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ABSTRACT

Code large language models (LLMs) have shown remarkable advances in code
understanding and generation tasks. Programming corpora serve as the founda-
tion for various code LLMs. In reality, repositories consist of multiple files with
numerous cross-file dependencies. Leveraging the dependency information can
effectively enhance the code understanding and generation capabilities. However,
existing works fail to utilize dependencies effectively. Consequently, there is a
pressing need for an open dataset that specifically focuses on capturing and lever-
aging the cross-file dependencies. To fill in this gap, we release CODECHAIN, an
augmentation of the code dataset at the repository level, provides a rich context
for code LLMs to learn from. Specifically, to capture the cross-file dependen-
cies, we first parse the code project into a topological graph where nodes rep-
resent files and edges denote dependencies. Then, we employ a novel random
walk method to determine the code chain and concatenate the corresponding files.
To utilize such corpus for supervised fine-tuning, we design CHAIN-INSTRUCT to
enable the model to thoroughly learn the code contents and its dependencies. Ulti-
mately, we produce 562,587 code chains and 1,021,550 instruction samples. With
CODECHAIN, we train our model on multi-task learning objectives and evaluate
on the public benchmarks. The experimental results demonstrate that model by
learning the interconnected nature of codes significantly outperforms the previ-
ous methods, showcasing the effectiveness of CODECHAIN in advancing the code
understanding and generation.

1 INTRODUCTION

Code large language models (LLMs) have shown remarkable advances in code understanding, com-
pletion, and generation tasks. Code corpora, as the foundation of large code models Li et al. (2023);
Guo et al. (2024); Zheng et al. (2023); Rozière et al. (2023); Luo et al. (2023), are from diverse
sources: open-source repositories, platforms, forums, and so on. Models pre-trained and finetuned
with such data exhibit strong code understanding and analysis capabilities. For repository-level
code corpora, previous work decide to directly concatenate code files, which ignores the depen-
dency information between files within the project. To utilize dependency information, DeepSeek-
Coder Guo et al. (2024) adopts a topological sorting method, which orders files based on the number
of its dependencies of each file. Nonetheless, only considering the the number of dependencies can
not reflect the true dependency order between files. Moreover, it struggles to determine the correct
order when multiple files have identical dependency counts, leading to errors. More comparison
analysis are in Section 4.1.

To fill in this gap, we design a simple yet effective random walk method based on file dependencies
to determine the code chain. Specifically, we adopt the approach used by DeepSeek-Coder Guo
et al. (2024) to convert code files into a topological graph. In this graph, nodes represent files, and
edges symbolize the dependencies between them. The random walk begins by selecting a random
starting node on the graph. From there, subsequent nodes are chosen based on their dependency
relationships, continuing until the cumulative in-degree of the selected nodes surpasses a predefined
threshold. Our method not only captures the correct order of files when multiple nodes have the
same in-degree but also maps out indirect call relationships between files.

1
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Utilizing this pipeline, we curate a dataset CODECHAIN. This dataset provides a comprehensive
and accurate framework of file dependencies, enhancing the learning process for code LLMs. Addi-
tionally, we compile an instruction dataset tailored for supervised fine-tuning, generating 1,021,550
instruction samples. With CODECHAIN, we fine-tune our model and assess its performance on re-
cent well-known benchmarks. The results indicate that our model significantly surpasses previous
models in code understanding and generation capabilities by learning the interconnected nature of
code files, thereby underscoring the value of CODECHAIN in advancing these areas. The contribu-
tions of our paper are as follows:

• CODECHAIN. We develop and release a comprehensive data curation pipeline. Ultimately,
we compile 562,587 code chains, which can serve as training corpora for code language
models, significantly enhancing code understanding and generation capability.

• Repository Algorithm. We introduce a straightforward yet effective random walk method
for extracting dependencies. Unlike DeepSeek-Coder, our approach reliably generates de-
pendencies in the true file order, which is essential for accurately handling code reposito-
ries.

• CHAIN-INSTRUCT. Focusing on instruction fune-tuning, we design five distinct tasks for
each code chain that vary in length from 2 to 4, which results in the creation of 1,021,550
instruction samples.

• Impressive Performance. We assess the performance of our fine-tuned models on well-
known benchmarks. The models demonstrate exceptional performance by effectively
grasping the intricate interconnections within the repository, markedly outperforming pre-
vious models. This highlights the efficacy of CODECHAIN in advancing code understand-
ing and generation capabilities.

2 RELATED DATASET WORK

In recent years, numerous large language models (LLMs) have been developed specifically for code-
related tasks. Code LLMs Feng et al. (2020); Chen et al. (2021); Scao et al. (2022); Li et al. (2022);
Allal et al. (2023); Fried et al. (2022); Wang et al. (2021); Bai et al. (2023); Guo et al. (2024) pre-
trained on billions of code snippets from diverse sources (e.g. GitHub), such as Starcoder Li et al.
(2023); Lozhkov et al. (2024), CodeLlama Rozière et al. (2023), and DeepSeek-Coder Guo et al.
(2024). The development and refinement of Code LLMs have been pivotal in automating software
development tasks, providing code suggestions, and supporting natural language to code transla-
tions. Besides, there exits several open-source code fine-tuning datasets: Magicoder-OSS-Instruct 1,
Python code subset of ShareGPT 2, Magicoder-Evol-Instruct 3, and Evol-Instruct-Code 4. These
instruction datasets primarily focus on enhancing the ability to understand code and solve coding
problems within a single file without considering cross-file dependencies. While our CODECHAIN
can efficient utilize such dependency information, providing a repository-level understanding.

3 DATA CURATION PROCESS

Overview: The overall process of data curation is in Figure 1. Our curation mainly consists of
seven parts: data crawling and filtering, dependency graph generation, CodeChain generation, qual-
ity screening, Chain-Instruct generation, GPT4 Reviewing, and human-in-the-loop testing.

