PROOFGYM: Unifying LLM-Based Theorem Proving
Across Formal Systems

Xinrui Li!, Wenjie Ma', Hangrui BiZ, Zhaoyu Li?, Xujie Si2, Kaiyu Yang?
1UC Berkeley, 2University of Toronto, Meta FAIR
{henry_1xr89,windsey}@berkeley.edu, zhaoyulcs. toronto.edu

Abstract

Large language models (LLMs) have accelerated progress in automated theorem
proving, but most systems remain confined to a single proof assistant, hindering
cross-system reuse of reasoning patterns and complicating scalable evaluation.
We present PROOFGYM, a lightweight, high-throughput backend that unifies
interaction with heterogeneous proof assistants (Coq, Isabelle, Lean) behind a
common Python API. PROOFGYM supports both whole-proof and interactive step-
wise modes, offers a language-agnostic state/result schema, enables non-blocking
batched execution with bounded concurrency, and emits structured logs suitable
for dataset curation and evaluator development. Preliminary experiments show
substantial end-to-end throughput improvements for verification and proof search
while preserving per-request latency. This paper focuses on system design, abstrac-
tions, and cross-system pipelines; full-scale training for a multi-language theorem
proving model and broader ablations are left as ongoing work.

1 Introduction

LLM-based theorem proving has advanced rapidly, yet contemporary systems are largely siloed
within individual formal languages. Across the three major proof assistants—Lean, Coq [8]], and Is-
abelle/HOL [10]—machine learning (ML)-facing infrastructure has matured in complementary ways.
In Lean, efforts such as LeanDojo [[12] and the Kimina Lean server [[6] provide large training corpora
and high-throughput server interfaces. In Coq, ML work has coalesced around CoqGym [11]—a
large learning environment and dataset of human proofs—and machine interfaces such as SerAPI
and Coq-LSP [2|[7] that expose Coq’s internals for data/interaction. For Isabelle, recent ML-facing
infrastructure centers on PISA (Portal to Isabelle) [3]], which provides a gRPC-based control plane
for Isabelle, enabling programmatic orchestration of sessions, corpus extraction, and large-scale
agent evaluation. These strands underscore our claim: despite vibrant progress in each community,
tooling, data formats, and evaluators remain language-specific. This fragmentation (i) increases
engineering overhead, (ii) impedes straightforward comparisons across languages, and (iii) limits
the construction of standardized datasets and evaluators that could benefit from shared abstractions.
A unified, high-throughput substrate for multi-language interaction is therefore a prerequisite for
scalable research on cross-system reasoning.

We introduce PROOFGYM, a lightweight asynchronous backend that exposes a single Python API
across multiple PAs. The API supports two complementary interaction modes: whole-proof (batch
verification of files/chunks) and interactive (stepwise command/tactic execution). Under the hood,
language-specific workers are orchestrated by an async server with bounded concurrency. A language-
agnostic data model (ProofState, VerificationResult, Status) normalizes heterogeneous
REPL outputs while preserving assistant-specific metadata for downstream use. The server emits
structured, per-step logs to facilitate evaluation, curation, and reward-signal construction.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

Clients

Synchronous

~—

)

Asynchronous

-/

(DA

Structured Logs
Proof States
Verification Result

Whole Proof

Interactive

E—

—

Async
Service
Layer
Routing & «——>
Bounded
Concurrency

Language
Worker Layer

LeanREPL

Cog-LSP

e

PISA Pool

PISA Server
PISA Server

N\

PISA Server)
U ———

\
\

Figure 1: PROOFGYM architecture: clients — async service — language workers — results.

Standardizing execution and state representation decouples proving algorithms from proof assistant
idiosyncrasies, making experiment code portable and enabling rigorous comparisons under shared
budgets. More importantly, multi-assistant interaction becomes a data product: aligned trajectories,
outcomes, and diagnostics can be aggregated at scale, supporting reliable evaluator development and
cross-system analysis.

