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Abstract

Somatic hypermutations (SHMs) acquired during
affinity maturation of memory B cell receptors
(mBCRs) carry important immunological signals,
but remain challenging for protein language mod-
els (PLMs) to capture effectively. We introduce
SHIVER, a mutation-aware antibody language
model that treats each amino acid substitution as
a distinct token, allowing the model to directly
encode the context-dependent impact of SHMs.
Trained on paired heavy and light chain sequences
from human mBCR repertoires, SHIVER incor-
porates a tailored vocabulary, mutation subsam-
pling strategy, and partial masking scheme to bet-
ter model the dynamics of affinity maturation.
We evaluate SHIVER on the task of predicting
mBCR binding to influenza antigens and find that
it outperforms both general and antibody-specific
PLMs using a simple logistic head. Our results
suggest that explicitly modeling SHMs improves
biological relevance and generalization of learned
representations.

1. Introduction

Protein language models (PLM) such as ESM-2 (Lin et al.,
2023), ProtTrans (Elnaggar et al., 2021), ProteinBERT
(Brandes et al., 2022), pre-trained with self-supervised learn-
ing, produce meaningful embeddings that capture biologi-
cally relevant semantic information from input sequences.
Specialized protein language models such as IgL.M (Shuai
et al., 2023), AbLang2 (Olsen et al., 2024), and mBLM
(Wang et al., 2024) that produce representations of antibody
sequences facilitate diverse downstream applications such
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Figure 1. Illustration of our mutation-aware vocabulary. In addi-
tion to the 20 canonical amino acids, we include directional pairs
of amino acids as part of the vocabulary for training our protein
language model, characterizing every possible substitution-based
amino acid mutation.

as heavy-light chain pairing (Guo et al., 2025) and antigen
binding prediction (Hie et al., 2024; Im et al., 2025; Wang
et al., 2024), potentially leading to drastic improvements
in cost efficiency for the development of new monoclonal
antibody-based therapeutics.

Current antibody-centered language models, however, of-
ten overlook a critical aspect of antibody biology: somatic
hypermutation (SHM) coupled with antibody affinity mat-
uration, a process which serves as biological “fine-tuning”
of the initial antibody-coding sequences derived from their
germline origins. SHM introduces mutations which are not
random but shaped by evolutionary pressures to increase
affinity of antibody binding and functional constraints from
a structural perspective.

To better capture the immunological relevance of SHM,
we introduce somatic hypermutation informed vocabulary
encoder representations (SHIVER), a novel antibody lan-
guage model that incorporates explicit mutation-aware to-
kens. Rather than treating mutated residues identically to
germline-derived residues, our approach encodes each mu-
tation from the germline sequence as a distinct token (e.g.,
K — R becomes “K_R”). This design allows the model to
directly learn the functional implications of specific amino
acid changes in the context of affinity maturation. Our
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Figure 2. Architecture of SHIVER. During training, for a given
masked input sequence of paired antibody heavy/light chain, the
model tries to predict mutation tokens for partially masked tokens
and canonical amino acid tokens for regular mask tokens.

model predicts the interaction between several antigens and
memory B cell receptors with higher accuracy compared to
other PLMs. By explicitly modeling the trajectory of SHMs,
SHIVER bridges the gap between sequence representation
and functional insight. This framework paves the way for
more accurate modeling of immune memory and rational
antibody design guided by evolutionary signals.

2. Dataset & Preprocessing

2.1. MiXCR processing of single-cell RNA sequencing
reads of MBC Receptors.

Memory B cells (MBC) are long-lived cells of the adap-
tive immune system that persist after an initial infection
and rapidly respond upon re-exposure to the same antigen.
They express B cell receptors (BCRs) on their surface that
share antigen specificity with the antibodies they secrete,
if they become plasma cells. These receptors are often re-
fined through somatic hypermutation and affinity maturation.
Memory B cell receptor (mBCR) repertoires demonstrate
distinct characteristics from other B cell subsets as they
carry marks of antigen exposure and selection (Ghraichy
et al., 2021; Mikelov et al., 2022).

