
Distributed Construction of
Demand-Aware Datacenter Networks
Aleksander Figiel1 Darya Melnyk1 Tijana Milentijević1 Stefan Schmid1,2

1TU Berlin, Germany 2Fraunhofer SIT, Germany

Abstract—Demand-aware reconfigurable datacenter networks
adapt toward the traffic they serve by providing topological
shortcuts between frequently communicating racks. However,
only little is known about computing optimized demand-aware
networks quickly and in a distributed manner. In this paper,
we investigate fast distributed algorithms to compute demand-
aware networks for hybrid datacenters, where a fixed capacitated
network can be enhanced with a bounded-degree demand-aware
network, i.e., with a set of matchings created by optical circuit
switches.

We make two main contributions. Firstly, we present a
distributed algorithm, called the COORDINATOR algorithm for
computing demand-aware networks on all underlying topologies.
The algorithm is analyzed in the widely deployed Clos topology
and in the Congested Clique model, where it is optimal in terms
of quality and nearly optimal in distributed runtime.

Secondly, we focus on improving the round complexity at
the cost of the quality of the resulting topology. We show
that for tree demands, an adaptation of a distributed matching
algorithm by Wattenhofer and Wattenhofer (DISC 2004) achieves
a 1/6-approximation. Based on this approach, we introduce the
PROPOSE AND REJECT algorithm for general demands, which
we evaluate on real-world Facebook datacenter and HPC traces.
Our results show that the PROPOSE AND REJECT algorithm,
even with limited knowledge of the demand matrix, performs
nearly optimally on real traffic demands and covers over 80%
of the demand. This is achieved with significantly fewer com-
munication rounds than the optimal solution computed by the
COORDINATOR algorithm.

Index Terms—distributed algorithms, demand-aware net-
works, reconfigurable datacenters, Clos topologies

I. INTRODUCTION

Datacenters have become a critical infrastructure of our
digital society, providing scalable, available, and reliable cloud
computing services [1], [2]. Given the popularity of data-
centric applications and artificial intelligence, however, the
traffic in datacenters is growing explosively, imposing in-
creasingly stringent requirements on the performance of the
underlying networks.

Existing datacenter networks are designed to serve very gen-
eral traffic patterns, and provide attractive properties such as
full bisection bandwidth, bounded network diameter, and high
expansion [3]. In other words, these networks are optimized
toward all-to-all communication traffic, thus maximizing per-
formance in the worst case [4]. Furthermore, the underlying
topology is fixed and oblivious to the actual traffic demand.

This project has received funding from the European Research Council
(ERC) under the Grant agreement No. 864228 (AdjustNet), as well as from
the German Research Foundation (DFG), grant 470029389 (FlexNets).

An intriguing alternative datacenter network design are
demand-aware networks, whose topology is optimized toward
the specific workload they serve. Demand-aware networks are
enabled by emerging reconfigurable optical communication
technologies [5] and are empirically motivated by the fact
that datacenter traffic features much spatial and temporal
structure [6]–[8]. By accounting for the actual traffic demand,
demand-aware networks can reconfigure themselves to provide
topological shortcuts between frequently communicating end-
points. Accordingly, fewer network resources are consumed
by such elephant flows, improving network capacity and
minimizing “bandwidth tax” [9]–[13]. However, today we
still do not have a good understanding of the fundamental
algorithmic problem underlying such demand-aware network
designs. In particular, existing literature on the demand-aware
bounded-degree network design problem [8], [14]–[17] con-
siders centralized algorithms assuming complete knowledge of
the demand matrix. Such centralized algorithms may however
not scale and introduce delays.

This paper initiates the study of distributed algorithms
to compute demand-aware networks based on a b-matching
model. In our model, nodes (e.g., top-of-rack switches) ini-
tially only have knowledge of their own demands towards
other nodes, and with minimal information exchange, aim to
establish a demand-aware network in a collaborative manner.
In particular, we consider a typical hybrid datacenter network
as is often studied in the literature [7], [11], [18], [19],
where the demand-aware network is built on top of a fixed
network. The demand-aware network is realized via optical
circuit switches, where each such optical switch augments
the topology with a constant number of matchings. We also
assume that the communication demands are sparse. This
assumption is justified by datacenter measurement studies [6],
[7], [20], [21]. For example, Ghobadi et al. [7] showed that
only 1% of rack pairs exchange traffic and up to 0.3%
of rack pairs are accountable for more than 80% of the
traffic. This property allows us to design efficient distributed
communication algorithms.

