
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CODECHAIN: AN OPEN, MILLION-SCALE DATASET
FOR CODE LANGUAGE MODELS AT THE REPOSITORY
LEVEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Code large language models (LLMs) have shown remarkable advances in code
understanding and generation tasks. Programming corpora serve as the founda-
tion for various code LLMs. In reality, repositories consist of multiple files with
numerous cross-file dependencies. Leveraging the dependency information can
effectively enhance the code understanding and generation capabilities. However,
existing works fail to utilize dependencies effectively. Consequently, there is a
pressing need for an open dataset that specifically focuses on capturing and lever-
aging the cross-file dependencies. To fill in this gap, we release CODECHAIN, an
augmentation of the code dataset at the repository level, provides a rich context
for code LLMs to learn from. Specifically, to capture the cross-file dependen-
cies, we first parse the code project into a topological graph where nodes rep-
resent files and edges denote dependencies. Then, we employ a novel random
walk method to determine the code chain and concatenate the corresponding files.
To utilize such corpus for supervised fine-tuning, we design CHAIN-INSTRUCT to
enable the model to thoroughly learn the code contents and its dependencies. Ulti-
mately, we produce 562,587 code chains and 1,021,550 instruction samples. With
CODECHAIN, we train our model on multi-task learning objectives and evaluate
on the public benchmarks. The experimental results demonstrate that model by
learning the interconnected nature of codes significantly outperforms the previ-
ous methods, showcasing the effectiveness of CODECHAIN in advancing the code
understanding and generation.

1 INTRODUCTION

Code large language models (LLMs) have shown remarkable advances in code understanding, com-
pletion, and generation tasks. Code corpora, as the foundation of large code models Li et al. (2023);
Guo et al. (2024); Zheng et al. (2023); Rozière et al. (2023); Luo et al. (2023), are from diverse
sources: open-source repositories, platforms, forums, and so on. Models pre-trained and finetuned
with such data exhibit strong code understanding and analysis capabilities. For repository-level
code corpora, previous work decide to directly concatenate code files, which ignores the depen-
dency information between files within the project. To utilize dependency information, DeepSeek-
Coder Guo et al. (2024) adopts a topological sorting method, which orders files based on the number
of its dependencies of each file. Nonetheless, only considering the the number of dependencies can
not reflect the true dependency order between files. Moreover, it struggles to determine the correct
order when multiple files have identical dependency counts, leading to errors. More comparison
analysis are in Section 4.1.

To fill in this gap, we design a simple yet effective random walk method based on file dependencies
to determine the code chain. Specifically, we adopt the approach used by DeepSeek-Coder Guo
et al. (2024) to convert code files into a topological graph. In this graph, nodes represent files, and
edges symbolize the dependencies between them. The random walk begins by selecting a random
starting node on the graph. From there, subsequent nodes are chosen based on their dependency
relationships, continuing until the cumulative in-degree of the selected nodes surpasses a predefined
threshold. Our method not only captures the correct order of files when multiple nodes have the
same in-degree but also maps out indirect call relationships between files.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Utilizing this pipeline, we curate a dataset CODECHAIN. This dataset provides a comprehensive
and accurate framework of file dependencies, enhancing the learning process for code LLMs. Addi-
tionally, we compile an instruction dataset tailored for supervised fine-tuning, generating 1,021,550
instruction samples. With CODECHAIN, we fine-tune our model and assess its performance on re-
cent well-known benchmarks. The results indicate that our model significantly surpasses previous
models in code understanding and generation capabilities by learning the interconnected nature of
code files, thereby underscoring the value of CODECHAIN in advancing these areas. The contribu-
tions of our paper are as follows:

• CODECHAIN. We develop and release a comprehensive data curation pipeline. Ultimately,
we compile 562,587 code chains, which can serve as training corpora for code language
models, significantly enhancing code understanding and generation capability.

• Repository Algorithm. We introduce a straightforward yet effective random walk method
for extracting dependencies. Unlike DeepSeek-Coder, our approach reliably generates de-
pendencies in the true file order, which is essential for accurately handling code reposito-
ries.

• CHAIN-INSTRUCT. Focusing on instruction fune-tuning, we design five distinct tasks for
each code chain that vary in length from 2 to 4, which results in the creation of 1,021,550
instruction samples.

• Impressive Performance. We assess the performance of our fine-tuned models on well-
known benchmarks. The models demonstrate exceptional performance by effectively
grasping the intricate interconnections within the repository, markedly outperforming pre-
vious models. This highlights the efficacy of CODECHAIN in advancing code understand-
ing and generation capabilities.

2 RELATED DATASET WORK

In recent years, numerous large language models (LLMs) have been developed specifically for code-
related tasks. Code LLMs Feng et al. (2020); Chen et al. (2021); Scao et al. (2022); Li et al. (2022);
Allal et al. (2023); Fried et al. (2022); Wang et al. (2021); Bai et al. (2023); Guo et al. (2024) pre-
trained on billions of code snippets from diverse sources (e.g. GitHub), such as Starcoder Li et al.
(2023); Lozhkov et al. (2024), CodeLlama Rozière et al. (2023), and DeepSeek-Coder Guo et al.
(2024). The development and refinement of Code LLMs have been pivotal in automating software
development tasks, providing code suggestions, and supporting natural language to code transla-
tions. Besides, there exits several open-source code fine-tuning datasets: Magicoder-OSS-Instruct 1,
Python code subset of ShareGPT 2, Magicoder-Evol-Instruct 3, and Evol-Instruct-Code 4. These
instruction datasets primarily focus on enhancing the ability to understand code and solve coding
problems within a single file without considering cross-file dependencies. While our CODECHAIN
can efficient utilize such dependency information, providing a repository-level understanding.

3 DATA CURATION PROCESS

Overview: The overall process of data curation is in Figure 1. Our curation mainly consists of
seven parts: data crawling and filtering, dependency graph generation, CodeChain generation, qual-
ity screening, Chain-Instruct generation, GPT4 Reviewing, and human-in-the-loop testing.

3.1 GITHUB DATA CRAWLING AND FILTERING

CODECHAIN is a large-scale dataset consisting of code texts concatenated based on dependency
relationships at the repository level. To initiate the data collection process, our first step is to gather
repositories. We collect public repositories created before May 2024 on GitHub and retain python
language. In order to tackle any potential data leakage concerns, we focus on repositories that have

1https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
2https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
3https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
4https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1

2

https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

…

2. [a.py, b.py, d.py]

1. [b.py, c.py]

Code Chains

…

Step2: Dependency Graph Generation

Step3: CodeChain
Generation

Step1: Data Crawling and Filtering

Python repositories

Dependency
parser

a
b

c

d
e f

…
import a
…

b.py

Dependency

Concatb

c

nx

CodeChain
Random
Walk

Step4: Quality Screening

Instruction: Given the
 푪풐�� , 푫�풑�풏��풏�� ,
Generate README/
Interface Documentation
/Configuration Files.

