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ABSTRACT

Open-ended learning systems aim to foster the continuous evolution of increas-
ingly capable agents through the dynamic generation of novel challenges. The
efficacy of these systems is fundamentally influenced by two critical factors: the
design of the underlying system, which delineates the space of possibilities, and
the open-ended algorithms that drive ongoing progress within this space. Current
approaches to system design rely on explicit specification, where state spaces and
evolution functions are fully defined at design time, often leading to prohibitive
design complexity as systems scale. To address this challenge, we propose an
alternative design principle termed meta specification. This approach defines sys-
tems implicitly through constraints, utilizing watchmaker functions—generalized
stochastic evolution functions—coupled with verification routines to perform sys-
tem evolution. Meta specification principles have the potential to significantly
expand the space of possibilities while reducing design complexity, thereby en-
hancing the potential for open-ended learning. We demonstrate the viability of
this principle through an illustrative implementation that co-evolves robot mor-
phologies and robotic tasks, showcasing its capacity for emergent novelty and
highlighting the shift in focus towards verification in system design.

1 INTRODUCTION

Recent advances in machine learning (ML), particularly in foundation models, have dramatically
expanded the capabilities of autonomous agents across various domains. However, a key goal in
ML research remains elusive: creating agents capable of continuous self-improvement. Open-ended
learning systems (OELS) have emerged as a promising frontier to address this challenge (Soros
et al., 2017; Clune, 2019). By dynamically generating novel challenges, OELS drive the adaptation
of learning agents, creating environments that promote continuous exploration and skill acquisition.
This approach enables agents to autonomously adapt to unforeseen scenarios and progressively en-
hance their capabilities beyond predefined limits (Jiang et al., 2023; Hughes et al., 2024).

The efficacy of an OELS in driving continuous progress and expanding agent capabilities hinges
on two critical factors. First, the design of the underlying system plays a major role in delineating
the space of possibilities, which we will formally introduce in Sec. 2. The system design effectively
defines the boundaries within which learning and evolution can occur. Complementing this are open-
ended algorithm that guide the system’s evolution to produce continuous progress and novelty (Brant
& Stanley, 2017; Hintze, 2019; Dennis et al., 2020; Zhang et al., 2024). The interplay between
these factors underscores a crucial principle: while open-ended algorithms can enhance and sustain
open-ended learning, the system’s design ultimately imposes the upper limit on this potential. As a
result, carefully designing and scaling the system to expand the space of possibilities is of critical
importance for maximizing the potential of OELS (Team et al., 2021; Bauer et al., 2023).

Current approaches to system design predominantly rely on explicit specification, where the sys-
tem’s state spaces and evolution functions are fully defined at design time and kept fixed during its
run time. Scaling the system under this paradigm typically involves introducing additional degrees
of freedom into its design. This principle has yielded notable successes, as exemplified by Bauer
et al. (2023), which demonstrated emergent capabilities and behaviors in a vast system encompass-
ing 25 billion unique tasks. However, the design complexity associated with this approach increases
dramatically with scale. As systems grow in scale, the explicit specification approach may become
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prohibitively complex or intractable before reaching the level of complexity required to realize the
full potential of OELS.

This work addresses the challenge of system design in OELS, specifically exploring methods to
expand the space of possibilities while minimizing design complexity. We propose an alternative
design principle termed meta specification. In contrast to explicit specification, which fully defines
state spaces and evolution functions, meta specification defines a system implicitly through con-
straints placed on a generalized representation space. These constraints reflect both the fundamental
requirements of the implementation platform (e.g. computing environment) and additional criteria
set by the system designer. Implementing a system through meta specification necessitates three
components: (1) a generalized representation for learning agents and tasks, (2) a mechanism to per-
form evolution over these representations, and (3) routines to verify constraint satisfaction. Among
these, the generalized evolution mechanism presents the most significant challenge. To address this,
we formally introduce the concept of watchmaker functions—classes of stochastic functions capa-
ble of performing meaningful transformations over generalized representation spaces—and establish
the necessary conditions for these functions. Notably, we observe an intriguing connection between
foundation models, particularly Large Language Models (LLMs), and the capabilities required of
watchmaker functions, suggesting their potential as candidates for this role.

Key considerations. Implementing a system through meta specification involves designing its con-
stituent components. While this principle may not be universally applicable to all open-ended learn-
ing objectives, it offers the potential to significantly expand the space of possibilities. Additionally,
it shifts the focus of design complexity towards developing robust verification routines, potentially
simplifying other aspects of system design. Illustrative demonstration. To assess the viability of
this design principle, we present an illustrative implementation that co-evolves robot morphologies
and robotic tasks using an LLM-based watchmaker function. This demonstration showcases emer-
gent novelty in evolved robots and tasks that were not explicitly preprogrammed, and highlights
the shift in emphasis towards verification in system design. Through this example, we illustrate the
existence of key capabilities that could enable the extension of this principle to larger-scale imple-
mentations of OELS. Our core contributions are as follows:

1. We present a formal unified framework for conceptualizing OELS, providing a common lan-
guage and structure for describing and comparing diverse OELS implementations.

2. We introduce a novel design approach for OELS systems based on meta specification princi-
ples. This approach leverages generalized representation spaces and watchmaker functions as
evolution functions, integrating verification routines to implicitly define the system.

3. We provide an illustrative demonstration of the viability and potential of this design approach,
presenting key ingredients that would enable its adoption in large-scale implementations.

2 UNIFIED FRAMEWORK FOR OELS

We begin by presenting a unified framework for open-ended learning systems (OELS), adopting a
system-level perspective that distinguishes between two key components: the underlying (1) dy-
namical system (Sec. 2.1) and the (2) control mechanism (Sec. ). Intuitively, the dynamical
system is a coupled system of agents and tasks evolving over time. The control mechanism guides
this system’s evolution to be open-ended in nature, by monitoring the outputs of the system and per-
forming control actions to guide the system towards continuous progress, as evaluated by some met-
ric. To aid in exposition and contextualization, we will use POET (Wang et al., 2019) as a running
example, and provide more comprehensive analysis of representative OELS using our framework in
App. A. We provide a visual overview of our unified framework in Fig.