3.1 GITHUB DATA CRAWLING AND FILTERING

CODECHAIN is a large-scale dataset consisting of code texts concatenated based on dependency
relationships at the repository level. To initiate the data collection process, our first step is to gather
repositories. We collect public repositories created before May 2024 on GitHub and retain python
language. In order to tackle any potential data leakage concerns, we focus on repositories that have

1https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
2https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
3https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
4https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1
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Figure 1: Data Curation Framework. There are seven parts in our framework to gain the high quality
repository-level datasets.

been recently created and are not forks. To ensure better data quality, we start the downloading
process sequentially from the ones with the highest stars count. Besides, we apply filtering rules
similar to Deepseek-Coder (Guo et al., 2024) to preliminarily filter out lower-quality code. By
applying these filtering rules, we reduce the total amount of data to only 86.7% of its original size.
We briefly describe the filter rules: Firstly, we filter out files with an average line length exceeding
100 characters or a maximum line length surpassing 1000 characters. Additionally, we remove files
with fewer than 25% alphabetic characters. After removing the duplicate ones, 55264 repositories
are retained. We provide more details on the diverse sources of CODECHAIN in Appendix G.

3.2 DEPENDENCY GRAPH GENERATION

After downloading repositories from GitHub, our next step is to get the dependency relationships for
each repository. In order to better construct the code-chains from the dependency relationships, we
save the dependency relationships in graphs which we call dependency graphs. Each dependency
graph is a directed graph that can describe the calling relationships between files within a repository.
In this graph, each node represents a code file and it points to the code files that import it. To
generate the dependency graphs, we read every code file in the same repository and consider various
expressions in code for importing modules to extract the dependency relationships. The expressions
included are as follow:

• Basic import(and rename): Use the ”import” keyword followed by the module name or
”as” keyword to give it an alias, like ”import xx”,”import xx as xxx”.

• Import specific content from a module(and rename): Use the ”from” keyword followed
by the module name and ”import” keyword (and ”as” keyword), such as ”from a import b
as c”.

• Import multiple functions: use a comma-separated list within the import statement for
importing multiple functions from a module or package,like ”from mymodule import func-
tion1, function2”.

• Absolute references: An absolute reference specifies the complete path to a resource from
the root directory. For instance, ”from mypackage.mymodule”,”import myfunction”.

• Relative references: A relative reference specifies a path starting from the current location
in the directory structure. For example, ”from . import sibling module”.

Our dependency parser can analyze these expressions to identify the imported modules. It then
searches to ascertain whether the referenced modules correspond to files within the same repository.
This process starts from the root directory of the current program and adheres to code’s import
mechanism. The process of our dependency parser is written as the HasDependency() function in

3
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Algorithm 1. Then if file A import file B, we add edge from B to A in the dependency graph.
It’s worth noting that in a repository, the dependency relationships may not necessarily be fully
contiguous. Hence, for the same repository, there might not be only one dependency graph.

3.3 CODE-CHAIN GENERATION

Algorithm 1 Random Walk for Codechains Generation

1: procedure CODECHAINGENERATION(files,threshold)
2: total degree← 0
3: selected chain← [ ]
4: graph← {}
5: inDegree← {}
6: for each file in files do
7: graph[file]← [ ] ▷ Initialize empty adjacency list for file
8: inDegree[file]← 0 ▷ Initialize in-degree as 0 for file
9: end for

10:
11: for each fileA in files do ▷ Generate a list of files
12: that fileA depends on
13: dependencies← [fileB for fileB in files if HASDEPENDENCY(fileA, fileB)]
14: for each fileB in dependencies do
15: graphs[fileB].append(fileA) ▷ If A import B,
16: Add edge from B to A
17: inDegree[fileA]← inDegree[fileA] + 1 ▷ Increment in-degree of A
18: end for
19: end for
20:
21: while total degree < threshold do
22: degree← 0 ▷ Randomly Select a item
23: as the start of a chain
24: initial item← RANDOMCHOICE(files)
25: newlist.append(initial item)
26: degree← degree+ inDegree[initial item]
27: while random item ̸= null do
28: random item← RANDOMCHOICE(graphs[random item])
29: newlist.append(random item) ▷ Randomly select the next item in
30: files depend on this item
31: degree← degree+ inDegree[random item]
32: if newlist not in selected chain then
33: seletcted chains.append(newlist)
34: total degree← total degree+ degree
35: end if
36: end while
37: end while
38: return selected chain
39: end procedure

We next generate code-chains from the dependency graphs. If we select a path on a dependency
graph, the path could be seen as a sequential chain representing a subset of the file dependency
relationships within a repository, where each node is imported by the next node it points to. We term
a path like this a code-chain. The Algorithm 1 describes the process of code-chains generation on
the dependency graphs in one repository. The generation process consists of two steps: In-degree
calculation and Random Walk.

To compute the in-degree for each node, the algorithm initializes with the creation of two data
structures: an empty adjacency list dictionary named ”graphs” to map dependencies between files,
and an empty dictionary named ”in degree” to keep track of the number of dependencies each file
has. The algorithm proceeds by iterating over each file to establish dependencies between pairs of

4
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files. If ”fileA” depends on ”fileB”, ”fileA” is added to the adjacency list of ”fileB” in ”graphs”,
which means creating an directed edge from ”fileB” to ”fileA”. Concurrently, the in-degree of
”fileA” is incremented in the ”in degree” dictionary. Then, we set up a threshold to limit the number
of chains generated by restricting the cumulative sum of in-degrees of all chain nodes across the
entire repository. We build the code-chains from the dependency graphs based on their degrees and
through a way of random selections. Specifically, The process begins with the random selection
of a node within the graph, which serves as the starting point for initializing a chain. Then, this
process continues by randomly selecting the next node from among those that are dependent on the
current one, until no further nodes are available. If the cumulative degree stays below a predefined
threshold, the newly formed chain is added to a list of selected chains. This process repeats until the
total degree of all chains exceeds the threshold. When we gain all the code chains, we remove the
duplicate ones.

