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Figure 1: Distributions of the deep representations of classification and super-resolution networks. For classi-
fication networks, the semantics of the deep feature representations are artificially predefined according to the
training data (category labels). However, for SR networks, the learned deep representations have a different
kind of “semantics” from classification. During training, the SR networks are only provided with downsampled
clean LR images. There is not any supervision signal related to image degradation information. Surprisingly,
we find that SR networks’ deep representations are spontaneously discriminative to different degradations. No-
tably, NOT an arbitrary SR network has such a property. In Sec. @ we reveal two factors that facilitate SR
networks to extract such degradation-related representations, i.e., adversarial learning and global residual.

ABSTRACT

Image super-resolution (SR) is a representative low-level vision problem. Al-
though deep SR networks have achieved extraordinary success, we are still un-
aware of their working mechanisms. Specifically, whether SR networks can learn
semantic information, or just perform complex mapping functions? What hinder-
s SR networks from generalizing to real-world data? These questions not only
raise our curiosity, but also influence SR network development. In this paper, we
make the primary attempt to answer the above fundamental questions. After com-
prehensively analyzing the feature representations (via dimensionality reduction
and visualization), we successfully discover the distinctive “semantics” in SR net-
works, i.e., deep degradation representations (DDR), which relate to image degra-
dation instead of image content. We show that a well-trained deep SR network
is naturally a good descriptor of degradation information. Our experiments also
reveal two key factors (adversarial learning and global residual) that influence the
extraction of such semantics. We further apply DDR in several interesting appli-
cations (such as distortion identification, blind SR and generalization evaluation)
and achieve promising results, demonstrating the correctness and effectiveness of
our findings.

1 INTRODUCTION

The emergence of deep convolutional neural network (CNN) has given birth to a large number of
new solutions to low-level vision tasks (Dong et al., 2014} |[Zhang et al.,|2017). Among these signs
of progress, image super-resolution (SR) has enjoyed a great performance leap. Compared with
traditional methods (e.g., interpolation (Keys, [1981) and sparse coding (Yang et al) [2008)), SR
networks can achieve better performance with improved efficiency.
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However, even if we have benefited a lot from the powerful CNNs, we have little knowledge about
what happens in SR networks and what distinguishes them from traditional approaches on earth.
Does the performance gain merely come from more complex mapping functions? Or is there any-
thing different inside SR networks, like classification networks with discriminative capability? On
the other hand, as a classic regression task, SR is expected to perform a continuous mapping from
low-resolution (LR) to high-resolution (HR) images. It is generally a local operation without the
consideration of the global context. But with the introduction of GAN-based models [Ledig et al.
(2017); Wang et al.| (2018]), more delicate SR textures can be generated. It seems that the network
has learned some kind of semantic, which is beyond our common perception for regression tasks.

Then, we may raise the question: are there any “semantics” in SR networks? If yes, do these se-
mantics have different definitions from those in classification networks? Existing literature cannot
answer these questions, as there is little research on interpreting low-level vision deep models. Nev-
ertheless, discovering the semantics in SR networks is of great importance. It can not only help us
further understand the underlying working mechanisms, but also guide us to design better networks
and evaluation algorithms.

In this study, we give affirmative answers to the above questions by unfolding the semantics hid-
den in super-resolution networks. Specifically, different from the artificially predefined semantics
associated with object classes in high-level vision, semantics in SR networks are distinct in terms
of image degradation instead of image content. Accordingly, we name such semantics deep degra-
dation representations (DDR). More interestingly, such degradation-related semantics are sponta-
neously existing without any predefined labels. We reveal that a well-trained deep SR network is
naturally a good descriptor of degradation information.

Notably, the semantics in this paper have different implications from those in high-level vision.
Previously, researchers have disclosed the hierarchical nature of classification networks (Zeiler &
Fergus| 2014; |Gu et al., [2018)). As the layer deepens, the learned features respond more to abstract
high-level patterns (e.g., faces and legs), showing a stronger discriminability to object categories
(see Fig. E]) However, similar research in low-level vision is absent, since there are no predefined
semantic labels. In this paper, we reveal the differences in deep “semantics” between classification
and SR networks, as illustrated in Fig. E}

Our observation stems from a representative blind SR method — CinCGAN |Yuan et al.| (2018)), and
we further extend it to more common SR networks — SRResNet and SRGAN |Ledig et al.| (2017). We
have also revealed more interesting phenomena to help interpret the semantics, including the analogy
to classification networks and the influential factors for extracting DDR. Moreover, we improve the
results of several tasks by exploiting DDR. We believe our findings could lay the groundwork for the
interpretability of SR networks, and inspire more exploration of the mechanism of low-level vision
deep models.

Contributions. 1) We have successfully discovered the “semantics” in SR networks, denoted as
deep degradation representations (DDR). Through in-depth analysis, we also find that global residual
learning and adversarial learning can facilitate the SR network to extract such degradation-related
representations. 2) We reveal the differences in deep representations between classification and SR
networks, for the first time. This further expands our knowledge of the deep representations of high-
and low-level vision models. 3) We exploit our findings to several fundamental tasks and achieve
very appealing results, including distortion identification, blind SR and generalization evaluation.

2 RELATED WORK

Super-resolution. Super-resolution (SR) is a fundamental task in low-level vision, which aims to
reconstruct the high-resolution (HR) image from the corresponding low-resolution (LR) counter-
part. SRCNN (Dong et al 2014) is the first proposed CNN-based method for SR. Since then, a
large number of deep-learning-based methods have been developed (Dong et al., 2016 [Lim et al.,
2017; Zhang et al., 2018b; [Ledig et al., | 2017; Zhang et al.,2019). Generally, current CNN-based SR
methods can be categorized into two groups. One is MSE-based method, which targets at minimiz-
ing the distortion (e.g., Mean Square Error) between the ground-truth HR image and super-resolved
image to yield high PSNR values, such as SRCNN (Dong et al., 2014), VDSR (Kim et al., [2016),
EDSR (Lim et al.l [2017), RCAN (Zhang et al.| 2018b), SAN (Dai et al., 2019)), etc. The other is
GAN-based method, which incorporates generative adversarial network (GAN) and perceptual loss
(Johnson et al., 2016) to obtain perceptually pleasing results, such as SRGAN (Ledig et al., 2017,
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ESRGAN (Wang et al.| 2018), RankSRGAN (Zhang et al., 2019), SROBB (Rad et al,[2019). Re-
cently, blind SR has attracted more and more attention (Gu et al., 2019} [Bell-Kligler et al., 2019}

Luo et al} 2020; Wang et all, 2021),which aims to solve SR with unknown real-world degrada-
tion. A comprehensive survey for blind SR is newly proposed 2021)), which summarizes
existing methods. We regard SR as a representative research object and study its deep semantic
representations. It can also draw inspirations on other low-level vision tasks.

(©

Network interpretability. At present, most existing works on neural network interpretability fo-
cus on high-level vision tasks, especially for image classification. Zhang et al. (Zhang et al., [2020)
systematically reviewed existing literature on network interpretability and proposed a novel taxon-
omy to categorize them. Here we only discuss several classic works. By adopting deconvolutional
networks (Zeiler et al.|, 2010), Zeiler et al. (Zeiler & Fergus, [2014) projected the downsampled low-
resolution feature activations back to the input pixel space, and then performed a sensitivity analysis
to reveal which parts of the image are important for classification. Simonyan et al.
generated a saliency map from the gradients through a single backpropagation pass. Based on
class activation maps (CAM) 2016), Selvaraju er al. (Selvaraju et al., 2017) proposed
Grad-CAM (Gradient-weighted CAM) to produce a coarse-grained attribution map of the important
regions in the image, which was broadly applicable to any CNN-based architecture. For more infor-
mation about the network interpretability literature, please refer to the survey paper (Zhang et al.,
. However, for low-level vision tasks, similar researches are rare. Recently, the local attri-
bution map (LAM) (Gu & Dong| [2021)) has been proposed to interpret super-resolution networks,
which can be used to localize the input features that influenced the network outputs. Besides, Wang
et al. (Wang et al.} 2020b) presented a pioneer work that bridges the representation relationship be-
tween high- and low-level vision. They learned the mapping between deep representations of low-
and high-quality images, and leveraged it as a deep degradation prior (DDP) for low-quality im-
age classification. Inspired by these previous works, we interpret SR networks from another new
perspective. We dive into their deep feature representations, and discover the “semantics” of SR
networks. More background knowledge is described in the supplementary file.