Thus, we used publicly available single cell sequencing data
of human mBCR repertoires (King et al., 2021; Phad et al.,
2022; Ramesh et al., 2020) to obtain a pre-training dataset
of paired heavy and light chain amino acid sequences. Se-
quencing reads were processed using MiXCR (Bolotin et al.,
2015; Mikelov et al., 2024), which enables robust error cor-
rection, ambient RNA-derived contamination removal, and
reliable heavy and light chain pairing (Section A.1). Impor-

tantly, detailed annotation for each paired sequence allowed
extraction of SHMs, which was instrumental for utilizing
mutation-aware amino-acid vocabulary, a key feature of
the proposed approach. This resulted in a total of 210,473
de-duplicated paired mBCR sequences for pre-training.

2.2. mBCR Dataset Labeled with Flu Antigen Binding

To demonstrate the utility of the proposed antibody lan-
guage model, we later evaluate our model on the task of
antibody-antigen binding prediction due to the importance
of this application for drug development and diagnostics.
We curated a dataset of paired heavy- and light-chain se-
quences from unseen mBCR receptors from two different
donor samples: 1) peripheral blood (PB) B cells and 2)
splenic B cells. Each receptor sequence is annotated with
raw binding scores to several antigens; each score represents
a number of antigen molecules bound to a cell with this re-
ceptor. Antigens comprise a set of influenza hemagglutinins
(HAs) from seasonal vaccine strains (Section A.2).

To obtain binary labels for binding and non-binding cells
based on antigen scores, we developed the following pro-
cedure applied independently to each sample. Similarly to
the approach used in (Wasdin et al., 2024), we modeled a
background (noise) distribution of raw scores for each anti-
gen by fitting a negative binomial distribution, excluding all
cells with raw scores greater than 200. The thresholds were
then defined as the 95th percentile of the fitted distributions,
with cells exceeding this threshold assigned as positive for
that antigen. This procedure was applied separately for each
antigen and each sample, thus accounting for possible batch
effects from the experiments (Figure B.1).

3. Methods

3.1. Mutation-Aware Vocabulary

Traditional protein language models have been trained us-
ing the vocabulary of 20 canonical amino acids (Brandes
et al., 2022; Lin et al., 2023; Olsen et al., 2024; Shuai et al.,
2023; Wang et al., 2024). As a result, such protein language
models often struggle to directly capture the effect of mu-
tations in a protein sequence. To address this, SHIVER is
trained using a new vocabulary of amino acids augmented
with mutation information (Figure 1). Using the canoni-
cal amino acids only, the size of vocabulary (excluding the
unknown amino acid token X and other special tokens) is
20. With the additional mutation tokens, we now have a
total of 20 + % = 400 tokens, which characterize every
possible substitution-based amino acid mutation that can oc-
cur in a protein sequence. Such mutation-aware vocabulary
serves as an efficient alternative method to tokenize pairs of
mutated/germline antibody sequences.
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Table 1. AUROC scores for binder predictions against different human influenza HA’s using embeddings from various protein language
models. ESM2-Ab denotes ESM-2 finetuned on SHIVER’s training dataset. (bold indicates best and underline indicates second best)

MODEL EMBEDDING S1ZE H1-VICTORIA HI1-CALIFORNIA H3-TAZMANIA H3-DARWIN
ESM-2 1280 (640%*2) 0.673 0.737 0.727 0.724
ESM-2 AB 1280 (640%*2) 0.687 0.756 0.736 0.739
ESM-C 1920 (960*2) 0.681 0.742 0.714 0.701
IGLM 512 0.677 0.759 0.728 0.722
ABLANG-2 480 0.679 0.709 0.709 0.712
MBLM 768 0.682 0.748 0.711 0.729
SHIVER (OURS) 768 0.719 0.755 0.739 0.749

3.2. Model Architecture and Training Details

SHIVER is implemented as a RoBERTa-style Transformer
encoder (Liu et al., 2019), consisting of 6 layers with 12
attention heads per layer, a hidden embedding dimension of
768, and intermediate feedforward layers of dimension 3072.
The model supports sequences up to 256 tokens, sufficient
to accommodate the concatenated variable regions (Fv) of
heavy and light antibody chains. Training is performed us-
ing a masked language modeling (MLM) objective, where
tokens are masked and predicted based on their surround-
ing context. Pre-training is conducted on 210,473 paired
memory B cell receptor (mBCR) sequences derived from
the OAS database, using the mutation-aware vocabulary
to guide learning toward biologically meaningful variation.
While the architecture is smaller than large-scale PLMs
such as ESM-2, SHIVER’s inductive biases—specifically
its mutation-centric vocabulary and paired-chain representa-
tion—enable it to learn specialized embeddings that outper-
form larger models on downstream binding prediction tasks.
The diagram of the model architecture is shown in Figure
2. The masking strategy for masking mutation tokens is
described in Section 3.4.

