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ABSTRACT

Tree-Ring Watermarking is a significant technique for authenticating AI-
generated images. However, its effectiveness in rectified flow-based models re-
mains unexplored, particularly given the inherent challenges of these models with
noise latent inversion. Through extensive experimentation, we evaluated and com-
pared the detection and separability of watermarks between SD 2.1 and FLUX.1-
dev models. By analyzing various text guidance configurations and augmentation
attacks, we demonstrate how inversion limitations affect both watermark recovery
and the statistical separation between watermarked and unwatermarked images.
Our findings provide valuable insights into the current limitations of Tree-Ring
Watermarking in the current SOTA models and highlight the critical need for im-
proved inversion methods to achieve reliable watermark detection and separabil-
ity. The official implementation, dataset release and all experimental results are
available at this link.

1 INTRODUCTION

The rapid advancement of generative AI models has raised pressing concerns about the authenticity
and provenance of digital content. While watermarking techniques for AI-generated images have
emerged as a promising solution, their effectiveness heavily depends on reliable detection and clear
separability between watermarked and non-watermarked content. Recent approaches like Tree Ring
Watermarking (Wen et al., 2024) have shown promise, but their effectiveness remains unexplored
for newer architectures.

Recent advances in text-conditioned generative models, particularly rectified flow models, have
demonstrated remarkable capabilities in high-resolution image synthesis. Unlike traditional diffu-
sion models, rectified flows model transportation between distributions through linear interpolation
of marginals, enabling efficient sampling with fewer discretization steps. However, the implications
of these architectural differences on watermarking mechanisms remain unexplored.

This work investigates watermark detection and separability in flow-based generative models, fo-
cusing on the FLUX model. We analyze two critical aspects: the reconstruction and detection of
embedded watermarks through noise latent inversion, and the statistical separability between water-
marked and non-watermarked distributions under various attack scenarios. Our findings demonstrate
that while flow-based models present unique challenges for watermark detection, careful considera-
tion of model configuration and inversion methodology can achieve reliable separation.

2 RELATED WORKS

Watermarking Approaches. Random seed modification watermarks like Tree Ring (Wen et al.,
2024) and RingID (Ci et al., 2024) embed a known key into the noise latent that is the starting point
for image generation using diffusion. The effectiveness of these approaches has been systematically
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Figure 1: Watermarking workflow for both FLUX and Stable Diffusion

evaluated through benchmarks like Waves (An et al.), which provides standardized attack scenarios
for robustness assessment.

Inversion Methods. Recent work has advanced latent inversion techniques, with Hong et al.
(2024) demonstrating significantly improved Tree-ring watermark detection using higher-order in-
version algorithms compared to naive DDIM inversion. While their work showed remarkable de-
tection accuracy on traditional diffusion models using DPM-Solver++ (Lu et al., 2022), the effec-
tiveness of these techniques on newer rectified flow-based architectures remains unexplored. Our
work extends this analysis to flow-based models, providing insights into watermark detection across
different architectures.

3 METHODOLOGY

3.1 PRELIMINARIES

Notation Let xt denote the noisy image at timestep t, with x0 and xT representing the generated
image and initial noise latent respectively. In frequency domain, XT denotes the Fourier transform
of xT . The data and noise distributions are denoted by π0 and π1 ∼ N (0, I) respectively. We denote
the parameters of a neural network by θ that can be used for adequate prediction targets and c for
the text prompt used to guide the text-to-image generation models.

Generation and Inversion Framework Image generation involves producing an image x0 from
random noise xT , while inversion aims to reconstruct the original noise latent (x̂T ) from an input
generated latent. The noise map obtained from inversion should generate the exact same image
x0 by sampling using diffusion. Both processes involve solving Ordinary Differential Equations
(ODEs) through numerical integration, which can be done using first-order methods, such as Euler’s
method. This is usually the case with models like Flux, which follow a more linear trajectory. We
focus on two primary approaches: traditional Denoising Diffusion Models (DDMs) and the newer
Rectified Flow Transformer models (Liu et al., 2023; Lipman et al., 2022; Liu, 2022; Esser et al.,
2024).

