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ABSTRACT

High dimensional data is often assumed to be concentrated on or near a low-
dimensional manifold. Autoencoders (AE) is a popular technique to learn represen-
tations of such data by pushing it through a neural network with a low dimension
bottleneck while minimizing a reconstruction error. Using high capacity AE often
leads to a large collection of minimizers, many of which represent a low dimen-
sional manifold that fits the data well but generalizes poorly.
Two sources of bad generalization are: extrinsic, where the learned manifold pos-
sesses extraneous parts that are far from the data; and intrinsic, where the encoder
and decoder introduce arbitrary distortion in the low dimensional parameterization.
An approach taken to alleviate these issues is to add a regularizer that favors a
particular solution; common regularizers promote sparsity, small derivatives, or
robustness to noise.
In this paper, we advocate an isometry (i.e., local distance preserving) regularizer.
Specifically, our regularizer encourages: (i) the decoder to be an isometry; and
(ii) the encoder to be the decoder’s pseudo-inverse, that is, the encoder extends
the inverse of the decoder to the ambient space by orthogonal projection. In a
nutshell, (i) and (ii) fix both intrinsic and extrinsic degrees of freedom and provide
a non-linear generalization to principal component analysis (PCA).
Experimenting with the isometry regularizer on dimensionality reduction tasks
produces useful low-dimensional data representations.

1 INTRODUCTION

A common assumption is that high dimensional data X ⊂ RD is sampled from some distribution
p concentrated on, or near, some lower d-dimensional submanifoldM⊂ RD, where d < D. The
task of estimating p can therefore be decomposed into: (i) approximate the manifoldM; and (ii)
approximate p restricted to, or concentrated nearM.

In this paper we focus on task (i), mostly known as manifold learning. A common approach to
approximate the d-dimensional manifoldM, e.g., in (Tenenbaum et al., 2000; Roweis & Saul, 2000;
Belkin & Niyogi, 2002; Maaten & Hinton, 2008; McQueen et al., 2016; McInnes et al., 2018), is
to embed X in Rd. This is often done by first constructing a graph G where nearby samples in X
are conngected by edges, and second, optimizing for the locations of the samples in Rd striving to
minimize edge length distortions in G.

Autoencoders (AE) can also be seen as a method to learn low dimensional manifold representation
of high dimensional data X . AE are designed to reconstruct X as the image of its low dimensional
embedding. When restricting AE to linear encoders and decoders it learns linear subspaces; with
mean squared reconstruction loss they reproduce principle component analysis (PCA). Using higher
capacity neural networks as the encoder and decoder, allows complex manifolds to be approximated.
To avoid overfitting, different regularizers are added to the AE loss. Popular regularizers include
sparsity promoting (Ranzato et al., 2007; 2008; Glorot et al., 2011), contractive or penalizing large
derivatives (Rifai et al., 2011a;b), and denoising (Vincent et al., 2010; Poole et al., 2014). Recent AE
regularizers directly promote distance preservation of the encoder (Pai et al., 2019; Peterfreund et al.,
2020).

In this paper we advocate a novel AE regularization promoting isometry (i.e., local distance preserva-
tion), called Isometric-AE (I-AE). Our key idea is to promote the decoder to be isometric, and the
encoder to be its pseudo-inverse. Given an isometric decoder Rd → RD, there is no well-defined
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inverse RD → Rd; we define the pseudo-inverse to be a projection on the image of the decoder
composed with the inverse of the decoder restricted to its image.

Locally, the I-AE regularization therefore encourages: (i) the differential of the decoder A ∈ RD×d
to be an isometry, i.e., ATA = Id, where Id is the d× d identity matrix; and (ii) the differential of
the encoder, B ∈ Rd×D to be the pseudo-inverse (now in the standard linear algebra sense) of the
differential of the decoder A ∈ RD×d, namely, B = A+. In view of (i) this implies B = AT . This
means that locally our decoder and encoder behave like PCA, where the encoder and decoder are
linear transformations satisfying (i) and (ii); That is, the PCA encoder can be seen as a composition
of an orthogonal projection on the linear subspace spanned by the decoder, followed by an orthogonal
transformation (isometry) to the low dimensional space.

Figure 1: Top: I-AE; bot-
tom: CAE.