Preliminary evidence and scope. In initial experiments, PROOFGYM provides sizable throughput
gains for both whole-proof verification and interactive proof search without degrading per-request
latencies, primarily due to non-blocking request handling and lean worker management. In this paper,
we emphasize the system and abstractions rather than final model performance; broader training,
cross-assistant alignment, and exhaustive ablations are ongoing work.

2 Method

Our framework, PROOFGYM, is a lightweight system designed for robust, large-scale interaction
with multiple theorem provers. As shown in its architecture follows a "client—async
service—language worker pool" pattern. The core of our method is a unified API that abstracts away
prover-specific complexities, enabling uniform interaction with Lean 4, Coq, and Isabelle.

2.1 A Unified API for Formal Verification

The central abstraction in PROOFGYM is a minimal, portable API built upon a language-agnostic
schema and two primary modes of operation.

Language-Agnostic Schema. All interactions use a shared data model. The core objects
are the ProofState, which represents the current goals, context, and cursor location, and the
VerificationResult, which encapsulates the outcome (e.g., success or failure), diagnostics, and a
trajectory of states. Prover-specific details, like Lean metavariables or Coq hypothesis formatting, are
preserved in optional metadata fields, ensuring high-fidelity data without sacrificing portability.

Operation Modes. The API supports two modes:

* Whole-Proof: Verifies a complete file or code block in a single call, returning a final
VerificationResult with the full trajectory. This is suitable for batch verification tasks.

* Interactive: Executes proof steps incrementally. Each call takes a ProofState and a list of
commands, returning a list of new ProofState trajectories. This makes the server stateless, as
the ProofState acts as the sole resume token, simplifying state management for clients.

This design is exposed through simple API endpoints like verify(file) and apply_steps(state,steps),
available via both synchronous and asynchronous Python clients.

Table 1: Per-language capabilities exposed via the unified API.

Capability Lean Coq Isabelle

Whole-proof execution v v
Interactive stepping v v
State save/fork/resume v -
Project-aware caching -

SUEENEN

2.2 System Architecture and Implementation

Async Service Layer. The heart of the system is an asynchronous server built with FastAPI. This
layer is intentionally thin, with its primary responsibilities being request routing and concurrency
management. It uses a bounded semaphore to manage the lifecycle of language worker processes,
creating and destroying them on demand without leaving workers idle. All interactions through the
service generate structured logs containing trajectories and diagnostics processed from outputs of
language workers, which are invaluable for debugging, evaluation, and curating datasets.

Language Worker Pools. For each prover, PROOFGYM uses a dedicated worker implementation
to interface with the underlying tool.

* Lean: We wrap LeanREPL [4]], which supports both whole-proof execution and interactive stepping.
Crucially, it allows the proof environment to be pickled, enabling a state to be saved and then
efficiently forked across multiple REPLs without replaying the entire proof history.

* Coq: Our worker wraps Coq-LSP, normalizing its JSON-RPC output to conform to the PROOFGYM
schema while retaining Coqg-specific diagnostics in metadata fields.

* Isabelle: We use the Portal-to-Isabelle (PISA) server [3]]. Due to PISA’s significant initialization
cost, we maintain a persistent pool of PISA servers. A dynamic, LRU-style policy reuses workers
for requests that share the same project context and imports, amortizing the startup overhead.

As summarized in [Table T} this architecture allows us to expose both common and prover-specific
capabilities through a single, consistent interface. While Lean and Coq sessions are ephemeral, the
server remains stateless by design, as no request permanently reserves a worker.

3 Experiments

3.1 Experimental Setup

We evaluate PROOFGYM in Lean and Coq on two tasks: whole-proof verification and proof search
against ProofWala’s ITP-Interface [9], which is the only open multi-proof-assistant framework that
supports both tasks. For verification, we use 100 problems from Lean’s GoedelLeanWorkbook [J5]
and 100 lemmas of varying proof length from Coq’s GeoCoq [[1]. For proof search, we use pre-
generated beams (width 32) on Lean’s MiniF2F test set (244 problems) and the GeoCoq test set (478
lemmas). All experiments were run on an 80-CPU machine with timeouts of 120s (verification) and
600s (search). We cap simultaneous processes in PROOFGYM (MAX_CONCURRENT_REQUESTS) and
ITP-Interface (max_parallel_env) to ensure a fair throughput comparison.