FLUX Transformers trained with the flow-matching objective have recently achieved state-of-
the-art results in image generation (Esser et al., 2024). We utilize the open weights FLUX.1-dev
model, which employs a Diffusion Transformer (DiT) (Peebles & Xie, 2023) architecture and differs
fundamentally from traditional DDMs like Stable Diffusion (Rombach et al., 2022b) in its approach
to generation and inversion. FLUX is based on rectified flows, which construct a transportation
between the source distribution π1 (typically standard Gaussian) and the target data distribution π0

through the following ODE:

dxt

dt
= vt(xt, t, c)dt, X0 ∼ π0, t ∈ [0, 1]

where vt is a time-dependent velocity field parameterized by the neural network. A key property of
rectified flows is that the marginal distribution at time t follows a linear interpolation between x0

and x1:
xt ∼ (1− t)x0 + tx1
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Algorithm 1 Tree Ring Watermarking Procedure
Require: Image dimensions (h,w), watermark channel cw, radius r, batch size b, seed s
Ensure: Watermarked noise xT , watermark key w, watermark mask m

1: xT ∼ N (0, I) (Sample initial Gaussian noise)
2: Generate watermark mask m using radius r and channel cw
3: Generate watermark key w using pattern and seed s
4: Compute FFT of noise: XT ← FFT(xT )

5: Apply watermark: X̂T [m]← w[m]

6: Compute inverse FFT: xw
T ← IFFT(X̂T )

return xw
T , w, m

This property enables efficient sampling with relatively few discretization steps. For generation, the
ODE is solved forward, while inversion uses the backward Euler method:

xti = xti−1
− (ti − ti−1)vθ(xti , ti, c)

This contrasts with the usual first-order (naive) DDIM inversion:

xt+1 =
√
ᾱt+1 x̂

t
0 +

√
1− ᾱt+1 ϵθ(xt, σt, c)

For more details and a thorough discussion, refer Appendix Section A.

3.2 APPROACH

Tree-Ring Watermark Embedding The Tree-Ring watermark embedding follows a Fourier
space modification approach:

xT = F−1(XT ), where XT [m] = w[m] (1)

Here, w represents the ring-pattern watermark key, m the circular mask in channel Cw, and F−1 the
inverse Fourier transform. The corresponding recovered key is denoted by ŵ which is obtained from
the fourier transform of the recovered watermarked noise latent, i.e. ŵ = F(x̂T

w
).

The complete watermarking procedure is detailed in Algorithm 1.

VLM Generated Prompt for Inversion Guidance For real-world scenarios where original
prompts might be unavailable, we employ Qwen2-VL-2B-Instruct (Wang et al., 2024) to generate
image-grounded captions as alternative prompts. This approach enables evaluation of both prompt-
free and prompt-guided inversion scenarios.

Evaluation We evaluate watermark separability by analyzing the distribution of Fourier space dis-
tances d = ∥ŵ − w∥ between reconstructed (ŵ) and original (w) watermark patterns. To quantify
the statistical separation between different configurations (with/without prompts, with/without at-
tacks), we compute the Symmetric KL Divergence between their respective distance distributions:
DSKL(P∥Q) = 1

