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Multi-modal Understanding and Generation for Medical
Images and Text via Vision-Language Pre-Training

Jong Hak Moon⇤, Hyungyung Lee⇤, Woncheol Shin, Young-Hak Kim, and Edward Choi

Abstract— Recently a number of studies demonstrated
impressive performance on diverse vision-language multi-
modal tasks such as image captioning and visual ques-
tion answering by extending the BERT architecture with
multi-modal pre-training objectives. In this work we ex-
plore a broad set of multi-modal representation learning
tasks in the medical domain, specifically using radiology
images and the unstructured report. We propose Med-
ical Vision Language Learner (MedViLL), which adopts
a BERT-based architecture combined with a novel multi-
modal attention masking scheme to maximize general-
ization performance for both vision-language understand-
ing tasks (diagnosis classification, medical image-report
retrieval, medical visual question answering) and vision-
language generation task (radiology report generation). By
statistically and rigorously evaluating the proposed model
on four downstream tasks with three radiographic image-
report datasets (MIMIC-CXR, Open-I, and VQA-RAD), we
empirically demonstrate the superior downstream task per-
formance of MedViLL against various baselines, including
task-specific architectures. The source code is publicly
available at: https://github.com/SuperSupermoon/MedViLL

Index Terms— Healthcare, Medical, Multimodal Learning,
Representation Learning, Self-Supervised Learning, Vision-
and-Language

I. INTRODUCTION

Vision-Language (VL) multi-modal research using radio-
graphic images and associated free-text description (e.g., Chest
X-rays and radiology report) is one of the most important and
interesting works in the medical informatics [4], [6], [18], [22],
[24], [31], [42]. Although each VL modality provides different
representations to the researcher, images and reports contain
mutually helpful semantic information. Consequently, advances
in VL multi-modal research can be beneficial in improving the
quality of clinical care by providing automated support for a
variety of tasks such as diagnosis classification [6], [18], [42],
report generation [24], [42]. Owing to the high dimensionality,
heterogeneity, and systemic biases, however, handling both
image and clinical report to learn joint representation poses
significant technical challenges. The development of VL multi-
modal learning has produced tremendous progress recently by
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Fig. 1: Overview of MedViLL. During the pre-training, MedViLL learns
joint representation, then fine-tuned for VLU and VLG tasks.

extending the BERT-based architecture [10] in deep learning
area. BERT-based VL model is the typical pretrain-then-transfer
approach that makes the model learn a representation of each
modality by performing multiple pre-training tasks. After pre-
training the model, it is transferred to various vision language
understanding (VLU) (e.g., visual question answering, text-
conditioned image retrieval and vice versa) and vision language
generation (VLG) (e.g., image captioning) downstream tasks
by making only minor additions to the base architecture.

However, despite significant improvements reported for a
wide range of downstream tasks utilizing pre-trained models,
most previous studies focused on either the VLU tasks or
the VLG tasks [14], [20], [26], [36], [39], suggesting the
challenging nature of learning meaningful representations for
both VLU and VLG at the same time. Some recent studies tried
to tackle both tasks at the same time by proposing a hybrid
model using the encoder and decoder of the Transformer [37],
[38], [45], or with a unified BERT model by sharing knowledge
using different types of the self-attention mask [47]. These
works demonstrated promising results even when a single
BERT-based architecture was trained to aim at both tasks.

While VL multi-modal pre-training has no doubt seen signif-
icant progress in recent years, it was mainly developed under
the context of general domain (e.g., using MS-COCO). Vision
and language, however, is one of the most frequently used
information in the medical domain as well, often produced in
the form of radiology images and corresponding free-text report.
VL multi-modal pre-training therefore has great potential to be
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widely used in healthcare such improving diagnosis accuracy,
automatically generating reports, or answering questions from
physicians. Despite its huge potential, VL multi-modal pre-
training in the medical domain has only recently received
attention, where Li et al. [21] only demonstrated improved
diagnosis accuracy of VL pre-trained models. In order to
truly understand, however, whether a model has effectively
learned both vision and text representation, it must be evaluated
on diverse VLU and VLG tasks beyond simple diagnosis
classification. This motivates us to investigate whether an
integrated model is possible for a wide range of VLU and
VLG tasks.

In this paper, we aim to develop a model that can learn
multipurpose joint representations of vision and language in
the medical domain (Fig.1). The more immediate focus of our
approach to enhance downstream tasks such as diagnosis and
treatment delivery is case-based reasoning, discovering under-
lying patterns in data, and generating semantically accurate
disease profiles. The main contributions of this paper can be
summarized as follows:

1) We propose Medical Vision Language Learner (MedViLL),
a multi-modal pre-training model for medical images and
reports with a novel self-attention scheme.

2) We demonstrate the effectiveness of our approach with
detailed ablation study on extensive vision-language
understanding and generation-based downstream tasks,
including diagnosis classification, medical image-report
retrieval, medical visual question answering, and radiology
report generation.

3) We demonstrate the generalization ability of our approach
under the transfer learning setting using two separate
Chest X-ray datasets, where we pre-train a model on one
dataset and perform diverse downstream tasks on another.

To the best of our knowledge, this is the first study that
conducts both VLU and VLG tasks with a unified VL pre-
training model in the medical domain. We expect that our
pretrained VL model will enable more effective cross-task
knowledge sharing, and reduce the development costs by
eliminating the need for separate models for different tasks.

II. RELATED WORK

A. Radiology Practices

In radiology practice, physicians identify various clinical
findings based on radiographic images and the patient’s
clinical history, then summarize these findings and overall
impressions in a clinical report [17], [32]. To accelerate
the diagnostic process, [33], [34] enhance perceptual quality
of noisy radiographic images. Diagnostic observations are
described as positive, negative, or uncertain about the clinical
findings, including the detailed location and severity of the
findings. Such clinical reports are currently being used as a
standard method to communicate in the clinical setting. A
combination of vision and language data helps further improve
the model performance in both image annotation and automatic
report generation [22].