In a sense, our method can be seen as a version of denoising/contractive
AEs (DAE/CAE, respectively). DAE and CAE promote a projection
from the ambient space onto the data manifold, but can distort distances
and be non-injective. Locally, using differentials again, projection on
the learned manifold means (AB)2 = AB. Indeed, as can be readily
checked conditions (i) and (ii) above imply A(BA)B = AB. This
means that I-AE also belongs to the same class of DAE/CAE, captur-
ing the variations in tangent directions of the data,M, while ignoring
orthogonal variations which often represent noise (Vincent et al., 2010;
Alain & Bengio, 2014). The benefit in I-AE is that its projection on the
data manifold is locally an isometry, preserving distances and sampling
the learned manifold evenly. That is, I-AE does not shrink or expand the
space; locally, it can be imagined as an orthogonal linear transformation.
The inset shows results of a simple experiment comparing contractive
AE (CAE-bottom) and isometric AE (I-AE-top). Both AEs are trained
on the green data points; the red arrows depict projection of points (in
blue) in vicinity of the data onto the learned manifold (in black) as calculated by applying the encoder
followed by the decoder. Note that CAE indeed projects on the learned manifold but not evenly,
tending to shrink space around data points; in contrast I-AE provides a more even sampling of the
learned manifold.

Experiments confirm that optimizing the I-AE loss results in a close-to-isometric encoder/decoder
explaining the data. We further demonstrate the efficacy of I-AE for dimensionality reduction of
different standard datatsets, showing its benefits over manifold learning and other AE baselines.

2 RELATED WORKS

Manifold learning. Manifold learning generalizes classic dimensionality reduction methods such
as PCA (F.R.S., 1901) and MDS (Kruskal, 1964; Sammon, 1969), by aiming to preserve the local
geometry of the data. Tenenbaum et al. (2000) use the nn-graph to approximate the geodesic distances
over the manifold, followed by MDS to preserve it in the lower dimension. Roweis & Saul (2000);
Belkin & Niyogi (2002); Donoho & Grimes (2003) use spectral methods to minimize different
distortion energy functions over the graph matrix. Coifman et al. (2005); Coifman & Lafon (2006)
approximate the heat diffusion over the manifold by a random walk over the nn-graph, to gain a
robust distance measure on the manifold. Stochastic neighboring embedding algorithms (Hinton
& Roweis, 2003; Maaten & Hinton, 2008) captures the local geometry of the data as a mixture of
Gaussians around each data points, and try to find a low dimension mixture model by minimizing
the KL-divergence. In a relatively recent work, McInnes et al. (2018) use iterative spectral and
embedding optimization using fuzzy sets. Several works tried to adapt classic manifold learning ideas
to neural networks and autoencoders. Pai et al. (2019) suggest to embed high dimensional points
into a low dimension with a neural network by constructing a metric between pairs of data points
and minimizing the metric distortion energy. Kato et al. (2019) suggest to learn an isometric decoder
by using noisy latent variables. They prove under certain conditions that it encourages isometric
decoder. Peterfreund et al. (2020) suggest autoencoders that promote the isometry of the encoder
over the data by approximating its differential gram matrix using sample covariance matrix. Zhan
et al. (2018) encourage distance preserving autoencoders by minimizing metric distortion energy in
common feature space.
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Modern autoencoders. There is an extensive literature on extending autoencoders to a generative
model (task (ii) in section 1). That is, learning a probability distribution in addition to approximating
the data manifoldM. Variational autoencoder (VAE) Kingma & Welling (2014) and its variants
Makhzani et al. (2015); Burda et al. (2016); Sønderby et al. (2016); Higgins et al. (2017); Tolstikhin
et al. (2018); Park et al. (2019); Zhao et al. (2019) are examples to such methods. In essence, these
methods augment the AE structure with a learned probabilistic model in the low dimensional (latent)
space Rd that is used to approximate the probability P that generated the observed data X . More
relevant to our work, are recent works suggesting regularizers for deterministic autoencoders that
together with ex-post density estimation in latent space forms a generative model. Ghosh et al. (2020)
suggested to reduce the decoder degrees of freedom, either by regularizing the norm of the decoder
weights or the norm of the decoder differential. Other regularizers of the differential of the decoder,
aiming towards a deterministic variant of VAE, were recently suggested in Kumar & Poole (2020);
Kumar et al. (2020). In contrast to our method, these methods do not regularize the encoder explicitly.

3 ISOMETRIC AUTOENCODERS

Figure 2: I-AE.

We consider high dimensional data points X = {xi}ni=1 ⊂ RD sampled
from some probability distribution P (x) in RD concentrated on or near
some d dimensional submanifoldM⊂ RD, where d < D.

Our goal is to compute isometric autoencoder (I-AE) defined as follows.
Let g : RD → Rd denote the encoder, and f : Rd → RD the decoder;
N is the learned manifold, i.e., the image of the decoder, N = f(Rd).
I-AE is defined by the following requirements:

(i) The data X is close to N .

(ii) f is an isometry.

(iii) g is the pseudo-inverse of f .

Figure 2 is an illustration of I-AE. Let θ denote the parameters of f , and φ the parameters of g. We
enforce the requirements (i)-(iii) by prescribing a loss function L(θ, φ) and optimize it using standard
stochastic gradient descent (SGD). We next break down the loss L to its different components.

Condition (i) is promoted with the standard reconstruction loss in AE:

Lrec(θ, φ) =
1

n

n∑
i=1

‖f(g(xi))− xi‖2 , (1)

where ‖·‖ is the 2-norm.