2.1 DYNAMICAL SYSTEM COMPONENT

The underlying system in an OELS includes agents and tasks that evolve together. We formally
define this system as a coupled dynamical system composed of agent and task subsystems, S =
(Sa,S8r), where S5 and St represent the agent and task subsystems, respectively.

1. Agents. Agents are the learning entities that evolve based on interactions with tasks. The sub-
system is defined as the tuple Sy = (A,  4). Here, A is the state space containing all possible
agents (e.g. space of neural networks), where a € A is a particular realization (e.g. a set of
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Figure 1: Comparison of design principles. Explicit specification (left) fully defines a system’s
state space and evolution function. Meta specification (right) implicitly defines the system’s state
space and evolution function by constraining a generalized representation space and employing
watchmaker functions.

weights). More specifically, we make a distinction between the genotype space G4 and the phe-
notype space IT 4, which are related by a genotype-phenotype mapping 7 : G4 — 114 (Alberch,
1991). The genotype represents the agent’s encoding that is evolved, while the phenotype repre-
sents the behaviors that emerge from its encoding. The subsystem’s state space is its genotype
space A = G, as generally, evolution acts on the genotype, although our ultimate interest lies
in novel phenotypic behavior. The evolution function ® 4 : A x T — P(A) is a stochastic
process that evolves the agent based on interactions with the task. Here, P(.A) denotes the space
of probability distributions over .A.

2. Tasks. Tasks are environments and objectives with which agents interact. The subsystem is
similarly defined by a tuple Sy = (7, ®7). T is the state space encompassing all potential
configurations of tasks that agents might encounter, where ¢ € 7 is a particular task. &7 :
T x A — P(T) is the task evolution function, which stochastically evolves new tasks based
on the current task and agent states. Without loss of generality, each task can be considered as
the combination of an environment and a goal. For example, it could be reaching a goal state
in a Markov Decision Processes (MDP) (Bellman, 1958), or deriving the correct answer for a
mathematical problem.

Example 2.1: Underlying dynamical system N
In POET, agents are bipedal robots with fixed morphology and neural controller architectures.
A and G 4 is the weight space of the neural controller, which maps to locomotion behaviors (in
the phenotype space 11 4). ® 4 is a stochastic weight update function (i.e. the evolution strategy
algorithm (Hansen et al., 2015)) that evolves weights based on interaction with tasks. Addi-
tionally, tasks are MDPs with different terrains, controllable by n free parameters that influence
terrain shape. As such, 7" C R" is the space of tasks. ®+ evolves tasks by first selecting eligible
\tasks (i.e. have been solved), then introducing random mutations to the environment encoding.

The two subsystems are coupled, and often evolve asynchronously, where tasks can be evolved
first, and agents are evolved subsequently by learning on the evolved task. The complete dynamical
system is then formally defined as S = (X', Dy ), where X is the Cartesian product of the agent
and task spaces X = A x T and its evolution function is the pair ®x = (P4, P7). At this
point, we recognize that, provided with the initial conditions, the dynamical system is a fully defined
and simulatable. However, the direct evolution of such a system is not meaningfully interesting,
as it lacks mechanisms for promoting open-ended progress. For example, agents could interact
with randomly evolved tasks that are trivial, redundant, or overly difficult, leading to stagnation or
degenerate behavior.

Population-based evolution. While we have, so far, focused on a single agent-task pair, OELS often
involves populations evolving simultaneously. This does not alter the evolution of each pair, as all
pairs could be considered as evolving in parallel. In what follows, we will describe the system as
operating on a population of agent and tasks. In the interest of completeness, we will also mention
that different pairing strategies could be used. Specifically, » 1-to-1 pairing: each agent paired
with one task (Wang et al., 2019); » 1-to-M pairing: each agent paired with multiple tasks (Bauer
et al., 2023); or » M-to-1 pairing: multiple agents paired with one task (Mouret & Clune, 2015).
The pairing strategy influences intra-system dynamics, for example, by promoting specialization,
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Figure 2: Overview of OELS. Conceptualization as a closed-loop system, where the control system
monitors progress in the underlying system, taking control actions to guide continuous progress.

generalist behavior, or multi-agent competition. For simplicity, we assume 1-to-1 pairing, though
our formalism generalizes to other settings with appropriate modifications to the evolution functions.

2.2 CONTROL MECHANISM

The goal of the control mechanism is to guide the system towards continuous open-ended progress.
It constitutes two key components: a that evaluates the agents and tasks produced
by the dynamical system in each step to measure some notion of progress; and a controller that
processes these measurements and takes control actions to enhnace continued progress.

Notions of progress. Various control mechanisms have been proposed based on different concep-
tions of what constitutes meaningful progress in an open-ended setting. In general, progress is
measured relative to an aggregation of recent entities produced by the system (either historically or
in the current population), which we refer to as the context set. Formally, we define the context set
as C € C, where C = P(A) x P(T), and IP(+) denotes the power set and C is the Cartesian product
of these power sets. More concretely, evolved agents or tasks are compared explicitly or implicitly
(e.g. in an amortized fashion) against the context set to obtain a metric of progress. Examples of no-
tions of progress include novelty (Lehman & Stanley, 2011; Stanley & Lehman, 2015), complexity
(Standish, 2003; Hintze, 2019), learnability (Schmidhuber, 2013; Matiisen et al., 2019), diversity
(Mouret & Clune, 2015; Pugh et al., 2016), or interestingness (Zhang et al., 2024). We provide a
detailed review of different notions of progress in App.

1. The monitor evaluates outputs of the dynamical system using these op-
erational measures of progress, which we can explicitly define as two evaluation functions:
Ey: AxT xC — R (for agents) and E7 : 7 x A x C — R (for tasks). Here, we have
made explicit the monitor’s evaluations are conditioned on a dynamically updated context set to
capture metrics of non-stationary progress.