B. VL Multimodal Researches in the Medical Domain

Although various models have been gradually developed for
language modeling [2], [19], [25], [35], CNN-RNN based
models still dominate in VL multi-modal learning in the
medical domain, and these models were mainly designed for a
task-specific method of either VLU or VLG tasks. TieNet
[42] is a pioneering CNN-RNN model with image-report
attention mechanism for VLU (e.g., diagnosis classification)
and VLG (e.g., report generation) tasks by using ChestX-
ray14 [41] dataset. Liu et al. [24] only focus on the VLG
task to generate the radiology report utilizing a CNN-RNN-
RNN architecture with a hierarchical generation strategy from
the MIMIC-CXR [16] and Open-I dataset [9]. Hsu et al. [12]
focuses on a VLU task, specifically image-report retrieval in the
MIMIC-CXR dataset, based on supervised and unsupervised
methods. The most recent studies [4], [23], [43], [46] focus on
either VLU or VLG task. Li et al. [21] compares 4 different
BERT-based pre-training models on a VLU task, specifically
classifying thoracic findings in the MIMIC-CXR and Open-
I dataset. With a focus on VLG task [4], [23], [43], [46],
EMIXER [4] is a GAN-based approach that simultaneously
generates a pair of X-ray images and corresponding reports
based on diagnosis labels. Other recent VLG studies [4], [23],
[43], [46] focus on report generation that is as close to the
ground truth as possible utilizing both the frontal and lateral
view images to generate a single corresponding report. Liu
et al. [23] proposed a Transformer encoder-decoder based
prior and posterior knowledge distilling approaches using 3
different modalities (Vision, Language, and Knowledge Graph).
Wang et al. [43] proposed a self-boosting framework with 3
different modules (CNN-based object detector as image encoder,
Sentence-BERT as report encoder, and additional LSTM layers
as decoder) using image and report based on the cooperation
of the main tasks of generation and an auxiliary task of image-
report matching. Yang et al. [46] proposed MedWriter that
incorporates a hierarchical retrieval mechanism to automatically
extract both report and sentence-level templates. In this paper,
we focus on learning a joint representation of a single image
(frontal view) and its corresponding report to perform both
VLU and VLG tasks with fine-tuning.

C. VL Multimodal Researches in the General Domain

For better understanding of VL multimodality, many works
have been proposed recently [7], [14], [26], [38], [39], [47]
in the general domain. Among numerous variants of VL pre-
training setup, we focus on three components that are most
relevant to our approach: input embedding stream, visual feature
embedding, and downstream tasks.

1) Input Embedding Stream: Existing models can be divided
into two groups based on their architecture as a single- [7],
[14], [20], [38] or two-stream [26], [39] with the marginal
difference in downstream task performance [5], [28]. However,
the two-stream architecture has a greater number of parameters,
whereas the single stream architecture allows early interaction
between two modalities by sharing parameters and processing
stacks [7], [14], [36], [47]. For architectural simplicity and
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time/space efficiency, we design our model with a single-stream
architecture.

2) Visual Feature Embedding: For visual feature embed-
ding, most of the recent works [7], [20], [26] are inspired
by [3] utilizing pre-trained object detectors [30] to extract
the region-based visual inputs. However, the representation
capability of this approach is limited by the given categories
of the object detection task, leading to information gaps for
language understanding [14]. In contrast to the region-based
visual embedding, PixelBERT [14] suggests CNN-based visual
encoder with random pixel sampling to improve the robustness
of visual feature learning and avoid over-fitting [11]. Since
there is no applicable off-the-shelf object detector model to
extract region-based feature in the medical domain [8], [22],
[29], we adopt the CNN-based visual feature embedding.

3) Downstream tasks: VLU and VLG tasks are typical
downstream tasks of the VL pre-trained model for tackling
more complex tasks that combine vision with language. In
this regard, a number of previous works [7], [14], [26], [39]
use BERT-based vision-language joint encoder to perform
VLU tasks. On the other hand, VLG tasks typically require
an encoder for embedding the vision features and a decoder
that generates text [38]. Unified VLP [47] conducts these two
disparate tasks (VLU and VLG) with a single BERT-based
architecture by repeatedly alternating the mask type with a
fixed ratio between bidirectional and sequence-to-sequence
mask during pre-training. Inspired by this unified pre-training
approach, we explore different types of masks and their effects
on diverse VLU and VLG downstream tasks.

III. MATERIALS AND METHODS

A. Dataset

We used publicly available MIMIC-CXR [16] and Open-I
[9] datasets. MIMIC-CXR [16] contains 377,110 Chest X-
ray images and corresponding free-text reports. Also, Open-I
dataset contains 3,851 reports and 7,466 Chest X-ray images.
Since the dataset contains frontal and lateral view images, it
is required to distinguish between view positions [6], [24] to
avoid miss-match findings between an image and a report pair.
Therefore, given the dominance of the anteroposterior (AP)
frontal view in ICU (Intensive Care Units) settings (e.g., 38.89%
of all studies containing at least one AP view image), we
perform all experiments on unique 91,685 AP view image and
associated report pairs following the official split of MIMIC-
CXR (train 89,395, valid 759, test 1,531) and 3,547 image-
report pairs from the official Open-I dataset. We use Open-
I to test the generalization ability of the models, where all
models are pre-trained on MIMIC-CXR, then fine-tuned for
downstream tasks on a completely unseen Open-I dataset. Our
pre-processing procedure is illustrated in Fig. 2.

B. VL Pre-training Model

Our proposed architecture MedViLL is a single BERT-based
model that learn unified contextualized vision-language repre-
sentation. The overall architecture of MedViLL is illustrated
in Fig.3.

TABLE I: Notation explanation appearing in this section

Notation Description
v Chest x-ray image
v Visual feature
l Visual location feature
sV Visual semantic embedding
w Clinical report
w Language feature
p Language position embedding
sL Language semantic embedding
ṽ Final visual feature embedding
w̃ Final language feature embedding
H̃ Joint embedding
H̄ Contextualized embedding

1) Visual Feature Embedding: We use a CNN to extract
visual features from the medical image. The visual features are
obtained from the last convolution layer, then flattened along
the spatial dimension. Further, we encode the absolute positions
of visual input as additional information for explicitly injecting
the same body position information in the x-ray images. Given
a Chest x-ray image v, we denote the flattened visual feature
obtained from the last CNN layer v, and the location feature l

as follows:

v = {v1,v2, . . . ,vK}, vi 2 Rc (1)

l= {l1, l2, . . . , lK}, li 2 Rc (2)

where K indicates the number of visual features (i.e., height
⇥ width) and c the hidden dimension size (i.e., channel size).
The final visual feature embeddings ṽ = {ṽ1, ṽ2, . . . , ṽK} are
computed as follows:

ṽi =vi + li + sV (3)

where sV is a semantic embedding vector shared by all visual
feature to differentiate themselves from language embeddings.
The final visual features ṽ are fed into a fully-connected
layer, to be projected into the same embedding space Rd has
the language embeddings. During pre-training, we randomly
sample a subset of the final visual features to avoid overfitting
and enhance the semantic knowledge learning of visual input
[15]. We use k to denote the number of sampled visual features,
whereas K denotes the number of all visual features.