3.3. Data Augmentation via Mutation Subsampling

Due to the limited availability of publicly accessible human
mBCR sequence data (~200,000 sequences), we introduce
a sampling-based augmentation strategy to increase train-
ing diversity and promote generalization. Each sequence in
our dataset is annotated with a list of somatic hypermuta-
tions relative to the corresponding germline sequence. To
create augmented examples, we stochastically subsample
subsets of these mutations, effectively simulating intermedi-
ate stages along the B-cell affinity maturation trajectory.

Concretely, for a given mutated sequence containing k& mu-
tations, we uniformly sample an integer ¢ € {1, ..., k} and
randomly select ¢ mutations from the original set. We then
construct an augmented sequence by retaining the selected
mutations and reverting the remaining k — g residues to their
germline (unmutated) identities.

This procedure is motivated by the following properties of
SHM process. First, mutations accumulate accumulate pro-
gressively and iteratively during SHM process. Second, the
majority of non-synonymous SHMs that pass are enriched
for mutations that improve or maintain antigen binding.
(Odegard & Schatz, 2006). To control the extent of augmen-
tation, we introduce a sampling probability hyperparameter
a € [0, 1]. For each sequence, with probability «, we retain
all mutations (i.e., no augmentation is applied). With proba-
bility 1 — «, we apply the mutation subsampling procedure
described above.

This approach allows the model to learn from both fully
mutated and partially reverted sequences, providing diverse
mutational contexts during training. By exposing the model
to intermediate mutational states, we aim to improve its abil-
ity to learn meaningful representations of SHM patterns. For
our experiments, we use o = 0.5, which was the empirically
determined optimal value.

3.4. Partial Masking

Traditionally, in masked language modeling, we use a single
mask token to mask the positions in an input sequence for
which the model would like to predict the original token’s
identity. However, recent methods have used hybrid tokens
which allowed the usage of multiple types of masked tokens.
For example, SaProt is a protein language model that uses a
hybrid “structure-aware” token for amino acids that capture
both the identity of the amino acid as well as the discrete
structural features (Su et al., 2023). Correspondingly during
training, they use a set of partial mask tokens where the
model tries to predict only the amino acid identity and not
the structural feature. Similarly, when we are masking the
tokens for SHIVER, we are more interested in predicting
the result of the mutation compared to its germline origin.
Thus, we used 20 partial mask tokens, { A_#, C_#, ...}, in
addition to the regular mask token to mask both the mu-
tation tokens as well as the canonical amino acid tokens,
respectively.

In a given sequence, the expected ratio of mutation tokens
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on average is around 10% of all tokens. This means that
with random assignment of masks, the mutation tokens will
be masked more infrequently compared to regular canoni-
cal amino acid tokens. However, SHMs play an important
role in characterizing the binding affinity and specificity of
immune receptors to particular antigens. Just as language
modeling efforts that emphasize non-templated regions —
such as CDR3s in antibodies — have led to improved se-
mantic understanding of antigen recognition (Ng & Briney,
2025; Singh et al., 2025; Zaslavsky et al., 2025), we hy-
pothesize that increasing the focus on mutation sites will
similarly help the model learn their functional relevance.
Therefore, we enforce a higher ratio of mutation tokens to
be masked so that our model is able to learn the distribution
of mutations in the context of surrounding amino acids.

Given a paired (H/L chains) memory B-Cell receptor se-
quence of length n containing k£ mutation tokens (k < n),
we want to compute the probabilities p, and p,,,, which
denote the probability of masking each regular token and
mutation token, respectively. Following standard training
procedures for BERT-based models, we would like to mask
roughly 15% of the tokens in expectation for a given se-
quence. We denote hyperparameter g € [0, 1] as the fraction
of mutation tokens that were masked out of all masked
tokens. Then, we parameterize p,- and p,,, such that the frac-
tion of mutation tokens masked follows a negative binomial
distribution centered at q:

(0.15,0)

Ty P = 1-
(Prs pm) (0.15-‘]:, 0.15.((1]2”> k>0

n —

4. Results

As mentioned in Section 2.2, there are two separate sets
of mBCR sequences used for evaluation. In Sections 4.1
and 4.2, the pre-trained SHIVER model is evaluated using
the PB mBCR dataset, labeled with binding information
to a select influenza HAs. In Section 4.3, the pre-trained
SHIVER model is first supervised fine-tuned on the PB
mBCR dataset, and is evaluted on a separate splenic mBCR
dataset labeled with binding information to a subset of the
above influenza HAs.