3  MOTIVATION

To begin with, we present an interesting phenomenon, which drives us to start exploring the deep
representations of SR networks. It is well known that SR networks are superior to traditional meth-
ods in specific scenarios, but are inferior in generalization ability. In blind SR, the degradation types
of the input test images are unknown. For traditional methods, they treat different images equally
without distinction of degradation types, thus their performance is generally stable and predictable.
How about the SR networks, especially those designed for blind SR?
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Figure 3: (a)-(d): The projected deep feature representations. The deep features of CinCGAN and SRGAN
are separated by degradation types, even if the image contents are aligned. (e)-a: ResNet18 (He et al.,[2016) for
classification. “Conv2_x" represents the 2nd group of residual blocks. (e)-b: SRResNet-woGR (without global
residual). (e)-c: SRResNet (with global residual). “RB1” represents the 1st residual block.

CinCGAN (Yuan et al.| 2018)) is a representative solution for real-world SR without paired training
data. It maps a degraded LR to its clean version using data distribution learning before conducting
SR operation. However, we find that it still has a limited application scope even if CinCGAN is
developed for blind settings. If the degradation of the input image is not included in the training
data, CinCGAN will fail to transfer the degraded input to a clean one. More interestingly, instead
of producing extra artifacts in the image, it seems that CinCGAN does not process the input image
and retains all the original defects. Readers can refer to Fig. 2] for an illustration, where CinCGAN
performs well on the testing image of the DIV2K-mild dataset (same distribution as its training da-
ta), but produces unsatisfactory results for other different degradation types. In other words, the
network seems to figure out the specific degradation types within its training data distribution, and
distribution mismatch may make the network “turn off” its ability. This makes the performance of
CinCGAN unstable and unpredictable. For comparison, we process the above three types of degrad-
ed images by a traditional denoising method BM3D (Dabov et al.,|2007)|'{ The visual results show
that BM3D has an obvious and stable denoising performance for all different degradation types.
Although the results of BM3D may be mediocre (the image textures are largely over-smoothed), it
does take effect on every input image. This observation reveals a significant discrepancy between
traditional methods and SR networks.

The above interesting phenomenon indicates that the deep network has learned more than a regres-
sion function, since it demonstrates the ability to distinguish among different degradation types.
Inspired by this observation, we try to find any semantics hidden in SR networks.

4 DIVING INTO THE DEEP DEGRADATION REPRESENTATIONS

4.1 DISCRIMINABILITY OF DEEP REPRESENTATIONS IN DEEP SR NETWORKS

Feature projection and visualization. Since the final outputs are always derived from features in
CNN layers, we start the exploration with feature maps, especially the deep ones potentially with
more global and abstract information. To interpret the deep features of CNN, one common and ra-
tional way is to convert the high-dimensional CNN feature maps into lower-dimensional datapoints
that can be visualized in a scatterplot. Afterwards, one can intuitively understand the data struc-
tures and manifolds. Specifically, we adopt t-Distributed Stochastic Neighbor Embedding (t-SNE)
(Van der Maaten & Hinton, [2008) for dimensionality reduction. This algorithm is commonly used
in manifold learning, and it has been successfully applied in previous works (Donahue et al.| 2014;
Mnih et al., 2015; |Wen et al., 2016} [Zahavy et al., 2016; |Velickovic et al., |2017; /Wang et al.| [2020b;
Huang et al.| 2020)) for feature projection and visualization. In our experiments, we first reduce the
dimensionality of feature maps to a reasonable amount (50 in this paper) using PCA (Hotelling,
1933)), then apply t-SNE to project the 50-dimensional representation to two-dimensional space, af-
ter which the results are visualized in a scatterplot. Furthermore, we also introduce CHI (Calinski &
Harabasz, |1974) score to quantitatively evaluate the distributions of visualized datapoints. The CHI
score is higher when clusters are well separated, which indicates stronger semantic discriminability.

What do the deep features of SR networks represent? As discussed in Sec[3] since CinCGAN
performs differently on various degradations, we compare the features generated from three test-
ing datasets: 1) DIV2K-mild: training and testing data used in CinCGAN, which are synthesized

"Note that BM3D is a denoising method while CinCGAN is able to upsample the resolution of the input
image. Thus, after applying BM3D, we apply bicubic interpolation to unify the resolution of the output image.
This is reasonable as we only evaluate their denoising effects.
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from DIV2K (Agustsson & Timofte, 2017)) dataset, containing noise, blur, pixel shifting and other
degradations. 2) DIV2K-noise20: add Gaussian noise (¢ = 20) to DIV2K set. 3) Hollywood100:
100 images selected from Hollywood dataset (Laptev et al., 2008)), containing real-world old film
degradations. Each test dataset includes 100 images.

As shown in Fig. [B(a), there is a strong feature discriminability for various degradations. Images
with aligned contents but different degradation types are still separated into different clusters. || This
phenomenon conforms to our observation that CinCGAN does treat various input degradations in
different ways. It naturally reveals the “semantics” of deep representations in CinCGAN, which
are closely related to the degradation types rather than the image content. For comparison, we
may wonder whether traditional methods have similar behaviors (or “semantics”). However, our
feature analysis method can only work for deep models, which contain hierarchical feature maps.
It is acknowledged that the simplest network — SRCNN can be analogous to a sparse-coding-based
method, thus we can use SRCNN to shed light on the behaviors of traditional methods. We train an
SRCNNE] with the same data as CinCGAN, and visualize the feature representations of the last layer
in Fig. [3[b). It is obvious that different degradations cannot be clearly separated. This phenomenon
is completely different from CinCGAN. We can conjecture that the degradation-related semantics
only exist in deep models, not traditional methods or shallow networks. More analysis on shallow
networks can be found in the supplementary file.

From CinCGAN to Generic SRGAN. Notably, the training of CinCGAN involves degraded im-
ages (DIV2K-mild). It actually performs simultaneous restoration and SR. We also wonder how this
kind of degradation-related semantics manifests in classical SR networks (without exposure to other
degradation types except for downsampling). Therefore, we adopt a generic GAN-based SR network
SRGAN (Ledig et al., 2017; Wang et al., 2018) to conduct the visualization experiment. SRGAN
is trained with DIV2K dataset (Agustsson & Timofte, 2017) with only bicubic-downsampled LR
images. According to the common degradation modelling in low-level vision, we use three datasets
with different degradation types for testing: 1) DIV2K-clean: the original DIV2K validation set
containing only bicubic downsampling degradation, which conforms to the training data distribu-
tion. 2) DIV2K-blur: introduce blurring degradation with Gaussian blur kernel on the DIV2K-clean
set. The kernel width is randomly sampled from [2, 4] for each image and the kernel size is fixed to
15 x 15. 3) DIV2K-noise: add Gaussian noises to the DIV2K-clean set. The noise level is randomly
sampled from [5, 30] for each image. These three testing datasets are aligned in image content but
different in degradation types.

As shown in Fig[3(d), a clustering trend similar to CinCGAN is clearly demonstrated. This provides
stronger evidence for the existence of degradation-related semantics. Even if the three testing sets
share the same content, they are still separated into distinct clusters according to the degradation
types. In the supplementary file, similar phenomena are observed with other network structures.
Note again, shallow SRCNN does not have such feature discriminability (see Figc)).

There, we successfully find the semantics hidden in deep SR networks. They are perceivable to
humans when visualized in low-dimensional space. Specifically, semantics in deep SR networks
are in terms of degradation types regardless of the image contents. Simply but vividly, we name
this kind of semantics as deep degradation representations (DDR).

Is DDR a natural and trivial observation? No, there are three reasons. First, DDR has never been
discussed before. The function of deep SR networks is beyond simple regression. The learned deep
features can spontaneously characterize the image degradations, indicating that a well-trained deep
SR network is naturally a good descriptor of degradation information. Note again that the deep SR
networks have not observed any blurry or noisy data during training, but still have the discrimina-
tive ability on different degradations. Second, DDR in SR is not simply caused by different input
patterns. We find that different networks will learn different semantic representations. For example,
in Sec. [4.2] we reveal the differences in the learned representations between classification and SR
Networks. In Sec. 4.3] we show that not all SR network structures can easily obtain DDR. DDR
does not exist in specific cases and shallow networks. Third, DDR has important applications and
inspirations. It can not only expand our understanding of the underlying mechanisms of low-level

Note that the class labels in the scatterplots are only used to assign a color/symbol to the datapoints for
better visualization.