2) Language Feature Embedding: For language feature
embedding, we follow BERT [10] to encode the textual
information. A given clinical report w is first split into a
sequence of N tokens (i.e. subwords) {w1, ..., wN} using the
WordPiece tokenizer [44]. The tokens are then converted to
vector representations w = {w1,w2, . . . ,wN}, wi 2 Rd via a
lookup table, where d is the embedding dimension size. We de-
note position embeddings as p= {p1,p2, . . . ,pN}, pi 2 Rd.
The final language feature embeddings w̃ = {w̃1, w̃2, . . . , w̃N}
are obtained as follows:

w̃i =wi + pi + sL (4)

where sL is a semantic embedding vector shared by all language
feature to differentiate themselves from visual embeddings.
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Fig. 2: Data collection and parsing. We pre-process the X-ray image and report data are as follows. First, for the X-ray image, we cut out the marginal
space of the original image and resize all the images to 512 x 512, keeping the aspect ratio. Then for the report, we select a longer description (Findings or
Impression section) which may contain detailed information associated with the X-ray imaging.

3) Joint Embedding: After obtaining visual embedding ṽ 2
Rd and language embeddings w̃ 2 Rd, we concatenate
them to construct the input sequence to the joint embedding
component (Fig.3 (C)). Using additional special tokens CLS
and SEP, we define the input to the joint embedding block
as H̃= {CLS, ṽ1, . . . , ṽK , SEPV , w̃1, . . . , w̃N , SEPL} 2
Rd⇥S where S =N + K + 3. Note that CLS, SEPV

and SEPL are obtained by summing the special to-
kens with corresponding position and semantic embed-
dings as in Fig.3. The contextualized embedding pro-
duced by the joint embedding block are denoted as
H̄= {CLS, v̄1, . . . , v̄K , SEPV , w̄1, . . . , w̄N , SEPL}.

4) Pre-training Objectives: To pre-train MedViLL and align
visual features with language features, we take the Masked
Language Modeling (MLM) and Image Report Matching (IRM)
tasks, which were used in various forms in previous work [7],
[14], [20], [36]. For the MLM task, we follow BERT to replace
15% of the input text tokens {w1, . . . , wN} with the special
MASK token, a random token, or the original token with a
probability of 80%, 10% and 10% respectively. The model is
trained to recover these masked tokens based on the contextual
observation of their surrounding language tokens and the visual
tokens, by minimizing the following negative log-likelihood.

LMLM (✓)= � E(v,w)⇠D

h
logP✓(wm|v, w\m)

i
(5)
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Fig. 3: Architecture of the MedViLL. MedViLL is a single stream BERT model for the cross-modal embedding. Chest X-ray images are randomly sampled
from the last feature map of the CNN model as visual inputs. Also, each report is parsed with the BERT tokenizer to get language input. MedViLL is
pre-trained with masked language modeling and image report matching tasks, and flexibly applied to VLU and VLG downstream tasks.

where ✓ is the trainable parameters of MedViLL. A pair of
images and its corresponding report (v, w) is sampled from the
training set D, where w can be divided into the masked tokens
wm and their complements w\m. E(v,w)⇠D is the average for
the training set D, and P✓(wm|v, w\m) is the probability of
wm given v and w\m. IRM task encourages the model to learn
both visual and textual features by training the model to predict
whether a given pair of image and report (v, w) is a matching
pair or not. During pre-training, we randomly sample both
matching image-report pairs and non-matching image-report
pairs with 1:1 ratio from the dataset. Note that, however, while
selecting a matching pair is straightforward (X-ray images
come with a corresponding report), sampling a non-matching
pair is not, because two different report can be semantically the
same (e.g., “No findings.”, “Nothing noticeable.”). Therefore,
when sampling for non-matching image-report pairs, we use
diagnosis labels. Specifically, in our IRM task, a non-matching
report is defined as the ones that are extracted different
positive diagnosis labels than the matching report. The joint
contextualized embedding CLS is used to classify whether the
input image and report are a matching pair or not, with the
following loss function,

LIRM (✓)= � E(v,w)⇠D

h
y logP✓(v, w)

i

� E(v,w0)⇠D

h
(1� y) log(1� P✓(v, w

0))
i

(6)

where (v, w) denotes a matching image-report pair, (v, w0) a
non-matching pair, y is the label (1 for matching, and 0 for
unmatching), E(v,w)⇠D is the average for the training set D,
and P✓(v, w) is the probability of the (v, w) being paired.

Fig. 4: Self-attention mask schemes. Four types of self-attention masks and
the quadrant for the difference in performance in the downstream task of
each attention mask. (a) Bidirectional, (b) Bidirectional Auto-regressive, (c)
Non-crossing, (d) Sequence-to-Sequence self-attention masks.

C. Self-Attention Mask Schemes

We explore several types of self-attention masks to encourage
the model to learn universal multi-modal representations. Bi
(Bidirectional) attention mask (Fig. 4 (a)) that allows all inputs
to interact freely for unconstrained context learning between the
visual-language modalities. S2S (Sequence-to-Sequence) causal
attention mask (Fig. 4 (d)), on the other hand, allows restricted
context learning; language features are only allowed to attend
to previous words, while visual features are not allowed to
attend to any language features, in order to prevent leaking
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information from the future. Bi & S2S uses both Bi and S2S
masks alternately during pre-training (in every mini-batch, use
S2S with 75% chance and Bi with 25% chance) to perform both
VLU and VLG downstream tasks. In this work, we propose a
new self-attention mask, Bidirectional Auto-Regressive (BAR)
(Fig. 4 (b)), to closes the gap between Bi and S2S while taking
advantage of both. BAR allows image features to be mixed with
language features during pre-training (as opposed to S2S mask),
while preserving the causal nature of auto-regressive language
generation. The self-attention mask M 2 RS⇥S , S =N+K+3
consists of 0s and negative infinities as below.

Mjk =

(
0, (attention allowed)
�1, (attention not allowed)

j, k = 1, ..., S.

(7)
And a single attention head in the self-attention module can
be formulated as follows:

Attention= softmax (SA+M)V, SA=
QKT

p
dk

(8)

where Q,K, V , and dk indicate queries, keys, values, and
dimension of queries and keys respectively [40].

SA=

2

6666666664

CLSq·CLSk ··· CLSq·W1k ··· CLSq·SEPLk

V1q·CLSk ··· V1q·W1k ··· V1q·SEPLk

...
. . .

...
. . .

...
SEPV q·CLSk ··· SEPV q·W1k ··· SEPV q·SEPLk

W1q·CLSk ··· W1q·W1k ··· W1q·SEPLk

W2q·CLSk ··· W2q·W1k ··· W2q·SEPLk

...
. . .

...
. . .