Before handling conditions (ii),(iii) let us first define the notions of isometry and pseudo-inverse. A
differentiable mapping f between the euclidean spaces Rd and RD is a local isometry if it has an
orthogonal differential matrix df(z) ∈ RD×d,

df(z)T df(z) = Id, (2)

where Id ∈ Rd×d is the identity matrix, and df(z)ij = ∂fi

∂zj
(z). A local isometry which is also a

diffeomorphism is a global isometry. Restricting the decoder to isometry is beneficial for several
reasons. First, Nash-Kuiper Embedding Theorem Nash (1956) asserts that non-expansive maps can
be approximated arbitrary well with isometries if D ≥ d + 1 and hence promoting an isometry
does not limit the expressive power of the decoder. Second, the low dimensional representation
of the data computed with an isometric encoder preserves the geometric structure of the data. In
particular volume, length, angles and probability densities are preserved between the low dimensional
representation Rd, and the learned manifold N . Lastly, for a fixed manifold N there is a huge space
of possible decoders such that N = f(Rd). For isometric f , this space is reduced considerably:
Indeed, consider two isometries parameterizing N , i.e., f1, f2 : Rd → N . Then, since composition
of isometries is an isometry we have that f−12 ◦ f1 : Rd → Rd is a dimension-preserving isometry
and hence a rigid motion. That is, all decoders of the same manifold are the same up to a rigid motion.
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For the encoder the situation is different. Since D > d the encoder g cannot be an isometry in
the standard sense. Therefore we ask g to be the pseudo-inverse of f . For that end we define the
projection operator p on a submanifold N ⊂ RD as

p(x) = arg min
x′∈N

‖x− x′‖ .

Note that the closest point is not generally unique, however the Tubular Neighborhood Theorem (see
e.g., Theorem 6.24 in Lee (2013)) implies uniqueness for points x sufficiently close to the manifold
N .
Definition 1. We say the g is the pseudo-inverse of f if g can be written as g = f−1 ◦ p, where p is
the projection on N = f(Rd).

Consequently, if g is the pseudo-inverse of an isometry f then it extends the standard notion of
isometry by projecting every point on a submanifold N and then applying an isometry between the
d-dimensional manifolds N and Rd. See Figure 2 for an illustration.

First-order characterization. To encourage f, g to satisfy the (local) isometry and the pseudo-
inverse properties (resp.) we will first provide a first-order (necessary) characterization using their
differentials:
Theorem 1. Let f be a decoder and g an encoder satisfying conditions (ii),(iii). Then their differen-
tials A = df(z) ∈ RD×d, B = dg(f(z)) ∈ Rd×D satisfy

ATA = Id (3)

BBT = Id (4)

B = AT (5)

The theorem asserts that the differentials of the encoder and decoder are orthogonal (rectangular)
matrices, and that the encoder is the pseudo-inverse of the differential of the decoder. Before proving
this theorem, let us first use it to construct the relevant losses for promoting the isometry of f and
pseudo-inverse g. We need to promote conditions (3), (4), (5). Since we want to avoid computing the
full differentials A = df(z), B = dg(f(z)), we will replace (3) and (4) with stochastic estimations
based on the following lemma: denote the unit d− 1-sphere by Sd−1 =

{
z ∈ Rd| ‖z‖ = 1

}
.

Lemma 1. Let A ∈ RD×d, where d ≤ D. If ‖Au‖ = 1 for all u ∈ Sd−1, then A is column-
orthogonal, that is ATA = Id.

Therefore, the isometry promoting loss, encouraging (3), is defined by

Liso(θ) = Ez,u

(
‖df(z)u‖ − 1

)2
, (6)

where z ∼ Piso(Rd), and Piso(Rd) is a probability measure on Rd; u ∼ P (Sd−1), and P (Sd−1) is
the standard rotation invariant probability measure on the d− 1-sphere Sd−1. The pseudo-inverse
promoting loss, encouraging (4) would be

Lpiso(φ) = Ex,u

(∥∥uT dg(x)
∥∥− 1

)2
, (7)

where x ∼ P (M) and u ∼ P (Sd−1). As usual, the expectation with respect to P (M) is computed
empirically using the data samples X .

Lastly, (5) might seem challenging to enforce with neural networks, however the orthogonality of
A,B can be leveraged to replace this loss with a more tractable loss asking the encoder is merely the
inverse of the decoder over its image:
Lemma 2. Let A ∈ RD×d, and B ∈ Rd×D. If ATA = Id = BBT and BA = Id then
B = A+ = AT .