3We use the same architecture as the original paper [Dong et al|(2014) and add global residual for better
visualization.
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Figure 4: Projected feature representations extracted from different layers of ResNet18 using t-SNE. With the
network deepens, the representations become more discriminative to object categories, which clearly shows the
semantics of the representations in classification.
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Figure 5: Feature representation differences between classification and SR networks. The same object catego-
ry is represented by the same color, and the same image degradation type is depicted by the same marker shape.
For the classification network, feature representations are clustered by the same color, while representations of
SR networks are clustered by the same marker shape, suggesting that there is a significant difference in feature
representations between classification and SR networks.

vision models, but also help promote the development of other tasks. In Sec. [5] we apply DDR to
several fundamental tasks and achieve appealing results, implying the great potential of DDR.

4.2 DIFFERENCES IN SEMANTICS BETWEEN CLASSIFICATION AND SR NETWORKS

In the high-level vision, classification is one of the most representative tasks, where artificially pre-
defined semantic labels on object classes are given as supervision. We choose ResNet18 (He et al.,
2016) as the classification backbone and conduct experiments on CIFAR10 dataset (Krizhevsky
et al.l |2009). We extract the forward features of each input testing imageﬂ at different network
layers, as described in Fig. [3[e)-a.

Fig. [ shows that as the network deepens, the extracted feature representations produce obvious
discriminative clusters, i.e., the learned features are increasingly becoming semantically discrimi-
native. Such discriminative semantics in classification networks are coherent with the artificially
predefined labels. This is an intuitive and natural observation, on which lots of representation and
discriminative learning methods are based (Wen et al., 2016} |Oord et al., [2018; [Lee et al.l 2019;
‘Wang et al.| 2020b)).

Further, we add blur and noise degradation to the CIFAR10 test images, and then investigate the
feature representations of classification and SR networks. Note that no degradation is added to the
training data. As shown in Fig. [3] after adding degradations to the test data, the deep representations
obtained by the classification network (ResNet18) are still clustered by object categories, indicating
that the features focus more on high-level object class information. On the contrary, the deep rep-
resentations obtained by SR networks (SRResNet and SRGAN) are clustered with regard to degra-
dation types. The features of the same object category are not clustered together, while those of the
same degradation type are clustered together, showing different “semantic” discriminability. This
phenomenon intuitively illustrates the differences in the deep semantic representations between SR
and classification networks, i.e., degradation-related semantics and content-related semantics. More
interestingly, the “semantics” in SR networks exists naturally, because the SR networks only see
clean data without any input or labelled degradation information.

4.3 How DO GLOBAL RESIDUAL AND ADVERSARIAL LEARNING AFFECT THE DEEP
REPRESENTATIONS?

Previously, we have elaborated on the deep degradation representations in CinCGAN, SRGAN and
SRResNet. Nevertheless, we further discover that no arbitrary SR network structure has such a
property. To be specific, we find two crucial factors that can influence the learned representations:
1) image global residual (GR), and ii) generative adversarial learning (GAN).

*For efficiency, we selected 100 testing images of each category (1000 images in total).



Under review as a conference paper at ICLR 2023

“ResBlock4” “ResBlock8” “ResBlock16”

(b) CHI: 0.00 £ 0.00 (c) CHI: 0.04 £ 0.03 (d) CHI: 3.55 + 2.42

® DIV2K-clean
DIV2K-blur
» DIV2K-noise

(e) CHI: 0.00 £ 0.00 (f)CHI: 0.11 £ 0.06 (g) CHI: 38.21 £ 9.25 (h) CHI: 613.77 + 33.40

Figure 6: Projected feature representations extracted from different layers of SRResNet-woGR (1st row) and
SRResNet (2nd row) using t-SNE. With image global residual (GR), the representations of MSE-based SR
networks show discriminability to degradation types.
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Figure 7: Projected feature representations extracted from different layers of SRGAN-woGR (1st row) and
SRGAN (2nd row) using t-SNE. Even without GR, GAN-based SR networks can still obtain DDR.

Global Residual. We train two SRResNet networks — SRResNet (with global residual) and
SRResNet-woGR (without global residual), as shown in Fig. El The two architectures are both
common in practice (Kim et al., |2016; [Shi et all 2016). DIV2K (Agustsson & Timoftel [2017)
dataset is used for training, where the LR images are bicubic-downsampled and clean. Readers can
refer to the supplementary file for more details. After testing, the feature visualization analysis is
shown in Fig. [6]

The results show that for MSE-based SR method, GR is essential for producing discriminative rep-
resentations on degradation types. The features in “ResBlock16” of SRResNet have shown distinct
discriminability, where the clean, blur, and noise data are clustered separately. On the contrary,
SRResNet-woGR shows no discriminability even in deep layers. This phenomenon reveals that
GR significantly impacts the learned feature representations. It is inferred that learning the global
residual could remove most of the content information and make the network concentrate more on
the contained degradation. This claim is also corroborated by visualizing the feature maps in the
supplementary file.

Adversarial Learning. MSE-based and GAN-based methods are currently two prevailing trend-
s in CNN-based SR methods. Previous studies only reveal that the output images of MSE-based
and GAN-based methods are different, but the differences between their feature representations are
rarely discussed. Since their learning mechanisms are quite different, will there be a discrepan-
cy in their deep feature representations? We directly adopt SRResNet and SRResNet-woGR as
generators. Consequently, we build two corresponding GAN-based models, namely SRGAN and
SRGAN-woGR. After training, we perform the same test and analysis process mentioned earlier.

The results show that the deep features are bound to be discriminative to degradation types for the
GAN-based method, whether there is GR or not. As shown in Fig. [/(d)(h), the deep representations
in “ResBlock16” of SRGAN-woGR have already been clustered according to different degradation
types. This suggests that the learned deep representations of MSE-based method and GAN-based
method are dissimilar. Adversarial learning can help the network learn more informative features
for distinguishing image degradation rather than image content.

4.4 How DOESs DDR EVOLVE THROUGH THE TRAINING PROCESS?

We also reveal the relationship between the model performance and DDR discriminability. We select
SRResNet models with different training iterations for testing. We report the model performance
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Figure 8: As the training process goes, the performance and discriminability improve simultaneously.

Table 1: Distortion identification accuracy. Table 2: The PSNR1/NIQE| results on datasets with

(a) BRISQUE (b) MLLNet-2 + PA. different degradations.
GB | WN | JPEG | JP2K | FF | ALL Blur2 Noise20 | B2+N20
(@ | 097 | 1.00 | 089 | 083 | 0.84 | 0.89 DASR (b+n) 23.28/6.74 | 22.23/7.05 | 21.32/7.53
® | - - - = — [ 091 IKC (b) 23.7476.56 | 16.60/7.22 | 16.19/6.87
DDR | 0.97 | 1.00 | 1.00 | 0.98 | 0.88 | 0.96 MANet (b+n) 15.97/637 | 16.32/6.61 | 16.83/7.29
DAN (b+n) 23.94/6.44 | 18.46/8.20 | 17.76/8.04
RRDB (clean) 2140/8.01 | 17.80/8.20 | 17.23/8.73
RRDB (b+n) 23.7976.36 | 22.5476.66 | 21.36/7.36
RRDB-DDR (b+n) | 24.01/6.34 | 22.52/6.60 | 21.41/7.27

on DIV2K-clean validation dataset and calculate the CHI scores to evaluate its discriminability with
clean, blur and noise data. As shown in Fig. [] as the training process goes, the performance of
the model is improved, while the feature discriminability for degradation is also enhanced. From
random initialization to 700k iterations, the CHI score increases significantly from 0.00 to 591.68,
while the PSNR value improves by 2.87dB (Due to GR, the initial PSNR value is relatively high).
The training data only include clean LR images, but the trained model has the ability to discriminate
unseen degradation types. This clearly implies that a well-trained deep SR network is naturally a
good descriptor of degradation information.

4.5 FURTHER DISCUSSION ON THE CAUSES OF DDR PHENOMENON

In the previous sections, we reveal several important factors that promote the manifestation of DDR
phenomenon, including global residual, adversarial learning (Sec. and training iterations (Sec.
[4.4). Based on the above findings and more visualization results, we can analyze the causes of DDR
more deeply. We visualize the feature maps of SRResNet-wGR, SRResNet-woGR, SRGAN-wGR
and SRGAN-woGR on test images with different degradations in the Appendix.