2 [DKL(P∥Q) +DKL(Q∥P )], where P and Q represent the distance distributions for
different experimental configurations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To ensure consistency, we used a fixed global random seed for generating initial latents, enabling
reproducibility across models and configurations. The same watermark key, derived from this seed,
was applied throughout the study. Additionally, we adopted a uniform timestep schedule for both
sampling and inversion, which appeared to improve the inversion accuracy. We perform the experi-
ments on the test partition of the open source Stable Diffusion Prompts Dataset (Santana, 2023). For
all our experiments we have used a fixed Classifier-free guidance (Bansal et al.) of 3.5.
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Table 1: Watermark Extraction Metrics
Model Configuration Latent Noise Reconstruction 1

n

∑
|ŵi − wi|

NMAE |ŵ−w|1
|w|1 NMSE |ŵ−w|22

|w|22

FLUX.1-dev

No Attack (No Prompt) 0.3030.056 0.1060.042 22.7720.550

No Attack (With Prompt) 0.2320.046 0.0630.029 22.1230.351

No Attack (With VLM) 0.2900.050 0.0960.037 22.7010.477

Blur (No Prompt) 1.2590.016 1.5940.040 37.5141.066

Blur (With Prompt) 1.2610.017 1.5970.042 37.7181.049

Noise (No Prompt) 1.3250.043 1.7720.018 38.6561.372

Noise (With Prompt) 1.3430.043 1.8210.106 39.3091.302

SD 2.1 base
No Attack (No Prompt) 0.3450.060 0.1320.047 45.6011.702

No Attack (With Prompt) 0.3380.061 0.1280.047 45.0701.749

Note: Subscripts denote standard deviations. Last column represents average L1 distance in Fourier space.

Figure 2: Distribution of watermark distances in Fourier space. Attacked scenarios show the distri-
bution of the fourier space distance under noise, and blur manipulations. It can be clearly seen that in
non-attacked scenarios, the prompt guidance plays a significant role in accurate inversion. We note
that in attack scenarios the distance in the fourier space is drastically increased for FLUX.1-dev.

4.2 RESULTS AND ANALYSIS

Clean Images. Our experiments with non-attacked scenarios reveal that exact prompt guidance
during inversion yields the lowest reconstruction error in both Fourier and spatial domains however,
in case of attacked images the exact prompt guidance does not aid in reconstruction. Interestingly,
FLUX.1-dev demonstrates superior latent noise reconstruction for clean images compared to the
baseline model SD 2.1 (Rombach et al., 2022b). However, this advantage diminishes significantly
under attacked scenarios, where the separability between watermarked and non-watermarked distri-
butions becomes drastically reduced.

Table 2: AUC comparison for watermark detection under different attacks
Model Blurring Noise

SD 2.1 base (DDIM) 0.999 0.944
FLUX.1-dev (RF) 0.888 0.662
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Table 3: Watermark Detection Performance for clean images with FLUX.1-dev
Configuration TPR@1%FPR AUC Thresholds at FPR

1% 5% 10%

No Prompt 1.000 0.989 36.950 37.538 37.978
With Prompt 1.000 0.999 36.949 37.524 37.993

The use of VLM-generated prompts demonstrates a noteworthy but constrained improvement in wa-
termark detection. While these semantically derived prompts show marginal benefits in distribution
separability and offer performance intermediate between exact prompt and no-prompt configura-
tions, they fail to match the effectiveness of exact prompt guidance. This suggests that while seman-
tic understanding from VLMs can aid reconstruction, precise prompt matching remains crucial
for optimal watermark recovery.

DDIM (SD 2.1 base) exhibits robust separation between watermarked and non-watermarked im-
ages through naive inversion, maintaining consistent performance regardless of prompt guidance.
This behavior contrasts significantly with FLUX.1-dev, where reconstruction quality demonstrates
marked sensitivity to the presence and accuracy of prompt guidance.

Attacked Scenarios. Under attacked scenarios, the application of noise and blur perturbations
significantly compromises the watermark detection capability in FLUX.1-dev as shown in 1. This
degradation is particularly evident in the Fourier domain, where the characteristic ring patterns be-
come increasingly difficult to distinguish from background frequencies. This behavior stands in
stark contrast with DDIM, where previous work by(Wen et al., 2024)has demonstrated that latent
noise reconstruction maintains high fidelity even under various attack scenarios.