2. Controller. Controllers generally take as input the current set of agents and tasks and their cor-
responding scores produced by the progress monitor, differing primarily in the control actions
they execute. A common strategy is selection, which directly selects the next set of inputs for
the dynamical system to evolve (Brant & Stanley, 2017; Wang et al., 2019; Bauer et al., 2023),
embodying the principle of differential reproduction observed in natural evolution and emulated
in evolution-inspired algorithms (Gregory, 2009; Holland, 1992). More broadly, controllers may
take any action that influences system dynamics, such as updating parameters of the underlying
system’s evolution functions (Wang et al., 2019; Zhang et al., 2024). Formally, we define two
controller functions O 4 : P(A) x P(R) — U and O : P(T) x P(R) — U, which take as input
the current set of agents (or tasks) and their corresponding evaluations, and produce a control
action u € U that acts on the dynamical system, where U/ represents the set of control actions.

Example 2.2: Control mechanism
In POET, the evaluates agents and tasks using the current population as the
context set. It first checks the minimal criterion, ensuring each agent solves at least one task
and each task is solvable by one agent, then calculates a novelty score for qualifying pairs. The
controller removes pairs that do not meet the criterion and selects those for evolution based on
novelty scores. It also periodically transfers and adapts agents to different tasks.
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2.3 KEY INSIGHTS

This unified framework and conceptualization of OELS yields a few key insights. First, the control
mechanism establishes a critical feedback loop, where it continuously monitors progress within the
dynamical system, and uses these evaluations to make adjustments that support ongoing, open-ended
progress. This enables the system to evolve adaptively, responding to new developments within the
system (Soros et al., 2017; Jiang et al., 2023). Second, we can differentiate the roles of the dynamical
system and the control mechanism. Notably, the dynamical system defines the space of possibilities
(represented by A and 7)) and governs how agents and tasks evolve within this space (through ® 4
and ®7). In contrast, the control mechanism guides continuous progress within this predefined
space, but it cannot alter the fundamental limits imposed by the dynamical system’s design.

A unifying framework. We note that the formalism presented here is intended to be generalized,
at the compromise of perfect specificity for any particular implementation. While certain OELS
may have distinctive features that do not map exactly onto our framework, its generality facilitates
broader discussions and comparisons of OELS. In App. A, we show that, despite their individual
characteristics, many OELS can be effectively described and analyzed within this framework.

3 DESIGN OF THE UNDERLYING SYSTEM

The presented framework allows us to separate the design of OELS into two categories: the design
of the underlying dynamical system and the control mechanism. The designs have fundamentally
different implications—the design of the underlying system defines the space of possibilities and
mechanisms for evolution, whereas the design of the control mechanism is aimed at enhancing
and sustaining open-ended progress. We also note that the two design of the two components can be
discussed independently, as the design of the underlying system determines foundational constraints,
while the control mechanism (and their operationalized notions of progress) are generally applicable.

Our work investigates the design of the underlying dynamical system, which defines the range of
potential agent behaviors and task configurations. The goal of the system design process, then, is to
create a sufficiently diverse and rich space of possibilities that can foster the emergence of novel be-
haviors or increasingly capable agents. Additionally, the designed system would have to be feasible,
which, concretely, is defined as the satisfaction of design constraints. Formally, the system design
process receives a set of requirements R = R, U R4, where R, represent the set of constraints
required by the platform that the OELS is executed on, and R4 represent design constraints set by
the system designer based on the goal of the OELS. The platform is most commonly a computing
environment, but can be any substrate, including the physical world where agents and tasks interact.

The goal of system design is to engineer a sufficiently diverse space of possibilities to support open-

ended learning. The design process outputs a system S = (X, ) that satisfies the following

properties:

1. Realizability: Any possible state and its evolved states are realizable (implementable) on the
underlying platform, Vz € X,Vz' € supp(Px(z)) : x E Ry A2’ ER,.

2. Validity: Any state and its evolved states are valid and satisfy the designer requirements, Vo €
X, Vo' € supp(Px(z)) : 2 E Ra Nz’ E Rq.

3.1 EXPLICITLY SPECIFIED SYSTEM DESIGN
The conventional approach to system design is based on explicit specification, formally defined as:
Explicitly Specified Systems

An explicitly specified dynamical system is one where its state space and evolution function are\
fully defined at design time, and kept fixed during its run time. Specifically, this involves:

1. Defining an appropriate state representation. Formally, Xo = {z(f) |6 € ©} and 0 is a
representation that defines each state x(6), and O is the representation space that determines
the full state space Xg.

2. Specifying the input and output domains, and the functional form of the evolution function,
which maps the state representation to a distribution over next states, @y, : Xo — P(Xo).
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For example, the space of possible tasks could be parameterized by a real vector, © C R", that
encodes all possible configurations (e.g. height and distribution of obstacles in an obstacle course).
The evolution function is a fully defined mathematical function that operates over this representation
(e.g. performing random mutation of the real vector). We note here, that expanding the space of
possibilities corresponds is then achieved by engineering more degrees of freedom into the system.

The underlying system in all current OELS are designed using this principle (Wang et al., 2019;
Dennis et al., 2020; Team et al., 2021), which has recently been operationalized to an impressive
degree by Bauer et al. (2023), which introduced a significantly upscaled state space containing 25
billion unique tasks. A key advantage of this approach is that it often guarantees system realizability
and validity by design. Since all system components are defined upfront, the system is built to meet
platform and design constraints, ensuring it functions as intended without unforeseen runtime issues.
Additionally, explicitly specifying the system offers designers a high level of foresight and control,
allowing them to embed their knowledge or assumptions through design (e.g. specifying promising
morphological spaces for robotic agents).

However, a significant challenge arises when attempting to scale such systems to explore a broader
space of possibilities. This is especially critical as the design of the system directly constrains the
emergence of novel behaviors and capabilities within certain bounds and structures. As the system
grows, the complexity of the design process increases exponentially, requiring designers to optimally
introduce and balance more degrees of freedom. Despite the extensive engineering effort invested in
Bauer et al. (2023)’s system, progress eventually plateaued. To unlock further progress on a larger
scale would require an even more complex design process, underscoring the inherent difficulty of
scaling using this approach.