The DDR phenomenon is mainly introduced by overfitting the degradation in the training data.
Specifically, since the training data (DIV2K-clean) do not contain extra degradations, the trained SR
network lacks the ability to deal with the unseen degradations. When feeding images with degra-
dations (e.g., noise and blur), it will produce features with unprocessed noises or blurring. These
patterned features naturally show a strong discriminability between different degradations. As for
GR, models with GR produce features that contain less components of original content information.
GR can help remove the redundant image content information and make the network concentrate
more on degradation-related information. GAN training also enhances the high-frequency degrada-
tion information. Besides, prolonging the training iterations and deepening the network depth will
make the network further overfit to the training data.

4.6 WHY SR NETWORKS CAN HARDLY GENERALIZE TO UNSEEN DEGRADATIONS?

Classical SR models (Dong et al., 2014; |Lim et al,, [2017) assume that the input LR images are
generated by fixed downsampling kernel (e.g., bicubic). However, it is difficult to apply such simple
SR models to real scenarios with unknown degradations. We claim that SR and restoration networks
learn to overfit the distribution of degradations, rather than the distribution of natural clean images.

To verify our statements, we compare the representations between SRGAN-wGR models trained on
clean data and clean+noise data, respectively. As presented in Fig. [9] if the model is trained only
on clean LR data, the deep representations show strong discriminability to clean and noise data. In
contrast, if the model sees noise data during training, such discriminability diminishes. The model
will become more robust to more degradation types, as the distributions of the deep representations
become unanimous. In summary, to improve the model generalization for various degradations,
we need to diminish the feature discriminability to degradations. Adding more degraded data into
training is a plausible way to enhance the generalization.
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Figure 10: RRDBNet with DDR guidance.
Figure 9: By training with more degraded data, the The degradation embedding is injected into
deep representations become unanimous. the backbone network.

5 APPLICATIONS AND INSPIRATIONS

Image Distortion Identification Using DDR Features. Image distortion identification (Liang et al.,
2020) is an important subsidiary pretreatment for many image processing systems, especially for im-
age quality assessment (IQA). It aims to recognize the distortion type from the distorted images, so
as to facilitate the downstream tasks (Mittal et al.,|2012a}; |Gu et al.| [2019; [Liang et al., 2020)). Previ-
ous methods usually resort to design handcrafted features that can distinguish different degradation
types (Mittal et al., |2012agb)) or train a classification model via supervised learning (Kang et al.,
2014; Bosse et al.l 2017} [Liang et al.l 2020). Since DDR is related to image degradation, it can
naturally be used as an excellent prior feature for image distortion identification. To obtain DDR,
we do not need any degradation information but only a well-trained SR model (train on clean da-
ta). Following BRISQUE (Mittal et al., 2012a)), we adopt the deep representations of SRGAN as
input features (using PCA to reduce the original features to a 120-dimensional vector), and then use
linear SVM to classify the degradation types of LIVE dataset (Sheikh et al., [2006). As shown in
Tab. m compared with BRISQUE and MLLNet (Liang et al., 2020), DDR features achieve excel-
lent results on recognizing different distortion types. More inspiringly, DDR is not obtained by any
distortion-related supervision.

Blind SR with DDR Guidance. To super-resolve real images with unknown degradations, many
blind SR methods resort to estimating and utilising the degradation information. For instance, IKC
(Gu et al,2019) iteratively corrects the estimated blur kernel, and DASR (Wang et al.;, 2021) implic-
itly learns the degradation representations by contrastive learning. Based on the findings of DDR,
we adopt a trained SRGAN model to extract degradation embedding to promote blind SR models.
RRDBNet (Wang et al.,2018]) is adopted as the backbone. The DDR embedding is injected into each
RRDB module by the StyleMod [Karras et al.| (2020) (see Fig. [I0). The training data are described
in Tab. [2] e.g., “b+n” means that the training data include blur and noise images. DDR guidance
can help improve the model performance. Fig. [I1]reveals that DDR guidance can make the deep
features become more homogeneous (CHI scores drop from 14.04 to 4.95).

? »

(a) RRDB (clean) (b) RRDB (blur+noise) (d) RRDB-DDR (blur+noise)
CHI: 322.16 CHI: 14.04 CHI: 4.95

Figure 11: DDR clustering of different models. A lower CHI score connotes better generalization.

6 CONCLUSIONS

In this paper, we discover the deep degradation representations in deep SR networks, which are d-
ifferent from high-level vision networks. We demonstrate that a well-trained deep SR network is
naturally a good descriptor of degradation information. We reveal the differences in deep represen-
tations between classification and SR networks. We draw a series of interesting observations on the
intrinsic features of deep SR networks, such as the effects of global residual and adversarial learning.
Further, we apply DDR to several fundamental tasks and achieve appealing results. The exploration
on DDR is of great significance and inspiration for relevant work.
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A APPENDIX

A.1 BACKGROUND

Since the emergence of deep convolutional neural network (CNN), a large number of computer
vision tasks have been drastically promoted, including high-level vision tasks such as image clas-
sification [Russakovsky et al.|(2015); |Simonyan & Zissermanl (2015); |He et al.|(2016); [Huang et al.
(2017);Hu et al.| (2018)), object localization Ren et al.|(2015));[He et al.|(2017); Redmon et al.|(2016)
and semantic segmentation [Long et al.| (2015)); [Badrinarayanan et al.| (2017); |Chen et al.| (2017);
Wang et al.| (2020a)), as well as low-level vision tasks such as image super-resolution Dong et al.
(2014); |Ledig et al.| (2017); |Wang et al.| (2018); [Zhang et al.| (2019); Dai et al.| (2019), denoising
Zhang et al.| (2017} 2018a); (Gu et al.| (2019); Quan et al.| (2020), dehazing |Cai et al.| (2016)); [Zhang
& Patel (2018)); Dong et al.[(2020); Deng et al.|(2020a), etc. However, an interesting phenomenon
is that even if we have successfully applied CNNs to many tasks, yet we still do not have a thorough
understanding of its intrinsic working mechanism.
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To better understand the behaviors of CNN, many efforts have been put in the neural network inter-
pretability for high-level vision Simonyan et al.|(2013); Samek et al.|(2017); Zeiler & Fergus|(2014);
Selvaraju et al.|(2017)); Montavon et al.|(2018); Karpathy et al.[(2015); Mahendran & Vedaldi| (2016);
Zhang et al.| (2020); |/Adebayo et al.|(2018). Most of them attempt to interpret the CNN decisions
by visualization techniques, such as visualizing the intermediate feature maps (or saliency maps and

class activation maps)|Simonyan et al.| (2013); Zeiler & Fergus| (2014); [Adebayo et al.| (2018)); Zhou

et al| (2016); [Selvaraju et al| (2017), computing the class notion images which maximize the class
score |[Simonyan et al.| (2013)), or projecting feature representations [Wen et al.| (2016); [Wang et al.
(2020b); Zhu et al.|(2018)); |Huang et al.| (2020). For high-level vision tasks, especially image classi-
fication, researchers have established a set of techniques for interpreting deep models and have built
up a preliminary understanding of CNN behaviors|Gu et al.| (2018). One representative work is done
by Zeiler et al. Zeiler & Fergus|(2014), who reveal the hierarchical nature of CNN by visualizing
and interpreting the feature maps: the shallow layers respond to low-level features such as corners,
curves and other edge/color conjunctions; the middle layers capture more complex texture combi-
nations; the deeper layers are learned to encode more abstract and class-specific patterns, e.g., faces
and legs. These patterns can be well interpreted by human perception and help partially explain the
CNN decisions for high-level vision tasks.

As for low-level vision tasks, however, similar research work is absent. The possible reasons
are as follows. In high-level vision tasks, there are usually artificially predefined semantic label-
s/categories. Thus, we can intuitively associate feature representations with these labels. Neverthe-
less, in low-level vision tasks, there is no explicit predefined semantics, making it hard to map the
representations into a domain that the human can make sense of. Further, high-level vision usually
performs classification in a discrete target domain with distinct categories, while low-level vision
aims to solve a regression problem with continuous output values. Hence, without the guidance of
predefined category semantics, it seems not so straightforward to interpret low-level vision networks.