...
WKq·CLSk ··· WKq·WLk ··· WKq·SEPLk

SEPLq·CLSk ··· SEPLq·WLk ··· SEPLq·SEPLk

3

7777777775

(9)

where q and k indicate query and key vectors respectively.
Since the self-attention matrix is computed from the query and
key vectors of vision-language modalities according to the Eq.
(9), the computed self-attention matrix can be divided into 4
subparts of queries and key combinations by modality type.

SAq,k =SACLSq :SEPV q,CLSk:SEPV k (10)
+ SACLSq :SEPV q,W1k:SEPLk (11)
+ SAW1q :SEPLq,CLSk:SEPV k (12)
+ SAW1q :SEPLq,W1k:SEPLk (13)

where Eq. (10) is the attention of query and key from vision,
Eq. (11) is an attention mask of query from the vision and key
from language, Eq. (12) is an attention mask of query from
the language and key from vision, and Eq. (13) is an attention
mask of query and key from language features. We combine
the attention mask matrix M for the subparts of SA because
adding negative infinity to the calculated attention value will
result in zero in the softmax operation.

BARM =

2

66666666666664

0 · · · 0 · · · 0
0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0
0 · · · �1 · · · �1
0 · · · 0 · · · �1
...

. . .
...

. . .
...

0 · · · 0 · · · �1
0 · · · 0 · · · 0

3

77777777777775

2 RS⇥S (14)

Therefore, BAR attention mask (Eq. (14)) allows the atten-
tion calculations of all possible combinations except for the Eq.
(13). Intuitively, this self-attention mask scheme applies auto-
regressive attention masks to language modality to enhance
joint embedding between vision and language modalities and
perform well in both generation and understanding tasks. We
implemented four different models each using different types
of self-attention masks during pre-training; Bi, S2S, BAR and
Bi & S2S. In addition, we also experiment with Non-crossing
attention mask (Fig. 4 (c)) as a baseline to investigate the
impact of multi-modal representation learning. As non-crossing
attention mask restricts the interaction between two modalities,
we add one additional CLS token at the beginning of the
language features, so that both CLSV and CLSL can be used
for the IRM pre-training task. Three types of self-attention
mask matrices (Bi, S2S and Non-crossing) are described in
the appendix.

IV. RESULTS AND DISCUSSION
A. Dataset Analysis

Although both MIMIC-CXR and Open-I consist of chest
X-ray images and report pairs, the two datasets could have
different characteristics since they were collected from separate
institutions. Specifically, the diagnostic information represented
by the two X-ray image sets could be differently distributed.
Therefore, to analyzes the difference in the distribution of
diagnostic labels between two datasets, we compared positive
labels acquired from the Chexpert labeler results. As seen
in Fig. 5, a mild imbalance was observed in MIMIC-CXR
where the class ratios ranged from 13.39% (support devices)
to 1.2% (pneumonia, and pleural other). On the other hand,
a severe imbalance was observed in Open-I compared to
MIMIC-CXR with the maximum class ratios of 28.8% (Others,
and cardiomegaly) and the minimum of 1.07% (support
devices). This shows that Open-I not only differs from MIMIC-
CXR in terms of data volume, but also in terms of clinical
properties. Therefore, we believe evaluating the MIMIC-CXR-
pre-trained models on Open-I is an appropriate setup to test
the generalization capability of the models. The distribution of
diagnosis label is illustrated in Fig. 5.

B. Implementation details

We use ResNet-50 pre-trained on ImageNet as a visual
feature extractor. The input image size is (512x512x3), and
the last feature map (16x16x2048) of ResNet-50 is flattened
by spatial dimensions and we randomly sample 180 visual
features (180x2048) during pre-training, while we use all
features (256x2048) for every downstream task. To embed
text token, each sequence from reports is truncated or padded
to 253 tokens in length by considering maximum embedding
size. For the joint embedding, we adopt BERT-base architecture
which comprised of 12 Transformer layers. Each layer contains
12 attention heads, 768 embedded hidden size and 0.1 drop-out
probability. We adopt AdamW optimizer with learning rate
1e�5 settings for visual backbone and Transformer. All models
were trained on 8 RTX-3090 GPU with the batch size of 128
and 50 epochs for the pre-training model.
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Fig. 5: Dataset Analysis. We compare the distribution of diagnosis labels over the entire dataset. Due to the different scales of the two datasets, each label
was represented as a percentage over the entire dataset.

TABLE II: Model AUROC and F1 scores for the diagnosis classification task on MIMIC-CXR and Open-I. Inference time(ms) on MIMIC-CXR: MedViLL(12.5),
Bi&S2S (13), Bi (13), S2S (13), Non-crossing (12.5), Fine-tuning Only (15.5), CNN & Transformer (10.5).

Dataset Metrics MedViLL Bi&S2S Bi S2S Non-crossing Fine-tuning Only CNN & Transformer
avg AUROC 0.980 (0.00) 0.979 (0.00) 0.984 (0.00) 0.982 (0.00) 0.980 (0.00) 0.969 (0.00) 0.831 (0.00)

MIMIC-CXR avg F1 0.839 (0.00) 0.846 (0.00) 0.852 (0.00) 0.846 (0.00) 0.824 (0.00) 0.807 (0.00) 0.491 (0.00)
p-value (avg AUROC) - 0.005 1.97E-15 0.003 0.254 1.70E-36 3.41E-102

p-value (avg F1) - 9.59E-28 7.85E-42 1.62E-26 2.02E-43 4.90E-63 2.70E-122

avg AUROC 0.892 (0.00) 0.827 (0.00) 0.758 (0.00) 0.720 (0.00) 0.589 (0.00) 0.723 (0.00) 0.709 (0.00)
Open-I avg F1 0.407 (0.01) 0.301 (0.01) 0.295 (0.01) 0.256 (0.01) 0.185 (0.00) 0.300(0.00) 0.245 (0.01)

p-value (avg AUROC) - 6.94E-83 4.00E-98 1.23E-101 4.66E-122 1.41E-103 1.35E-109
p-value (avg F1) - 1.05E-93 7.04E-95 7.17E-101 2.08E-110 6.49E-94 2.69E-104

TABLE III: Medical Image-Report Retrieval performance on MIMIC-CXR and Open-I. Inference time(ms) of Report-to-Image and Image-to-Report on
MIMIC-CXR: MedViLL(7.6, 7.8), Bi&S2S (8.2, 7.8), Bi (7.6, 7.6), S2S (7.6, 7.7), Non-crossing (7.7, 7.8), Fine-tuning Only (7.8, 7.6), CNN & Transformer
(5.3, 5.3).