3.2 Results

Whole-Proof Verification. As shown in Table[2] PROOFGYM demonstrates substantial throughput
improvements for batch verification. On the combined Lean and Coq datasets, PROOFGYM completes
the task in just 68 seconds, a 7.4-fold speedup over the Ray-parallelized ITP-Interface baseline
(505s). The performance gains are even more pronounced on individual datasets: we observe a
4.6x speedup on Lean’s GoedelLeanWorkbook and a remarkable 31.2x speedup on Coq’s GeoCoq.
These gains are attributable to PROOFGYM'’s core design. The asynchronous server architecture with
bounded concurrency prevents long-running proofs from blocking the entire worker pool, improving
resource utilization. Furthermore, our lightweight, ephemeral REPL management avoids the complex
orchestration overhead inherent in frameworks that rely on persistent, stateful worker pools.

Table 2: Whole-proof verification. PROOFGYM substantially reduces total wall time while preserving
per-proof latencies.

Dataset & Scope Framework Configuration Total (s) Avg(s) Max(s)

GoedelLeanWorkbook . . .

(100 Lean problems) ITP-Interface No Ray; step-wise (with proof-state data) 1350.41 13.50 —
ITP-Interface No Ray; whole-proof 1095.68 1096 —
ITP-Interface Ray; max_parallel_env=32; whole-proof 286.997 — —
PROOFGYM MAX_CONCURRENT=32 63 12.12 53.88

GeoCoq OriginalProofs . .

(first 100 lemmas) ITP-Interface No Ray; whole-proof 439.594 440 —
ITP-Interface Ray; max_parallel_env=32; whole-proof 249.919 — —
PROOFGYM MAX_CONCURRENT=32 8 1.026 5.315

Lean+Coq (combined) ITP-Interface Ray; max_parallel_env=32; whole-proof 505.360 — —
PROOFGYM MAX_CONCURRENT=32 68 — —

Table 3: Proof-search wall time (beam width 32). PROOFGYM benefits strongly from asynchronous
clients and higher concurrency.

Dataset & Framework = Max parallel / concurrent Client mode Total (s)
Lean MiniF2F (244 problems)

Proofwala Max_Parallel = 32 — 8482.02
Proofwala Max_Parallel = 64 — 7027.51
PROOFGYM MAX_CONCURRENT =32 Synchronous 3801.33
PROOFGYM MAX_CONCURRENT =32 Asynchronous 1202.29
PROOFGYM MAX_CONCURRENT =64 Asynchronous 962.04
Coq GeoCoq (478 problems)

Proofwala Max_Parallel = 32 — 130,530.11
Proofwala Max_Parallel = 64 — 65,507.01
PROOFGYM MAX_CONCURRENT =32 Synchronous 64,215.84
PROOFGYM MAX_CONCURRENT =32 Asynchronous 35,916.65
PROOFGYM MAX_CONCURRENT =64 Asynchronous 32,855.79

Proof search. In the more demanding proof search task (Table[3), the benefits of PROOFGYM’s
design are more pronounced. We compare ProofWala against PROOFGYM using both synchronous
and asynchronous clients to isolate the impact of client-side scheduling. With an asynchronous client
that can fully leverage the server’s capacity, PROOFGYM achieves end-to-end speedups of 7.3 on
Lean (962s vs. 7028s) and 2.0x on Coq (32,856s vs. 65,507s) compared to the fastest ProofWala
configuration. Notably, client-side asynchrony is a key performance driver. At the same concurrency
level of 32, simply switching the PROOFGYM client from synchronous to asynchronous improves
throughput by 3.2 on Lean. This highlights a critical bottleneck in typical proof search pipelines:
without an asynchronous client, server-side resources can be left idle while the client sequentially
processes requests. Even with a synchronous client, PROOFGYM’s leaner architecture provides a
= 2x speedup, but unlocking the full potential requires an end-to-end asynchronous design.