4  WATCHMAKER FUNCTIONS AND META SPECIFICATION

A key challenge facing OELS is how to significantly expand the space of possibilities permitted
by the design of the underlying system. This work proposes an alternative design principle termed
meta specification. At its core, meta specification defines a system implicitly through constraints
that must be satisfied to yield valid states, rather than explicitly enumerating the state space.

More formally, we can contrast explicit and meta specification. Whereas an explicitly specified sys-
tem completely describes all possible states as Xg = {z(0) | § € O}, meta specification implicitly
defines the state space through constraints: Xgr = {z € V | 2 = R}. Here V denotes the universal
set, which conceptually refers to the set of all possible elements under consideration. For example,
V could be the set of all possible robot morphologies or learning environments (which Clune (2019)
defines as Darwin Complete). Performing meta specification then requires three key components:
(1) a generalized representation space V for agents and tasks, (2) a mechanism to perform evolu-
tion over these generalized representations ® : VV — P(V), and (3) a method to verify constraint
satisfaction, i.e. z E RV z € V.

Regarding (1), sufficiently generalized representations do exist for many domains. For example,
Unified Robot Description Format (URDF) can practically represent a wide array of robot morpholo-
gies (Quigley et al., 2015) and PyTorch can represent a vast space of neural network architectures
(Paszke et al., 2019). Additionally, many requirements can be formally or empirically verified, such
as kinematic feasibility for robot designs or certain properties for neural networks. Hence, the most
challenging component of meta specification is the generalized evolution function. In explicitly
specified designs, evolution functions are well-defined mathematical functions with clearly specified
input and co-domains, which guarantees they are well-behaved over the entire state space. Here, the
space that the generalized evolution function operates over is no longer explicitly defined, meaning
that it loses any guarantee to be well-behaved. This lack of any guarantees on outputs produced by
such functions necessitates verification routines to ensure that outputs are both valid and realizable.

As such, the implementation of meta specification is predicated on the existence of a generalized
evolution function and verification routines for a chosen generalized representation space. We term
this class of generalized evolution functions as watchmaker functions, inspired by the “watch-
maker” analogy in evolution (Dawkins, 1986).
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4.1 WATCHMAKER FUNCTIONS

Watchmaker functions represent a class of functions that can take various forms depending on the
chosen generalized representation 1, but must satisfy certain conditions:

» Watchmaker Functions ~\

For a given generalized representation sapce V), a watchmaker function @y : V — P(V) must

satisfy the following necessary conditions:

(C1) Stochasticity: Vv € V, repeated applications of @y (v) may yield different outputs.

(C2) Generalized transformation: ®yy, is capable of producing meaningful transformations to
any element v € V. Here, “meaningful” implies the function has an acceptable likeli-
hood ¢ of producing outputs v’ € V that are valid and realizable given requirements R,

\_ ie. E'l/’\‘@‘w(* | v) Lp(’l)/ ’: R)] > €. )

The conditions (C1) and (C2) serve distinct purposes in defining watchmaker functions. (C1), the
stochasticity condition, introduces variability and exploration into the system’s evolution, preventing
deterministic loops. (C2), the generalized transformation condition, ensures that the function has an
acceptable efficiency in producing valid and realizable outputs. This latter condition distinguishes
viable watchmaker functions from purely stochastic processes which, while theoretically capable of
generating valid and realizable states, are considerably inefficient (Borges, 1998; Eddington, 2019).
It is worth noting that in the special case where V = X’ is an explicitly defined representation space,
a fully-defined evolution function can be considered a watchmaker function with perfect efficiency
(e = 1). A prime example of a potential watchmaker function is the human cognitive process.
It can operate over generalized representations (e.g. natural language) and stochastically generate
meaningful transformations to diverse stimuli. To make the connection to OELS more concrete, this
could manifest as follows: a human might receive a robot morphology expressed in some domain-
specific language (DSL), along with an instruction such as “improve joint mobility”. With some
acceptable probability, the human could then produce an output that satisfies the given requirements.

FM watchmakers. Importantly, another class of models that could potentially serve as watchmaker
functions are foundation models (FM) such as Large Language Models (LLMs) (Brown, 2020;
Chowdhery et al., 2023). These models, pretrained on vast amounts of data, function as efficiently
stochastic generators capable of performing meaningful transformations across diverse domains.
Their potential is evident in tasks such as code synthesis (Chen et al., 2021), program evolution (Ma
et al., 2024; Lehman et al., 2023), and plan generation (Huang et al., 2022). As LLMs operate in
the language space, they could serve as watchmaker functions for generalized representations that
utilize language tokens, such as DSL like PyTorch for neural network architectures or URDF for
robot descriptions. The implications of FMs as automated watchmaker functions are far-reaching,
potentially enabling significant expansion of the space of possibilities in OELS, while reducing de-
sign complexity. In Sec. 5, we empirically investigate this feasibility, providing concrete evidence
for the potential of LLMs as effective watchmaker functions in practice.

4.2 IMPLICIT SYSTEM DESIGN THROUGH VERIFICATION

Watchmaker functions, while powerful, lack inherent guarantees of producing well-behaved out-
puts. This limitation is particularly relevant for FM watchmaker functions in meta specification,
where evolved outputs (e.g., robot morphologies) may not always be realizable or valid against de-
sign requirements. Recall that (C2) stipulates that, in expectation, there is a € probability that the
watchmaker function produces valid and realizable outputs. Then, a viable approach to ensure re-
quirements satisfaction is to introduce verification routines that operate on watchmaker functions
outputs. Formally, given a set of n requirements R = { Ry, ..., R, }, we define verification routines
Ar ={d1,...,0n}, where each §; : V — {0, 1} verifies if an output satisfies a particular require-
ment. Additionally, we say Ag(x) = 1if & € V passes all verification routines. This verification
process, used in conjunction with the watchmaker function, implicitly defines a system:



Under review as a conference paper at ICLR 2025

Figure 3: Emergent novelty. Valid and realizable states evolved using LLM watchmaker functions.