Task Models
MIMIC-CXR OpenI

MRR H@5 R@5 P@5 p-value MRR H@5 R@5 P@5 p-value

MedViLL 56.5(0.01) 77.0(0.01) 47.4(0.01) 19.9(0.00) - 51.3(0.01) 73.0(0.01) 12.9(0.00) 31.7(0.00) -
Bi&S2S 55.5(0.01) 76.7(0.01) 46.7(0.01) 19.7(0.00) 1.20E-05 46.4(0.01) 68.1(0.01) 10.5(0.00) 28.8(0.01) 3.71E-27

Bi 58.0(0.01) 78.2(0.01) 48.2(0.01) 20.2(0.00) 1.60E-10 51.4(0.01) 74.8(0.01) 13.3(0.00) 32.0(0.01) 0.843
Report-to-Image S2S 58.8(0.01) 79.1(0.01) 48.9(0.01) 20.3(0.00) 1.89E-18 48.6(0.01) 67.2(0.01) 10.3(0.01) 32.9(0.01) 2.28E-14

Non-crossing 54.7(0.01) 77.0(0.01) 47.2(0.01) 19.5(0.00) 4.07E-12 48.6(0.01) 68.4(0.01) 11.2(0.00) 31.1(0.01) 3.88E-18
Fine-tuning Only 41.8(0.01) 61.6(0.01) 35.8(0.01) 15.8(0.00) 3.14E-53 36.9(0.01) 54.4(0.01) 5.4(0.00) 20.7(0.01) 1.72E-53

CNN & Transformer 11.4(0.01) 15.2(0.02) 5.1(0.00) 3.6(0.01) 9.43E-71 36.2(0.04) 56.6(0.04) 5.0(0.00) 21.4(0.04) 4.94E-19

MedViLL 55.8 (0.01) 75.5(0.01) 47.1(0.01) 19.7(0.00) - 50.4(0.01) 63.8(0.01) 12.9(0.00) 35.5(0.01) -
Bi&S2S 54.5(0.01) 75.5(0.01) 47.8(0.01) 19.9(0.00) 6.32E-08 45.8(0.01) 54.0(0.01) 10.1(0.00) 35.8(0.00) 8.55E-29

Bi 56.7(0.01) 76.3(0.01) 47.6(0.01) 20.2(0.00) 0.0002 48.5(0.01) 65.8(0.01) 13.7(0.00) 32.3(0.01) 3.17E-12
Image-to-Report S2S 57.9(0.01) 78.5(0.01) 49.7(0.01) 20.7(0.00) 2.72E-13 45.4(0.01) 53.6(0.01) 8.9(0.00) 36.9(0.00) 6.84E-31

Non-crossing 54.6(0.01) 75.7(0.01) 47.6(0.01) 20.0(0.00) 3.84E-07 42.6(0.01) 61.2(0.01) 11.0(0.00) 28.0(0.01) 1.15E-40
Fine-tuning Only 41.4(0.01) 60.8(0.01) 36.3(0.01) 15.7(0.00) 5.56E-56 45.2(0.00) 49.7(0.01) 5.1(0.00) 35.0(0.00) 2.64E-29

CNN & Transformer 12.0(0.02) 15.3(0.02) 5.1(0.00) 4.0(0.01) 1.09E-52 37.9(0.06) 54.0(0.06) 5.0(0.00) 23.0(0.06) 1.16E-12

C. Task-specific Downstream Model Strategy

1) Diagnosis Classification: For a given image-report pair,
we use the positive labels extracted from the report by the
Chexpert labeler as the diagnosis labels. As a single pair could
have multiple diagnosis labels up to the maximum of 14 (i.e.

multi-label classification), we use 14 linear heads on top of
CLS and fine-tune the model using the binary cross-entropy
loss. All models are evaluated with the micro average AUROC,
and micro average F1 score.

2) Medical Image-Report Retrieval: There are two subtasks
for medical image-report retrieval, where image-to-report (I2R)
retrieval requires the model to retrieve the most relevant report
from a large pool of reports given an image, and vice versa
for report-to-image (R2I) retrieval. Given an image, any report
that contains the same Chexpert diagnosis labels as the original
matching report is considered a positive image-report pair, and
a negative pair otherwise. The final multi-modal representation
CLS is used as the input to a binary classifier to classify the
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TABLE IV: Model accuracy on the VQA-RAD dataset. O.E. stands for Open-ended question and C.E. stands for close-ended question. For MEVF [27], we used
the reported results from the original paper. Inference time(ms) on MIMIC-CXR: MedViLL(19.46), Bi&S2S(19.52), Bi(19.43), S2S(19.51), Non-crossing(19.58),
Fine-tuning Only(19.61), CNN & Transformer(17.42).

Models
ALL CHEST

O.E. C.E. p-value of O.E. p-value of C.E. O.E. C.E. p-value of O.E. p-value of C.E.

MedViLL 0.595(0.032) 0.777(0.071) - - 0.587(0.033) 0.782(0.123) - -
Bi&S2S 0.541(0.038) 0.76(0.027) 2.93E-07 0.224 0.566(0.074) 0.766(0.035) 0.164 0.519

Bi 0.58(0.038) 0.784(0.03) 0.124 0.643 0.562(0.04) 0.767(0.035) 0.013 0.549
S2S 0.505(0.042) 0.73(0.025) 1.81E-12 0.002 0.517(0.07) 0.723(0.048) 1.57E-05 0.021

Non-crossing 0.531(0.015) 0.734(0.017) 5.58E-12 0.003 0.474(0.083) 0.732(0.03) 3.94E-08 0.043
Fine-tuning Only 0.232(0.019) 0.649(0.026) 2.98E-43 5.38E-11 0.124(0.014) 0.606(0.035) 1.08E-42 1.50E-08

CNN & Transformer 0.24(0.029) 0.667(0.015) 7.66E-46 2.70E-9 0.124(0.067) 0.523(0.033) 7.60E-32 1.62E-12
MEVF [27] 0.407 0.741 - - - - - -

TABLE V: Report generation performance in terms of Perplexity and Label Accuracy, Precision Recall and F1 and BLEU4. Inference time(ms) on MIMIC-CXR:
MedViLL(32.81), Bi&S2S(33.55), Bi(32.54), S2S(33.04), Non-crossing(32.71), Fine-tuning Only(32.92).