In this paper, we take super-resolution (SR), one of the most representative tasks in low-level vision,
as research object. Previously, it is generally thought that the features extracted from the SR network
have no specific “semantic” information, and the network simply learns some complex non-linear
functions to model the relations between network input and output. Are CNN features SR networks
really in lack of any semantics? Can we find any kind of “semantics” in SR networks? In this paper,
we aim to give an answer to these questions. We reveal that there are semantics existing in SR
networks. We first discover and interpret the “semantics” of deep representations in SR networks.
But different from high-level vision networks, such semantics relate to the image degradation types
and degrees. Accordingly, we designate the deep semantic representations in SR networks as deep
degradation representations (DDR).

A.2 LIMITATIONS

In this paper, we only explore the deep representations of SR networks. Other low-level vision
networks are also worth exploring. We apply DDR to three tasks without too elaborate design in
the application parts. For blind SR, we make a simple attempt to improve the model performance.
The design is not optimal. We believe that there should be a more efficient and effective way to
utilize DDR. For generalization evaluation, DDR can only evaluate the model generalization under
constrained conditions. It shows the possibility of designing a generalization evaluation metric, but
there is still a long way to realize this goal.

A.3 DEEP REPRESENTATIONS OF REAL-WORLD IMAGES

In the main paper, we mainly conduct experiments on synthetic degradations. The difficulty of real-
world dataset is that it is hard to keep the content the same but change the degradations. If we simply
use two real-world datasets which contains different contents and different degradations, it is hard to
say whether the feature discriminability is targeted at image content or at image degradation. Hence,
synthetic data at least can control the variables.

In addition, we find a plausible real-world dataset Real-City 100, which is proposed in paper Cameral
SR. The authors use iPhoneX and NikonD5500 devices to capture controllable images. By adjusting
the cameral focal length, each camera captures paired images with the same content but different
resolutions. The low-resolution images contain real-world degradations such as real noise and real
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Figure 12: Projected feature representations of SRGAN-wGR on Real-City100 dataset.

blur. We test SRGAN on this dataset and obtain corresponding visualization results, as shown in
[[2} It can be seen that the deep representations of SRGAN can still distinguish among different
degradations across different devices.

A.4 CLASSIFICATION VS. SUPER-RESOLUTION
A.4.1 FORMULATION

Classification. Classification aims to categorize an input image X into a discrete object class:
Y = Gew(X), (1)

where G¢p, represents the classification network, and Y € R is the predicted probability vector
indicating which of the C' categories X belongs to. In practice, cross-entropy loss is usually adopted
to train the classification network:

C
CE(Y,Y) ==Y yilogy;, )
=1

where Y € RY is a one-hot vector representing the ground-truth class label. gj; is the i-th row
element of Y, indicating the predicted probability that X belongs to the i-th class.

Super-resolution. A general image degradation process can be model as follows:

X = (Y ©k) L +n, 3)
where Y is the high-resolution (HR) image and ® denotes the convolution operation. X is the
degraded high-resolution (LR) image. There are three types of degradation in this model: blur
kernel k, downsampling operation | s and additive noise n. Hence, super-resolution can be regarded
as a superset of other restoration tasks like denoising and deblurring.

Super-resolution (SR) is the inverse problem of Equ. . Given the input LR image X € RM*N,

the super-resolution network attempts to produce its HR version:
Y = Gsr(X), “)

where G s represents the super-resolution network, Y € RsMxsN i the predicted HR image and s

is the upscaling factor. This procedure can be regarded as a typical regression task. At present, there

are two groups of method: MSE-based and GAN-based methods. The former one treats SR as a

reconstruction problem, which utilizes pixel-wise loss such as Lo loss to achieve high PSNR values.
1 rN rM

Ly(Y,Y) = SN Z ZHYi,j —Yi,ll3- 5)

i=1 j=1
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This is the most widely used loss function in many image restoration tasks Dong et al.| (2014); |[Lim
et al.|(2017); Zhang et al.|(2018bja)); Cai et al.|(2016)); He et al.| (2020). However, such loss tends to
produce over-smoothed images. To generate photo-realistic SR results, the latter method incorpo-
rates adversarial learning and perceptual loss to benefit better visual perception. The optimization is
expressed as following min-max problem:

min maxEy ., ,[log Dgr(Y)]
Oc¢sr OpsR (6)

+ Exrpynllog(l — Dsr(Gsr(X)))].

In such adversarial learning, a discriminator Dgg is introduced to distinguish super-resolved images
from real HR images. Then, the generator loss is defined as:

LG = —logDSR(GSR(X)). (7)

From the formulation, we can clearly see that image classification and image super-resolution rep-
resent two typical tasks in machine learning: classification and regression. The output of the classi-
fication task is discrete, while the output of the regression task is continuous.

A.4.2 ARCHITECTURES

Due to the different output types, the CNN architectures of classification and super-resolution net-
works also differ. Generally, classification networks often contain multiple downsampling layers
(e.g., pooling and strided convolution) to gradually reduce the spatial resolution of feature maps.
After several convolutional and downsampling layers, there may be one or more fully-connected
layers to aggregate global semantic information and generate a vector containing C' elements. For
the output layer, the SoftMax operator is frequently used to normalize the previously obtained vec-
tor into a probabilistic representation. Some renowned classification network structures include
AlexNet Krizhevsky et al.| (2012)), VGG |Simonyan & Zisserman| (2015), ResNet He et al| (2016),
InceptionNet|Szegedy et al. (2015); [loffe & Szegedy|(2015);/Szegedy et al.|(2017), DenseNet Huang
et al.|(2017), SENe(Badrinarayanan et al.| (2017, etc.

Unlike classification networks, super-resolution networks usually do not rely on downsampling lay-
ers, but upsampling layers (e.g., bilinear upsampling, transposed convolution Zeiler et al.| (2010)
or subpixel convolution |Shi et al.|(2016)). Thus, the spatial resolution of feature maps would in-
crease. Another difference is that the output of the SR network is a three-channel image, rather than
an abstract probability vector. The well-known SR network structures include SRCNN |Dong et al.
(2014), FSRCNN |Dong et al.| (2016), SRResNet [Ledig et al.| (2017), RDN [Zhang et al.| (2018c]),
RCAN/|Zhang et al.[(2018b)), etc. An intuitive comparison of classification and SR networks in CNN
architecture is shown in Fig. We can notice that one is gradually downsampling, and the other
is gradually upsampling, which displays the discrepancy between high-level vision and low-level
vision tasks in structure designing.

Although there are several important architectural differences, classification networks and SR net-
works can share and adopt some proven effective building modules, like skip connection [He et al.
(2016); ILim et al.| (2017) and attention mechanismHu et al.| (2018)); Zhang et al.[(2018Db)).

A.5 IMPLEMENTATION DETAILS

In the main paper, we conduct experiments on ResNet18 |He et al.[(2016) and SRResNet/SRGAN
Ledig et al.| (2017). We elaborate more details on the network structures and training settings here.

For ResNet18, we directly adopt the network structure depicted in [He et al.| (2016). Cross-entropy
loss (Eq. [2) is used as the loss function. The learning rate is initialized to 0.1 and decreased with a
cosine annealing strategy. We apply SGD optimizer with weight decay 5 x 10~%. The trained model
yields an accuracy of 92.86% on CIFAR1O0 testing set which consists of 10, 000 images.

For SRResNet-wGR/SRResNet-woGR, we stack 16 residual blocks (RB) as shown in Fig. 3 of
the main paper. The residual block is the same as depicted in Wang et al.| (2018), in which all the
BN layers are removed. Two Pixel-shuffle layers |Shi et al.[ (2016) are utilized to conduct upsam-
pling in the network, while the global residual branch is upsampled by bilinear interpolation. L,
loss is adopted as the loss function. The learning rate is initialized to 2 x 10~* and is halved at
[100%, 300k, 500k, 600k] iterations. A total of 600, 000 iterations are executed.
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For SRGAN-wGR/SRGAN-woGR, the generator is the same as SRResNet-wGR/SRResNet-woGR.
The discriminator is designed as in [Ledig et al.| (2017). Adversarial loss (Eq. [7) and perceptual loss
Johnson et al.| (2016) are combined as the loss functions, which are kept the same as in|Ledig et al.
(2017). The learning rate of both generator and discriminator is initialized to 1 x 10~* and is halved
at [50k, 100k, 200k, 300k] iterations. A total of 600, 000 iterations are executed. For all the super-
resolution networks, we apply Adam optimizer |[Kingma & Bal (2014) with 5; = 0.9 and 82 = 0.99.
All the training LR patches are of size 128 x 128. When testing, 32 x 32 patches are fed into
the networks to obtain deep features. In practice, we find that the patch size has little effect on
revealing the deep degradation representations. All above models are trained on PyTorch platform
with GeForce RTX 2080 Ti GPUs.