Implicit System Definition
A watchmaker function @y : V — P(V) and a verification routine Ag : X — {0, 1}, implicitly
defines a system S = (Xg, P, ) as:

Xr={zeV|Agr(z) =1}, Dy, (2 |7) ox Py (2 | ) Ar (')

Intuitively, the system is implicitly defined through rejection sampling principles, to evolve states
that are determined to be valid and realizable by the verification routines. This stands in contrast
to explicitly specified systems, which embed constraints explicitly through system design, meta
specification implicitly defines a system by enforcing constraint satisfaction a posteriori.

4.3 IMPLICATIONS IN FULL

Design process. Implementing a system through meta specification concretely entails three key
steps: » selecting a suitable generalized representation for agents and tasks; » designing a FM-
based watchmaker, for example through prompt designs or model finetuning, to improve their effi-
ciency over the chosen representations; and » developing verification routines to confirm satisfac-
tion of system and design requirements. We note that meta specification is not likely to be universally
applicable to all open-ended learning goals, and its viability depends on these three steps.

Expanding the space of possibilities. LLM-based watchmaker functions have the potential to sig-
nificantly expand the space of possibilities, especially for certain representations. DSL representa-
tion is especially powerful, as the compositional nature of code allows for combinatorial expansion
of possibilities, enabling emergence not explicitly pre-defined (Backus, 1978). Moreover, many
DSL and programming language are Turing-complete representations, theoretically allowing the
space of possibilities to encompass any computable function (Turing, 1936).

Shifting design focus. Meta specification shifts the focus of system design from explicit definition
of system component from the ground up, towards developing robust verification routines to ensure
realizability and validity. As such, it potentially presents a more tractable approach in domains
where direct system engineering is prohibitively complex. This shift in design paradigm echos
observations across various fields suggesting that verification can be less complex than generation
(e.g. from NP-hard problems (Dantzig et al., 1954) to machine learning (Goodfellow et al., 2014) and
software engineering (Dijkstra, 1976)). However, it’s crucial to recognize that some requirements
resist straightforward automatic verification, and ensuring robust, scalable verification in the face of
emergent system developments presents a significant challenge.

5 AN ILLUSTRATIVE IMPLEMENTATION

In this section, we provide an illustrative implementation to support the viability of applying meta
specification to designing systems for OELS. In this feasibility study, we focus on two key aspects
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Figure 5: Proportion of task (left) and robot (right) evolutions that are valid and realizable.

1. Emergent novelty in robots and tasks generated through system evolution that were not explicitly
preprogrammed, and
2. Realizability and validity of evolved outputs by way of the introduced verification routines.

We design a co-evolving system that simultaneously evolves both robots morphologies and robotic
tasks. The spaces of robot morphologies and task configurations are especially difficult to encode
in a rich, expansive way through explicit system specification, and as such are chosen to illustrate
the value proposition of our proposed design approach. Concretely, we evolve a population of
quadruped robots, where the robot’s morphology is represented using URDF, an XML file format
that defines a robot’s physical design (Quigley et al., 2015). Simultaneously, we evolve a population
of robotic tasks, represented as code programs in PyBullet, a physics engine commonly used for
robotic tasks (Coumans & Bai). Thus, URDF and PyBullet provide the basis of our universal repre-
sentations. We employ gpt4 as our LLM-based watchmaker function. Additionally, we introduce
the following system constraints, designed to emulate the types of requirements typically imposed
in real-world scenarios.

1. Platform requirements. Evolved morphologies must be valid URDF representations, and task
configurations must be simulatable within PyBullet.

2. Design requirements. Robot morphologies are constrained to a quadrupedal configuration, with
specific constraints on sensor types (restricted to proprioceptive sensors), the number and type of
joints, mass, and size. Task designs are constrained with basic physics (e.g. gravity, friction, and
restitution) and environment size.

These constraints are implemented as verification routines and also provided to LLM-based watch-
maker functions as natural language instructions. We provide detailed descriptions of verification
routines and prompt structures in App. C.

Co-evolving system. We employ a standard co-evolutionary algorithm in a minimalistic setting
and avoid unnecessary design decisions that could obscure our investigation. The system co-
evolves populations of robots and tasks, where the population at time step n is represented as

{(agf ), £f ) > where J,, is the size of the population at time step n. In this setup, each
robot is palred 1-to- { with a unique task. At each evolutionary step, a maximum of /N newly evolved
robot-task pairs can be introduced into the population. The evolution of a new robot morphology is
conditioned on M € N parent pairs, where each parent consists of a robot and its corresponding task.

Specifically, a;,,; ~ @gj})(- | M,,), where M denotes the set of parents sampled randomly from
the current population, i.e. M, = {(a%™,¢™) ~ Uniform(P,)|Vm € [M]}. Here, i, refers
to natural language instructions that contain morphology requirements. Similarly, tasks are evolved
from M parent task-robot pairs, i.e. t;,  ; ~ @g}) (- | M,,), where 4; encodes the requirements for
the tasks. Robots and tasks evolved from the same set of parent pairs are then paired together. In

each step, a set of candidate pairs are generated, where each pair is verified by verification routines,
admitting only those that are realizable and valid into the population.
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5.1 EMPIRICAL OBSERVATIONS

Emergent novelty. We visualize evolved robots and tasks in Fig. 3, observing a wide array of
distinct and novel morphologies and tasks. The robots form niches ranging from ant-like creatures
with long, slender legs to horse-like quadrupeds with sturdy limbs, as well as more unconventional
forms resembling ‘Walker’ machines from Star Wars. We also observe interesting combinations of
parent phenotypes, such as robots that retain ant-like legs but develop walker-like feet. The evolved
tasks display similar diversity, including challenges focused on uneven terrain, obstacle courses, and
constrained environments like mazes and tunnels. This emergent novelty occurs without any explicit
preprogramming, demonstrating the system’s capacity for generating complex and novel states.