3.4 QUALITY SCREENING AND TEXT CONCATENATION

After generating the code chains, each code file within the same chain is concatenated to form a
training sample. A comment indicating the chain between files is added at the beginning of each
file to incorporate dependency information. In addition to applying the filtering rules outlined in
Section 3.1, we exclude any repository that does not encompass all its files in the chains or lacks
dependency relationships to maintain file integrity. Furthermore, to prevent contamination from
public benchmarks like HumanEval, we adopt the same n-gram filtering process used by DeepSeek-
Coder Guo et al. (2024). Specifically, we remove any code segment from CODECHAIN that contains
a 10-gram sequence matching one found in the test data. For test data strings shorter than 10-grams
but at least 3-grams long, we use precise matching to ensure exclusion. These quality screening
measures reduce the dataset to 61.5% of its original size.

3.5 CHAIN-INSTRUCT GENERATION

To optimize the use of dependency information during the fine-tuning process of models, we metic-
ulously design five distinct instruction tasks: predicting dependencies from code files, completing
code based on dependencies, writing README files, creating API documentation, and gener-
ating configuration files. Detailed examples are available in the Appendix K.

We construct the instruction datasets for code-chain that range in length from 2 to 4. Specifically,
the tasks of predicting dependencies from code and completing code based on dependencies are au-
tomated using scripts. However, the other three tasks cannot be automated. For these, motivated by
previous work Wang et al. (2023a); Xu et al. (2023), we employ specific prompts to engage GPT-
4 OpenAI (2023) in assisting with their completion. The concrete prompts are in Appendix D.1.
Besides, we consider GPT4 (OpenAI, 2023) as a reference and supervisor to reflect on the data
quality. Entries that do not meet our stringent quality standards are meticulously flagged and subse-
quently removed. Please refer to Appendix D.2 for detailed prompts. Ultimately, we gain a total of
1,021,550 unique samples.

3.6 HUMAN-IN-THE-LOOP

Due to the volume of data reaching millions, individually inspecting each record requires a signif-
icant amount of manpower and resources. To address this, After the GPT4 scanning, we recruit
20 college students specializing in software engineering to conduct manual sample inspections, and
calculate the data quality pass rate. Specifically, we first randomly select 10,000 samples from the
dataset. To minimize the impact of subjective judgment, we provide all participating students with
comprehensive training and guidelines. During the assessment phase, each student evaluates the
quality of the samples, deciding whether they are acceptable or unacceptable. To ensure evaluation
accuracy, we implement a cross-validation method, ensuring that each sample is reviewed by at least
three different students. Furthermore, we establish a consensus mechanism based on the principle
that the minority should conform to the majority, resolving any ties or disagreements. The outcome
of these inspections consistently shows a 95.6% pass rate, affirming the high quality of our data.

5
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Figure 2: Comparison with DeepSeek-Coder: The image displays two rows, each illustrating dif-
ferent cases where DeepSeek-Coder yields incorrect rankings. The results from our method are
highlighted in red, while those from DeepSeek-Coder are shown in blue.

4 ANALYSIS OF CODECHAIN

4.1 CODECHAIN VS. DEEPSEEK-CODER

In DeepSeek-Coder Guo et al. (2024), the dependencies among files are analyzed on topological
graphs, with the in-degree of a node indicating the number of dependencies a file has. The files are
then sorted based on in-degrees as input for the model. However, this method does not accurately re-
flect the actual dependencies in a repository. Figure 2 demonstrates specific errors that occur during
the sorting. DeepSeek-Coder’s inaccurate file sorting stems from two main issues: 1) The algo-
rithm produces incorrect ordering when multiple nodes share the same in-degree. In Case 1, within
a branched structure, it is obvious that two files at a fork do not have any dependency. However,
through topological sorting, each file is forcibly assigned an order. Moreover, when encountering
multiple nodes with identical minimum in-degrees, the algorithm assigns their order randomly. This
leads to an inaccurate file sequencing based on the order of invocation, overlooking the indirect
invocation relationships among the files, as evidenced by nodes d and f in case 2.

2) The in-degrees might not accurately reflect the actual file dependencies in the invocation chain.
Placing the node with the highest in-degree at the end would lead to incorrect ordering. For exam-
ple, node c in case 2 has the highest in-degree yet is located in the middle of the chain. To address
this, we adopted a random walk strategy to establish an invocation chain based on file dependencies.
The method starts by randomly choosing an initial node and then continues by randomly selecting
subsequent nodes that are dependent on the current node. This continues until no further nodes are
available. The whole iteration ends until the cumulative in-degree of all nodes exceeds a predeter-
mined threshold. This approach ensures that the sequence accurately mirrors the true invocation
order and maintains the time complexity at O(n). The proof of the complexity can be seen in
Appendix E

4.2 STATISTIC FEATURES

In this section, we provide the statistics of CODECHAIN. Specifically, in Figure 3, we show the
distribution of the length of code-chains, and the distribution of the lines of code files containing in
each code-chain in Figure 4. Please refer to Appendix F for more statistics. these statistical analyses
demonstrate the diversity of our dataset and the completeness of the data distribution.
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Figure 3: Distribution of Code-chain Length.
We count the number of chains of varying
lengths.

Figure 4: Distribution of lines of code files in
Code-chains. We count the lines of code files con-
taining in each code-chain.

5 EVALUATION

5.1 EVALUATION BENCHMARK

We evaluate the ability of single-file complement on HumanEval Chen et al. (2021) benchmark
and cross-file complement on CrossCodeEval Benchmark. HumanEval is a crafted collection of
164 Python programming problems to test the abilities of code generation models. Cross-file code
completion requires the model to access and understand repositories that span multiple files with
numerous cross-file dependencies.

5.2 EVALUATION METRICS

Pass@k. We adopt the Pass@k metric Chen et al. (2021) in HumanEval benchmark. We denote
the total number of successfully passing test cases as k, thus Pass@k:

Pass@k = E

[
1−

(
n

k−c

)(
n
k

) ]
(1)

where n is the total number of generated samples for each problem, and c is the number of correct
generated code snippets passing all the test cases (n > k ≥ c).