Impediments to Watermark Recovery The observed differences in watermark recovery between
FLUX.1-dev and traditional diffusion models stem from fundamental architectural and training
methodology differences. Flux employs a Multimodal Diffusion Transformer (MM DiT) architec-
ture where text and image information are deeply entangled throughout the network, unlike older dif-
fusion models’ UNet architecture where text conditioning occurs primarily through cross-attention
layers. This architectural difference makes image generation in Flux more fundamentally dependent
on prompt information. Additionally, Flux uses a T5 text encoder with different latent characteristics
than the CLIP encoder used in stable diffusion models, further altering information flow through the
model. Most importantly, the rectified flow training objective optimizes for straight paths between
source and target distributions, prioritizing efficient forward sampling at the expense of invertibil-
ity. This straightened path inherently discards information that would be useful during inversion.
Higher-order numerical methods might offer incremental improvements, but cannot fully overcome
these fundamental architectural limitations.

5 CONCLUSION AND FUTURE WORK

Our study reveals fundamental differences in watermark detection and recovery capabilities across
DDIM (SD 2.1 base) and FLUX.1-dev architectures. Most notably, we find that the diffusion trans-
former model FLUX.1-dev exhibits a strong dependency on prompt guidance for accurate recon-
struction and watermark recovery, differing significantly from DDIM-based models like Stable Dif-
fusion 2.1, which achieve reliable separation between watermarked and non-watermarked images
even without prompt guidance and under attacks. Our analysis demonstrates that detection accuracy
in FLUX.1-dev degrades significantly under attacked scenarios, underscoring the need for more ro-
bust inversion techniques. A qualitative visualization of image reconstruction is provided in Figure
3.

These findings highlight several critical directions for future research: developing improved in-
version techniques specifically for rectified flow-based generative models, and crafting approaches
to increase robustness of popular watermarking techniques over image manipulation attacks while
maintaining watermark effectiveness.
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A APPENDIX: DIFFUSION MODELS AND FLOW MATCHING

A.1 LATENT DIFFUSION MODELS

Latent Diffusion Models (Rombach et al., 2022a) (LDMs) operate in the compressed latent space
of an autoencoder rather than directly in pixel space. The autoencoder consists of an encoder E that
maps images x ∈ RH×W×3 to a lower-dimensional latent representation z = E(x) ∈ Rh×w×c, and
a decoder D that reconstructs the image from latents.

The diffusion process occurs entirely in this latent space, offering two key advantages: reduced com-
putational complexity due to lower dimensionality, and the ability to leverage semantic compression
from the autoencoder. Given a noise schedule {βt}Tt=1 and defining ᾱt =

∏t
i=1(1−βi), the forward

process adds noise to the latents:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (2)

where z0 = E(x) is the encoded latent. The model learns to predict the noise component using a
neural network ϵθ(zt, t) trained with the objective:

Lsimple = Et,z0,ϵ

[
∥ϵ− ϵθ(zt, t)∥22

]
(3)

After the diffusion and denoising process, the final latent z0 is decoded to obtain the image:
x = D(z0). The LDM architecture’s latent space dimensions vary across implementations. The
FLUX dev model uses a VAE with latent dimensions (16, h/8, w/8) where h,w are the input image
dimensions, allowing for flexible resolution generation. In contrast, Stable Diffusion 2.1 base model
employs a fixed latent dimension of (4, 64, 64)

A.2 DDIM SAMPLING AND INVERSION

Denoising Diffusion Implicit Models (DDIM) provide a deterministic framework for generating
images through the reverse diffusion process. Unlike standard diffusion models, DDIM defines a
non-Markovian reverse process that enables deterministic trajectories between noise and images.

xt−1 =
√
ᾱt−1x̂

t
0 +

√
1− ᾱt−1ϵθ(xt, t) (4)

where x̂t
0 represents the predicted clean image:

x̂t
0 =

xt −
√
1− ᾱtϵθ(xt, t)√

ᾱt
(5)

For inversion, DDIM maps a given image x0 back to noise xT using:

xt+1 =
√
ᾱt+1x̂

t
0 +

√
1− ᾱt+1ϵθ(xt, t) (6)

This naı̈ve DDIM inversion can be interpreted as forward Euler integration starting from t = 0.
While computationally efficient, it can accumulate errors over multiple steps.

