise in boosting human task performance. Digital
environments have inherently multimodal information (text, images, visual elements), adding com-
plexity and challenges for language models—this has in turn spurred more research on graphical
user interface (GUI) agents. Advancements in large-model technologies enable state-of-the-art gener-
alist models (e.g., GPT-5 (OpenAl 2025), Claude-Sonnet-4 (Anthropic} |2025)), Qwen2.5-VL (Bai
et al.| 2025)) to perform GUI tasks via visual understanding per specific instructions. These models
drive progress in visual perception, document parsing, object localization, and reasoning, laying a
foundation for multifunctional GUI agents. Meanwhile, many GUI-focused systems (Lu et al., [2025)
have emerged from such general models (e.g., UI-Tars (Qin et al.,[2025)), an end-to-end GUI agent
built on Qwen-2-VL (Wang et al.,|2024) with strong performance; V-Droid (Dai et al. 2025)), which
enhances interactive Ul element identification by parsing UI state XML and using an agent to verify
appropriate actions). Existing GUI agents are typically evaluated for computer and phone use. Phone
use introduces extra challenges: stricter on-device compute constraints and operations more reliant
on GUI capabilities than MCP (Anthropic, |2024) commands. To tackle these mobile-specific GUI
challenges, we propose LightAgent.

Multi-Agent System. As autonomous agent research advances, multi-agent systems are drawing
attention, as monolithic approaches struggle with long-context, multimodal scenarios (Belcak et al.,
2025). A single agent often fails to handle high-level planning, deep reasoning, and low-level
execution. Thus, many studies (Fourney et al., [2024; [Wu et al., [2024a; [Li et al.| [2023)) use a
coordinator-agent framework: the coordinator interprets user intent and gives instructions, while
assistant agents execute tasks, greatly improving complex assignment completion. Systems such
as Mobile-Agent-V3 (Ye et al.l [2025)), CoAct-1 (Song et al.| 2025), and Agent-S2 (Agashe et al.
2024) have applied multi-agent architectures to GUI tasks, underscoring collaboration’s importance
in addressing complex challenges. Building on multi-agent collaboration advancements, LightAgent
introduces a device-cloud collaboration paradigm. It leverages on-device and cloud model strengths
to balance cost and performance optimally, better addressing phone-use GUI scenario constraints.

A.3 ACTION SPACE

Table 4: Action Space for Mobile GUI Interaction

Action | Parameters | Description

Tap ‘ index:int ‘ Tap the element with the given index number.

Type | input_str: str | Enter text into the currently focused input field.

Swipe index: int, direction: str, dist: str Swipe on the element with given index, direction
and distance.

Long Press index: int Long press the element with the given index
number.

Home() | none | Simulate the home button.

Wait interval: int Pauses execution for the specified number of
seconds (default is 5 seconds).

Back() | none | Simulate the back button.

Finish ‘ message: str (optional) ‘ End the session with an optional message.

14

Under review as a conference paper at ICLR 2026

In Table[d] we present the action space from AndroidLab, which represents screen positions using
bounding boxes aligned with XML data.
A.4 INSTRUCTION TEMPLATES

A.4.1 INSTRUCTION TEMPLATE FOR THE ON-DEVICE MODEL.

In this subsection, we present the input instruction template for the on-device model, which is
composed of three main components: [Available Functions|, [Required Output Format|, and [Guidelines].

Template : Instructions for the On-Device Model

You are an intelligent agent that performs smartphone tasks by interacting with Ul elements labeled with
numeric tags.

[Available Functions|

1. tap(index: int) - Tap Ul element

2. text(input_str: str) - Insert text (tap field first)
3. long_press(index: int) - Long press Ul element
4. swipe(index: int, direction: str, dist: str) - Swipe element
- direction: "up", "down", "left", "right"

- dist: "short", "medium", "long"

5. back() - Press back button

6. home() - Press home button

7. (interval: int) - Pause (default: 5 seconds)

8. finish(message: str) - Complete task

| Required Output Format|
<REASONING>

[Analyze current screen, task progress, chosen action rationale, and expected outcome]
</REASONING>
<STATE_ASSESSMENT>

Current State: [Screen description]
Task Progress: [Completion status]
Next Required Action: [What’s needed]
Expected Outcome: [Action result]
Potential Issues: [Risk considerations]
</STATE_ASSESSMENT>
<CALLED_FUNCTION>

[Single function call only]
</CALLED_FUNCTION>

- Execute one action per step

- Verify elements exist before interaction

- Tap input fields before using text()

- Monitor progress to avoid redundant actions

- Use finish() only when task complete

- Choose direct, efficient paths to completion
\ J

A.4.2 INSTRUCTION TEMPLATE FOR TASK COMPLEXITY ASSESSMENT.