For the experiment of distortion identification, we use the aforementioned trained models to conduct
inferencing on the LIVE dataset |Sheikh et al.| (2006). We crop the central 96 x 96 patch of each
image to feed into the SR networks and obtain the corresponding deep representations. Then, the
deep representations of each image are reduced to 120-dimensional vector using PCA. Afterwards,
the linear SVM is adopted as the classification tail. In practice, we find that the vector dimension
can be even larger for better performance. Notably, unlike previous methods, the features here
are not trained on any degradation related labels or signals. The SR networks are only trained using
clean data. However, the deep representations can be excellent prior features for recognizing various
distortion types. This is of great importance and very encouraging.

A.6 DEFINITIONS OF WD, BD AND CHI

In Sec. 3.1 of the main paper, we describe the adopted analysis method on deep feature representa-
tions. Many other literatures also have adopted similar approaches to interpret and visualize the deep
models, such as Graph Attention Network |Velickovic¢ et al.[ (2017)), Recurrent Networks Karpathy
et al.| (20135), Deep Q-Network [Zahavy et al.| (2016) and Neural Models in NLP [Li et al.| (2015)).
Most aforementioned researches adopt t-SNE as a qualitative analysis technique. To better illustrate
and quantitatively measure the semantic discriminability of deep feature representations, we take
a step further and introduce several indicators, which are originally used to evaluate the clustering
performance, according to the data structure after dimensionality reduction by t-SNE. Specifically,
we propose to adopt within-cluster dispersion (WD), between-clusters dispersion (BD) and Calinski-
Harabaz Index (CHI)|Calinski & Harabasz (1974) to provide some rough yet practicable quantitative
measures for reference. For K clusters, WD, BD and CHI are defined as:

K n(k)
WD(K) =) |l — @, ®)
k=1 i=1
where !, represents the i-th datapoint belonging to class k and &y, is the average mean of all n(k)
datapoints that belong to class k. Datapoints belonging to the same class should be close enough to
each other and WD measures the compactness within a cluster.

K
BD(K) = 3 k) |2, — 2P, ©)
k=1
where & represents the average mean of all datapoints. BD measures the distance between clusters.
Intuitively, larger BD value indicates stronger discriminability between different feature clusters.
Given K clusters and N datapoints in total (N = >, n(k)), by combining WD and BD, the CHI is
formulated as:

BD(K) (N -K)
CHI(K) = . . 10
(%) WD(K) (K-1) (10)
It is represented as the ratio of the between-clusters dispersion mean and the within-cluster disper-
sion. The CHI score is higher when clusters are dense and well separated, which relates to a standard

concept of a cluster.

Rationality of Using Quantitative Measures with t-SNE. Notably, t-SNE is not a numerical tech-
nique but a probabilistic one. It minimizes the Kullback-Leibler (KL) divergence between the dis-
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Figure 13: Projected feature representations extracted from different layers of ResNetl8 using t-
SNE. With the network deepens, the representations become more discriminative to object cate-
gories, which clearly shows the semantics of the representations in classification.

#Layer Convl Conv2. 4 Conv3_4 Conv4_4 Conv5_4
Dim 6ax32% 32 6axX32% 32 28X 16X 16 756 X33 STIxax4
WD | (x107) 3.07 £ 0.43 3.41 £ 0.31 332 £0.31 2.06 £0.13 0.71 £ 0.06
BD 1 (x10°) T.04£0.13 1221011 184 £0.40 577 £0.23 10.74 £ 0.20
CHI 1 28.18 + 1.69 30.224+1.44 | 61.12+13.62 | 309.31 +31.10 161855'6125i

Table 3: Quantitative measures for the discriminability of the projected deep feature representation-
s. We statistically report the mean value and the standard deviation of each metric. The adopted
indicators well reflect the effect of feature clustering quantitatively.

Set5 Set14 Urban100 DIV2K
SRCNN-3L 28.51 25.72 22.86 27.80
SRCNN-5L 28.89 25.99 2322 28.05
SRCNN-7L 28.97 26.02 23.27 28.09
SRCNN-9L 29.17 26.17 23.48 28.24
SRCNN-11L 29.27 26.21 23.56 28.29
SRCNN-13L 29.39 26.28 23.66 28.36

Table 4: The PSNR values of SRCNN with different depth on classical SR benchmark datasets.

«  DIV2K-clean . . +  DIV2K-clean

o DIV2K-clean

DIV2K-blur

= DIV2K-noise

DIV2K-blur
= DIV2K-noise

L RN

(b) 5 layers

o DIV2K-clean

DIV2K-blur

= DIV2K-noise -y

DIV2K-blur
o DIV2K-noise

(a) 3 layers (c) 9 layers (d) 13 layers
WD: 87622.61 WD: 49458.40 WD: 41893.05 WD: 29211.19
BD: 0.73 BD: 13964.10 BD: 28574.68 BD: 33070.92

CHLI: 0.00 CHI: 41.93 CHI: 101.29 CHI: 168.12

Figure 14: With more layers, the model deep representations gradually manifest the discriminability
on degradation types.
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Figure 15: Projected feature representations extracted from different layers of SRResNet-woGR (1st
row) and SRResNet-wGR (2nd row) using t-SNE. With image global residual (GR), the representa-
tions of MSE-based SR networks show discriminability to degradation types.

tributions that measure pairwise similarities of the input high-dimensional data and that of the cor-
responding low-dimensional points in the embedding. Further, t-SNE is a non-convex optimization
process which is performed using a gradient descent method, as a result of which several optimiza-
tion parameters need to be chosen, like perplexity, iterations and learning rate. Hence, the recon-
struction solutions may differ due to the choice of different optimization parameters and the initial
random states. In this paper, we used exactly the same optimization procedure for all experiments.
Moreover, we conduct extensive experiments using different parameters and demonstrate that the
quality of the optima does not vary much from run to run, which is also emphasized in the t-SNE
paper. To make the quantitative analysis more statistically solid, for each projection process, we run
t-SNE five times and report the average and standard deviations of every metric.

A.7 FROM SHALLOW TO DEEP SR NETWORKS

In the main paper, we reveal that a shallow 3-layer SRCNN Dong et al.| (2014) does not manifest
representational discriminability on degradation types. Thus, we hypothesize that only deep SR net-
works possess such degradation-related semantics. To verify the statement, we gradually deepen the
depth of SRCNN and observe how its deep representations change. We construct SRCNN models
with different layer depths from shallow 3 layers to 13 layers. We train these models on DIV2K-
clean data (inputs are only downsampled without other degradations) and test them on classical SR
benchmarks. As shown in Tab. [4] the model achieves better SR performance with the increase of
network depth, suggesting that deeper networks and more parameters can lead to greater learning
capacity. On the other hand, the deep representations also gradually manifest discriminability on
degradation types, as depicted in Fig. [[4] When the model only has 3 layers, its representations
cannot distinguish different degradation types. However, when we increase the depth to 13 layers,
the deep representations begin to show discriminability on degradation types, with the CHI score
increasing to 168.12.

SRResNet-woGR
#Layer Convl ResBlock4 ResBlock8 ResBlock16
WD/(x10%) 8.35 £0.14 8.90 £ 0.22 9.28 £ 0.31 4.98 £ 0.48
BDT 0.29 £0.14 1.98 £1.47 25.60 £ 17.73 1149.20 £ 765.12
CHIT 0.00 £ 0.00 0.00 £ 0.00 0.04 £0.03 3.55 £2.42
SRResNet-wGR
#Layer Convl ResBlock4 ResBlock8 ResBlock16
WD/(x10%) 8.20 £ 0.18 8.40 £ 0.09 4.40 £ 0.50 0.86 £0.11
BDT 0.48 £0.34 62.74 £ 33.99 11096.79 £ 2051.02 35470.66 £ 4412.66
CHIT 0.00 £ 0.00 0.1IT £0.06 38.2T £9.25 613.77 £ 33.40

Table 5: Quantitative measures for the projected deep feature representations obtained by SRResNet-
woGR and SRResNet-wGR.