Fortunately, this is already taken care of by the reconstruction loss: since low reconstruction loss in
equation 1 forces the encoder and the decoder to be the inverse of one another over the data manifold,
i.e., g(f(z)) = z, it encourages BA = Id and therefore, by Lemma 2, automatically encourages
equation 5. Note that invertability also implies bijectivity of the encoder/decoder restricted to the
data manifold, pushing for global isometries (rather than local). Summing all up, we define our loss
for I-AE by

L(θ, φ) = Lrec(θ, φ) + λiso (Liso(θ) + Lpiso(φ)) , (8)
where λiso is a parameter controlling the isometry-reconstruction trade-off.
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3.1 DETAILS AND PROOFS.

Let us prove Theorem 1 characterizing the relation of the differentials of isometries and pseudo-
isometries, A = df(z) ∈ RD×d, B = dg(f(z)) ∈ Rd×D. First, by definition of isometry
(equation 2), ATA = Id. We denote by TxN the d-dimensional tangent space to N at x ∈ N ;
accordingly, TxN⊥ denotes the normal tangent space.
Lemma 3. The differential dp(x) ∈ RD×D at x ∈ N of the projection operator p : RD → N is

dp(x)u =

{
u u ∈ TxN
0 u ∈ TxN⊥

(9)

That is, dp(x) is the orthogonal projection on the tangent space of N at x.

Proof. First, consider the squared distance function to N defined by η(x) = 1
2 minx′∈N ‖x− x′‖2.

The envelope theorem implies that∇η(x) = x− p(x). Differentiating both sides and rearranging
we get dp(x) = ID −∇2η(x). As proved in Ambrosio & Soner (1994) (Theorem 3.1), ∇2η(x) is
the orthogonal projection on TxN⊥.

Let x = f(z) ∈ N . Since x ∈ N we have p(x) = x. Condition (iii) asserts that g(y) = f−1(p(y));
taking the derivative at y = x we get dg(x) = df−1(x)dp(x). Lemma 3 implies that dp(x) =
AAT , since AAT is the orthogonal projection on TxN . Furthermore, df−1(x) restricted to Im(A)
is AT . Putting this together we get B = dg(x) = ATAAT = AT . This implies that BBT = Id,
and that B = A+ = AT . This concludes the proof of Theorem 1.

Proof of Lemma 1. Writing the SVD of A = UΣV T , where Σ = diag(σ1, . . . , σd) are the singular
values of A, we get that

∑d
i=1 σ

2
i v

2
i = 1 for all v ∈ Sd−1. Plugging v = ej , j ∈ [d] (the standard

basis) we get that all σi = 1 for i ∈ [d] and A = UV T is orthogonal as claimed.

Proof of Lemma 2. Let U = [A,V ], V ∈ RD×(D−d), be a completion of A to an orthogonal matrix
in RD×D. Now, Id = BUUTBT = Id + BV V TBT , and since BV V TBT � 0 this means that
BV = 0, that is B takes to null the orthogonal space to the column space of A. A direct computation
shows that BU = ATU which in turn implies B = AT = A+.

Implementation. Implementing the losses in equation 6 and equation 7 requires making a choice for
the probability densities and approximating the expectations. We take Piso(Rd) to be either uniform
or gaussian fit to the latent codes g(X ); and P (M) is approximated as the uniform distribution on X ,
as mentioned above. The expectations are estimated using Monte-Carlo sampling. That is, at each
iteration we draw samples x̂ ∈ X , ẑ ∼ Piso(Rd), û ∼ P (Sd−1) and use the approximations

Liso(θ) ≈
(
‖df(ẑ)û‖ − 1

)2
Lpiso(φ) ≈

( ∥∥ûT dg(x̂)
∥∥− 1

)2
The right differential multiplication df(ẑ)û and left differential multiplication ûT dg(x̂) are computed
using forward and backward mode automatic differentiation (resp.). Their derivatives with respect to
the networks’ parameters θ, φ are computed by another backward mode automatic differentiation.

4 EXPERIMENTS

4.1 EVALUATION

We start by evaluating the effectiveness of our suggested I-AE regularizer, addressing the following
questions: (i) does our suggested loss L (θ, φ) in equation 8 drive I-AE training to converge to an
isometry? (ii) What is the effect of the Lpiso term? In particular, does it encourage better manifold
approximations as conjectured? To that end, we examined the I-AE training on data points X sampled
uniformly from 3D surfaces with known global parameterizations. Figure 3 shows qualitative
comparison of the learned embeddings for various AE regularization techniques: Vanilla autoencoder
(AE); Contractive autoencoder (CAE) (Rifai et al., 2011b); Contractive autoencoder with decoder
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3D Data I-AE CAE TCAE RAE-GP DEA AE U-MAP t-SNE LLE

Figure 3: Evaluation of 3D → 2D embeddings.

weights tied to the encoder weights (TCAE) (Rifai et al., 2011a); Gradient penalty on the decoder
(RAE-GP) (Ghosh et al., 2020); and Denoising autoencoder with gaussian noise (DAE) (Vincent et al.,
2010). For fairness in evaluation, all methods were trained using the same training hyper-parameters.
See Appendix for the complete experiment details including mathematical formulation of the different
AE regularizers. In addition, we compared against popular classic manifold learning techniques:
U-MAP (McInnes et al., 2018), t-SNE (Maaten & Hinton, 2008) and LLE. (Roweis & Saul, 2000).
The results demonstrate that I-AE is able to learn an isometric embedding, showing some of the
advantages in our method: sampling density and distances between input points is preserved in the
learned low dimensional space.