In this subsection, we present the instruction schema used to evaluate task complexity — a key
determinant of when monitoring begins and how frequently it runs in the edge—cloud collabo-
ration system. The schema comprises the following sections: [Device Agent Capability Assessment],

Task Complexity Indicators |, |M0nit0ring Strategy |, |Task-Speciﬁc Risk Assessment |, |0utput Format |, and

Guidelines |.

15

Under review as a conference paper at ICLR 2026

Template : Instructions for Task Complexity Assessment

You are an intelligent strategic planning agent that determines the optimal monitoring strategy for
smartphone task completion. Your goal is to maximize task completion rate while minimizing cloud
model usage costs.

Given a task instruction, determine:

1. When to start monitoring device agent performance

2. How frequently to monitor device agent performance

3. Whether to use cloud model from the beginning for high-risk tasks

[Device Agent Capability Assessment |

Critical Failure Apps (0-15% completion):

- Bluecoins: Financial data entry, complex queries, multi-step forms - 0% success rate
- Map.me: Navigation, route planning, complex Ul interactions - 0% success rate
- PiMusic: Complex music queries, data extraction, multi-screen navigation - 5% success rate
High Risk Apps (15-35% completion):

[...]

|Task Complexity Indicators (High Risk Factors)l

Immediate Cloud Usage Required:

- Financial transactions or data entry

- Navigation and route planning

-[...]

Early Monitoring Required (Start from Step 2-3):

-[...]

|M0nitoring Strategyl

For Critical Failure Apps (0-15% success):

- Start monitoring: Step 1 (immediate)

- Monitoring frequency: Every 2 steps

- Consider: Immediate cloud usage for complex tasks

For High Risk Apps (15-35% success):

-[...]

| Task-Specific Risk Assessment|

Analyze the task instruction for these high-risk indicators:

non

1. Financial/Data Entry: "add transaction", "enter amount", "fill form"

non non

2. Navigation: "find route", "navigate to", "get directions"

3.0...]

Provide your decisions in the following exact format:
<MONITORING START FROM>

{Steps Number}

</MONITORING START FROM>
<MONITORING FREQUENCY>

{Steps Number}

</MONITORING FREQUENCY>

Guidelines

- Prioritize task completion over cost optimization
- Use immediate cloud usage for critical failure apps with complex tasks
=[]

. J

A.4.3 INSTRUCTION TEMPLATE FOR DYNAMIC ORCHESTRATION POLICY.

In this subsection, we present the instructions used for dynamically monitoring task progress to derive
edge—cloud switching strategies. The instruction set primarily comprises the following components:
Decision Criteria |, |Analysis Framework |, |Risk-Based Decision Makingl, |Output Format |, and | Guidelines |.

16

Under review as a conference paper at ICLR 2026

Template : Instructions for Dynamic Orchestration Policy

You are an intelligent decision-making agent responsible for determining whether to switch from a
device model to a cloud model for smartphone task completion. Your primary goal is to maximize task
completion success rate.

Analyze the current smartphone screenshot, historical operation information, and task progress to decide
if the cloud model should take over from the device model.

Switch to CLOUD model when ANY of the following conditions are met:
1. Immediate Risk Indicators

- Critical App Detection: Current app is Bluecoins, Map.me, or PiMusic (0-5% success rate)
- Complex Task Pattern: Task involves financial data, navigation, or multi-step forms

- Early Failure Signs: Device model shows confusion in first 3 steps

- Wrong App Navigation: Device model navigated to completely irrelevant app

2. Progressive Failure Patterns

- Repetitive Operations: Same action repeated 2+ times without progress

- Navigation Confusion: Device model appears lost or confused about next steps

- Form Completion Issues: Reached correct screen but struggling with form fields

- State Misunderstanding: Device model misinterprets current app state or toggle positions
3. Task Progress Assessment

-[..]

4. Context and Timing Factors

= ffocol]

|Analysis Frameworkl

Immediate Assessment (First 3 Steps):

- Is the device model on the right track?

- Does the current app/screen make sense for the task?
- Are there any obvious confusion signs?