Prompt

GPT4

Step5: Chain-Instruct GenerationStep6: GPT4 Reviewing

Step7: Human-in-the-loop

Figure 1: Data Curation Framework. There are seven parts in our framework to gain the high quality
repository-level datasets.

been recently created and are not forks. To ensure better data quality, we start the downloading
process sequentially from the ones with the highest stars count. Besides, we apply filtering rules
similar to Deepseek-Coder (Guo et al., 2024) to preliminarily filter out lower-quality code. By
applying these filtering rules, we reduce the total amount of data to only 86.7% of its original size.
We briefly describe the filter rules: Firstly, we filter out files with an average line length exceeding
100 characters or a maximum line length surpassing 1000 characters. Additionally, we remove files
with fewer than 25% alphabetic characters. After removing the duplicate ones, 55264 repositories
are retained. We provide more details on the diverse sources of CODECHAIN in Appendix G.

3.2 DEPENDENCY GRAPH GENERATION

After downloading repositories from GitHub, our next step is to get the dependency relationships for
each repository. In order to better construct the code-chains from the dependency relationships, we
save the dependency relationships in graphs which we call dependency graphs. Each dependency
graph is a directed graph that can describe the calling relationships between files within a repository.
In this graph, each node represents a code file and it points to the code files that import it. To
generate the dependency graphs, we read every code file in the same repository and consider various
expressions in code for importing modules to extract the dependency relationships. The expressions
included are as follow:

• Basic import(and rename): Use the ”import” keyword followed by the module name or
”as” keyword to give it an alias, like ”import xx”,”import xx as xxx”.

• Import specific content from a module(and rename): Use the ”from” keyword followed
by the module name and ”import” keyword (and ”as” keyword), such as ”from a import b
as c”.

• Import multiple functions: use a comma-separated list within the import statement for
importing multiple functions from a module or package,like ”from mymodule import func-
tion1, function2”.

• Absolute references: An absolute reference specifies the complete path to a resource from
the root directory. For instance, ”from mypackage.mymodule”,”import myfunction”.

• Relative references: A relative reference specifies a path starting from the current location
in the directory structure. For example, ”from . import sibling module”.

Our dependency parser can analyze these expressions to identify the imported modules. It then
searches to ascertain whether the referenced modules correspond to files within the same repository.
This process starts from the root directory of the current program and adheres to code’s import
mechanism. The process of our dependency parser is written as the HasDependency() function in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1. Then if file A import file B, we add edge from B to A in the dependency graph.
It’s worth noting that in a repository, the dependency relationships may not necessarily be fully
contiguous. Hence, for the same repository, there might not be only one dependency graph.

3.3 CODE-CHAIN GENERATION

Algorithm 1 Random Walk for Codechains Generation

1: procedure CODECHAINGENERATION(files,threshold)
2: total degree← 0
3: selected chain← []
4: graph← {}
5: inDegree← {}
6: for each file in files do
7: graph[file]← [] ▷ Initialize empty adjacency list for file
8: inDegree[file]← 0 ▷ Initialize in-degree as 0 for file
9: end for

10:
11: for each fileA in files do ▷ Generate a list of files
12: that fileA depends on
13: dependencies← [fileB for fileB in files if HASDEPENDENCY(fileA, fileB)]
14: for each fileB in dependencies do
15: graphs[fileB].append(fileA) ▷ If A import B,
16: Add edge from B to A
17: inDegree[fileA]← inDegree[fileA] + 1 ▷ Increment in-degree of A
18: end for
19: end for
20:
21: while total degree < threshold do
22: degree← 0 ▷ Randomly Select a item
23: as the start of a chain
24: initial item← RANDOMCHOICE(files)
25: newlist.append(initial item)
26: degree← degree+ inDegree[initial item]
27: while random item ̸= null do
28: random item← RANDOMCHOICE(graphs[random item])
29: newlist.append(random item) ▷ Randomly select the next item in
30: files depend on this item
31: degree← degree+ inDegree[random item]
32: if newlist not in selected chain then
33: seletcted chains.append(newlist)
34: total degree← total degree+ degree
35: end if
36: end while
37: end while
38: return selected chain
39: end procedure

We next generate code-chains from the dependency graphs. If we select a path on a dependency
graph, the path could be seen as a sequential chain representing a subset of the file dependency
relationships within a repository, where each node is imported by the next node it points to. We term
a path like this a code-chain. The Algorithm 1 describes the process of code-chains generation on
the dependency graphs in one repository. The generation process consists of two steps: In-degree
calculation and Random Walk.

To compute the in-degree for each node, the algorithm initializes with the creation of two data
structures: an empty adjacency list dictionary named ”graphs” to map dependencies between files,
and an empty dictionary named ”in degree” to keep track of the number of dependencies each file
has. The algorithm proceeds by iterating over each file to establish dependencies between pairs of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

files. If ”fileA” depends on ”fileB”, ”fileA” is added to the adjacency list of ”fileB” in ”graphs”,
which means creating an directed edge from ”fileB” to ”fileA”. Concurrently, the in-degree of
”fileA” is incremented in the ”in degree” dictionary. Then, we set up a threshold to limit the number
of chains generated by restricting the cumulative sum of in-degrees of all chain nodes across the
entire repository. We build the code-chains from the dependency graphs based on their degrees and
through a way of random selections. Specifically, The process begins with the random selection
of a node within the graph, which serves as the starting point for initializing a chain. Then, this
process continues by randomly selecting the next node from among those that are dependent on the
current one, until no further nodes are available. If the cumulative degree stays below a predefined
threshold, the newly formed chain is added to a list of selected chains. This process repeats until the
total degree of all chains exceeds the threshold. When we gain all the code chains, we remove the
duplicate ones.

3.4 QUALITY SCREENING AND TEXT CONCATENATION

After generating the code chains, each code file within the same chain is concatenated to form a
training sample. A comment indicating the chain between files is added at the beginning of each
file to incorporate dependency information. In addition to applying the filtering rules outlined in
Section 3.1, we exclude any repository that does not encompass all its files in the chains or lacks
dependency relationships to maintain file integrity. Furthermore, to prevent contamination from
public benchmarks like HumanEval, we adopt the same n-gram filtering process used by DeepSeek-
Coder Guo et al. (2024). Specifically, we remove any code segment from CODECHAIN that contains
a 10-gram sequence matching one found in the test data. For test data strings shorter than 10-grams
but at least 3-grams long, we use precise matching to ensure exclusion. These quality screening
measures reduce the dataset to 61.5% of its original size.