I-AE CAE TCAE RAE-GP DAE AE

S Shape 0.03 0.36 0.26 1.22 2.53 1.85
Swiss Roll 0.02 1.00 0.38 1.75 1.80 1.63
Open Sphere 0.07 0.21 0.21 0.50 1.09 1.29

Table 1: Std of {lij}.

In addition, for the AE methods, we quantita-
tively evaluate how close is the learnt decoder
to an isometry. For this purpose, we triangulate
a grid of planar points {zi} ⊂ R2. We denote
by {eij} the triangles edges incident to grid
points zi and zj . Then, we measured the edge
lengths ratio, lij = ‖f (zi)− f (zj)‖/‖eij‖ expected to be ≈ 1 for all edges eij in an isometry. In
Table 1 we log the standard deviation (Std) of {lij} for I-AE compared to other regularized AEs. For
a fair comparison, we scaled zi so the mean of lij is 1 in all experiments. As can be seen in the table,
the distribution of {lij} for I-AE is significantly more concentrated than the different AE baselines.

Figure 4: Decoder surfaces without Lpiso
(left) and with (right).

Finally, althoughLiso is already responsible for learning an
isometric decoder, the pseudo-inverse encoder (enforced
by the lossLpiso) helps it converge to simpler solutions. We
ran AE training with and without the Lpiso term. Figure 4
shows in gray the learnt decoder surface, N , without Lpiso
(left), containing extra (unnatural) surface parts compared
to the learnt surface with Lpiso (right). In both cases we
expect (and achieve) a decoder approximating an isometry
that passes through the input data points. Nevertheless, the
pseudo-inverse loss restricts some of the degrees of freedom of the encoder which in turn leads to a
simpler solution.

4.2 DATA VISUALIZATION

In this experiment we evaluate our method in the task of high dimension data visualization, i.e.,
reducing high dimensional data into two dimensional space. Usually the data is not assumed to lie on
a manifold with such a low dimension, and it is therefore impossible to preserve all of its geometric
properties. A common artifact when squeezing higher dimensional data into the plane is crowding
(Maaten & Hinton, 2008), that is planar embedded points are crowded around the origin.
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I-AE CAE RAE-GP DAE AE U-MAP t-SNE

Figure 5: Results of data visualization experiment. Different colors indicate different ground turth
labels/classes. Top shows MNIST: FC architecture of the encoder/decoder (top row), and CNN
(bottom row); Middle shows FMNIST: FC (top row), and CNN (bottom row); Bottom shows COIL20
with CNN architecture, where zoom-ins of 3 classes are shown in the bottom row.

We evaluate our method on three standard datasets of images: MNIST (LeCun, 1998) (60k hand-
written digits), Fashion-MNIST (60k Zalando’s article images) (Xiao et al., 2017) and COIL20 (Nene
et al., 1996) (20 different images of object rotated with 72 even rotations). For baselines we take:
Vanilla AE; CAE; GP-RAE; DAE; U-MAP and t-SNE.

We use the same architecture for all auto-encoder methods on each dataset. MNIST and FMNIST
we evaluated in two scenarios: (i) Both encoder and decoder are fully-connected (MLP) networks;
and (ii) Both encoder and decoder are Convolutional Neural Network (CNN). For COIL20 dataset
both encoder and decoder are Convolutional Neural Network. Full implementation details and
hyper-parameters values can be found in the Appendix.

The results are presented in figure 5; where each embedded point z is colored by its ground-truth
class/label. We make several observation. First, in all the datasets our method is more resilient to
crowding compared to the baseline AEs, and provide a more even spread. U-MAP and t-SNE produce
better separated clusters. However, this separation can come at a cost: See the COIL20 result (third
row) and blow-ups of three of the classes (bottom row). In this dataset we expect evenly spaced
points that correspond to the even rotations of the objects in the images. Note (in the blow-ups)
that U-MAP maps the three classes on top of each other (non-injectivity of the "encoder"), t-SNE is
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somewhat better but does not preserve well the distance between pairs of data points (we expect them
to be more or less equidistant in this dataset). In I-AE the rings are better separated and points are
more equidistant; the baseline AEs tend to densify the points near the origin. Lastly, considering the
inter and intra-class variations for the MNIST and FMNIST datasets, we are not sure that isometric
embeddings are expected to produce strongly separated clusters as in U-MAP and t-SNE (e.g., think
about similar digits of different classes and dissimilar digits of the same class with distances measured
in euclidean norm).