Progressive Assessment (Steps 4-8):

=[]

Critical Decision Points:

=[]

| Risk-Based Decision Making |

High Risk Tasks (Financial, Navigation, Complex Forms):
- Switch to CLOUD at first sign of struggle

- Prioritize completion over cost

- Intervene early rather than late

Medium Risk Tasks (Standard Operations):

=[]
Low Risk Tasks (Simple Toggles, Basic Navigation):
=[]

Output Format

After your analysis, output ONLY one of the following decisions:
CLOUD - Switch to cloud model (when intervention is needed)
DEVICE - Continue with device model (when current approach is working)

- Prioritize Success: Task completion is more important than cost optimization

- Early Intervention: Better to switch too early than too late

- Context Awareness: Consider the specific app and task complexity

-[...]

Your analysis should be thorough but your final output must be exactly one word: either "CLOUD" or

"DEVICE".
G J

A.4.4 INSTRUCTION TEMPLATE FOR REASONING DATA GENERATION.

In this subsection, we present the instruction template for reasoning data generation, which is
composed of | Reasoning Process |, |Input Structure |, |Expected Reasoning Outputl, and | Your Task|.

17

Under review as a conference paper at ICLR 2026

Template : Instruction Formate for Reasoning Data Generation

You are an interface analysis assistant for smartphones. You are provided with a screenshot of a smartphone
interface. The interactive elements within the UI are marked with numeric tags starting from 1.

For each operable Ul element, include the following details:

1. Type of action: Describe the type of interaction available (e.g., navigation, text input, toggle, etc.).

2. Text information: Any visible text associated with the UI element (e.g., labels, placeholders, or
descriptions).

3. Action: Summarize what happens when the element is interacted with (e.g., "Tap to navigate to
settings," "Toggle to enable/disable Wi-Fi").

4. State: If the element has a state (e.g., switches for Bluetooth, Wi-Fi), specify whether it is currently
"On" or "Oft." If no state applies, write "None."

5. Array Indexes: If an element has multiple numeric tags, list all the indexes corresponding to that
element.

You can call the following functions to interact with those labeled elements to control the smartphone:

- [Action Space...]

Reasoning Process

You will use a step-by-step reasoning process ("Chain of Thought") to determine the appropriate actions
required to accomplish the task. Your reasoning should follow this structure:

1. Analyze Current State

- Determine whether the current page indicates that the task to be completed has been finished

- Review the current UI elements and their positions

- Identify relevant interactive elements for the task

2. History Assessment

-le...]

3. State Assessment

=[]

4. Plan Actions

=[]

5. Determine Functions

=[]

Your reasoning must explicitly connect your analysis to the function calls you’ll make, ending with the
exact function call that matches the provided <CALLED_FUNCTION>.

Input Structure

You will receive the following input components:

1. Task Instruction

A description of the task to be completed.

2. Screenshot

3. History Info

Information about previous states, actions, and their intended goals.
4. Called Function

The specific function you need to justify through your reasoning.
| Expected Reasoning Outputl

Example:

<REASONING>

-[...]

</REASONING>

113

Based on the provided task instructions, screenshots, and history information, you will:

1. Analyze the information.

2. Evaluate previous actions and their outcomes.

3. Formulate a clear reasoning process.

4. Ensure your reasoning concludes with and justifies the exact function provided in CALLED FUNC-
TION.

Please output <REASONING>...</REASONING> part with Chain of Thought format step by step.

18

1
2
3
4
5

® 9 &

10
11

13

19

Under review as a conference paper at ICLR 2026

A.5 ALGORITHM FOR GRPO OPTIMIZATION

Algorithm 2: Group Reward Policy Optimization

Input: Initial policy parameters iy, reward function r(-), question set Q, group size G, clipping parameter
€, KL penalty coefficient 3

Output: Optimized policy parameters 6

Initialize 6 <+ O

Tref <— T // Initialize the reference policy (fixed for KL divergence)

Told < T4 // Initialize the old policy (for importance sampling)

for each training iteration do

for each question q € Q (in mini-batch) do

{01,02,...,0a¢} ~ 7oua(- | q¢) // Sample outputs using the old policy

{ri,72,...,7G} where r; + r(0;,q)

fr < & S .7 // Compute mean reward

o 1/ é ZZ.G:l(m — pr)? // Compute standard deviation of rewards

for each output o; do
Aj « B-Er // Compute normalized advantage
-

pi(0) % // Compute probability ratio against the old
policy
LS « min (p;(0) As, clip(pi(0),1 —€,14 €)A;) // Compute clipped
objective
end