4.1. SHIVER Enables Sequence-based Prediction of
mBCR-Flu Antigen Binding

As many of the self-supervised protein language models
contain biologically important semantic information, we
wanted to test whether they can be used to predict interac-
tions against human Flu antigens without further finetuning.
We formulate the problem as a binary classification task,
where given an input sequence (with mutation annotation)

the model tries to predict its binary interaction label. We
used logistic regression on the embeddings generated by
each model to predict the binary labels on a panel of human
Flu antigens (H1 and H3 subtypes of hemagglutinin, or HA,
a surface glycoprotein on the influenza virus). The embed-
dings for each sequence was mean-pooled over the residues
to generate a fixed-length vector. We used 5-fold cross val-
idation on the PB mBCR dataset to evaluate performance.
The results are shown in Table 1.

Overall, SHIVER appears to outperform the existing pro-
tein/antibody language models across most of the Flu anti-
gens, as measured by AUROC scores. Notably, SHIVER
achieves the highest AUROC on three out of the four tested
HA antigens, suggesting that the representations it learns
capture relevant features for predicting antibody-antigen
binding interactions. For HI1-California, where SHIVER
does not yield the top score, its performance is still highly
competitive — the AUROC differs only marginally from that
of the best-performing alternative, indicating that SHIVER
remains robust across antigens with varying sequence prop-
erties. These results highlight SHIVER’s strong generaliza-
tion capabilities and suggest that its learned embeddings
through mutation-informed vocabulary are well-aligned
with immunological signals relevant to HA-mBCR inter-
actions.

4.2. Model Ablations Reveal the Impact of Chain
Pairing and Mutation-Specific Encoding

In this section, we investigate the components of SHIVER
that contribute to its strong performance on antibody-antigen
binding prediction. First, we assess the importance of light
chain information by training SHIVER on heavy chain se-
quences only, using the same pre-training and fine-tuning
datasets. There is an inherent scarcity of paired mBCR se-
quence data both in public and proprietary datasets. For
example, in public datasets (i.e. OAS), there are 517,858
paired chain mBCR’s sequenced as opposed to 13,478,858
heavy chain mBCR’s (as of 03.28.2025). Thus, several anti-
body language models have separately trained models for
heavy and light chains due to the lack of information re-
garding their native pairing (Leem et al., 2022; Olsen et al.,
2022). As shown in Table B.1, removing light chain in-
put results in a noticeable drop in AUROC scores across
all antigens, underscoring the contribution of native heavy-
light chain pairing to accurate binding representation. This
aligns with immunological evidence that antigen recogni-
tion is shaped by structural and functional complementarity
between both chains.

Beyond chain pairing, we also evaluate the value of
SHIVER’s mutation-aware vocabulary by comparing perfor-
mance against a model trained with canonical amino acid
tokens. Using the same architecture and training procedure,
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the canonical vocabulary variant consistently underperforms
relative to the mutation-aware version, demonstrating that
explicitly modeling amino acid substitutions yields more
biologically informative embeddings. This improvement is
likely due to the model’s ability to capture the directionality
and context of specific mutations, which are critical for in-
terpreting affinity maturation trajectories. Moreover, we ob-
serve that naive encoding strategies, such as one-hot vectors
or randomly initialized embeddings, indeed fail to approach
the performance of ROBERTa model trained with canoni-
cal amino acid vocabulary — highlighting the necessity of
learned contextual representations. While embedding size
can affect performance, SHIVER achieves competitive or su-
perior results despite using a smaller embedding dimension
(768) compared to models like ESM-C (1920), suggesting
that inductive bias introduced by the mutation-aware design
alone can outweigh increases in representational capacity.

Together, these ablation experiments confirm that SHIVER’s
gains stem not only from architectural scaling, but from prin-
cipled design choices that reflect immunological structure —
namely, leveraging paired chain information and tokenizing
mutations directly to capture the semantic implications of
somatic hypermutation.