4.3 DOWNSTREAM CLASSIFICATION

To quantitatively evaluate the unsupervised low-dimensional embedding computed with the I-AE
we performed the following experiment: We trained simple classifiers on the embedded vectors
computed by I-AE and baseline AEs and compared their performance (i.e., accuracy). Note that the
process of learning the embedding is unsupervised and completely oblivious to the labels, which are
used solely for training and testing the classifiers.

We evaluate on the same datasets as in Section 4.2: In MNIST and FMNIST we use the standard
train-test split, and on COIL20 we split 75%-25% randomly. As AE baselines we take vanilla AE,
CAE, DAE and RAE-GP, as described above. We repeat each experiment with 3 different latent
dimensions, {16, 64, 256}, and use two different simple classification algorithms: linear Support
vector machines (SVM) (Cortes & Vapnik, 1995) and K-nearest neighbors (K-NN), with K = 5.

Table 2 logs the results, where for both types of classifiers I-AE outperforms the baseline AEs in
almost all combinations, where the SVM experiments demonstrate larger margins in favor of I-AE.
The results of the K-NN indicate that euclidean metric captures similarity in our embedding, and
the results of the SVM, especially on the MNIST and COIL20 datasets, indicate that I-AE is able to
embed the data in an arguably simpler, linearly separable manner. The very high classification rates
in COIL20 are probably due to the size and structure of this dataset. Nevertheless with SVM, already
in 16 dimensions I-AE provides an accuracy of 95%, with 5% margin from 2nd place.

Dataset d IAE AE CAE DAE RAE-GP
16 0.9138 0.9044 0.9045 0.9039 0.9016
64 0.8905 0.8364 0.8869 0.8373 0.8796MNIST
256 0.9585 0.9140 0.9308 0.9226 0.9347
16 0.7910 0.7827 0.7865 0.7843 0.7831
64 0.8343 0.8056 0.8350 0.7925 0.8339FMNIST
256 0.8721 0.8341 0.8622 0.8374 0.8688
16 0.9500 0.8944 0.8917 0.9000 0.8833
64 1.0000 0.9944 0.9972 0.9917 0.9833COIL20
256 1.0000 0.9972 1.0000 0.9972 1.0000

Dataset d IAE AE CAE DAE RAE-GP
16 0.9791 0.9784 0.9759 0.9783 0.9778
64 0.9736 0.9756 0.9761 0.9768 0.9710MNIST
256 0.9761 0.9737 0.9719 0.9734 0.9613
16 0.8790 0.8775 0.8773 0.8778 0.8763
64 0.8845 0.8867 0.8855 0.8854 0.8873FMNIST
256 0.8778 0.8796 0.8763 0.8783 0.8712
16 0.9917 0.9861 0.9889 0.9861 0.9889
64 0.9917 0.9778 0.9722 0.9778 0.9722COIL20
256 0.9889 0.9750 0.9806 0.9722 0.9444

SVM K-NN

Table 2: Downstream classification experiment. Both tables indicate accuracy in [0, 1]. Left: results
with a linear SVM classifier; and right: results of a K-NN classifier with K=5. The top performance
scores are highlighted with colors: first, second and third.

4.4 HYPER-PARAMETERS SENSITIVITY

To evaluate the affect of λiso on the output we compared the visualizations and optimized loss
values of MNIST and FMNIST, trained with same CNN architecture as in Section 4.2 with
λiso ∈ {0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 0.1}. Figure 6 shows the different visual-
ization results as well as Lrec, Liso, Lpiso as a function of λiso. As can be seen in both datasets the
visualizations and losses are stable for λiso values between 0.01 and 0.5, where a significant change
to the embedding is noticeable at 0.75. The trends in the loss values are also rather stable; Liso and
Lpiso start very high in the regular AE, i.e., λiso = 0, and quickly stabilize. As for Lrec on FMNIST
we see a stable increase while in MNIST it also starts with a steady increase until it reaches 0.75 and
then it starts to be rockier, which is also noticeable in the visualizations.
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Figure 6: Sensitivity to hyper-parameters. Top: visualizations of MNIST (1st row) and FMNIST (2nd
row) datasets trained with different λiso values. Bottom: plots of the final train losses as a function of
λiso; left to right: Lrec (linear scale), Liso (log scale), and Lpiso (log scale).

5 CONCLUSIONS

We have introduced I-AE, a regularizer for autoencoders that promotes isometry of the decoder and
pseudo-inverse of the encoder. Our goal was two-fold: (i) producing a favorable low dimensional
manifold approximation to high dimensional data, isometrically parameterized for preserving, as
much as possible, its geometric properties; and (ii) avoiding complex isometric solutions based on the
notion of psuedo-inverse. Our regularizers are simple to implement and can be easily incorporated
into existing autoencoders architectures. We have tested I-AE on common manifold learning tasks,
demonstrating the usefulness of isometric autoencoders.