Code Match. The code match metric evaluates generated code accuracy by comparing it to refer-
ence code using Exact Match (EM) and Edit Similarity (ES). These metrics assess the precision of
the code completion process, considering elements like identifiers, keywords, and operators.

5.3 IMPLETMENTATION DETAILS

Code-Llama and DeepSeek-Coder-Base are used as the base models for supervised fine-tuning
(SFT). All experiments are conducted with 16 NVIDIA A100-80GB GPUs. The learning rate first
increases into 8× 10−5 with 50 warmup steps and then adopts a cosine decay scheduler. We adopt
the Adam optimizer Kingma & Ba (2015) with a global batch size of 64 samples. For HumanEval
evaluation, we adopt EvalPlus Liu et al. (2023) for evaluation. For CrossCodeEval Ding et al. (2023),
we set the maximum sequence length to 2048 tokens, the maximum output length to 50 tokens, and
a limit of 512 tokens for the cross-file context.

5.4 EXPERIMENTAL RESULTS

As CODECHAIN consists of only python code, we give the comparison results on python language
on benchmarks.

Single-File Benchmark Evaluation Table 1 shows that models finetuned with our CHAIN-
INSTRUCT significantly beat the base models and recent open-source baselines, closing the gap with
GPT-3.5 and GPT-4 in HumanEval benchmark. From Magicoder Wei et al. (2023), Wavecoder Yu

7
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Table 1: Evaluation results of Pass@1 on HumanEval. We use self-reported scores whenever avail-
able. All methods use greedy decoding.

Models Base Model Params Instruction Data Model Weight HumanEval
Proprietary Models

GPT-3.5 Turbo - - - - 72.6
GPT-4 Turbo - - - - 85.4

Open-source Models

phi-2-2.7B Gunasekar et al. (2023) - 2.7 B ✗ ✔ 49.8
CHAIN-INSTRUCT (ours) phi-2-2.7B 2.7 B ✗ ✔ 65.2

StarCoder Li et al. (2023) - 15B ✗ ✔ 33.6
WizardCoder Luo et al. (2023) StarCoder 15B ✔ ✔ 57.3
OctoCoder Muennighoff et al. (2023) StarCoder 15B ✔ ✔ 46.2
WaveCoder-SC Muennighoff et al. (2023) StarCoder 15B ✔ ✔ 50.5

CodeGeex2 Zheng et al. (2023) ChatGLM 6B ✔ ✔ 36
Code-Llama Rozière et al. (2023) - 7B ✗ ✔ 33.5
Code-Llama-Instruct Rozière et al. (2023) Code Llama 7B ✔ ✔ 34.8
WaveCoder-CL Yu et al. (2023) Code Llama 7B ✔ ✔ 48.1
Magicoder-CL Wei et al. (2023) Code Llama 7B ✔ ✔ 60.4
CHAIN-INSTRUCT (ours) Code Llama 7B ✔ ✔ 65.4

DeepseekCoder Guo et al. (2024) - 1.3 B ✗ ✔ 33.9
DeepseekCoder - 6.7B ✗ ✔ 49.4
DeepseekCoder - 33 B ✗ ✔ 56.1
CHAIN-INSTRUCT (ours) Deepseek-Coder 1.3B ✔ ✔ 64.7
WaveCoder-DS Yu et al. (2023) Deepseek-Coder 6.7B ✔ ✔ 64.0
MagicoderS-CL Wei et al. (2023) Deepseek-Coder 6.7B ✔ ✔ 70.7
CHAIN-INSTRUCT (ours) Deepseek-Coder 6.7B ✔ ✔ 74.3
CHAIN-INSTRUCT (ours) Deepseek-Coder 33 B ✔ ✔ 77.4

et al. (2023) and CODECHAIN, we can see the effectiveness of instruction datasets from code snip-
pets. Besides, the results also demonstrate that the information of code dependency is effective for
understanding and generating code. At the same time, for multilingual evaluation, we conduct more
tests on MBPP benchmark Austin et al. (2021) in Appendix I. Besides, we test the effects of de-
pendencies in context on ODEX Wang et al. (2023b) for general API usage. More results are in
Appendix J.

Repo-level Benchmark Evaluation For Repo-level Evaluation, we first assess the performance
of current open-source models on the CrossCodeEval Ding et al. (2023). The results, displayed in
Table 2, reveal that models with CHAIN-INSTRUCT consistently excel over competitors in cross-
file completion tasks, highlighting the dependency information enhanced effectiveness in practical
applications. Notably, this dataset is established between March and June 2023. In contrast, our
CHAIN-INSTRUCT dataset deliberately omits code repositories created during this timeframe. This
exclusion guarantees that the dataset is not part of our training data, effectively preventing any data
leakage. Besides, we conduct evaluation on RepoBench-C Liu et al. (2024) in Appendix H.

5.5 ABLATION AND ANALYSIS

Effect of Repository Generation Algorithm. In the section, we compares our random walk for
repo-level code generation with DeepSeek-Coder. To ensure a more equitable evaluation, both the
CodeChain and DeepSeek-Coder pipelines are applied to the same dataset (CodeChain’s source
data). Since DeepSeek-coder doesn’t open source the code of their data processing pipline, we re-
produce it according to technical report, then we obtain the DeepSeek-Instruction dataset based on
the same data source. Comparison results are in Table 4, which further proves the advantages of
CHAIN-INSTRUCT. Furthermore, Table 3 demonstrates the ability of our algorithm to effectively
capture dependencies. We conduct a statistical analysis to measure the percentage of the graph’s
edges explored by our algorithm during the chain generation process. This analysis includes all
nodes and edges within the dependency graphs. In this context, a unique path in a graph is defined
as a sequence of edges that connects a series of nodes (vertices) without revisiting any node. These
unique paths represent the various ways in which nodes are interconnected through their dependen-
cies in the graph.