Role of verification. In Fig. 4, we visualize several evolved states that were rejected for failing
to meet the verification checks. This includes tasks where environmental objects violated physics
constraints or where target locations were unreachable. For robots, examples of rejections included
those that exceeded the maximum allowed mass or were unable to achieve static stability. In Fig. 5,
we track the percentage of evolved outputs that are valid and realizable, noting that approximately
40% of the candidates evolved by the watchmaker functions satisfied both criteria. Interestingly,
while the percentage of realizable robot morphologies was relatively high, the percentage of valid
morphologies was lower. Based on our manual examination, we attribute this to several morpholog-
ical constraints—such as static stability and mass—being phenotypic constraints rather than explic-
itly encoded in the URDF. As these attributes are only verified at runtime, it increases the likelihood
that certain requirements will not be met, leading to a lower validity rate.

Additional ingredients. It is important to note that the implementation here is only the underlying
dynamical system, which serves to illustrate the potential of an alternative system design principle.
However, it would need to be complemented by additional components to fully realize it as an OELS.
Most notably, we have omitted any training procedure (due to the cost and compute requirements),
which is crucial for the evolved robots to become increasingly capable. Furthermore, a control
mechanism should be integrated to ensure continuous progress. This could include regret-based
approaches (Jiang et al., 2021) or LLM-based progress monitors (Zhang et al., 2024), or novel
control mechanisms specifically tailored to the characteristics of watchmaker functions.

6 DISCUSSIONS

In summary, this work introduces meta specification as a novel approach to designing OELS. This
principle enables implicit system definition through constraints, employing watchmaker functions
in conjunction with verification routines to drive system evolution. In contrast to explicitly spec-
ified designs, meta specification offers the potential to significantly expand the space of possibili-
ties while concurrently reducing system design complexity. Our illustrative demonstration of co-
evolving robot morphologies and tasks illuminates the viability of this principle, showcasing its
capacity for emergent novelty and underscoring the critical role of verification in maintaining sys-
tem integrity. Future directions. Building on this foundation, subsequent research should prioritize
scaling our proof-of-concept to large-scale implementations, thereby exploring the full potential of
meta specification across diverse domains, including embodied agents and LLM-based reasoning
systems. Furthermore, systems designed through meta specification could be augmented with com-
plementary control mechanisms specifically tailored to foster the continuous generation of novelty
and progress within this framework.

10
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A INVESTIGATING OELS THROUGH A UNIFIED FRAMEWORK

The goal of this section is to illustrate that existing research in OELS can be conceptualized in the
same unifying framework (presented in Sec. 2), as containing three key components—» dynamical
system (co-)evolving agents and tasks, » progress monitor that evaluates the evolutionary progress
of current agents/tasks relative to a context set, and » control mechanism that takes performs some
control logic based on progress evaluations to sustain open-ended progress. We survey some of
the most prominent and recent works, including Minimal Criterion Coevolution (Brant & Stanley,
2017), POET (Wang et al., 2019), PAIRED (Dennis et al., 2020), Ada (Team et al., 2021; Bauer
et al., 2023), and OMNI (Zhang et al., 2024).

Minimal Criterion Coevolution (MCC) (Brant & Stanley, 2017). MCC co-evolves two popula-
tions: mazes and maze-solving agents, where individuals from both populations are evaluated for
satisfying a minimal criterion (MC).

» Agents. Agents are maze-solving agents with evolvable neural controllers. The agent space .4
is the space of neural networks, varying in the number of neurons and connections. The agent
evolution function ® 4 is the NEAT algorithm (Stanley & Miikkulainen, 2002), a genetic algorithm
that evolves networks by adding connections or nodes.

» Tasks. Tasks are 2D mazes encoding using a variable length genotype. The task space 7T in-
clude mazes with varying number of walls, wall connections, and location of openings. The task
evolution function ®7 is a random mutation that modifies wall characteristics or number of walls.

* Progress Monitor. Progress is evaluated using satisfaction of minimal criterion, where the context
set is the current population. Specifically, each maze-solver satisfies the MC if it solves at least
one maze in the context set, and each maze satisfies the MC if solvable by at least one maze-solver.

* Controller. The control logic removes agents and tasks that do not satisfy the MC, with the re-
maining population fed into the system for another round of evolution.

MCC is similar in principle to ‘differential reproduction with variation’ observed in natural selection
and emulated in evolutionary algorithms (Holland, 1992; Gregory, 2009). In other words, the control
mechanism evaluates for fitness (using the MC) and performs selection, with fit individuals allowed
to reproduce and generate variations in the system.

POET (Wang et al., 2019). POET co-evolves populations of bipedal robots and locomotion tasks
in a 2D terrain.

» Agents. Agents are bipedal robots with identical morphology and neural controller architectures.
The agent space A is the space of neural weights, which are evolved. The agent evolution func-
tion ® 4 is the Evolution Strategies algorithms, which evolves continuous vectors through genetic
operations (Hansen et al., 2015).

» Tasks. Tasks are 2D terrains with different terrains and obstacles. The task space 7 C R* in-
cludes terrains with 4 degrees of freedom (that control the size and frequency of obstacles). Task
evolution @ is performed through random mutations, where tasks eligible to produce are evolved
to generate offspring tasks.

* Progress Monitor Progress is evaluated using MC and novelty, where the context set is the current
population. Novelty of evolved tasks is calculated using the Euclidean distance of its environment
encoding with its k-nearest neighbors.

* Controller. The controller selects offspring tasks with the highest novelty scores and admits them
into the population. It also performs periodic attempts to transfer agents between different envi-
ronments, to encourage cross-pollination.

PAIRED (Dennis et al., 2020). PAIRED trains a maze-solving agent in different environments. It
differs from previous approaches by using an environment-generating policy to generate adversarial
tasks to guide agent learning.

* Agents. Agents are maze-solving agents with fixed neural architectures. The agent space A is
the space of possible neural weights. The agent evolution function ® 4 is an RL-based learning
algorithm that evolves agent weights.

 Tasks. Tasks are mazes with different layouts in a gridworld platform. The space of tasks 7
is the space of maze layouts, where each tile could be a wall, start position, end position, or

15



Under review as a conference paper at ICLR 2025

pathway. The task evolution function @ is the environment generating policy A : II — A(7),
that produces a distribution over tasks given the current agent policy.