An interesting future work venue is to consider task (ii) from section 1, namely incorporating I-AE
losses in a probabilistic model and examine the potential benefits of the isometry prior for generative
models. One motivation is the fact that isometries push probability distributions by a simple change
of coordinates, P (z) = P (f(z)).
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

All experiments were conducted on a Tesla V100 Nvidia GPU using PYTORCH framework Paszke
et al. (2017).

A.1.1 NOTATIONS

Table 3 describes the notation for the different network layers.

Notation Description
LIN n Linear layer. n denotes the output dimension.
FC n FullyConnected layer with SoftPlus (β = 100) non linear activation. n denotes the output dimension.

FC_B n Block consisting of Lin n, followed by a batch normalization layer and SoftPlus (β = 100) non linear activation.
CONV c, k, s, p Convolutional layer with kernel of size k × k, c output channels, s stride, and p padding.

CONV_B c, k, s, p Block consisting of CONV c, k, s, p, followed by a batch normalization layer and SoftPlus(β = 100) non linear activation.
CONVT c, k, s, p Convolutional transpose layer with kernel of size k × k, c output channels, s stride, and p padding.

CONVT_B c, k, s, p Block consisting of CONVT c, k, s, p, followed by a batch normalization layer and SoftPlus(β = 100) non linear activation.

Table 3: Layers notation.

A.1.2 EVALUATION

Architecture. We used an autoencoder consisted of 5 FC 256 layers followed by a LIN 2 layer for
the encoder; similarly, 5 FC 256 layers followed by a LIN 3 layer were used for the decoder.

Training details. All methods were trained for a relatively long period of 100K epochs. Training
was done with the ADAM optimizer Kingma & Ba (2014), setting a fixed learning rate of 0.001 and a
full batch. I-AE parameter was set to λiso = 0.01.

Baselines. The following regularizers were used as baselines: Contractive autoencoder (CAE) Rifai
et al. (2011b); Contractive autoencoder with decoder weights tied to the encoder weights (TCAE) Rifai
et al. (2011a); Gradient penalty on the decoder (RAE-GP) Ghosh et al. (2020); Denoising autoencoder
with gaussian noise (DAE) Vincent et al. (2010). For both CAE, and TCAE the regularization term is
‖dg(x)‖2. For RAE-GP the regularization term is ‖df(z)‖2. For U-MAP McInnes et al. (2018), we
set the number of neighbours to 30. For t-SNE Maaten & Hinton (2008), we set perplexity= 50.

A.1.3 DATA VISUALIZATION

Architecture. Table 4 lists the complete architecture details of this experiment. Both MNIST and
FMNIST were trained with FC-NN and S-CNN, and COIL20 was trained with L-CNN.

Training details. Training was done using ADAM optimizer Kingma & Ba (2014). The rest of the
training details are on table 5.
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FC-NN S-CNN L-CNN
Encoder Decoder Encoder Decoder Encoder Decoder

FC_B 128 FC_B 1024 CONV_B 32,4,2,1 FC 256 CONV_B 128,4,2,1 CONVT_B 2048,4,1,0
FC_B 256 FC_B 512 CONV_B 64,4,2,1 CONVT_B 128,4,1,0 CONV_B 256,4,2,1 CONVT_B 1024,4,2,1
FC_B 512 FC_B 256 CONV_B 128,4,2,1 CONVT_B 64,4,2,1 CONV_B 512,4,2,1 CONVT_B 512,4,2,1
FC_B 1024 FC_B 128 CONV_B 256,4,2,0 CONVT 32,4,2,1 CONV_B 1024,4,2,1 CONVT_B 256,4,2,1

LIN 2 LIN 784 LIN 2 CONVT 1,4,2,3 CONV_B 2048,4,2,1 CONVT_B 128,4,2,1
CONV_B 4096,4,2,1 CONVT 1,4,2,1

CONV 2,2,2,1

Table 4: High dimensional visualization experiment architectures.

MNIST FMNIST COIL20
Architecture FC-NN S-NN FC-NN S-CNN L-CNN
Batch Size 128 512 128 512 144
λiso 0.1 0.075 0.01 0.075 0.1
Epochs 1000 500 1000 500 1000

Table 5: High dimensional visualization training details.

Baselines. The following regularizers were used as baselines: Contractive autoencoder (CAE)
Rifai et al. (2011b); Gradient penalty on the decoder (RAE-GP) Ghosh et al. (2020); Denoising
autoencoder with gaussian noise (DAE) Vincent et al. (2010). For CAE the regularization term is
‖dg(x)‖2. For RAE-GP the regularization term is ‖df(z)‖2. We used U-MAP McInnes et al. (2018)
official implementation with random_state = 42, and Ulyanov (2016) multicore implementation for
t-SNE Maaten & Hinton (2008) with default parameters.