Dataset Models Perplexity (#) Accuracy (") Precision (") Recall (") F1 Score (") BLEU4 (") p-value
MedViLL 4.185(0.022) 0.841(0.003) 0.698(0.002) 0.559(0.004) 0.621(0.002) 0.066(0.001) -
Bi&S2S 6.515(0.12) 0.786(0.007) 0.619(0.003) 0.435(0.009) 0.511(0.006) 0.066(0.001) 4.17E-43

Bi 849.67(5.225) 0.637(0.004) 0.283(0.007) 0.07(0.024) 0.11(0.032) 0.015(0.004) 1.11E-36
MIMIC S2S 4.258(0.069) 0.797(0.007) 0.662(0.004) 0.448(0.01) 0.534(0.007) 0.043(0.001) 2.32E-38

Non-crossing 718.122(9.484) 0.634(0.005) 0.277(0.013) 0.076(0.004) 0.12(0.005) 0.007(0.001) 2.30E-75
Fine-tuning Only 224.343(0.204) 0.664(0.003) 0.417(0.012) 0.305(0.006) 0.352(0.005) 0.009(0.004) 4.14E-65

TieNet 4.132(0.033) 0.687(0.003) 0.487(0.003) 0.380(0.006) 0.426(0.006) 0.123(0.002) 7.17E-54

MedViLL 5.637(0.259) 0.734(0.001) 0.512(0.002) 0.594(0.001) 0.55(0.001) 0.049(0.001) -
Bi&S2S 15.97(1.071) 0.712(0.003) 0.497(0.003) 0.369(0.006) 0.423(0.004) 0.024(0.01) 4.02E-52

Bi 787.66(55.492) 0.686(0.004) 0.356(0.025) 0.103(0.006) 0.16(0.008) 0.015(0.004) 2.14E-52
Open-I S2S 4.732(0.537) 0.736(0.003) 0.517(0.002) 0.538(0.004) 0.527(0.002) 0.043(0.002) 1.76E-44

Non-crossing 217.27(12.139) 0.693(0.003) 0.337(0.025) 0.085(0.005) 0.135(0.007) 0.002(0.001) 1.46E-57
Fine-tuning Only 292.60(19.858) 0.684(0.003) 0.291(0.023) 0.073(0.035) 0.112(0.047) 0.006(0.002) 7.02E-30

TieNet 7.901(0.483) 0.732(0.007) 0.517(0.013) 0.610(0.017) 0.553(0.013) 0.189(0.005) 0.2181

given pair, which is trained by the binary cross-entropy loss.
At inference, in each trial, a model is given 100 image-report
pairs, and it must use the predicted scores to rank the positive
pair as highest as possible. The evaluation metrics are Hit@K,
Recall@K, Precision@K (K = 5), and mean reciprocal rank
(MRR).

3) Medical Visual Question Answering: We perform VQA
on the VQA-RAD dataset [1], which contains 3,515 question-
answer pairs on 315 images (104 head CTs or MRIs, 107
Chest X-rays, and 104 abdominal CTs). As our models are
pre-trained on Chest X-ray images, VQA-RAD provides a
unique opportunity to study whether the pre-trained models
would generalize well beyond the single image domain. Given
a pair of an image and a free-text question, we use the final
representation CLS to predict a one-hot encoded answer (all
possible answers are treated as a single token). The performance
was evaluated with accuracy, but separately for the closed
questions (i.e. short-form answers such as yes/no) and the
open-ended questions (i.e. long-form answers), following the
original VQA-RAD paper.

4) Radiology Report Generation: The fine-tuning process is
same as the MLM pre-training task, except that we fix the
self-attention mask to S2S for all models. At inference, reports
can be generated by sequentially recovering the MASK tokens;
given visual features followed by a single MASK token, the
model can predict the first language token. Then we can replace
the first MASK with the sampled token, and a new MASK
token is appended. This process is repeated until the model
predicts the SEP token as the stop sign. The performance is

measured with three metrics: perplexity, clinical efficacy, and
BLEU score. Clinical efficacy metrics is obtained by applying
the Chexpert labeler on both the original matching report
and the generated report. Based on the extracted labels, we
can calculate accuracy, precision, recall, and F1 accordingly.
Perplexity is used to evaluate the linguistic fluency of the model,
while the clinical efficacy is used to evaluate if the model can
capture the semantics of the given image. We also report 4-
gram BLEU score to evaluate how similar the generated report
is to the reference report.

D. Downtream Task Result

MedViLL is compared to four pre-training models trained
with different attention masks. We also include two more
baselines: 1) Fine-tuning Only, which follows the same model
architecture as MedViLL, but directly fine-tuned on each down-
stream task without any pre-training. 2) CNN & Transformer,
which uses the CNN module for encoding image only, and
the Transformer module (same size as MedViLL) for encoding
report only, and the outputs from each module are used for
downstream tasks. CNN & Transformer also does not use pre-
training. For all tasks, we conduct 30 random multiple-bootstrap
experiments and report the mean performance and its standard
deviation. Also, we perform a statistical hypothesis test. Based
on the average values of the various metrics obtained for each
model, we conduct an independent t-test with a significance
value of 0.05 to identify the significant pairwise difference
of our method against multiple baseline models. In summary,
MedViLL achieved the best or second-best performance by
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analyzing statistical significance with various baseline models
in the VLU and VLG tasks. In addition, MedViLL shows
superior generalization ability by outperforming most of the
models in out-of-domain evaluations.

1) Diagnosis Classification: All model performance is shown
in TABLE II. For the Open-I images, we use Chexpert labeler
on their MeSH annotations to extract the same set of diagnosis
categories as the MIMIC-CXR dataset. Specifically, Bi and S2S
outperform MedViLL with a statistically significant difference
in both micro-averaged AUROC and F1 scores, indicating
the null hypothesis can be rejected (t-test produced a p-value
lower than 0.05). Also, although MedViLL (0.9805) achieves a
higher score than Non-crossing (0.9801), it is not statistically
meaningful with a p-value of 0.254 in micro-averaged AUROC.
However, MedViLL outperforms all other baselines with a
statistically meaningful difference in MIMIC-CXR. Moreover,
MedViLL outperforms all models statistically significantly
when transferred to Open-I. It is also noteworthy that Bi&S2S,
which is aimed to take advantage of both the bidirectional mask
and the S2S mask demonstrates much better generalization
capability compared to the two individual masks.

2) Medical Image-Report Retrieval: TABLE III shows the
performance of Image-to-Report and Report-to-Image retrieval.
We report the p-value of MRR for the performance of both
tasks since MRR is a rank-aware evaluation metrics compared
to other metrics. We can observe that all pre-trained models
significantly outperform naive baselines (Fine-tune Only and
CNN & Transformer) for the MIMIC-CXR dataset. In Report-
to-Image retrieval, while MedViLL achieves lower performance
than Bi and S2S with a statistically significant difference in
MIMIC-CXR, MedViLL outperforms all baselines when fine-
tuned on the unseen Open-I dataset except for Bi. However,
although Bi outperforms MedViLL in Open-I, there is no
statistically significant difference between both models with
a p-value of 0.843. In Image-to-Report retrieval, S2S statisti-
cally outperforms MedViLL in MIMIC-CXR, but MedViLL
is superior to all baselines with a statistically meaningful
difference in Open-I. It is notable that the naive baselines, while
severely underperforming for MIMIC-CXR, show substantially
increased performance for Open-I. We believe this is due to the
Open-I being a significantly smaller dataset than MIMIC-CXR,
with only two Chexpert labels (Others, and Cardiomegaly)
mostly dominating the label space.