Progress Monitor. The monitor evaluates the regret of the agent policy 7, relative to a baseline
policy 7y, i.e. REGRET (74, m,) = U(m) — U(m,), where U(+) is the reward obtained by each
policy. Here, progress is not evaluated with respect to an explicit context set; instead, it is amor-
tized through A, which serves as a learned representation, implicitly encoding the capabilities of
the current agent.

Controller. The control mechanism updates the environment generating policy A based on the
regret of the agent and the baseline policy, training it to maximize regret, and generate more
challenging tasks.

Ada (Team et al., 2021). Ada aimed to develop highly adaptable RL agents in an embodied 3D
domain.

Agents. Agents are embodied agents with fixed morphology and neural controllers. The agent
space A is the space of possible neural weights. The agent evolution function ® 4 are meta-RL
updates (Hessel et al., 2021).

Tasks. Tasks are embodied and potentially multi-agent environments with procedurally generated
goals. The task space 7T is one of the largest scale to date, containing 25 B unique tasks, each pro-
cedurally generated by sampling from a parametric distribution over worlds, topologies, games,
and opposing agents. The task evolution function ®7 is based on random sampling, where a set
of .J tasks are sampled randomly {tU) | t) ~ P(T)V j € [J]}.

Progress Monitor. The monitor assigns a fitness score to each randomly sampled task that ap-
proximates the agent’s regret for that task, indirectly reflecting the learnability of the tasks. Con-
troller. The controller selects tasks with fitness scores above a certain threshold.

OMNI (Zhang et al., 2024). Differing from prior works, OMNI employs an LLM as an evaluator
of task novelty based on human notions of interestingness.

Agents. Agents are RL agents with fixed neural controllers, and the agent space A is the space of
possible weight configurations. Agent evolution (® 4) occurs through RL updates.

Tasks. OMNI investigated different task spaces, including 2D gridworld-like environments. The
task space 7 is defined by parametric encoding of different tasks, where different task spaces
are characterized by different free parameters. Task evolution (®7) occurs through a learning-
progress-based curriculum (Kanitscheider et al., 2021).

Progress Monitor. Progress is evaluated using an LLM’s internalized notion of interestingness
against a context set of recent tasks. The LLM predicts whether it finds evolved tasks interesting
(i.e. a binary prediction).

Controller. The control logic uses the LLM’s evaluation of task interestingness to update task
sampling weights in the curriculum.

B EXTENDED RELATED WORKS

Notions of progress. A key component in any OELS is the design of the control mechanism that
is used to quantify and take control actions to foster various notions of what constitute progress in
open-ended learning. Specifically:

Novelty: Methods that encourage generations of agents or tasks that are sufficiently novel com-
pared to previously seen examples (Stanley & Lehman, 2015). Novelty has been concretely for-
malized as Euclidean k-nearest neighbor (Lehman et al., 2008; Lehman & Stanley, 2011), or count
of immediate neighbors in a discrete behavioral (phenotypic) space (Cully & Demiris, 2017).
Such methods require a-priori for the behavior space to be manually defined and often discretized.
Closely related to novelty-based approaches are those based on fostering diversity, which while
conceptually distinct, are occasionally operationalized with similar metrics (Pugh et al., 2016;
Mouret & Clune, 2015; Brant & Stanley, 2017).

Complexity: Approaches that drive system evolution towards increasingly complex agents and
challenging tasks (Standish, 2003; Hintze, 2019). For example, Kolmogorov complexity metric
based on sliding-window compression of a sequence (Hintze, 2019) and JPEG compression of
images to evaluate complexity (Earle et al., 2021).
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* Learnability: Techniques that aim to balance task difficulty with agent capabilities to build an
auto-curriculum for continual learning. Tasks are proposed within the agent’s “zone of proximal
development” to promote continuous growth and skill acquisition (Vygotsky, 1978). This ap-
proach is perhaps most common in the field of Unsupervised Environment Design (UED) which
generates new RL training environments for agents (Dennis et al., 2020; Jiang et al., 2021; Parker-
Holder et al., 2022; Samvelyan et al., 2023). These aim of such efforts is not true open-endedness,
per se, are usually focused only on generating different variations in training environment to train
robust agents, and a significant limitation is their reliance on predefined or manually curated dis-
tributions of tasks or environment parameters. Notable approaches use regret-based calculations
(Dennis et al., 2020; Jiang et al., 2021; Parker-Holder et al., 2022) to prioritize tasks with high
regret. Alternative methods calculate learning progress using learning curve slope (Matiisen et al.,
2019) or differences in task success rates across training steps (Kanitscheider et al., 2021), or
meta-learning potential (Team et al., 2021; Bauer et al., 2023).

OELS. An interesting array of different open-ended learning systems have been proposed, differing
significantly in system design and intended application. Chromaria (Soros & Stanley, 2014) is a
visual, 2D world composed of discrete RGB pixels, where colorful creatures (Chromarians) evolve
and explore locations to plant, and is used to illustrate the necessary conditions for open-endedness
to emerge in artificial life. More recent works have investigated systems aimed to fostering general
capabilities through open-ended learning, including a 2D bipedal walker domain to improve robot
locomotion (Wang et al., 2019), 2D grid worlds for hierarchical task completion (Dennis et al.,
2020). Team et al. (2021); Bauer et al. (2023) introduced XLand2, containing 25-billion possible
task variants corresponding to different world topologies and variety of possible games within each
world. Minecraft, which contains procedurally generated 3D terrains and continuous exploration of
technology trees (Wang et al., 2024). In App. A, we investigated these disparate implementations,
demonstrating they could be analyzed according to our unifying framework.