4.3. Fine-tuning SHIVER Enables Generalization
Across Different Immune Contexts.

To further assess the transferability and robustness of
SHIVER representations, we fine-tuned the model on mem-
ory B cell receptor (mBCR) sequences derived from periph-
eral blood samples of individuals vaccinated with the sea-
sonal tetravalent inactivated influenza vaccine in Fall 2022
(Section 2.2). These paired heavy-light chain sequences
were annotated with binding affinities to a panel of influenza
hemagglutinin (HA) antigens, providing a supervised signal
to adapt SHIVER embeddings to real-world antigen expo-
sure contexts. We then evaluated the fine-tuned model on an
independent dataset of mBCR sequences from stimulated
splenic B cell cultures, representing a distinct immunolog-
ical environment not seen during training. As shown in
Table B.2, fine-tuning resulted in modest but consistent im-
provements in AUROC scores. We hypothesize that the
relatively small size of the fine-tuning dataset — comprising
only ~2,000 labeled examples — may limit the magnitude
of performance gains.

Despite the limited supervision, SHIVER’s strong baseline
performance and its ability to generalize across donor- and
tissue-specific repertoires suggest that it captures immuno-
logically meaningful features that persist across diverse
immune contexts. The model’s robustness to distributional
shifts between peripheral blood and splenic compartments —
each with distinct clonal structures and activation histories —
demonstrates the biological relevance of its mutation-aware

representations. These results highlight SHIVER’s poten-
tial as a foundation model for immunological applications,
where fine-tuning on additional antigen-binding data could
further enhance its utility for modeling context-specific im-
mune responses.

5. Discussion & Future Work

Proteins accumulate mutations gradually throughout evolu-
tion, often one amino acid at a time. In contrast, memory
B cells in humans experience rapid and extensive sequence
diversification through SHMs, introducing multiple amino
acid substitutions within days. These hypermutations occur
in a targeted manner, particularly within the variable regions
of the immunoglobulin heavy and light chains, and play a
critical role in antibody affinity maturation. Modeling this
dynamic, context-dependent process requires more than a
static representation of amino acid identity—it demands a
vocabulary that can reflect the evolutionary and functional
consequences of mutation events themselves.

In this work, we introduced a mutation-aware vocabulary
that treats each amino acid substitution as a distinct token.
This design enables the model to directly capture the seman-
tics of specific mutations and their biological impact, mov-
ing beyond treating a mutated residue as indistinguishable
from its unmutated counterpart. As shown in Figure B.2,
the empirical coverage of pairwise substitution mutations in
our dataset reflects known immunological constraints and
selection pressures. For example, mutations introducing
non-canonical cysteines are notably rare, consistent with
their potential to cause structural disruption via misfolded
disulfide bonds — mutations that are typically purged from
the repertoire through negative selection (Sheng et al., 2017).
The model’s exposure to such constraints enables it to im-
plicitly learn which mutation patterns are biologically plau-
sible and which are likely to be deleterious.

Our findings suggest that incorporating mutation-aware
tokens leads to improved representations of antibody se-
quences, especially in tasks that involve functional interpre-
tation, such as predicting antigen binding. SHIVER demon-
strates strong capabilities in identifying mBCR binders
against diverse influenza antigens, outperforming several ex-
isting antibody-specific language models as well as general
protein language models finetuned on our same pre-training
dataset (Table 1). This suggests that explicitly modeling
SHM injects inductive bias that aligns closely with the im-
mune system’s evolutionary strategy. Although this work
focuses on substitution-based mutations, future directions in-
clude incorporating insertion and deletion mutations as well
as providing codon-level DNA sequence context. Expand-
ing in these directions may further enhance the biological
fidelity of the model and broaden its applicability to more
diverse immunological modeling tasks.
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A. Appendix
A.1. Pre-processing of Single-cell RNA Sequencing data

Raw paired-end FASTQ files (Read 1 and Read 2) generated from 10x Genomics single-cell immune profiling experiments
were processed using MiXCR v4.7.0 with the 10x—-sc-xcr-vdj preset. This preset is optimized for 10x Genomics 5’
V(D)J single-cell sequencing libraries and leverages the known read structure in which Read 1 contains cell barcodes and
Unique Molecular Identifiers (UMIs), and Read 2 contains the full-length cDNA sequences spanning the immune receptor
variable regions. MiXCR performs demultiplexing of single-cell data by parsing cell barcodes embedded in Read 1 and
associating each read with its corresponding cell of origin. This enables the grouping of all reads derived from the same cell,
allowing for accurate pairing of native receptor heavy-light chains. Following barcode parsing, MiXCR performs alignment
of Read 2 sequences against a reference database of V, D, J, and C gene segments (derived from the IMGT database)
using a modified Smith-Waterman algorithm (Smith et al., 1981). This algorithm performs local pairwise alignment while
accounting for common recombination events and somatic hypermutations (SHMs) typically observed in adaptive immune
receptors.