Effect of Data Quantity In Figure 5, both fine-tuned models initially score low but show im-
provement as more data is introduced, with scores rising from a data ratio of 0.2 to 1.0. While
scores continue to increase with more data, the rate of improvement slows at higher data ratios, sug-
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Table 2: Performance of different models on cross-file code completion.

Model Size Python

EM ES

Close-source Models

GPT-3.5-turbo Unknown 4.88% 52.58%
GPT-4-Turbo (Nov 2023) Unknown 20.66% 66.92%

Open-source Models

phi-2-2.7B 2.7B 5.28% 55.17%
CodeGeex2 6B 8.11% 59.55%
StarCoder-Base 7B 6.68% 59.55%
CodeLlama-Base 7B 7.32% 59.66%
DeepSeek-Coder 1.3B 4.18% 50.65%
DeepSeek-Coder 6.7B 9.53% 61.65%
DeepSeek-Coder 33B 11.68% 62.82%

Models Fine-tuned on CHAIN-INSTRUCT

phi-2-2.7B + CHAIN-INSTRUCT 2.7B 8.20% 58.44%
CodeLlama-Base + CHAIN-INSTRUCT 7B 16.85% 66.75%
DeepSeek-Coder + CHAIN-INSTRUCT 1.3B 4.18% 50.65%
DeepSeek-Coder + CHAIN-INSTRUCT 6.7B 20.13% 67.15%
DeepSeek-Coder + CHAIN-INSTRUCT 33B 22.62% 68.12%

Table 3: The percentage of graph edges explored by our algorithm during the process of generating
unique dependency chains.

Total Nodes Total Edges Nodes Explored Edges Explored Unique Paths Found Proportion of Nodes Covered Proportion of Edges Covered
1110392 1508577 1045921 1453490 523563 94.2% 96.4%

gesting that the models may be nearing their performance peak or that additional data contributes
less significantly to further gains.

Effect of the length of the Code Chain Given that our instruction chains vary in length from 2 to
4, we allocate an equal amount of data (20,000 samples) for fine-tuning the model across each chain
length. In Figure 6, performance improves as code chain length increases for both models. Longer
chains significantly boost performance by providing more contextual information, which enhances
pattern recognition and the handling of complex code structures. This leads to better predictions and
higher quality code generation, allowing models to effectively manage more intricate programming
tasks.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Chain-Instruct

33

38

43

48

53

58

63

68

73

78

Sc
or

e

DeepSeek-Coder
Coder-LLama

Figure 5: Ablation on Data Quantity. We ex-
amine the impact of varying training data ratios
(0.2 1.0) on model performance.

Figure 6: Ablation on length of code chain. We
give the performance of two fine-tuned models
across varying lengths of code chains (2, 3, and
4).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Results of CODECHAIN and DeepSeek-Coder on Repository Generation Algorithm.

Model Parameter HumanEval CCEval (EM) CCEval (ES)

DeepSeekCoder-6.7B-Base 6.7 B 49.4 9.53% 61.65%
DeepSeekCoder-6.7B-Base + CodeChain-Instruction 6.7 B 74.3 20.13% 67.15%
DeepseekCoder-6.7B-Base + DeepSeek-Instruction 6.7 B 69.7 14.25% 63.33%

6 CONCLUSION

In this paper, we introduce a million-scale dataset, CODECHAIN, designed for training code LLM
at the repository level. We employ a novel random walk method to capture cross-file dependencies
and concatenate files to form code chains. Additionally, we create an instruction dataset, CHAIN-
INSTRUCT, to enhance the model’s learning of code contents and dependencies. Extensive evalua-
tions on public benchmarks confirm CODECHAIN’s effectiveness in code understanding and gener-
ation.
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A LIMITATIONS

CodeChain focuses on some popular language repositories, potentially excluding insights from other
programming languages. Also we need to set a better stopping strategy for ramdom walk in the fu-
ture instead of using a threshold. Moreover, the criteria used for quality screening may inadvertently
favor certain types of code or repositories, potentially excluding valuable but unconventional coding
practices from the dataset.

B SOCIAL IMPACT OF DATASET

Potential benefits: CodeChain provides a richer context for LLMs to learn from by augmenting the
code pre-training dataset at the repository level. This richer context can lead to improved model per-
formance and understanding of code semantics. We release a comprehensive data curation pipeline
for anyone to use to get more different code language repositories. Our method ensures the genera-
tion of dependencies in the true file order, which is crucial for handling code repositories. This could
help others to build upon our works and furthur advance the ability of Code LLMs at the repository
level.

Potential risks: Collecting code from over 50,000 repositories from GitHub raises potential privacy
and legal concerns, especially if the code includes proprietary or copyrighted material without proper
authorization or consent. Like any large-scale dataset sourced from online repositories, CodeChain
may inadvertently capture and perpetuate biases present in the original data sources. This could
lead to biased model predictions and reinforce existing societal inequalities in code development
and usage.

C CROWDSOURCING

In conducting our study, we identified several potential risks to participants. Firstly, there is a risk to
privacy and confidentiality, as participants are required to share personal information. To mitigate
this, all data will be anonymized and stored securely, with access restricted to authorized personnel
only. Secondly, there may be psychological risks, such as discomfort or stress during the tasks. To
address this, we have included detailed instructions and debriefing sessions to ensure participants
feel supported throughout the process. Additionally, participants have the right to withdraw from
the study at any time without penalty. Lastly, while there are no significant physical risks associated
with our procedures, we will monitor participants for any signs of distress and provide appropriate
support. We pay each participant an hourly rate of $10. The primary participants we recruit are
college students.