A.3 RECTIFIED FLOW AND FLOW MATCHING

Rectified Flow (RF) facilitates the transition between the data distribution π0 and Gaussian noise
distribution π1 along a straight path. This is achieved by learning a forward-simulating system
defined by the ODE:
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dxt = vθ(xt, t)dt, t ∈ [0, 1] (7)

which maps x1 ∼ π1 to x0 ∼ π0. In practice, the velocity field v is parameterized by a neural
network with parameters θ.

During training, given empirical observations of two distributions x0 ∼ π0, x1 ∼ π1 and t ∈ [0, 1],
the forward process of rectified flow is defined by a simple linear combination:

xt = tx1 + (1− t)x0 (8)

which can be written in differential form as:
dxt = (x1 − x0)dt (9)

Consequently, the training process optimizes the network by solving the least squares regression
problem:

min
θ

∫ 1

0

E
[
∥(x1 − x0)− vθ(xt, t)∥2

]
dt (10)

For sampling, the ODE equation 9 is discretized and solved using the Euler method. The model
starts with a Gaussian noise sample xtN ∼ N (0, I). Given a series of N discrete timesteps t =
{tN , . . . , t0}, the model iteratively applies:

xti−1
= xti + (ti−1 − ti)vθ(xti , ti) (11)

For inversion, the backward Euler method is used:
xti = xti−1

− (ti − ti−1)vθ(xti , ti) (12)

The RF model can generate high-quality images in much fewer timesteps compared to DDPM,
owing to the nearly linear transition trajectory established during training.

A.4 HIGHER-ORDER INVERSION METHODS

Recent work has introduced exact inversion techniques using higher-order ODE solvers. For DDIM,
the backward Euler method provides more accurate inversion by solving:

ẑti−1 = ẑti − (ti − ti−1)vθ(ẑti , ti) (13)

This can be improved through gradient descent steps:

∇ẑti−1
∥ẑti − z′ti∥

2 (14)

where z′ti is computed using:

z′ti ←
σti

σti−1

ẑti−1
− αti(e

−hi − 1)z0(ẑti−1
, ti−1) (15)

The DPM-Solver++ framework generalizes this to higher orders using the exponential integrator:

xti =
σti

σti−1

xti−1 + σti

k−1∑
n=0

x
(n)
θ (xλti−1

, λti−1)

·
∫ λti

λti−1

eλ(λ− λti−1
)n

n!
dλ

(16)

where λt = log(αt/σt) is the log-SNR and k represents the order of the solver.
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B APPENDIX: EXPERIMENTAL DETAILS

B.1 MODEL CONFIGURATIONS AND SAMPLING PARAMETERS

We conducted our experiments using carefully calibrated configurations for both FLUX.1-dev and
Stable Diffusion 2.1 models. The key parameters were selected to balance generation quality with
computational efficiency while maintaining fair comparison conditions across models.

B.1.1 FLUX-DEV CONFIGURATION

For the FLUX-dev model, we employed the following parameters:

• Number of sampling steps: 28 steps for both generation and inversion processes
• Guidance scale: 3.5 (classifier-free guidance)
• Sampling method: Euler solver for ODE integration
• Timestep scheduling: Uniform spacing between t=0 and t=1

The relatively lower number of steps (28) for FLUX-dev is justified by its efficient rectified flow
training objective and Euler integration scheme, which allows for larger step sizes while maintaining
generation quality.