In this study, we specifically considered only substitution-based mutations located within the V gene region. Insertions
and deletions, which constitute less than 10% of all observed mutations, were excluded from analysis due to their relative
rarity and the added complexity they introduce in defining mutation positions. Furthermore, only mutations in the V gene
were retained because both D and J gene segments contribute to the CDR3, whose boundaries are imprecise due to random
exonuclease activity at the junctions during V(D)J recombination (Jung & Alt, 2004). Such exonuclease-mediated trimming
of the ends of V and J gene segments complicates accurate mutation mapping in the CDR3 region, making it challenging to
distinguish somatic hypermutations from germline-encoded variation in these regions.

A.2. Antigen-specific B cell Sorting and single-cell RNA Sequencing

Magnetically isolated peripheral blood and stimulated splenic B cells were stained with a set of antigen proteins, including
hemagglutinins (HA) from the following influenza strains: A/Victoria/2570/2019 (H1-Victoria), A/California/07/09 (H1-
California), A/Tazmania/503/2020 (H3-Tazmania) and A/Darwin/9/2021 (H3-Darwin), each carrying a fluorophore labels
and DNA tag, containing a barcode sequence indicating the antigen, and a unique molecular identifier (UMI) - a stretch
of random nucleotides labeling each individual molecule. To increase specificity, an additional set of the same antigen
proteins, but carrying a different fluorophore was added to the cells. Then cells were stained with a panel of fluorescently
labeled antibodies specific to cell surface markers in order to distinguish cell populations. Antigen-binding MBCs were
isolated using fluorescence activated cell sorting on BD FACSAria Fusion (BD Biosciences) based on being positive for
both antigen-associated fluorophores and surface markers. Isolated cells were single-cell sequenced using Chromium Next
GEM Single Cell 5° Reagent Kits v2 with human BCR amplification and Feature Barcode technology (10x Genomics).
Sequencing data was processed using Cell Ranger v.7.0.1 using multi pipeline, allowing single cell gene expression recovery
and UMI enumeration for each of the DNA tags associated with the antigens, resulting in the raw counts characterizing
antigen binding. VDIJ annotation was performed using MiXCR v4.7.0 using a built-in preset 10x-sc—xcr—-vdj and
merged with the Cell Ranger output using cell barcodes.
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B. Supplementary Figures and Tables
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Figure B.1. Distribution of raw UMI count scores in the peripheral blood (PB) memory B cell receptors for a representative batch. Dashed
green light represents modeled distribution of noise, blue - chosen threshold at 95th percentile (dashed purple line).

Table B.1. AUROC scores for binder predictions against different human Flu Antigens using randomly generated embeddings, one-hot
encodings, RoOBERTa embeddings trained with canonical AA vocabulary, and SHIVER embeddings with/without light chain data.

MODEL EMBEDDING S1ZE  H1-VICTORIA HI1-CALIFORNIA H3-TAZMANIA H3-DARWIN
RANDOM EMBEDDING 768 0.497 0.473 0.492 0.467
RANDOM EMBEDDING 1024 0.513 0.500 0.511 0.508
ONE-HOT AA ENCODING 40 (20%*2) 0.607 0.646 0.621 0.601
CANONICAL AA VOCAB 768 0.683 0.733 0.724 0.735
SHIVER (H-CHAIN ONLY) 768 0.705 0.710 0.688 0.691
SHIVER 768 0.719 0.755 0.739 0.749
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Table B.2. Comparison of select Flu antigen binding predictions of unseen splenic mBCR sequences using SHIVER 1) as is, 2) supervised
fine-tuned on peripheral blood mBCR sequences labeled with binding affinities to the corresponding Flu antigens.

MODEL H1-CALIFORNIA  H3-TAZMANIA
SHIVER 0.830 0.746
SHIVER (FINE-TUNED) 0.831 0.748
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Figure B.2. Coverage of substitution mutations across heavy and light chain sequences of human memory B cell receptors in the Observed
Antibody Space (OAS). The light chain sequences (bottom) were grouped by chain type: Kappa/Lambda
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