3) Medical Visual Question Answering: TABLE IV shows
the VQA accuracy when models were fine-tuned with all
image types (‘ALL’), and with only the Chest X-ray images
(‘CHEST’). We can see that MedViLL significantly outperforms
MEVF [27], the state-of-the-art model for the VQA-RAD
dataset, indicating the effectiveness of the multi-modal pre-
training for this complex multi-modal reasoning task. We can
also see that MedViLL shows comparable performance as
the bidirectional mask which allows unrestricted interaction
between all text and vision features. In a statistical analysis,
MedViLL shows significantly higher performance than all
models for O.E. (open-ended questions) of ’ALL’ and ’CHEST’.
However, there was no statistically significant difference for
Bi&S2S of ’CHEST’ and Bi of ’ALL’, (p-values of 0.164,
and 0.124, respectively). For C.E. (close-ended questions) of

’ALL’, Bi performed the best of all the models, followed by
MedViLL. However, this result is not statistically meaningful,
obtaining a p-value of 0.643 between Bi and MedViLL. Also,
for C.E. of ’CHEST’, MedViLL outperforms all baselines, but
it is not statistically significant against Bi&S2S (p-value of
0.519) and Bi (p-value of 0.549).

4) Radiology Report Generation: TABLE V shows the report
generation performance of all models. For this task, we also
implemented TieNet [42] as a baseline, which is a widely used
CNN-RNN based attention model for report generation. We can
see that the models pre-trained with auto-regressive manners
(MedViLL, Bi&S2S, S2S) all significantly outperform the other
models in terms of both perplexity (except for TieNet) and
clinical efficacy metrics for the MIMIC-CXR dataset. Among
the clinical efficacy metrics, we report the p-value of F1 score
because the F1 score is a balanced measure of both precision
and recall and allows us to better capture the true performance
here in light of the strong class imbalance of dataset. MedViLL
achieved the best performance on the MIMIC dataset with
a statistically significant difference. MedViLL seems to best
capture the semantics embedded in the image given the highest
F1 score. When fine-tuned on the unseen Open-I dataset, TieNet
performed the best of all the models, followed by MedViLL.
However, this result is not statistically significant between
TieNet and MedViLL with a p-value of 0.2181, indicating that
the performance of the two models is similar. As opposed to its
generally favorable performance in VLU tasks, the bidirectional
mask seems to be evidently harmful for the VLG task, most
likely due to its incompatibility with the auto-regressive nature
of VLG. Interestingly, we found N-gram based measures to be
a suboptimal measure for report generation by showing that
all models except TieNet achieved low BLEU scores; where
the original report contains abbreviated terms (e.g. “ET tube”)
models would generate expanded terms (e.g. “endotracheal
tube”) and vice versa.

E. Qualitative results and analysis

1) Attention Map Visualization: We visualize the attention
maps of the intermediate Transformer layers of MedViLL in
order to gain qualitative insight of the cross-modality alignment
between text tokens and image features as shown in Fig. 6 (a).
Although MedViLL uses only report and images for training
without any annotations, it can well attend to the disease-
discriminatory regions written in the reports, as confirmed
by a professional cardiologist. This suggests the potential of
MedViLL’s capability to explain its learned representations to
human users for smoother real-world deployment.

2) Radiology Report Generation: We compare the generated
reports with the original report. As confirmed by a professional
cardiologist, Fig. 6 (b) shows that MedViLL is able to generate
clinically appropriate reports. Specifically, the left image-report
pair of Fig. 6 (b) shows that MedViLL generates a report with
the abbreviated medical terms (i.e. “ET tube”, “NG tube”)
expanded to the original terms (i.e. “endotracheal tube” or
“nasogastric tube”). In the right image-report pair, the blue text
in the original report describes the completion of VATS (i.e.
video-assisted thoracic surgery). Interestingly, the generated
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(a) Attention map visualization. (b) Radiology report generation analysis.

Fig. 6: Qualitative results and analysis. We visualize the attention regions extracted from the MedViLL (a). Also, we compare the generated report with the
original report on the same chest X-ray image (b).

Fig. 7: Case study of Medical Image-Report Retrieval. Given a report or image as a query, we show the retrieved images or reports in (a) and (b) respectively.
In (a), the given report is annotated by the Chexpert labeler with the diagnosis labels Lung Opacity (blue), Enlarged Cardiomediastinum (green), and Support
Devices (orange). The top three images also contain the same labels as the given query while the last image (Rank 214) is irrelevant to the give query. In (B),
the top three reports also contain the same labels recognized by the Chexpert labeler, Lung Opacity (green) and Cardiomegaly (blue). Note that the last report
(Rank 308) does not contain any label, and is irrelevant to the given query image.

report describes extubation and nasogastric tube removal, which
is a part of VATS. This indicates that the BLEU score is not
an appropriate measure to evaluate report generation especially
in the medical domain.

3) Medical Image-Report Retrieval: We retrieved the cases
pooled from 1,536 studies in the test set (Fig. 7). As confirmed
by a cardiologist, Fig. 7 demonstrate the clinical understanding
of MedViLL. Specifically, we can observe that the results in
the top-3 retrieved samples all share the same diagnosis labels
as the given query; all top three images in Fig. 7 (a) are
labeled with “Lung Opacity”, “Enlarged Cardiomediastinum”
and “Support Devices” as the query report, and all top three
reports in Fig. 7 (b) contain the same labels “Cardiomegaly”
and “Lung Opacity” as the query image. Note that the samples

in the low rank contain labels irrelevant to the given query.

V. CONCLUSION

In this study, we propose a multi-modal pre-training model
MedViLL, which uses a novel self-attention scheme to flex-
ibly adapt to multiple downstream tasks of vision-language
understanding and generation. By statistically and rigorously
evaluating MedViLL on all four downstream tasks with three ra-
diographic image-report datasets, we empirically demonstrated
the superior performance of MedViLL against various baselines
including task-specific architectures. Despite the impressive
performance of MedViLL, this is just the beginning of the
vision-language representation learning in the medical domain,
and we plan to expand this approach to more diverse settings
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such as multi-view Chest X-ray studies or a sequence of studies
over time.
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VI. APPENDIX

A. Ablation studies

1) Visual Features: To demonstrate the effectiveness of
visual features, we performed additional experiments with
visual feature sampling methods (full sample vs random 80%
sample) and various visual feature extractors (ResNet-50 vs
ResNet-101 [11] vs DenseNet-121 [13]). The detailed training
method for each model is the same as that of MedViLL. We
report the mean and standard deviation through 5 times random
bootstrap experiments. As shown in TABLE VI, TABLE
VII, TABLE VIII, and TABLE IX, all results reached poor
performance in both in-domain and out-of-domain evaluation
when using all the visual features of the CNN. These results
show the difficulty of reaching good performance by over-fitting
the MIMIC-CXR training set. Also, there are performance
differences for each downstream task when using various visual
feature extractor. We believe that better performance can be
obtained with various experiments on the model architecture or
hyper-parameter tuning (e.g., various visual feature extractors,
BERT transforms, etc.)