3.5 CHAIN-INSTRUCT GENERATION

To optimize the use of dependency information during the fine-tuning process of models, we metic-
ulously design five distinct instruction tasks: predicting dependencies from code files, completing
code based on dependencies, writing README files, creating API documentation, and gener-
ating configuration files. Detailed examples are available in the Appendix K.

We construct the instruction datasets for code-chain that range in length from 2 to 4. Specifically,
the tasks of predicting dependencies from code and completing code based on dependencies are au-
tomated using scripts. However, the other three tasks cannot be automated. For these, motivated by
previous work Wang et al. (2023a); Xu et al. (2023), we employ specific prompts to engage GPT-
4 OpenAI (2023) in assisting with their completion. The concrete prompts are in Appendix D.1.
Besides, we consider GPT4 (OpenAI, 2023) as a reference and supervisor to reflect on the data
quality. Entries that do not meet our stringent quality standards are meticulously flagged and subse-
quently removed. Please refer to Appendix D.2 for detailed prompts. Ultimately, we gain a total of
1,021,550 unique samples.

3.6 HUMAN-IN-THE-LOOP

Due to the volume of data reaching millions, individually inspecting each record requires a signif-
icant amount of manpower and resources. To address this, After the GPT4 scanning, we recruit
20 college students specializing in software engineering to conduct manual sample inspections, and
calculate the data quality pass rate. Specifically, we first randomly select 10,000 samples from the
dataset. To minimize the impact of subjective judgment, we provide all participating students with
comprehensive training and guidelines. During the assessment phase, each student evaluates the
quality of the samples, deciding whether they are acceptable or unacceptable. To ensure evaluation
accuracy, we implement a cross-validation method, ensuring that each sample is reviewed by at least
three different students. Furthermore, we establish a consensus mechanism based on the principle
that the minority should conform to the majority, resolving any ties or disagreements. The outcome
of these inspections consistently shows a 95.6% pass rate, affirming the high quality of our data.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

a
b

c

dinDegree[b]: 1

inDegree[a]: 0

inDegree[c]: 1

inDegree[d]: 1

Topological
Sort

Topological
Sort

File sequence: [a.py, b.py, f.py, d.py, c.py]

File sequence: [a.py, c.py, b.py, d.py]

File sequence: [a.py, c.py, d.py, f.py]

CodeChain DeepSeek CoderCase 1

Case 2

a

b
c

inDegree[a]: 0
inDegree[c]: 2

inDegree[b]: 0

d
inDegree[d]: 1

File sequence: [a.py, b.py, c.py]

 [a.py, b.py, d.py]

a
b

c

d
Random
Walk

f
inDegree[d]: 1

a

b
c d f

Random
Walk

[a.py, c.py, d.py, f.py] [b.py, a.py, d.py, f.py, c.py]

Figure 2: Comparison with DeepSeek-Coder: The image displays two rows, each illustrating dif-
ferent cases where DeepSeek-Coder yields incorrect rankings. The results from our method are
highlighted in red, while those from DeepSeek-Coder are shown in blue.

4 ANALYSIS OF CODECHAIN

4.1 CODECHAIN VS. DEEPSEEK-CODER

In DeepSeek-Coder Guo et al. (2024), the dependencies among files are analyzed on topological
graphs, with the in-degree of a node indicating the number of dependencies a file has. The files are
then sorted based on in-degrees as input for the model. However, this method does not accurately re-
flect the actual dependencies in a repository. Figure 2 demonstrates specific errors that occur during
the sorting. DeepSeek-Coder’s inaccurate file sorting stems from two main issues: 1) The algo-
rithm produces incorrect ordering when multiple nodes share the same in-degree. In Case 1, within
a branched structure, it is obvious that two files at a fork do not have any dependency. However,
through topological sorting, each file is forcibly assigned an order. Moreover, when encountering
multiple nodes with identical minimum in-degrees, the algorithm assigns their order randomly. This
leads to an inaccurate file sequencing based on the order of invocation, overlooking the indirect
invocation relationships among the files, as evidenced by nodes d and f in case 2.

2) The in-degrees might not accurately reflect the actual file dependencies in the invocation chain.
Placing the node with the highest in-degree at the end would lead to incorrect ordering. For exam-
ple, node c in case 2 has the highest in-degree yet is located in the middle of the chain. To address
this, we adopted a random walk strategy to establish an invocation chain based on file dependencies.
The method starts by randomly choosing an initial node and then continues by randomly selecting
subsequent nodes that are dependent on the current node. This continues until no further nodes are
available. The whole iteration ends until the cumulative in-degree of all nodes exceeds a predeter-
mined threshold. This approach ensures that the sequence accurately mirrors the true invocation
order and maintains the time complexity at O(n). The proof of the complexity can be seen in
Appendix E

4.2 STATISTIC FEATURES

In this section, we provide the statistics of CODECHAIN. Specifically, in Figure 3, we show the
distribution of the length of code-chains, and the distribution of the lines of code files containing in
each code-chain in Figure 4. Please refer to Appendix F for more statistics. these statistical analyses
demonstrate the diversity of our dataset and the completeness of the data distribution.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Distribution of Code-chain Length.
We count the number of chains of varying
lengths.

Figure 4: Distribution of lines of code files in
Code-chains. We count the lines of code files con-
taining in each code-chain.

5 EVALUATION

5.1 EVALUATION BENCHMARK

We evaluate the ability of single-file complement on HumanEval Chen et al. (2021) benchmark
and cross-file complement on CrossCodeEval Benchmark. HumanEval is a crafted collection of
164 Python programming problems to test the abilities of code generation models. Cross-file code
completion requires the model to access and understand repositories that span multiple files with
numerous cross-file dependencies.

5.2 EVALUATION METRICS

Pass@k. We adopt the Pass@k metric Chen et al. (2021) in HumanEval benchmark. We denote
the total number of successfully passing test cases as k, thus Pass@k:

Pass@k = E

[
1−

(
n

k−c

)(
n
k

)]
(1)

where n is the total number of generated samples for each problem, and c is the number of correct
generated code snippets passing all the test cases (n > k ≥ c).

Code Match. The code match metric evaluates generated code accuracy by comparing it to refer-
ence code using Exact Match (EM) and Edit Similarity (ES). These metrics assess the precision of
the code completion process, considering elements like identifiers, keywords, and operators.