A.8 MORE APPLICATIONS
Evaluating the Generalization Ability. According to the discussions in Sec. 4.6l DDR can be

used as an approximate evaluation metric for generalization ability. Specifically, given a trained
model and several test datasets with different degradations, we can obtain their DDR features. By
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Figure 16: Projected feature representations extracted from different layers of SRGAN-woGR (1Ist
row) and SRGAN-wGR (2nd row) using t-SNE. Even without GR, GAN-based SR networks can
still obtain deep degradation representations.

SRGAN-woGR
#Layer ConvI ResBlock4 ResBlock8 ResBlock16
WD.(x10%) 7.94 £0.20 7.83 £0.33 4.65 4+ 0.58 1.44 +0.28
BDT 0.58 £0.41 4.79 £2.43 9809.00 £ 4501.19 22459.35 £ 3560.33
CHIT 0.00 £0.00 0.01 £0.00 34.00 £ 22.00 234.43 £30.34
SRGAN-wGR
#Layer Conv] ResBlock4 ResBlock8 ResBlock16
WD.(x10%) 7.47 £0.20 7.97 £0.19 4.83 +0.52 0.72 +£0.10
BDT 0.41 £0.36 14.89 £ 8.85 11600.9T £ 1424.10 30180.52 £ 2884.65
CHIT 0.00 £0.00 0.03 £0.02 35.68 £ 2.52 626.46 £ 31.56

Table 6: Quantitative measures for the projected deep feature representations obtained by SRGAN-
woGR and SRGAN-wGR.

evaluating the discriminability of the projection results (clustering effect), we can roughly measure
the generalization performance over different degradation types. The worse the clustering effect, the
better the generalizability. Fig [TT]shows the DDR clustering of different models. RRDB (clean) is
unable to deal with degraded data and obtains lower PSNR values on blur and noise inputs. Its CHI
score is 322.16. By introducing degraded data into training, the model gains better generalization
and the CHI score is 14.04. With DDR guidance, the generalization ability is further enhanced.
The CHI score decreases to 4.95. The results are consistent with the results in the previous section.
Interestingly, we do not need ground-truth images to evaluate the model generalization. A similar
attempt has been made in recent work Liu et al.|(2022). Note that CHI is only a rough index,
which cannot accurately measure the minor differences. DDR shows the possibility of designing a
generalization evaluation metric, but there is still a long way to realize this goal.

A.9 EXPLORATION ON DIFFERENT DEGRADATION DEGREES

« blurl
blura

- blurl
blurd

Figure 17: Even for the same type of degradation, different degradation degrees will also cause
differences in features. The greater the difference between degradation degrees, the stronger the
discriminability. First row: SRResNet-wGR. Second row: SRGAN-wGR.

Previously, we introduce deep degradation representations by showing that the deep representations
of SR networks are discriminative to different degradation types (e.g., clean, blur and noise). How
about the same degradation type but with different degraded degrees? Will the deep representa-
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Cross-degradation Intra-degradation (degradation degrees)
structure Clean-Blur-Noise Noise{5,10,30} Noise{10,30} Noise{10,20} Blur{1,4}
woGR - (3.55) - (6.29) - (7.84) -(0.23) - (0.02)
SRResNet GR +++ (613.77) - (36.53) + (41.50) -(0.59) +(53.37)
MSRGAN woGR ++(234.43) +++ (551.26) +++ (525.55) +(52.67) - (1.40)
wGR +++ (626.46) +++ (815.11) +++ (831.35) + (79.40) +(35.04)

“-10 ~ 20. +: 20 ~ 100. ++: 100 ~ 500. +++: > 500.

Table 7: Quantitative evaluations (CHI). There appears to be a spectrum (continuous transition) for
the discriminability of DDR.

tions still be discriminative to them? To explore this question, more experiments and analysis are
performed.

We test super-resolution networks on degraded images with different noise degrees and blur de-
grees. The results are depicted in Table. [/|and Fig. It can be seen that the deep degradation
representations are discriminative not only to cross-degradation (different degradation types) but
also to intra-degradation (same degradation type but with different degrees). This suggests that
even for the same type of degradation, different degradation degrees will also cause significant d-
ifferences in features. The greater the difference between degradation degrees, the stronger the
discriminability of feature representations. This also reflects another difference between the repre-
sentation semantics of super-resolution network and classification network. For classification, the
semantic discriminability of feature representations is generally discrete, because the semantics are
associated with discrete object categories. Nevertheless, there appears to be a spectrum (continuous
transition) for the discriminability of the deep degradation representations, i.e., the discriminability
has a monotonic relationship with the divergence between degradation types and degrees. For ex-
ample, the degradation difference between noise levels 10 and 20 is not that much distinct, and the

discriminability of feature representations is relatively smaller, comparing with noise levels 10 and
30.

From Table[7] there are notable observations. 1) Comparing with blur degradation, noise degradation
is easier to be discriminated. Yet, it is difficult to obtain deep representations that have strong
discriminability for different blur levels. Even for GAN-based method, global residual (GR) is
indispensable to obtain representations that can be discriminative to different blur levels. 2) The
representations obtained by GAN-based method have more discriminative semantics to degradation
types and degrees than those of MSE-based method. 3) Again, global residual can strengthen the
representation discriminability for degradations.

[T~ M

_ Residual Channel Attention Module .~
-

“ fird
o o /3
SISISSIS e B ;
> e

Lo

Super-resolution
. 14
bilinear

e e

Unified backbone ‘Task-specific tail

Donw 2
Donw 3
Donw 4

Convl
Building Block 2
Building Block N

—
x
S
2
o
o
£
=
=
@

Conv
Conv

Conv
Up2

Figure 18: Unified backbone framework for classification and super-resolution. The two networks
share the same backbone structure and different tails.
A.10 EXPLORATION OF NETWORK STRUCTURE
In the main paper, we choose ResNet18 He et al.[|(2016) and SRResNet/SRGAN |Ledig et al.|(2017)

as the backbones of classification and SR networks, respectively. In order to eliminate the influence
of different network structures, we design a unified backbone framework, which is composed of the
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Figure 19: Projected feature representations extracted from different layers of unified backbone
framework (classification) using t-SNE. The results are similar to ResNet18, which validates that
the deep semantic representations are uncorrelated with network structures but are associated with

the task itself.
#Layer ConvI Downl Down2 Down3 Down4
Dim 64 <3232 64x32x32 128X 16X 16 256 X8 8 S12x4x4
WD | (x10°) 3.64 +£0.33 2.76 £0.27 2.52 £0.19 1.83 £ 0.05 0.59 + 0.02
BD 1 (x10°) 1.10 £0.13 0.97 £0.18 1.60 +0.19 3.84 £ 0.40 7.48 £0.32
CHI T 33.11 £1.38 39.563 £9.98 70.11 £9.94 230.95 £ 22.63 1403.96 £ 27.17

Table 8: Quantitative measures for the discriminability of the projected deep feature representations
obtained by unified backbone framework (classification).

DIV2K-clean
DIV2K-blur
DIV2K-noise e

Figure 20: Projected feature representations extracted from unified backbone framework (super-
resolution) using t-SNE.
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same basic building modules but connected with different tails for downsampling and upsampling
to conduct classification and super-resolution respectively.

The unified architecture is shown in Fig. [I8] To differ from the residual block in the main paper,
we adopt residual channel attention layer as basic building block, which is inspired by SENet |[Hu
et al.| (2018) and RCAN |Zhang et al.| (2018b). For classification, the network tail consists of three
maxpooling layers and a fully connected layer; for super-resolution, the network tail consists of two
pixel-shuffle layers to upsample the feature maps. According to the conclusions in the main paper,
we adopt global residual (GR) in the network design to obtain deep degradation representations
(DDR). Except the network structure, all the training protocols are kept the same as in the main
paper. The training details are the same as depicted in Sec. [A.5] After training, the unified backbone
framework for classification yields an accuracy of 92.08% on CIFAR10 testing set.

The experimental results are shown in Fig. [19] Fig. 20| and Tab. [8] From the results, we can see
that the observations are consistent with the findings in the main paper. It suggests that the semantic
representations do not stem from network structures, but from the task itself. Hence, our findings
are not only limited to specific structures but are universal.

A.11 MORE INSPIRATIONS AND FUTURE WORK

Disentanglement of Image Content and Degradation In plenty of image editing and synthesizing
tasks, researchers seek to disentangle an image through different attributes, so that the image can be
finely edited [Karras et al.| (2019); Ma et al.| (2018)); Deng et al.| (2020b); Lee et al.| (2018)); Nitzan
et al.| (2020). For example, semantic face editing [Shen et al.| (2020a3b)); Shen & Zhou| (2020) aims
at manipulating facial attributes of a given image, e.g., pose, gender, age, smile, etc. Most methods
attempt to learn disentangled representations and to control the facial attributes by manipulating
the latent space. In low-level vision, the deep degradation representations can make it possible to
decompose an image into content and degradation information, which can promote a number of new
areas, such as degradation transferring and degradation editing. Further, more in-depth research
on deep degradation representations will also greatly improve our understanding of the nature of
images.