L« —é Zlczl LS BDx1(mo || mef) // Total loss

end
Update parameters 6 to minimize L (e.g., using gradient descent)
Told <— 79 5 // Update the old policy for next sampling

end

A.6 EXPERIMENTAL SETUP

AndroidLab. AndroidLab is an online GUI-task evaluation benchmark built on the Android platform.
It comprises nine commonly used applications and 138 evaluation tasks, and supports two input
modes: XML mode (Xing et al., 2024)) and SoM (Set-of-Mark) mode (Yang et al.,2023)). XML mode
is tailored to text-only models, where the LLM selects target UI elements directly from the XML
representation. SoM mode is intended for multimodal models and uses the Set-of-Mark method:
each clickable or focusable element is assigned a unique index, and the LLM specifies elements
by their index when issuing operations. Given the growing predominance of MLLMs for GUI
tasks, LightAgent primarily adopts the SoM mode; accordingly, all experimental results reported are
obtained using SoM mode.

Additional Frequently Used Applications. Existing academic GUI benchmarks, limited by factors
such as reproducibility, often neglect to test many of today’s most widely used mobile applications.
To offer a more comprehensive evaluation of LightAgent, we augmented AndroidLab with four
commonly used mobile apps, contributing a total of 25 tasks. The four apps included are Gmail,
Chrome, Reddit, and TikTok. Table 5]lists four additional popular mobile apps (Chrome, TikTok,
Reddit, and Gmail) and their corresponding tasks; of the 25 tasks in total, only 12 are presented here.

A.7 CASE ON TIKTOK

19

Under review as a conference paper at ICLR 2026

Table 5: Additional App Evaluation Tasks and Descriptions

App Task ID Task Description Evaluation Type

Chrome Browser chrome_1 Find the address and founding date of query_detect
the University of ***

Chrome Browser chrome_2 Set to dark mode operation

Chrome Browser chrome_3 Enter bookmarks and find the website query_detect
you saved in Mobile Bookmarks

TikTok tiktok_1 Go to the homepage of "[ShowSpeed" operation
TikTok tiktok_2 Go to the homepage of "IShowSpeed" query_detect
and check whether you follow this cre-
ator
TikTok tiktok_3 Search for videos about "iphone 17" operation
Reddit reddit_1 Join the ChatGPT discussion group operation
Reddit reddit_2 Check the Popular page operation
Reddit reddit_3 Search for posts related to "Qwen" and operation

limit the time to "Today"

Gmail gmail_1 Edit an email addressed to user operation
_test@gmail.com, with the subject "In-
quire about academic collaboration op-
portunities," and the content "Can I have
an online meeting with you at Spm today
to discuss this?" (no need to send)

Gmail gmail_2 Reply to an email titled "Ask about operation
project progress" with the content "The
main experimental part has been com-
pleted and the ablation experiment is un-
derway." (no need to send)

Gmail gmail_3 Find the relevant email in your mailbox query_detect
and answer: What is the date of the on-
line meeting about TA’s task?

Py s—— an

ay=~ g ® o - a R

- o] m vE “w fm Vmem o
e m oy o
m m =t
ot] m
“ m m
[— -
- m ™
m ™
]
] m
D oe e s 5T e e W
: m o
Qwe ity Wit Qwe ity uitop finis lly searched for videos
asdfghijkl type(Viphone 171) asdighijkl tap(5) a e 17 on TikTok\")
0 zxcvbnoma@ ©zxcvbnoma@

m ., o a m ., o a

Figure 8: An example of a GUI agent operating on TikTok. The task instruction is search for videos
of "iPhone 17" on TikTok. It illustrates the agent’s reasoning and reflection process <REASONING>
and how these lead to the final <CALLED_FUNCTION>.

20

	Introduction
	Methodology
	Efficient Reasoning GUI Agent
	Long-Horizon Reasoning Enhancement
	Efficient Memory Management
	Overall Process

	Device-Cloud Collaborative Agent System
	Collaborative Control Framework
	Integrated Execution Flow

	Lightweight MLLM Tuning for On-Device Agents
	Synthetic Data Generation Pipeline
	Two-Stage Training Protocol

	Evaluation
	Experimental Setup
	Online Agent Evaluation
	Ablation Study
	Deep Analysis of Device-Cloud Collaboration
	Efficiency Comparison for On-Device Agents
	Performance on Frequently Used Applications.

	Conclusion
	Appendix / supplemental material
	LLM Usage Statement
	Related Work
	Action Space
	Instruction Templates
	Instruction Template for the On-Device Model.
	Instruction Template for Task Complexity Assessment.
	Instruction Template for Dynamic Orchestration Policy.
	Instruction Template for Reasoning Data Generation.

	Algorithm for GRPO optimization
	Experimental Setup
	Case on TikTok