5.3 IMPLETMENTATION DETAILS

Code-Llama and DeepSeek-Coder-Base are used as the base models for supervised fine-tuning
(SFT). All experiments are conducted with 16 NVIDIA A100-80GB GPUs. The learning rate first
increases into 8× 10−5 with 50 warmup steps and then adopts a cosine decay scheduler. We adopt
the Adam optimizer Kingma & Ba (2015) with a global batch size of 64 samples. For HumanEval
evaluation, we adopt EvalPlus Liu et al. (2023) for evaluation. For CrossCodeEval Ding et al. (2023),
we set the maximum sequence length to 2048 tokens, the maximum output length to 50 tokens, and
a limit of 512 tokens for the cross-file context.

5.4 EXPERIMENTAL RESULTS

As CODECHAIN consists of only python code, we give the comparison results on python language
on benchmarks.

Single-File Benchmark Evaluation Table 1 shows that models finetuned with our CHAIN-
INSTRUCT significantly beat the base models and recent open-source baselines, closing the gap with
GPT-3.5 and GPT-4 in HumanEval benchmark. From Magicoder Wei et al. (2023), Wavecoder Yu

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Evaluation results of Pass@1 on HumanEval. We use self-reported scores whenever avail-
able. All methods use greedy decoding.

Models Base Model Params Instruction Data Model Weight HumanEval
Proprietary Models

GPT-3.5 Turbo - - - - 72.6
GPT-4 Turbo - - - - 85.4

Open-source Models

phi-2-2.7B Gunasekar et al. (2023) - 2.7 B ✗ ✔ 49.8
CHAIN-INSTRUCT (ours) phi-2-2.7B 2.7 B ✗ ✔ 65.2

StarCoder Li et al. (2023) - 15B ✗ ✔ 33.6
WizardCoder Luo et al. (2023) StarCoder 15B ✔ ✔ 57.3
OctoCoder Muennighoff et al. (2023) StarCoder 15B ✔ ✔ 46.2
WaveCoder-SC Muennighoff et al. (2023) StarCoder 15B ✔ ✔ 50.5

CodeGeex2 Zheng et al. (2023) ChatGLM 6B ✔ ✔ 36
Code-Llama Rozière et al. (2023) - 7B ✗ ✔ 33.5
Code-Llama-Instruct Rozière et al. (2023) Code Llama 7B ✔ ✔ 34.8
WaveCoder-CL Yu et al. (2023) Code Llama 7B ✔ ✔ 48.1
Magicoder-CL Wei et al. (2023) Code Llama 7B ✔ ✔ 60.4
CHAIN-INSTRUCT (ours) Code Llama 7B ✔ ✔ 65.4

DeepseekCoder Guo et al. (2024) - 1.3 B ✗ ✔ 33.9
DeepseekCoder - 6.7B ✗ ✔ 49.4
DeepseekCoder - 33 B ✗ ✔ 56.1
CHAIN-INSTRUCT (ours) Deepseek-Coder 1.3B ✔ ✔ 64.7
WaveCoder-DS Yu et al. (2023) Deepseek-Coder 6.7B ✔ ✔ 64.0
MagicoderS-CL Wei et al. (2023) Deepseek-Coder 6.7B ✔ ✔ 70.7
CHAIN-INSTRUCT (ours) Deepseek-Coder 6.7B ✔ ✔ 74.3
CHAIN-INSTRUCT (ours) Deepseek-Coder 33 B ✔ ✔ 77.4

et al. (2023) and CODECHAIN, we can see the effectiveness of instruction datasets from code snip-
pets. Besides, the results also demonstrate that the information of code dependency is effective for
understanding and generating code. At the same time, for multilingual evaluation, we conduct more
tests on MBPP benchmark Austin et al. (2021) in Appendix I. Besides, we test the effects of de-
pendencies in context on ODEX Wang et al. (2023b) for general API usage. More results are in
Appendix J.

Repo-level Benchmark Evaluation For Repo-level Evaluation, we first assess the performance
of current open-source models on the CrossCodeEval Ding et al. (2023). The results, displayed in
Table 2, reveal that models with CHAIN-INSTRUCT consistently excel over competitors in cross-
file completion tasks, highlighting the dependency information enhanced effectiveness in practical
applications. Notably, this dataset is established between March and June 2023. In contrast, our
CHAIN-INSTRUCT dataset deliberately omits code repositories created during this timeframe. This
exclusion guarantees that the dataset is not part of our training data, effectively preventing any data
leakage. Besides, we conduct evaluation on RepoBench-C Liu et al. (2024) in Appendix H.

5.5 ABLATION AND ANALYSIS

Effect of Repository Generation Algorithm. In the section, we compares our random walk for
repo-level code generation with DeepSeek-Coder. To ensure a more equitable evaluation, both the
CodeChain and DeepSeek-Coder pipelines are applied to the same dataset (CodeChain’s source
data). Since DeepSeek-coder doesn’t open source the code of their data processing pipline, we re-
produce it according to technical report, then we obtain the DeepSeek-Instruction dataset based on
the same data source. Comparison results are in Table 4, which further proves the advantages of
CHAIN-INSTRUCT. Furthermore, Table 3 demonstrates the ability of our algorithm to effectively
capture dependencies. We conduct a statistical analysis to measure the percentage of the graph’s
edges explored by our algorithm during the chain generation process. This analysis includes all
nodes and edges within the dependency graphs. In this context, a unique path in a graph is defined
as a sequence of edges that connects a series of nodes (vertices) without revisiting any node. These
unique paths represent the various ways in which nodes are interconnected through their dependen-
cies in the graph.

Effect of Data Quantity In Figure 5, both fine-tuned models initially score low but show im-
provement as more data is introduced, with scores rising from a data ratio of 0.2 to 1.0. While
scores continue to increase with more data, the rate of improvement slows at higher data ratios, sug-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance of different models on cross-file code completion.

Model Size Python

EM ES

Close-source Models

GPT-3.5-turbo Unknown 4.88% 52.58%
GPT-4-Turbo (Nov 2023) Unknown 20.66% 66.92%

Open-source Models

phi-2-2.7B 2.7B 5.28% 55.17%
CodeGeex2 6B 8.11% 59.55%
StarCoder-Base 7B 6.68% 59.55%
CodeLlama-Base 7B 7.32% 59.66%
DeepSeek-Coder 1.3B 4.18% 50.65%
DeepSeek-Coder 6.7B 9.53% 61.65%
DeepSeek-Coder 33B 11.68% 62.82%

Models Fine-tuned on CHAIN-INSTRUCT

phi-2-2.7B + CHAIN-INSTRUCT 2.7B 8.20% 58.44%
CodeLlama-Base + CHAIN-INSTRUCT 7B 16.85% 66.75%
DeepSeek-Coder + CHAIN-INSTRUCT 1.3B 4.18% 50.65%
DeepSeek-Coder + CHAIN-INSTRUCT 6.7B 20.13% 67.15%
DeepSeek-Coder + CHAIN-INSTRUCT 33B 22.62% 68.12%

Table 3: The percentage of graph edges explored by our algorithm during the process of generating
unique dependency chains.