A.12 DISCUSSIONS ON DIMENSIONALITY REDUCTION

Among the numerous dimensionality reduction techniques (e.g., PCA [Hotelling (1933), CCA
Demartines & Hérault| (1997), LLE |[Roweis & Saul (2000), IsomapTenenbaum et al.| (2000),
SNEHinton & Roweis|(2002)), t-Distributed Stochastic Neighbor Embedding (t-SNE) Van der Maat-
en & Hinton|(2008) is a widely-used and effective algorithm. It can greatly capture the local struc-
ture of the high-dimensional data and simultaneously reveal global structure such as the presence of
clusters at several scales. Following [Donahue et al. (2014); Mnih et al.| (2015); Wen et al.| (2016));
Zahavy et al.[(2016); VelickovicC et al.| (2017);|Wang et al.| (2020b)); Huang et al.|(2020)), we also take
advantage of the superior manifold learning capability of t-SNE for feature projection.

In this section we further explain the effectiveness of adopting t-SNE and why we choose to project
hign-dimensional features into two-dimensional datapoints. We first compare the projection results
of PCA and t-SNE. From the results shown in Fig. 2] it can be observed that the projected features
by t-SNE are successfully clustered together according the semantic labels, while the projected fea-
tures by PCA are not well separated. It is because that PCA is a linear dimension reduction method
which cannot deal with complex non-linear data obtained by the neural networks. Thus, t-SNE is a
better choice to conduct dimension reduction on CNN features. This suggests the effectiveness of
t-SNE for the purpose of feature projection. Note that we do not claim t-SNE is the optimal or the
best choice for dimensionality reduction. We just utilize t-SNE as a rational tool to show the trend
behind deep representations, since t-SNE has been proven effective and practical in our experiments
and other literatures.

Then, we discuss the dimensions to reduce. We conduct dimensionality reduction to different di-
mensions. Since the highest dimension supported by t-SNE is 3, we first compare the effect between
the two-dimensional projected features and the three-dimensional projected features by t-SNE. The
qualitative and quantitative results are shown in Fig. [2T)and Tab. 0] When we reduce the features to
three dimensions, the reduced representations also show discriminability to semantic labels. How-
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Figure 21: Comparison between PCA and t-SNE for projecting feature representations (“Conv5_4”
layer of ResNetl8).

ever, quantitative results show that two dimensions can better portray the discriminability than three
or higher dimensions. For PCA, the results are similar. With higher dimensions, the discriminability
decrease. Hence, it is reasonable to reduce high-dimensional features into two-dimensional data-
points. Such settings are also adopted in [Donahue et al.[ (2014); |Wang et al.| (2020b); Velickovic
et al.|(2017);|Huang et al.| (2020), which are proven effective.

#Layer Conv5_4
Input #Dim 512 X 4 X 4
Method PCA(50)+t-SNE(2) PCA(50)+t-SNE(3) PCA PCA PCA PCA
Reduced #Dim 2 3 2 3 4 5
WD | (x10°) 0.71 £ 0.06 0.24 £ 0.06 0.19 0.32 0.39 0.47
BD 1 (x10°) 10.74 £ 0.20 2.09 +0.04 1.27 1.61 1.95 2.24
CHI T 1688.62 £ 145.15 978.58 £ 224.77 729.64 562.85 554.92 526.64

Table 9: Quantitative comparison with dimensionality reduction methods and reduced dimensions.
To utilize t-SNE, we first use PCA to pre-reduce the features to 50 dimensions. Since PCA is a
numerical method, the result is fixed. For t-SNE, we report the mean and standard deviation for 5
runs. The quantitative results show that t-SNE surpasses PCA and reducing to two dimensions is
better. The features are obtained by “Conv5_4" layer of ResNet18.

A.13 VISUALIZATION OF FEATURE MAPS

So far, we have successfully revealed the degradation-related semantics in SR networks with di-
mensionality reduction. In this section, we directly visualize the deep feature maps extracted from
SR networks to provide some intuitive and qualitative interpretations. Specifically, we extract the
feature maps obtained from four models (SRResNet-wGR, SRResNet-woGR, SRGAN-wGR and
SRGAN-woGR) on images with different degradations (clean, blur4, noise20), respectively. Then
we treat each feature map as a one channel image and plot it. The visualized feature maps are shown
in Fig. We select 8 feature maps with the largest eigenvalues for display. The complete results
are shown in the supplementary file.

Influence of degradations on feature maps. From Fig. 22|a), we can observe that the deep features
obtained by SRResNet-woGR portray various characteristics of the input image, including edges,
textures and contents. In particular, we highlight in “red rectangles” the features that retain most of
the image content. As shown in Fig. 22]b), after applying blur and noise degradations to the input
image, the extracted features appear similar degradations as well. For blurred/noisy input images,
the extracted feature maps also contain homologous blur/noise degradations.

Effect of global residual. In Sec. we have revealed the importance and effectiveness of global
residual (GR) for obtaining deep degradation representations for SR networks. But why GR is so
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Figure 22: Visualization of feature maps. GR and GAN can facilitate the network to obtain more
features on degradation information.
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important? What is the role of GR? Through visualization, we can provide a qualitative and intuitive
explanation here. Comparing Fig. 22{a) and Fig. 22|b), it can be observed that by adopting GR, the
extracted features seem to contain less components of original shape and content information. Thus,
GR can help remove the redundant image content information and make the network concentrate
more on obtaining features that are related to low-level degradation information.

Effect of GAN. Previously, we have discussed the difference between MSE-based and GAN-based
SR methods in their deep representations. We find that GAN-based method can better obtain feature
representations that are discriminative to different degradation types. As shown in Fig. 22fa) and
Fig. 22]c), the feature maps extracted by GAN-based method contain less object shape and content
information compared with MSE-based method. This partially explains why the deep representa-
tions of GAN-based method are more discriminative, even without global residual. Comparing Fig.
[22c) and Fig. 22{d), when there is global residual, the feature maps containing the image original
content information are further reduced, leading to stronger discriminability to degradation types.

A.14 SAMPLES OF DIFFERENT DATASETS

In the main paper, we adopt several different datasets to conduct experiments. Fig. [23]displays some
example images from these datasets.

(a) DIV2K-clean: the original DIV2K |Agustsson & Timofte| (2017) dataset. The high-resolution
(HR) ground-truth (GT) images have 2K resolution and are of high visual quality. The low-
resolution (LR) input images are downsampled from HR by bicubic interpolation, without any fur-
ther degradations.

(b) DIV2K-noise: adding Gaussian noises to DIV2K-clean LR input, thus making it contain extra
noise degradation. DIV2K-noise20 means the additive Gaussian noise level o is 20, where the
number denotes the noise level.

(c) DIV2K-blur: applying Gaussian blur to DIV2K-clean LR input, thus making it contain extra blur
degradation. DIV2K-blur4 means the Gaussian blur width is 4.

(d) DIV2K-mild: officially synthesized from DIV2K |Agustsson & Timofte|(2017) dataset as chal-
lenge dataset Timofte et al.|(2017;2018]), which contains noise, blur, pixel shifting and other degra-
dations. The degradation modelling is unknown to challenge participants.

(e) Hollywood100: 100 images selected from Hollywood dataset |[Laptev et al.| (2008)), containing
real-world old film frames with unknown degradations, which may have compression, noise, blur
and other real-world degradations.

Dataset (a), (b), (c) and (d) have the same image contents but different degradations. However, we
find that the deep degradation representations (DDR) obtained by SR networks have discriminability
to these degradation types, even if the network has not seen these degradations at all during training.
Further, for real-world degradation like in (e), the DDR are still able to discern it.
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Figure 23: Example images from different datasets. (a) DIV2k-clean. (b) DIV2k-noise20. (c)
DIV2k-blur4. (d) DIV2k-mild. (e) Hollywood100. Different datasets contain different degradation
types. (a), (b), (c) and (d) are aligned with image content, but contains degradations. The deep
degradation representations (DDR) are discriminative to various degradations.
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