D PROMPT TEMPLATES

D.1 PROMPTS FOR CHAIN-INSTRUCT GENERATION

Generate README File
Please generate a comprehensive README document for the project, utilizing the provided file contents
and outlined dependency relationships.
The README may include the following sections: a clear project title, a brief description of the project’s
purpose, installation instructions, usage guidelines, a list of dependencies with explanations of their roles,
code examples where applicable, and a section on how to contribute to the project.
Ensure that the documentation is user-friendly, technically accurate, and formatted for easy readability.
Include any necessary warnings or notes that users must be aware of when interacting with the project.
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Generate Interface Documentation
Please generate detailed interface documentation for the software project, using the provided code file con-
tents and dependency relationships.
The documentation may comprehensively describe each function and class in the code. Include the follow-
ing details for each interface component: a clear description, parameters with types and descriptions, return
values and their types, exceptions that might be thrown, and example usage scenarios.
Ensure that the documentation is well-structured, maintaining a consistent format across sections. The
document should also include an introduction to the interface, its overall purpose, and any specific consid-
erations or compatibility issues. Aim for clarity, accuracy, and utility to aid developers in understanding
and implementing the interfaces effectively.

Generate Configuration File
Please create a comprehensive configuration file for the project, using the provided file contents and detailed
dependency relationships.
The configuration file may include key-value pairs or settings that are essential for the operation of the
project. Ensure to include sections categorizing different types of settings such as database connections,
API keys, environment variables, and other critical infrastructure components. Each entry should be clearly
commented to explain its purpose, expected values, and any dependencies it has on other settings. For-
mat the file for easy navigation and modification, using consistent indentation and spacing. Also, provide
guidelines at the beginning of the file on how to correctly update or modify these settings to meet specific
deployment environments or use cases.

D.2 PROMPT FOR DATA QUALITY

The prompt we employ for GPT-4 is deliberately tailored to elicit insightful evaluations and is as
follows:

Quality Prompt: You are now a data grader. You will grade the data I provide according to my require-
ments, explain the reasons, and then give a piece of higher-quality data based on this piece of data.
Please help me rate the following dialogue data and explain the reasons. Require:
1. Scoring perspective: whether the problem belongs to the field of code; whether the description is clear;
whether the answer is accurate; whether the language is coherent;
2. Point scale: 5-point scale, 1 point: very poor; 2 points: slightly poor; 3 points: barely qualified; 4 points:
usable; 5 points: excellent.
3. Please rate the answer. If the score is lower than 5 points and higher than 2 points, a higher quality data
will be generated based on this piece of data.
4. Format: You can only return a parsable json format data, no other content. For example: ”score”:
4, ”reason”: ””, ”modified-data”: ””. Among them, score represents the score for this question, reason
represents the reason for the score, and states the advantages and disadvantages of the data, and modified-
data represents You generated a new, higher-quality data based on the above data. Compared with the data
provided, this new data solves the shortcomings you mentioned above and is directly available.
5. All reasons are written in reason.
6. If the score is lower than 5 points and higher than 2 points, modified-data must be provided.
7. Modified-data contains a complete piece of data that is directly available, and the quality must be higher
and more in line with the quality of ChatGPT’s training data. If null needs to be output, replace it with
None. Now please follow the above requirements to annotate the following conversation data and return
your annotated results in pure json form: ””.

E PROOF OF TIME COMPLEXITY

Let:

• n: The total number of files in the repository.

• T (n): The time complexity of the algorithm.

• degree(x): The degree or in-degree of item x (which represents its connections or depen-
dencies).
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E.1 OUTER LOOP

The outer loop runs while the condition total degree < threshold is satisfied. Initially, the degree
is set to 0. A random item is chosen from the file list, denoted by:

Initial item = RandomChoice(files)

This selected item is added to a new list:

newlist← newlist ∪ {Initial item}
The degree is updated by adding the in-degree of the selected item:

degree← degree + inDegree(Initial item)

Each of these operations—random selection, list update, and degree update—has a constant time
complexity of O(1).

E.2 INNER LOOP

When a random item exists (i.e., random item ̸= ∅), the inner loop is executed. A new random
item is selected from the graph:

random item = RandomChoice(graphs[random item])

This item is then added to the list:

newlist← newlist ∪ {random item}
The degree is updated once again by adding the in-degree of the newly selected item:

degree← degree + inDegree(random item)

Before appending the updated list to the set of selected chains, the algorithm ensures that this list is
not already present:

if newlist /∈ selected chains, then append newlist to selected chains

Finally, the total degree is incremented by the newly computed degree:

total degree← total degree + degree

E.3 TIME COMPLEXITY ANALYSIS

The operations in the inner loop, like random selection, list append, and degree updates, all have
constant time complexity O(1). The only exception is the check to see whether newlist /∈
selected chains, which, in the worst case, has a time complexity of O(n), where n is the num-
ber of files, since it involves searching the list.

The outer while loop runs while total degree < threshold. Since the total degree accumulates
based on the file selections, the number of iterations of the outer loop is proportional to n. Therefore,
the overall time complexity can be expressed as:

T (n) =

k∑
1

c

where k represents the number of iterations of the outer loop, and c is the constant time per iteration.
Given that k is proportional to n, the total time complexity simplifies to:

T (n) = O(n · c) = O(n)

Thus, the algorithm has a time complexity of O(n).

F STATISTIC DETAILS

Here, we give more statistic details for CODECHAIN in Table 5. We trace back the word frequency
across all repository titles to better understand the contents of these repositories. The word cloud
Figure 7 shows the top 30 words with the highest frequency.
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Table 5: Statistic details of our CODECHAIN

Features Statistics

Size 8.65GB
The Number of Chains 562587
The Number of Repos 31182
Average Chain Length 1.79

The Number of Chains (chain length >1) 246776
Average Chain Length (chain length >1) 2.81

Number of CHAIN-INSTRUCT 1,021,550

Figure 7: Word Cloud of CODECHAIN.