Total Nodes Total Edges Nodes Explored Edges Explored Unique Paths Found Proportion of Nodes Covered Proportion of Edges Covered
1110392 1508577 1045921 1453490 523563 94.2% 96.4%

gesting that the models may be nearing their performance peak or that additional data contributes
less significantly to further gains.

Effect of the length of the Code Chain Given that our instruction chains vary in length from 2 to
4, we allocate an equal amount of data (20,000 samples) for fine-tuning the model across each chain
length. In Figure 6, performance improves as code chain length increases for both models. Longer
chains significantly boost performance by providing more contextual information, which enhances
pattern recognition and the handling of complex code structures. This leads to better predictions and
higher quality code generation, allowing models to effectively manage more intricate programming
tasks.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Chain-Instruct

33

38

43

48

53

58

63

68

73

78

Sc
or

e

DeepSeek-Coder
Coder-LLama

Figure 5: Ablation on Data Quantity. We ex-
amine the impact of varying training data ratios
(0.2 1.0) on model performance.

Figure 6: Ablation on length of code chain. We
give the performance of two fine-tuned models
across varying lengths of code chains (2, 3, and
4).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Results of CODECHAIN and DeepSeek-Coder on Repository Generation Algorithm.

Model Parameter HumanEval CCEval (EM) CCEval (ES)

DeepSeekCoder-6.7B-Base 6.7 B 49.4 9.53% 61.65%
DeepSeekCoder-6.7B-Base + CodeChain-Instruction 6.7 B 74.3 20.13% 67.15%
DeepseekCoder-6.7B-Base + DeepSeek-Instruction 6.7 B 69.7 14.25% 63.33%

6 CONCLUSION

In this paper, we introduce a million-scale dataset, CODECHAIN, designed for training code LLM
at the repository level. We employ a novel random walk method to capture cross-file dependencies
and concatenate files to form code chains. Additionally, we create an instruction dataset, CHAIN-
INSTRUCT, to enhance the model’s learning of code contents and dependencies. Extensive evalua-
tions on public benchmarks confirm CODECHAIN’s effectiveness in code understanding and gener-
ation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. SantaCoder: Don’t
reach for the stars! arXiv preprint arXiv:2301.03988, 2023. URL https://arxiv.org/
abs/2301.03988.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021. URL https://arxiv.org/abs/2108.
07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint
arXiv:2309.16609, abs/2309.16609, 2023. URL https://arxiv.org/abs/2309.16609.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374, abs/2107.03374, 2021.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Kr-
ishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval: A
diverse and multilingual benchmark for cross-file code completion. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and
natural languages. In Findings of the Association for Computational Linguistics: EMNLP 2020,
Online Event, 16-20 November 2020, volume EMNLP 2020 of Findings of ACL, pp. 1536–1547.
Association for Computational Linguistics, 2020. doi: 10.18653/V1/2020.FINDINGS-EMNLP.
139. URL https://doi.org/10.18653/v1/2020.findings-emnlp.139.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida I. Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code in-
filling and synthesis. arXiv preprint arXiv:2204.05999, abs/2204.05999, 2022. URL https:
//arxiv.org/abs/2204.05999.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. CoRR, abs/2306.11644, 2023.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024. URL https://arxiv.
org/abs/2401.14196.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

11

https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2309.16609
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
http://arxiv.org/abs/1412.6980

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferran-
dis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. StarCoder:
May the source be with you! arXiv preprint arXiv:2305.06161, abs/2305.06161, 2023. doi:
10.48550/arXiv.2305.06161. URL https://doi.org/10.48550/arXiv.2305.06161.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cy-
prien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with AlphaCode. arXiv preprint arXiv:2203.07814, abs/2203.07814, 2022. URL
https://arxiv.org/abs/2203.07814.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation.
arXiv preprint arXiv:2305.01210, abs/2305.01210, 2023. URL https://arxiv.org/abs/
2305.01210.

Tianyang Liu, Canwen Xu, and Julian J. McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. WizardCoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023. URL https://arxiv.org/abs/
2306.08568.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. OctoPack: Instruction
tuning code large language models. arXiv preprint arXiv:2308.07124, abs/2308.07124, 2023.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code Llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023. URL https://arxiv.org/abs/2308.12950.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. BLOOM: A 176B-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-Instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 13484–13508. Association
for Computational Linguistics, 2023a.

12

https://doi.org/10.48550/arXiv.2305.06161
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2308.12950

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. CodeT5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021. URL https://arxiv.org/abs/2109.00859.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation for
open-domain code generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of
the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023,
pp. 1271–1290. Association for Computational Linguistics, 2023b.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code
is all you need. arXiv preprint arXiv:2312.02120, abs/2312.02120, 2023. doi: 10.48550/ARXIV.
2312.02120. URL https://doi.org/10.48550/arXiv.2312.02120.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. arXiv preprint arXiv:2304.01196, 2023.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, Can Xu, Yishujie Zhao, Wenxiang Hu, and
Qiufeng Yin. Wavecoder: Widespread and versatile enhanced instruction tuning with refined data
generation. arXiv preprint arXiv:2312.14187, abs/2312.14187, 2023. doi: 10.48550/ARXIV.
2312.14187. URL https://doi.org/10.48550/arXiv.2312.14187.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual evaluations on humaneval-x. arXiv preprint arXiv:2303.17568,
abs/2303.17568, 2023. doi: 10.48550/ARXIV.2303.17568. URL https://doi.org/10.
48550/arXiv.2303.17568.

13

https://arxiv.org/abs/2109.00859
https://doi.org/10.48550/arXiv.2312.02120
https://doi.org/10.48550/arXiv.2312.14187
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A LIMITATIONS

CodeChain focuses on some popular language repositories, potentially excluding insights from other
programming languages. Also we need to set a better stopping strategy for ramdom walk in the fu-
ture instead of using a threshold. Moreover, the criteria used for quality screening may inadvertently
favor certain types of code or repositories, potentially excluding valuable but unconventional coding
practices from the dataset.

B SOCIAL IMPACT OF DATASET

Potential benefits: CodeChain provides a richer context for LLMs to learn from by augmenting the
code pre-training dataset at the repository level. This richer context can lead to improved model per-
formance and understanding of code semantics. We release a comprehensive data curation pipeline
for anyone to use to get more different code language repositories. Our method ensures the genera-
tion of dependencies in the true file order, which is crucial for handling code repositories. This could
help others to build upon our works and furthur advance the ability of Code LLMs at the repository
level.