FM in OELS. Recent investigations into FMs within OELS have primarily focused on their role in
evaluating and fostering continued progress (i.e. as control mechanism). LLMs have been utilized
as evaluators of qualitative notions of progress, assessing open-ended creativity of writing (Bradley
et al., 2024) and interestingness of proposed states (Lu et al., 2024b; Zhang et al., 2024). While
these approaches leverage FMs for evaluation and control, our proposal extends their application to
the core system itself, with watchmaker functions potentially guided by these control components
to sustain open-endedness. Although not developed in the context of open-ended learning, recent
works have demonstrated the potential of LLMs as generalized evolution functions. This includes
evolutionary search for code (Lehman et al., 2023; Ma et al., 2024; Chen et al., 2024) and in-context
generation of meaningful variations (Meyerson et al., 2023; Fernando et al., 2024). Our approach
builds upon these findings, proposing the potential of LLM watchmakers for meta specification
of systems for open-ended learning. Parallel research has explored LLMs as embodied agents in
open-ended settings, functioning as decision-makers and task executors for novel exploration (Wang
et al., 2024; Lu et al., 2024a). While these studies focus on LLMs as agents within the system,
our watchmaker concept extends to a broader context, encompassing systems that evolve diverse
entities such as robot morphologies or algorithms, thereby offering a more generalizable framework
for open-ended evolution. Additionally, research into training FM for generating action-controllable
virtual worlds offer potential applications in OELS (Bruce et al., 2024; Earle et al., 2024).

C ADDITIONAL DETAILS ON ILLUSTRATIVE IMPLEMENTATION

In this section, we provide additional details on the verification routines and LLM-based watchmaker
functions employed in our illustrative implementation in Sec.

C.1 VERIFICATION ROUTINES

Robot constraints. Evolved robots are represented as URDF files, which must describe quadruped
robots that satisfy the following constraints:

1. Realizability: Realizability is checked by ‘compiling’ the URDF file in PyBullet, where verifica-
tion fails if any compilation or runtime errors are encountered (indicating the file is malformed).
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et

Size and mass: Length € [0.5, 2] meters, width € [0.5, 2] meters, and height € [0.25, 1] meters.
Mass € [50, 250] Kgs.

Joints: Number of joints = 8, and all joints are revolute joints.

Static stability: The evolved robot is required to achieve static stability when no actions are
applied. This is verified by deploying the robot in the seed task environment for 50 settle steps,
during which time, there should be no movements in the main torso.

Task constraints. Evolved tasks are represented as Python programs written using PyBullet, and
satisfy the following constraints:

1.

2.

Realizability: Realizability is checked by ‘compiling’ the task code, where verification fails if
any compilation or runtime errors are encountered (indicating syntax errors).

Basic physics: That gravity is correctly set to 9.8m/s, and friction of any ground planes > 0.8
and restitution of any obstacles > 0.5.

Initialization: That upon initialization, the robot is successfully positioned at the intended start-
ing position, where it can achieve static stability.

Target verification: For tasks with target locations, we verify that the target location exists by
raycasting and confirming that ground planes extend to that location.

C.2 LLM PrOMPT DESIGN

In our illustration, we utilize OpenAI’s gpt 4 LLM as watchmaker functions to perform agent and
task co-evolution. The prompt skeleton for each operation is provided below.

You are an expert in Python programming and robot design, specializing

in creating quadruped robots that can master diverse tasks in
PyBullet simulations. Your goal is to design the next iteration of a
robot, focusing on capability, novelty, and interesting features
while adhering to specific constraints. You will be provided with
the current robot morphology and the recently accomplished task code
exmamples to help you design the next robot.

Instructions:

Physical realism:
- Ensure the design is implementable in PyBullet and is physically
realistic.
— The robot must be capable of completing various tasks.
— The robot must have optimal stability and will not fall over.
Novelty and creativity:
- Introduce unique and innovative features compared to the current
morphology.
— Design should enhance the robot’s capabilities for diverse tasks.

Constraints:

The robot must have a base and four articulated legs.

It must have exactly 4 legs, and each leg must have 2 hinge joints.

The robot must achieve static stability, meaning the robot should be
able to stand without falling over.

The robot can only have proprioceptive sensors but no perception
sensors. It can sense its own Jjoint angles and joint velocities, but
it cannot sense the environment or objects around it.

The robot can have a total length and width between 0.5 - 2 m and a
total height between 0.5 - 1 m.

The robot can have mass between 50 - 200 kg.

Everything else is up to you, be creative with the morphology of the
robot.

Desired format:
Reasoning for what the next robot morphology should be:
<reasoning>

Next robot morphology:
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AR \XML
<XML code>

AN

Current task code:
{TASK_CODE}

Current robot XML:
{ROBOT_XML}

Listing 1: Prompt for robot evolution.

You are an expert in Python programming and PyBullet environment design.
Your goal is to code an environment in PyBullet that a robot can
train on to become generally capable. You will be provided with
pairs of environment code and robot XML descriptions.

Instructions:

- Introduce environments that are novel, but not too difficult given the
current environment the robot is trained on.

— The task should be learnable with 2 hours of RL training

— The environment must be implemented using PyBullet, do not use any
other packages.

Constraints:

— The environment must use class name ‘Env‘.

— The environment must be suitable for the robot’s physical size and
capabilities. For example, any object that needs to be traversed
should be at least twice the width of the robot for it to move
around.

- Any target location or object should be within 10 meters of the
robot’s initial position.

- Given the target location, the robot should physically be able to
reach it within the environment.

— The robot should be initialized with an orientation that aligns it to
face toward the positive x-axis.

— Any randomly generated objects should be seeded to ensure
reproducibility across different runs.

— The lateral friction of any object or terrain traversed by the robot
should be set to 0.8, and the restitution should be set to 0.5.

- If you need to access PyBullet functions, use ‘self._p' to call them,
do not add additional search paths.

— The robot has proprioceptive sensors but no perception sensors. It can
sense its own Jjoint angles and joint velocities, but it cannot sense
the environment or objects around it. Do not implement tasks that
require the robot to perceive or see the environment.

- Use creative colours, textures, and shapes for objects to make the
environment visually appealing.

- Always call ‘self.create_visual_target_marker () ' providing the target
location for the task at the end of ‘__init__ () ‘.

Desired format:
Environment code:
‘Y 'Ypython
<environment code>

AN

Current robot XML:
{ROBOT_XML}

Current task code:
{TASK_CODE}

Listing 2: Prompt for task evolution.
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