2) Self-attention mask: We explore the remaining 3 types
of self-attention masks in this section. Bidirectional attention
mask ((a) of Fig. 4 and Fig. 8) allows the attention calculation
of all possible combinations (Eq. (10) - (13)) that encourage
unconstrained context learning between vision and language
modalities. This type of mask drives learning to understand the
input correlation between the two vision-language modalities.
On the other hand, Sequence-to-Sequence attention mask ((d)
of Fig. 4 and Fig. 8) allows the attention calculation only to
key from the visual modality (Eq. (10), (12)) and restricts all
visual queries to attend any language key so that attention can
be computed on input features sequentially. A model trained
in this way can generate future features based on given input
features in an auto-regressive manner. To restricts the interaction
between two modalities, the Non-crossing attention mask ((c)
of Fig. 4 and Fig. 8) only allows the attention calculation of
each modality (Eq. (10), (12)).
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TABLE VI: AUROC and F1 scores for the diagnosis classification task on MIMIC-CXR and Open-I. * indicates using all visual features.

Dataset Metrics MedViLL MedViLL * MedViLL (Resnet101) MedViLL (Densenet121)
MIMIC-CXR avg AUROC 0.982 (0.00) 0.926 (0.0) 0.918 (0.0) 0.962 (0.0)

avg F1 0.841 (0.01) 0.699 (0.0) 0.666 (0.01) 0.771 (0.0)

Open-I avg AUROC 0.894 (0.00) 0.886 (0.00) 0.894 (0.00) 0.897 (0.00)

avg F1 0.408 (0.01) 0.397 (0.00) 0.404 (0.00) 0.409 (0.00)

TABLE VII: Medical Image-Report Retrieval performance on MIMIC-CXR and Open-I. * indicates using all visual features.

Task Models
MIMIC-CXR OpenI

MRR H@5 R@5 P@5 MRR H@5 R@5 P@5

MedViLL 58.1 (0.4) 78.4 (0.7) 47.8 (0.5) 20.0 (0.1) 56.5 (1.3) 74.8 (1.4) 13.3 (0.3) 37.0 (0.6)

Report-to-Image MedViLL * 49.0 (0.1) 69.7 (0.1) 41.9 (0.1) 17.6 (0.1) 54.8 (0.1) 74.7 (0.1) 13.4 (0.1) 35.6 (0.1)
MedViLL (Resnet101) 47.5 (0.1) 69.3 (0.1) 41.5 (0.1) 17.4 (0.1) 53.1 (0.1) 73.2 (0.1) 12.8 (0.1) 35.8 (0.1)

MedViLL (Densenet121) 49.3 (0.1) 70.0 (0.1) 42.2 (0.1) 17.75 (0.1) 56.4 (0.1) 74.5 (0.1) 14.0 (0.1) 36.7 (0.1)

MedViLL 56.1 (0.2) 76.2 (0.6) 48.1 (0.7) 19.9 (0.6) 49.3 (0.9) 62.2 (0.7) 12.4 (0.2) 34.2 (0.5)
Image-to-Report MedViLL * 48.6 (0.1) 68.0 (0.1) 42.4 (0.1) 17.4 (0.1) 48.5 (0.1) 62.2 (0.1) 12.5 (0.1) 34.3 (0.1)

MedViLL (Resnet101) 46.3 (0.1) 65.5 (0.1) 39.8 (0.1) 17.1 (0.1) 47.2 (0.1) 62.0 (0.1) 11.8 (0.1) 32.5 (0.1)
MedViLL (Densenet121) 48.6 (0.1) 69.4 (0.1) 42.7 (0.1) 18.38 (0.1) 46.5 (0.1) 60.9 (0.1) 12.8 (0.1) 31.7 (0.1)

TABLE VIII: Model accuracy on the VQA-RAD dataset. * indicates using all visual features.

Models
ALL CHEST

Open-ended Close-ended Open-ended Close-ended

MedViLL 0.597(0.038) 0.782(0.022) 0.608(0.051) 0.783(0.033)

MedViLL * 0.512(0.012) 0.743(0.009) 0.572(0.021) 0.736(0.006)
MedViLL (Resnet101) 0.548(0.019) 0.781(0.002) 0.602(0.012) 0.773(0.022)

MedViLL (Densenet121) 0.593(0.001) 0.787(0.004) 0.612(0.01) 0.781(0.003)

TABLE IX: Report generation performance in terms of Perplexity and Label Accuracy, Precision Recall and F1 and BLEU4. * indicates using all visual features.

Dataset Models Perplexity (#) Accuracy (") Precision (") Recall (") F1 Score (") BLEU4 (")
MedViLL 4.19(0.03) 0.841(0.003) 0.698(0.002) 0.558(0.004) 0.620(0.010) 0.066(0.001)

MIMIC MedViLL * 5.04(0.01) 0.780(0.016) 0.643(0.038) 0.417(0.026) 0.505(0.027) 0.072(0.009)
MedViLL (Resnet101) 3.91(0.003) 0.833(0.02) 0.652(0.004) 0.472(0.024) 0.526(0.003) 0.116(0.02)

MedViLL (Densenet121) 4.02(0.002) 0.81(0.003) 0.628(0.02) 0.425(0.004) 0.484(0.005) 0.126(0.003)

MedViLL 5.58(0.32) 0.734(0.001) 0.512(0.003) 0.594(0.001) 0.550(0.009) 0.049(0.001)
Open-I MedViLL * 5.06(0.081) 0.790(0.018) 0.577(0.015) 0.294(0.089) 0.382(0.081) 0.044(0.010)

MedViLL (Resnet101) 3.815(0.002) 0.812(0.003) 0.675(0.006) 0.367(0.003) 0.466(0.001) 0.075(0.031)

MedViLL (Densenet121) 3.998(0.013) 0.818(0.011) 0.582(0.03) 0.385(0.012) 0.472(0.002) 0.071(0.009)

Fig. 8: Self-attention mask schemes. Four types of the self-attention masks in matrix. The self-attention mask M 2 RS⇥S , S = visual features +
language features+ 3special tokens consists of 0s and negative infinities.
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