Potential risks: Collecting code from over 50,000 repositories from GitHub raises potential privacy
and legal concerns, especially if the code includes proprietary or copyrighted material without proper
authorization or consent. Like any large-scale dataset sourced from online repositories, CodeChain
may inadvertently capture and perpetuate biases present in the original data sources. This could
lead to biased model predictions and reinforce existing societal inequalities in code development
and usage.

C CROWDSOURCING

In conducting our study, we identified several potential risks to participants. Firstly, there is a risk to
privacy and confidentiality, as participants are required to share personal information. To mitigate
this, all data will be anonymized and stored securely, with access restricted to authorized personnel
only. Secondly, there may be psychological risks, such as discomfort or stress during the tasks. To
address this, we have included detailed instructions and debriefing sessions to ensure participants
feel supported throughout the process. Additionally, participants have the right to withdraw from
the study at any time without penalty. Lastly, while there are no significant physical risks associated
with our procedures, we will monitor participants for any signs of distress and provide appropriate
support. We pay each participant an hourly rate of $10. The primary participants we recruit are
college students.

D PROMPT TEMPLATES

D.1 PROMPTS FOR CHAIN-INSTRUCT GENERATION

Generate README File
Please generate a comprehensive README document for the project, utilizing the provided file contents
and outlined dependency relationships.
The README may include the following sections: a clear project title, a brief description of the project’s
purpose, installation instructions, usage guidelines, a list of dependencies with explanations of their roles,
code examples where applicable, and a section on how to contribute to the project.
Ensure that the documentation is user-friendly, technically accurate, and formatted for easy readability.
Include any necessary warnings or notes that users must be aware of when interacting with the project.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Generate Interface Documentation
Please generate detailed interface documentation for the software project, using the provided code file con-
tents and dependency relationships.
The documentation may comprehensively describe each function and class in the code. Include the follow-
ing details for each interface component: a clear description, parameters with types and descriptions, return
values and their types, exceptions that might be thrown, and example usage scenarios.
Ensure that the documentation is well-structured, maintaining a consistent format across sections. The
document should also include an introduction to the interface, its overall purpose, and any specific consid-
erations or compatibility issues. Aim for clarity, accuracy, and utility to aid developers in understanding
and implementing the interfaces effectively.

Generate Configuration File
Please create a comprehensive configuration file for the project, using the provided file contents and detailed
dependency relationships.
The configuration file may include key-value pairs or settings that are essential for the operation of the
project. Ensure to include sections categorizing different types of settings such as database connections,
API keys, environment variables, and other critical infrastructure components. Each entry should be clearly
commented to explain its purpose, expected values, and any dependencies it has on other settings. For-
mat the file for easy navigation and modification, using consistent indentation and spacing. Also, provide
guidelines at the beginning of the file on how to correctly update or modify these settings to meet specific
deployment environments or use cases.

D.2 PROMPT FOR DATA QUALITY

The prompt we employ for GPT-4 is deliberately tailored to elicit insightful evaluations and is as
follows:

Quality Prompt: You are now a data grader. You will grade the data I provide according to my require-
ments, explain the reasons, and then give a piece of higher-quality data based on this piece of data.
Please help me rate the following dialogue data and explain the reasons. Require:
1. Scoring perspective: whether the problem belongs to the field of code; whether the description is clear;
whether the answer is accurate; whether the language is coherent;
2. Point scale: 5-point scale, 1 point: very poor; 2 points: slightly poor; 3 points: barely qualified; 4 points:
usable; 5 points: excellent.
3. Please rate the answer. If the score is lower than 5 points and higher than 2 points, a higher quality data
will be generated based on this piece of data.
4. Format: You can only return a parsable json format data, no other content. For example: ”score”:
4, ”reason”: ””, ”modified-data”: ””. Among them, score represents the score for this question, reason
represents the reason for the score, and states the advantages and disadvantages of the data, and modified-
data represents You generated a new, higher-quality data based on the above data. Compared with the data
provided, this new data solves the shortcomings you mentioned above and is directly available.
5. All reasons are written in reason.
6. If the score is lower than 5 points and higher than 2 points, modified-data must be provided.
7. Modified-data contains a complete piece of data that is directly available, and the quality must be higher
and more in line with the quality of ChatGPT’s training data. If null needs to be output, replace it with
None. Now please follow the above requirements to annotate the following conversation data and return
your annotated results in pure json form: ””.

E PROOF OF TIME COMPLEXITY

Let:

• n: The total number of files in the repository.

• T (n): The time complexity of the algorithm.

• degree(x): The degree or in-degree of item x (which represents its connections or depen-
dencies).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E.1 OUTER LOOP

The outer loop runs while the condition total degree < threshold is satisfied. Initially, the degree
is set to 0. A random item is chosen from the file list, denoted by:

Initial item = RandomChoice(files)

This selected item is added to a new list:

newlist← newlist ∪ {Initial item}
The degree is updated by adding the in-degree of the selected item:

degree← degree + inDegree(Initial item)

Each of these operations—random selection, list update, and degree update—has a constant time
complexity of O(1).

E.2 INNER LOOP

When a random item exists (i.e., random item ̸= ∅), the inner loop is executed. A new random
item is selected from the graph:

random item = RandomChoice(graphs[random item])

This item is then added to the list:

newlist← newlist ∪ {random item}
The degree is updated once again by adding the in-degree of the newly selected item:

degree← degree + inDegree(random item)

Before appending the updated list to the set of selected chains, the algorithm ensures that this list is
not already present:

if newlist /∈ selected chains, then append newlist to selected chains

Finally, the total degree is incremented by the newly computed degree:

total degree← total degree + degree

E.3 TIME COMPLEXITY ANALYSIS

The operations in the inner loop, like random selection, list append, and degree updates, all have
constant time complexity O(1). The only exception is the check to see whether newlist /∈
selected chains, which, in the worst case, has a time complexity of O(n), where n is the num-
ber of files, since it involves searching the list.

The outer while loop runs while total degree < threshold. Since the total degree accumulates
based on the file selections, the number of iterations of the outer loop is proportional to n. Therefore,
the overall time complexity can be expressed as:

T (n) =

k∑
1

c

where k represents the number of iterations of the outer loop, and c is the constant time per iteration.
Given that k is proportional to n, the total time complexity simplifies to:

T (n) = O(n · c) = O(n)

Thus, the algorithm has a time complexity of O(n).