A.2 ADDITIONAL EXPERIMENTS

A.2.1 GENERALIZATION IN HIGH DIMENSIONAL SPACE

Next, we evaluate how well our suggested isometric prior induces manifolds that generalizes well
to unseen data. We experimented with three different images datasets: MNIST (LeCun, 1998);
CIFAR10 (Krizhevsky et al., 2009); and CelebA (Liu et al., 2015). We quantitatively estimate
methods performance by measuring the L2 distance and the Fréchet Inception Distance (FID) Heusel
et al. (2017) on a held out test set. For each dataset, we used the official train-test splits.

For comparison versus baselines we have selected among relevant existing AE based methods the
following: Vanilla AE (AE); autoencoder trained with weight decay (AEW); Contractive autoencoder
(CAE); autoencoder with spectral weights normalization (RAE-SN); and autoencoder with L2

regularization on decoder weights (RAE-SN). RAE-L2 and RAE-SN were recently successfully
applied to this data in (Ghosh et al., 2020), demonstrating state-of-the-art performance on this task.
In addition, we compare versus the Wasserstein Auto-Encoder (WAE) Tolstikhin et al. (2018), chosen
as state-of-the-art among generative autoencoders.

For evaluation fairness, all methods were trained using the same training hyper-parameters: network
architecture, optimizer settings, batch size, number of epochs for training and learning rate scheduling.
See the appendix for specific hyper-parameters values. In addition, we generated a validation set
out of the training set using 10k samples for the MNIST and CIFAR-10 experiment, whereas for
the CelebA experiment we used the official validation set. For each training epoch, we evaluated
the reconstruction L2 loss on the validation set and chose the final network weights to be the one
that achieves the minimum reconstruction. We experimented with two variants of I-AE regularizers:
Lpiso and Lpiso + Liso. Table 7 logs the results. Note that I-AE produced competitive results with the
current SOTA on this task.

Architecture. For all methods, we used an autoencoder with Convolutional and Convolutional
transpose layers. Table 6 lists the complete details.

Training details. Training was done with the ADAM optimizer Kingma & Ba (2014), setting a
learning rate of 0.0005 and batch size 100. I-AE parameter was set to λiso = 0.1.
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MNIST CIFAR-10 CelebA
Encoder Decoder Encoder Decoder Encoder Decoder

CONV_B 128, 4, 2, 1 FC 16384 CONV_B 128, 4, 2, 1 FC 16384 CONV_B 128, 5, 2, 1 FC 65536
CONV_B 256, 4, 2, 1 CONVT_B 512, 4, 2, 1 CONV_B 256, 4, 2, 1 CONVT_B 512, 4, 2, 1 CONV_B 256, 5, 2, 1 CONVT_B 512, 4, 2, 1
CONV_B 512, 4, 2, 1 CONVT_B 256, 4, 2, 1 CONV_B 512, 4, 2, 1 CONVT_B 256, 4, 2, 1 CONV_B 512, 5, 2, 1 CONVT_B 256, 4, 2, 1

CONV_B 1024, 4, 2, 1 CONVT_B 128, 4, 2, 1 CONV_B 1024, 4, 2, 1 CONVT_B 128, 4, 2, 1 CONV_B 1024, 5, 2, 1 CONVT_B 128, 4, 2, 1
LIN 16 CONVT 1, 1, 0, 0 LIN 128 CONVT 3, 1, 0, 0 LIN 128 CONVT 3, 1, 0, 0

Table 6: High dimensional generalization experiment architectures.

Methods

Dataset Distance Lpiso Lpiso + Liso AE AEW CAE RAE-SN RAE-L2 WAE

MNIST
L2 0.96 0.99 1.14 1.0 1.15 1.35 1.14 1.64

FID 6.09 7.94 4.95 5.59 6.46 10.72 11.41 6.99

CIFAR-10
L2 20.19 21.05 20.16 20.33 20.23 21.02 20.2 21.08

FID 70.14 56.04 74.79 68.71 71.71 70.79 71.05 74.2

CelebA
L2 20.38 19.93 20.51 19.74 20.46 20.78 20.58 20.88

FID 34.68 40.73 40.53 40.00 39.52 40.45 38.86 38.98

Table 7: Manifold approximation quality on test images. We log the L2 and FID distances (lower is
better) from reconstructed images to the input images. The L2 numbers are reported ∗103. The top
performance scores are highlighted as: First, Second.
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Figure 7: CelebA reconstructions.
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Figure 8: CIFAR-10 reconstructions.
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Figure 9: MNIST reconstructions.

17


	Introduction
	Related works
	Isometric autoencoders
	Details and proofs.

	Experiments
	Evaluation
	Data visualization
	Downstream classification
	Hyper-Parameters Sensitivity

	Conclusions
	Appendix
	Implementation details
	Notations
	Evaluation
	Data visualization

	Additional Experiments
	Generalization in high dimensional space