B.1.2 STABLE DIFFUSION 2.1 CONFIGURATION

For SD2.1 with DDIM sampling, we used:

• Number of sampling steps: 50 steps for both generation and inversion processes
• Guidance scale: 3.5 (matching FLUX-dev for comparative analysis)
• Sampling method: DDIM deterministic sampling
• Timestep scheduling: Default DDIM schedule

The higher number of steps (50) for DDIM sampling is necessary for finer granularity in the diffusion
process timestep discretization.

These configurations were held constant across all experiments to ensure consistency and repro-
ducibility of our results. The parameters were validated through preliminary experiments to ensure
they produced high-quality generations while maintaining reasonable computational requirements.

B.1.3 EVALUATION FRAMEWORK

We quantify watermark robustness through the following metrics:

• Fourier Space L1 Distance: Measures discrepancy between reconstructed (ŵ) and original
(w) watermark patterns in frequency domain:

L1(w, ŵ) =
∑
i

|wi − ŵi|

• Normalized Error Metrics: For assessing reconstruction accuracy:

NMSE =
∥ŵ − w∥22
∥w∥22

, NMAE =
∥ŵ − w∥1
∥w∥1

• Symmetric KL Divergence: Quantifies distributional differences between guided (P ) and
non-guided (Q) reconstructions:

DSKL(P∥Q) =
1

2
[DKL(P∥Q) +DKL(Q∥P )]

where DKL(P∥Q) =
∑

i P (i) log P (i)
Q(i)

The Fourier space separation metrics obtained for both FLUX.1-dev and SD 2.1 base are listed in 4
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Table 4: Distribution Analysis of Watermarked vs Non-watermarked (Non-Attacked Images)

Model Image Type ||ŵ − w|| Symmetric KLD

FLUX.1-dev
Watermarked 22.770.550 18.000.067
Non-watermarked 39.3951.111

SD 2.1 base
Watermarked 45.6011.702 17.810.081
Non-watermarked 79.2632.308

Note: L1 Distance measured in Fourier space. Symmetric KLD computed between

watermarked and non-watermarked distributions. Subscripts denote standard deviations.

B.2 QUALITATIVE RESULTS

To ensure experimental reproducibility, we maintained a consistent global random seed when gener-
ating initial latents across all experiments. The identical watermark key was employed throughout all
tests, and we implemented a uniform timestep schedule for both sampling and inversion processes,
as our preliminary tests demonstrated this approach significantly enhanced inversion quality.

A notable observation from our experiments is that, even when using identical prompts, images gen-
erated from the original and reconstructed noise latents show perceptible differences, as illustrated
in Figure 4.

Figure 3: Visualization of noise reconstruction in spatial and frequency domains. Left: Channel 0 of
the latent noise in spatial domain averaged over 100 samples, showing the characteristic noise pat-
tern. Center: Magnitude of the 2D Fourier transform of Channel 0, revealing the circular watermark
pattern in frequency space. Right: Original noise, reconstructed noise, and their difference (error
magnified by 1×) for a representative sample, with NMSE of 0.01161.
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A family hugging each other for the...
Watermarked: True

margot robbie, d & d, fantasy, portrait,...
Watermarked: True

artgerm digital art
Watermarked: True

highly detailed concept art of a sakura...
Watermarked: True

brutalist architecture on mars, by zdzislaw beksinski,...
Watermarked: True

oil painting of holocaust LANDSCAPE, diffuse lighting,...
Watermarked: True

beautiful portrait of Irina Shayk wearing fantastic...
Watermarked: True

a beautiful [[[[[smiling]]]]] little redheaded toddler girl...
Watermarked: True

Generated(left) vs Reconstructed(right) Images via FLUX.1-dev

Figure 4: Image generation results from the reconstructed initial noise using FLUX.1-dev. Despite
using identical prompts, notable differences can be observed between original generations (left) and
those from reconstructed noise (right).
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