F STATISTIC DETAILS

Here, we give more statistic details for CODECHAIN in Table 5. We trace back the word frequency
across all repository titles to better understand the contents of these repositories. The word cloud
Figure 7 shows the top 30 words with the highest frequency.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Statistic details of our CODECHAIN

Features Statistics

Size 8.65GB
The Number of Chains 562587
The Number of Repos 31182
Average Chain Length 1.79

The Number of Chains (chain length >1) 246776
Average Chain Length (chain length >1) 2.81

Number of CHAIN-INSTRUCT 1,021,550

Figure 7: Word Cloud of CODECHAIN.

G SOURCE OF CODECHAIN

In CODECHAIN, the diversity of data sources is essential for ensuring the broad applicability our
datasets. We categorize the collected repositories into four classes based on their functionalities:
Artificial Intelligence, Web Development, Data Processing, and Others. Figure 8 shows the distri-
bution of repositories with different functionalities, with Artificial Intelligence and Web Develop-
ment collectively accounting for over half of the total. Specifically, Computer Vision technologies
lead at 21.2%, followed by Natural Language Processing at 8.6%, and Machine Learning at 5.1%.
In Web Development, Frontend and Backend technologies collectively represent 17.6% and 9.1%
of our data sources respectively. Additionally, Network programming account for 10.3% of the total
distribution. Within Data Processing, the subcategories include Crawlers, Data Analysis, and Au-
tomated Scripts. The ”Other” category includes miscellaneous items that do not fit into the main
categories, which include Tutorials, Plugins, and other miscellaneous items.

H MORE RESULTS ON REPOBENCH

In this section, we conduct experiments on RepoBench-c, more results are in Table 6. CHAIN-
INSTRUCT performs better than other baselines.

I SCALABILITY TO OTHER LANGUAGES

Our framework for generating code chains can be easily extended to support various programming
languages. Based on the same data processing pipeline, we collect and generate fine-tuning datasets
for the Java and C++ languages as a case to show the scalability of our pipelines. At the same time,
based on this multilingual version, we conduct more tests on MBPP benchmark Austin et al. (2021).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 8: Sources of CODECHAIN.

Table 6: the results on the RepoBench-C. The results show that CHAIN-INSTRUCT helps improve
the generation and understanding capabilities at the repo-level.

Model Size ALL

EM ES

CodeGen 350M 32.44 71.08
CodeGen 2.7B 27.35 68.30
CodeGen 6.1B 31.67 70.68
StarCoder 15.5B 31.67 71.28

Codex 175B 31.31 72.22
DeepSeekCoder-6.7B-Base 6.7B 32.44 71.08

DeepSeekCoder-6.7B-Base + CHAIN-INSTRUCT 6.7B 34.12 72.42
DeepseekCoder-33B-Base 33B 34.02 72.15

DeepSeekCoder-33B-Base + CHAIN-INSTRUCT 33B 35.83 73.03

J MORE RESULTS ON ODEX

More results on ODEX(General API usage) are in Table 8.

K MORE EXAMPLES OF CHAIN-INSTRUCT

We provide five cases for five instructions. As you can see in Figure 9, Figure 10, Figure 11,
Figure 12, and Figure 13,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Results on MBPP.

Model Parameter MBPP

DeepSeek-Coder-base 1.3 B 47.7
DeepSeek-Coder-base + CHAIN-INSTRUCT 1.3 B 55.0
DeepSeek-Coder-base 6.7 B 58.7
DeepSeek-Coder-base + CHAIN-INSTRUCT 6.7 B 65.3
DeepSeek-Coder-base 33 B 65.3
DeepSeek-Coder-base + CHAIN-INSTRUCT 33 B 69.3

Table 8: Results on ODEX

Model Parameter pass@1 pass@2 pass@5
DeepSeek-Coder-base 6.7B 41.28 46.12 53.47
DeepSeek-Coder-base + CodeChain-Instruction 6.7B 45.36 51.07 58.10
DeepSeek-Coder-base 33B 49.28 58.55 66.17
DeepSeek-Coder-base + CodeChain-Instruction 33B 51.87 61.24 70.25

“Instruction": "Analyze the following code snippet to determine the dependency relationship between files.”
"input": {

‘Chatbot/chatbotconfig.py’:
"""
import os
basedir = os.path.abspath(os.path.dirname(__file__))
class Config(object):
 SECRET_KEY=os.environ.get('SECRET_KEY') or 'you-will-never-guess'
""" ,
‘Chatbot/chatbot/__init__.py’:
"""
import flask
from flask import Flask
from chatbotconfig import Config
app=Flask(__name__)
app.config.from_object(Config)

import keras
import nltk
import pickle
import json
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer=WordNetLemmatizer()

model=load_model('chatbot_codes/mymodel.h5')
intents = json.loads(open('chatbot_codes/intents.json').read())
words = pickle.load(open('chatbot_codes/words.pkl','rb'))
classes = pickle.load(open('chatbot_codes/classes.pkl','rb'))
from chatbot import routes
""" ,
‘Chatbot/chatbot.py’:
"""
from chatbot import app
"""
},
"output": ['Chatbot/chatbotconfig.py', 'Chatbot/chatbot/__init__.py', ‘Chatbot/chatbot.py']
}

Figure 9: Case 1 of instruction tasks. The task is to analyze the following code snippet to determine
the dependency relationship between files.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

{
"Instruction": "Complete the corresponding code content based on the provided file contents and dependency relationships.”,
"input":
{
"dependency": ['Chatbot/chatbotconfig.py', 'Chatbot/chatbot/__init__.py', ‘Chatbot/chatbot.py'],

‘Chatbot/chatbotconfig.py’:
"""
import os
basedir = os.path.abspath(os.path.dirname(__file__))
class Config(object):
 SECRET_KEY=os.environ.get('SECRET_KEY') or 'you-will-never-guess'
""" ,
‘Chatbot/chatbot/__init__.py’:
"""
import flask
from flask import Flask
from #"The content to be completed."

app=Flask(__name__)
app.config.from_object(Config)
import keras,nltk
import pickle
import json
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer=WordNetLemmatizer()
model=load_model('chatbot_codes/mymodel.h5')
intents = json.loads(open('chatbot_codes/intents.json').read())
words = pickle.load(open('chatbot_codes/words.pkl','rb'))
classes = pickle.load(open('chatbot_codes/classes.pkl','rb'))
from chatbot import routes
""" ,
‘Chatbot/chatbot.py’:
"""
from chatbot import app
"""
},
"output":
”'''import flask
from flask import Flask
from chatbotconfig import Config
'''"
}

Figure 10: Case 2 of instruction tasks. The task is to complete the corresponding code content based
on the provided file contents and dependency relationships.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

{
"Instruction": “Generate a README document for the project based on the following file contents and dependency relationships.",
"input": {
"dependency": ['Chatbot/chatbotconfig.py', 'Chatbot/chatbot/__init__.py', ‘Chatbot/chatbot.py'],