Discussion. Our experiments highlight three key findings. First, a fully asynchronous server
architecture is crucial for maximizing throughput in batch-processing workloads. By decoupling
request admission from worker execution, the system can better tolerate high-variance task runtimes.
Second, a lightweight server and REPL management design can significantly reduce orchestration
overhead, yielding substantial performance gains even at moderate levels of parallelism. Third, for
iterative tasks like proof search, client-side asynchrony is as important as server-side concurrency.
A synchronous client can become the primary bottleneck, preventing the system from saturating
available computational resources. Finally, the ability to fork proof state (checkpointing and branching
from intermediate proof contexts) significantly eliminates the overhead of replaying history during
long proof search tasks, enabling fast backtracking and broader concurrent exploration. PROOFGYM'’s
design addresses all four aspects, delivering significant efficiency improvements.

4 Conclusion and Ongoing Work

We presented PROOFGYM, a unified, high-performance framework for Lean, Coq, and Isabelle that
achieves up to a 31x speedup over prior work on verification and proof search tasks. Our results
show that its fully asynchronous client-server architecture is critical for eliminating bottlenecks in
large-scale automated reasoning, providing a robust foundation for future research.

Building on this platform, our ongoing work aims to develop a multilingual proof synthesis pipeline.
We have already generated a corpus of 150k parallel informal-formal statements across the three
languages (50k each) and are training a 7B model for statement formalization and cross-system
translation. The goal is to produce aligned {statement, proof) triplets across all three systems,
enabling large-scale supervised fine-tuning of a unified, multilingual theorem prover.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Gabriel Braun, Pierre Boutry, Charly Gries, Julien Narboux, Pascal Schreck, and GeoCoq
contributors. Geocoq: A formalization of foundations of geometry in Coq. https://geocoq!
github.io/GeoCoq/| 2024. Software, version 2.5.0 (coq-geocoq).

Pedro Carrott, Nuno Saavedra, Kyle Thompson, Sorin Lerner, Jodo F Ferreira, and Emily First.
Cogpyt: Proof navigation in python in the era of llms. In Companion Proceedings of the 32nd
ACM International Conference on the Foundations of Software Engineering, pages 637-641,
2024.

Albert Q. Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. Lisa: Language models of
isabelle proofs. 6th Conference on Artificial Intelligence and Theorem Proving, 2021.

Lean FRO. A read-eval-print-loop for Lean 4. https://github.com/
leanprover-community/repl, 2023. Software project.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
Xia, Dangi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier model for open-source
automated theorem proving, 2025. URL https://arxiv.org/abs/2502.07640.

Marco Dos Santos, Haiming Wang, Hugues de Saxcé, Ran Wang, Mantas Baksys, Mert Unsal,
Junqgi Liu, Zhengying Liu, and Jia Li. Kimina lean server: Technical report, 2025. URL
https://arxiv.org/abs/2504.21230,

Coq LSP Development Team. Coq Isp. URL https://github.com/ejgallego/coq-1sp.
Software release.

The Rocq Development Team. The rocq prover, April 2025. URL https://doi.org/10!
5281/zenodo.15149629.

Amitayush Thakur, George Tsoukalas, Greg Durrett, and Swarat Chaudhuri. proofwala:
Multilingual proof data synthesis and theorem-proving, 2025. URL https://arxiv.org/
abs/2502.04671.

Makarius Wenzel and Isabelle contributors. The Isabelle/Isar Reference Manual, 2025. URL
https://isabelle.in.tum.de/doc/isar-ref.pdf. Version <your-version>.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In
International Conference on Machine Learning (ICML), 2019.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
language models. In Neural Information Processing Systems (NeurIPS), 2023.

https://geocoq.github.io/GeoCoq/
https://geocoq.github.io/GeoCoq/
https://github.com/leanprover-community/repl
https://github.com/leanprover-community/repl
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2504.21230
https://github.com/ejgallego/coq-lsp
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.5281/zenodo.15149629
https://arxiv.org/abs/2502.04671
https://arxiv.org/abs/2502.04671
https://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Method
	A Unified API for Formal Verification
	System Architecture and Implementation

	Experiments
	Experimental Setup
	Results

	Conclusion and Ongoing Work