G SOURCE OF CODECHAIN

In CODECHAIN, the diversity of data sources is essential for ensuring the broad applicability our
datasets. We categorize the collected repositories into four classes based on their functionalities:
Artificial Intelligence, Web Development, Data Processing, and Others. Figure 8 shows the distri-
bution of repositories with different functionalities, with Artificial Intelligence and Web Develop-
ment collectively accounting for over half of the total. Specifically, Computer Vision technologies
lead at 21.2%, followed by Natural Language Processing at 8.6%, and Machine Learning at 5.1%.
In Web Development, Frontend and Backend technologies collectively represent 17.6% and 9.1%
of our data sources respectively. Additionally, Network programming account for 10.3% of the total
distribution. Within Data Processing, the subcategories include Crawlers, Data Analysis, and Au-
tomated Scripts. The ”Other” category includes miscellaneous items that do not fit into the main
categories, which include Tutorials, Plugins, and other miscellaneous items.

H MORE RESULTS ON REPOBENCH

In this section, we conduct experiments on RepoBench-c, more results are in Table 6. CHAIN-
INSTRUCT performs better than other baselines.

I SCALABILITY TO OTHER LANGUAGES

Our framework for generating code chains can be easily extended to support various programming
languages. Based on the same data processing pipeline, we collect and generate fine-tuning datasets
for the Java and C++ languages as a case to show the scalability of our pipelines. At the same time,
based on this multilingual version, we conduct more tests on MBPP benchmark Austin et al. (2021).
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Figure 8: Sources of CODECHAIN.

Table 6: the results on the RepoBench-C. The results show that CHAIN-INSTRUCT helps improve
the generation and understanding capabilities at the repo-level.

Model Size ALL

EM ES

CodeGen 350M 32.44 71.08
CodeGen 2.7B 27.35 68.30
CodeGen 6.1B 31.67 70.68
StarCoder 15.5B 31.67 71.28

Codex 175B 31.31 72.22
DeepSeekCoder-6.7B-Base 6.7B 32.44 71.08

DeepSeekCoder-6.7B-Base + CHAIN-INSTRUCT 6.7B 34.12 72.42
DeepseekCoder-33B-Base 33B 34.02 72.15

DeepSeekCoder-33B-Base + CHAIN-INSTRUCT 33B 35.83 73.03

J MORE RESULTS ON ODEX

More results on ODEX(General API usage) are in Table 8.

K MORE EXAMPLES OF CHAIN-INSTRUCT

We provide five cases for five instructions. As you can see in Figure 9, Figure 10, Figure 11,
Figure 12, and Figure 13,
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Table 7: Results on MBPP.

Model Parameter MBPP

DeepSeek-Coder-base 1.3 B 47.7
DeepSeek-Coder-base + CHAIN-INSTRUCT 1.3 B 55.0
DeepSeek-Coder-base 6.7 B 58.7
DeepSeek-Coder-base + CHAIN-INSTRUCT 6.7 B 65.3
DeepSeek-Coder-base 33 B 65.3
DeepSeek-Coder-base + CHAIN-INSTRUCT 33 B 69.3

Table 8: Results on ODEX

Model Parameter pass@1 pass@2 pass@5
DeepSeek-Coder-base 6.7B 41.28 46.12 53.47
DeepSeek-Coder-base + CodeChain-Instruction 6.7B 45.36 51.07 58.10
DeepSeek-Coder-base 33B 49.28 58.55 66.17
DeepSeek-Coder-base + CodeChain-Instruction 33B 51.87 61.24 70.25

“Instruction": "Analyze the following code snippet to determine the dependency relationship between files.”
"input": {

‘Chatbot/chatbotconfig.py’:
"""
import os
basedir = os.path.abspath(os.path.dirname(__file__))
class Config(object):
    SECRET_KEY=os.environ.get('SECRET_KEY') or 'you-will-never-guess'
""" ,
‘Chatbot/chatbot/__init__.py’:
"""
import flask
from flask import Flask
from chatbotconfig import Config
app=Flask(__name__)
app.config.from_object(Config)

import keras
import nltk
import pickle
import json
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer=WordNetLemmatizer()

model=load_model('chatbot_codes/mymodel.h5')
intents = json.loads(open('chatbot_codes/intents.json').read())
words = pickle.load(open('chatbot_codes/words.pkl','rb'))
classes = pickle.load(open('chatbot_codes/classes.pkl','rb'))
from chatbot import routes
""" ,
‘Chatbot/chatbot.py’:
"""
from chatbot import app
"""
},
"output":  ['Chatbot/chatbotconfig.py', 'Chatbot/chatbot/__init__.py', ‘Chatbot/chatbot.py']
}

Figure 9: Case 1 of instruction tasks. The task is to analyze the following code snippet to determine
the dependency relationship between files.
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{
"Instruction": "Complete the corresponding code content based on the provided file contents and dependency relationships.”,
"input": 
{
"dependency":  ['Chatbot/chatbotconfig.py', 'Chatbot/chatbot/__init__.py', ‘Chatbot/chatbot.py'],

‘Chatbot/chatbotconfig.py’:
"""
import os
basedir = os.path.abspath(os.path.dirname(__file__))
class Config(object):
    SECRET_KEY=os.environ.get('SECRET_KEY') or 'you-will-never-guess'
""" ,
‘Chatbot/chatbot/__init__.py’:
"""
import flask
from flask import Flask
from #"The content to be completed."

app=Flask(__name__)
app.config.from_object(Config)
import keras,nltk
import pickle
import json
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer=WordNetLemmatizer()
model=load_model('chatbot_codes/mymodel.h5')
intents = json.loads(open('chatbot_codes/intents.json').read())
words = pickle.load(open('chatbot_codes/words.pkl','rb'))
classes = pickle.load(open('chatbot_codes/classes.pkl','rb'))
from chatbot import routes
""" ,
‘Chatbot/chatbot.py’:
"""
from chatbot import app
"""
},
"output": 
”'''import flask
from flask import Flask
from chatbotconfig import Config
'''"
} 

Figure 10: Case 2 of instruction tasks. The task is to complete the corresponding code content based
on the provided file contents and dependency relationships.
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{
"Instruction": “Generate a README document for the project based on the following file contents and dependency relationships.",
"input": {
"dependency":  ['Chatbot/chatbotconfig.py', 'Chatbot/chatbot/__init__.py', ‘Chatbot/chatbot.py'],