‘Chatbot/chatbotconfig.py’:
"""
import os
basedir = os.path.abspath(os.path.dirname(__file__))
class Config(object):
 SECRET_KEY=os.environ.get('SECRET_KEY') or 'you-will-never-guess'

""" ,
‘Chatbot/chatbot/__init__.py’:
"""
import flask
from flask import Flask
from chatbotconfig import Config

app=Flask(__name__)
app.config.from_object(Config)

import keras,nltk
import pickle
import json
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer=WordNetLemmatizer()

model=load_model('chatbot_codes/mymodel.h5')
intents = json.loads(open('chatbot_codes/intents.json').read())
words = pickle.load(open('chatbot_codes/words.pkl','rb'))
classes = pickle.load(open('chatbot_codes/classes.pkl','rb'))
from chatbot import routes
""" ,
‘Chatbot/chatbot.py’:
"""
from chatbot import app
"""

},
"output": {
"README.md":
"'''
Project Overview
File Dependency Relationships
- `chatbotconfig.py` depends on `chatbot/chatbot/__init__.py`
- `chatbot/chatbot/__init__.py` depends on `chatbot/chatbot.py`

File Descriptions
- `chatbot/chatbotconfig.py`: Contains configuration settings for the chatbot.
- `chatbot/chatbot/__init__.py`: Initializes the chatbot application and loads necessary dependencies such as Flask, Keras, NLTK, and trained models.
- `chatbot/chatbot.py`: Entry point for the chatbot application.
'''"
}

Figure 11: Case 3 of instruction tasks. The task is to generate a README document for the project
based on the following file contents and dependency relationships.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

{"Instruction": "Generate interface documentation based on the following code file contents.",
"input": {
‘Chatbot/chatbotconfig.py’:
"""
import os
basedir = os.path.abspath(os.path.dirname(__file__))
class Config(object):
 SECRET_KEY=os.environ.get('SECRET_KEY') or 'you-will-never-guess'
""" ,
‘Chatbot/chatbot/__init__.py’:
"""
import flask
from flask import Flask
from chatbotconfig import Config
app=Flask(__name__)
app.config.from_object(Config)
import keras, nltk. pickle, json
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer=WordNetLemmatizer()
model=load_model('chatbot_codes/mymodel.h5')
intents = json.loads(open('chatbot_codes/intents.json').read())
words = pickle.load(open('chatbot_codes/words.pkl','rb'))
classes = pickle.load(open('chatbot_codes/classes.pkl','rb')
from chatbot import routes
""" ,
‘Chatbot/chatbot.py’:
"""
from chatbot import app
"""
},
"output": {
"Interface Documentation": {
File: chatbotconfig.py
Functions and Classes:
- `Config`: Class containing configuration settings for the chatbot.
- `SECRET_KEY`: A secret key for the application, retrieved from the environment variables or set to a default value if not found.

File: chatbot/__init__.py

Dependencies:
- `Flask`: Web framework for creating the chatbot application.
- `chatbotconfig.Config`: Configuration settings imported from `chatbotconfig.py`.

Loaded Dependencies:
- `keras`: Deep learning library for building and training models.
- `nltk`: Natural Language Toolkit for natural language processing tasks.
- `pickle`: Python module for serializing and deserializing objects.
- `json`: Python module for working with JSON data.
- `load_model`: Function for loading a Keras model from a file.
- `WordNetLemmatizer`: Class for lemmatizing words in text data.

Variables:
- `app`: Flask application instance.
- `model`: Loaded Keras model for the chatbot.
- `intents`: JSON data representing intents for the chatbot.
- `words`: Pickled data containing processed words.
- `classes`: Pickled data containing class labels.

Routes:
- `routes`: Module containing routes for the chatbot application.

File: chatbot.py

Dependencies:
- `app`: Flask application instance imported from the `chatbot` package.
}}}

Figure 12: Case 4 of instruction tasks. The task is to generate interface documentation based on the
following code file contents.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

{"Instruction": "Write a configuration file for the project based on the following file contents and their dependency relationships.",
"input": {
"dependency": ['Chatbot/chatbotconfig.py', 'Chatbot/chatbot/__init__.py', ‘Chatbot/chatbot.py'],

‘Chatbot/chatbotconfig.py’:
"""
import os
basedir = os.path.abspath(os.path.dirname(__file__))
class Config(object):
 SECRET_KEY=os.environ.get('SECRET_KEY') or 'you-will-never-guess'

""" ,
‘Chatbot/chatbot/__init__.py’:
"""
import flask
from flask import Flask
from chatbotconfig import Config
app=Flask(__name__)
app.config.from_object(Config)

import keras, nltk, pickle, json
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer=WordNetLemmatizer()
model=load_model('chatbot_codes/mymodel.h5')
intents = json.loads(open('chatbot_codes/intents.json').read())
words = pickle.load(open('chatbot_codes/words.pkl','rb'))
classes = pickle.load(open('chatbot_codes/classes.pkl','rb'))
from chatbot import routes
""" ,
‘Chatbot/chatbot.py’:
"""
from chatbot import app
"""
},
"output": {
"Project configuration file": "'''
[dependencies]
Chatbot/chatbotconfig.py = [Chatbot/chatbot/__init__.py]
Chatbot/chatbot/__init__.py = [Chatbot/chatbot.py]
Chatbot/chatbot.py = []

Other configuration items
[dependencies]
Chatbot/chatbotconfig.py = [os]
Chatbot/chatbot/__init__.py = [flask]
Chatbot/chatbot.py = []

''"}}

Figure 13: Case 5 of instruction tasks. The task is to write a configuration file for the project based
on the following file contents and their dependency relationships.

23

	Introduction
	Related Dataset work
	Data Curation Process
	GitHub Data Crawling and Filtering
	Dependency Graph Generation
	Code-Chain Generation
	Quality Screening and Text Concatenation
	Chain-Instruct Generation
	Human-in-the-loop

	Analysis of CodeChain
	CodeChain VS. DeepSeek-Coder
	Statistic Features

	Evaluation
	Evaluation Benchmark
	Evaluation Metrics
	Impletmentation Details
	Experimental Results
	Ablation and Analysis

	Conclusion
	Limitations
	Social Impact of Dataset
	Crowdsourcing
	Prompt Templates
	Prompts for Chain-Instruct Generation
	Prompt for Data Quality

	Proof of Time Complexity
	Outer Loop
	Inner Loop
	Time Complexity Analysis

	Statistic Details
	Source of CodeChain
	More Results on RepoBench
	Scalability to Other Languages
	More Results on ODEX
	More Examples of Chain-Instruct