‘Chatbot/chatbotconfig.py’:
"""
import os
basedir = os.path.abspath(os.path.dirname(__file__))
class Config(object):
    SECRET_KEY=os.environ.get('SECRET_KEY') or 'you-will-never-guess'

""" ,
‘Chatbot/chatbot/__init__.py’:
"""
import flask
from flask import Flask
from chatbotconfig import Config

app=Flask(__name__)
app.config.from_object(Config)

import keras,nltk
import pickle
import json
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer=WordNetLemmatizer()

model=load_model('chatbot_codes/mymodel.h5')
intents = json.loads(open('chatbot_codes/intents.json').read())
words = pickle.load(open('chatbot_codes/words.pkl','rb'))
classes = pickle.load(open('chatbot_codes/classes.pkl','rb'))
from chatbot import routes
""" ,
‘Chatbot/chatbot.py’:
"""
from chatbot import app
"""

},
"output": {
"README.md": 
"'''
# Project Overview
## File Dependency Relationships
- `chatbotconfig.py` depends on `chatbot/chatbot/__init__.py`
- `chatbot/chatbot/__init__.py` depends on `chatbot/chatbot.py`

## File Descriptions
- `chatbot/chatbotconfig.py`: Contains configuration settings for the chatbot.
- `chatbot/chatbot/__init__.py`: Initializes the chatbot application and loads necessary dependencies such as Flask, Keras, NLTK, and trained models.
- `chatbot/chatbot.py`: Entry point for the chatbot application.
'''"
}

Figure 11: Case 3 of instruction tasks. The task is to generate a README document for the project
based on the following file contents and dependency relationships.
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{"Instruction": "Generate interface documentation based on the following code file contents.",
"input": {
‘Chatbot/chatbotconfig.py’:
"""
import os
basedir = os.path.abspath(os.path.dirname(__file__))
class Config(object):
    SECRET_KEY=os.environ.get('SECRET_KEY') or 'you-will-never-guess'
""" ,
‘Chatbot/chatbot/__init__.py’:
"""
import flask
from flask import Flask
from chatbotconfig import Config
app=Flask(__name__)
app.config.from_object(Config)
import keras, nltk. pickle, json
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer=WordNetLemmatizer()
model=load_model('chatbot_codes/mymodel.h5')
intents = json.loads(open('chatbot_codes/intents.json').read())
words = pickle.load(open('chatbot_codes/words.pkl','rb'))
classes = pickle.load(open('chatbot_codes/classes.pkl','rb')
from chatbot import routes
""" ,
‘Chatbot/chatbot.py’:
"""
from chatbot import app
"""
},
"output": {
"Interface Documentation": {
## File: chatbotconfig.py
### Functions and Classes:
- `Config`: Class containing configuration settings for the chatbot.
- `SECRET_KEY`: A secret key for the application, retrieved from the environment variables or set to a default value if not found.
---
## File: chatbot/__init__.py

### Dependencies:
- `Flask`: Web framework for creating the chatbot application.
- `chatbotconfig.Config`: Configuration settings imported from `chatbotconfig.py`.

### Loaded Dependencies:
- `keras`: Deep learning library for building and training models.
- `nltk`: Natural Language Toolkit for natural language processing tasks.
- `pickle`: Python module for serializing and deserializing objects.
- `json`: Python module for working with JSON data.
- `load_model`: Function for loading a Keras model from a file.
- `WordNetLemmatizer`: Class for lemmatizing words in text data.

### Variables:
- `app`: Flask application instance.
- `model`: Loaded Keras model for the chatbot.
- `intents`: JSON data representing intents for the chatbot.
- `words`: Pickled data containing processed words.
- `classes`: Pickled data containing class labels.

### Routes:
- `routes`: Module containing routes for the chatbot application.
---

## File: chatbot.py

### Dependencies:
- `app`: Flask application instance imported from the `chatbot` package.
}}}

Figure 12: Case 4 of instruction tasks. The task is to generate interface documentation based on the
following code file contents.
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{"Instruction": "Write a configuration file for the project based on the following file contents and their dependency relationships.",
"input": {
"dependency":  ['Chatbot/chatbotconfig.py', 'Chatbot/chatbot/__init__.py', ‘Chatbot/chatbot.py'],

‘Chatbot/chatbotconfig.py’:
"""
import os
basedir = os.path.abspath(os.path.dirname(__file__))
class Config(object):
    SECRET_KEY=os.environ.get('SECRET_KEY') or 'you-will-never-guess'

""" ,
‘Chatbot/chatbot/__init__.py’:
"""
import flask
from flask import Flask
from chatbotconfig import Config
app=Flask(__name__)
app.config.from_object(Config)

import keras, nltk, pickle, json
from keras.models import load_model
from nltk.stem import WordNetLemmatizer
lemmatizer=WordNetLemmatizer()
model=load_model('chatbot_codes/mymodel.h5')
intents = json.loads(open('chatbot_codes/intents.json').read())
words = pickle.load(open('chatbot_codes/words.pkl','rb'))
classes = pickle.load(open('chatbot_codes/classes.pkl','rb'))
from chatbot import routes
""" ,
‘Chatbot/chatbot.py’:
"""
from chatbot import app
"""
},
"output": {
"Project configuration file": "'''
[dependencies]
Chatbot/chatbotconfig.py = [Chatbot/chatbot/__init__.py]
Chatbot/chatbot/__init__.py = [Chatbot/chatbot.py]
Chatbot/chatbot.py = []

# Other configuration items
[dependencies]
Chatbot/chatbotconfig.py = [os]
Chatbot/chatbot/__init__.py = [flask]
Chatbot/chatbot.py = []

''"}}

Figure 13: Case 5 of instruction tasks. The task is to write a configuration file for the project based
on the following file contents and their dependency relationships.
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