A. Contributions

We initiate the study of distributed algorithms to enhance
a given fixed network with a bounded-degree demand-aware
network. In particular, we consider the Congest model [22] of
distributed computing, where communication across the fixed

network is subject to capacity constraints and needs to be
performed efficiently.

We first consider the basic problem of how to compute a
demand-aware network in the congested clique model. We
present a distributed algorithm that only requires a constant
number of communication rounds to compute an optimal
demand-aware network if the demand matrix is sparse. In
particular, we propose a COORDINATOR algorithm that can
solve the Demand-Aware Network (DAN) design problem
optimally in 4 rounds, if the demand matrix is sparse and
contains n− 1 entries, where n is the size of the network. If
the demand matrix contains c · n non-null entries, it can be
solved optimally in c+ 3 rounds.

We next consider the Clos topology (the predominant dat-
acenter network topology) and show that the COORDINATOR
algorithm terminates in 4 · (3

√
ρ)2 + 12 rounds, if the demand

matrix is sparse. Here, ρ denotes the number of roots of the
multi-rooted FatTree that the Clos topology represents. This
means that the number of communication rounds is in o(n),
where n is the number of racks at the leaves (i.e., leaves of
the Clos topology).

In order to reduce the number of communication rounds,
we show that the DAN design problem where the degree of
the DAN is bounded corresponds to solving the b-matching
problem in the graph. We then use distributed approximation
algorithms to compute a b-matching in few rounds at a cost of
an approximate solution. We start by showing that the Tree-
Matching algorithm by Wattenhofer and Wattenhofer [23] for
computing a 1/4-approximation of an optimal matching where
the demand matrix is a tree can be extended to compute a 1/6-
approximation of the optimal b-matching on trees. We then
propose the PROPOSE AND REJECT algorithm that generalizes
the Tree-Matching algorithm to work for general graphs. In the
best case, this algorithm takes O(b · L) rounds to compute a
DAN, where b is the highest degree in the DAN and L is the
number of levels in the Clos topology.

To complement our analytical insights, we conduct experi-
ments with the algorithms in the Clos topology. We evaluate
our algorithms on Facebook, HPC and pFabric datasets. Our
results show that the PROPOSE AND REJECT algorithm outper-
forms the COORDINATOR algorithm in terms of the number
of rounds. In addition, the PROPOSE AND REJECT algorithm
provides nearly optimal solutions for real traffic demands.

As a contribution to the research community, and in order to
ensure reproducibility and facilitate follow-up work, we make
all our implementations and experimental artifacts publicly
available at https://github.com/inet-tub/dist-dan.

B. Organization

The remainder of this paper is organized as follows. We
review related work in Section II and define our model in
Section III, we propose the COORDINATOR algorithm and
analyze it in the congested clique in Section IV. Further, we
extend these results to the Clos topology. In Section V, we
adapt the Tree-Matching algorithm to work for b-matchings
on trees, and introduce the PROPOSE AND REJECT algorithm

as a generalization of the Tree-Matching algorithm for general
graphs. This algorithm is then evaluated and compared to the
COORDINATOR algorithm on real-world data in Section VI.
This paper concludes in Section VII.

II. RELATED WORK

Motivated by emerging optical technologies, reconfig-
urable datacenters and topology engineering have recently
received much attention in the networking community [7],
[9], [10], [13], [17], [24]–[38], see also the recent survey by
Hall et al. [5]. Reconfigurable Datacenter Networks (RDCN)
come in two flavors: oblivious, and demand-aware [3], [5].
Oblivious RDCNs such as RotorNet [9], Opera [10], Sir-
ius [24], Mars [13], and Shale [39] rely on quickly and
periodically changing interconnects between racks, to emulate
a complete graph. Such emulation was shown to provide
high throughput and is particularly well-suited for all-to-
all traffic patterns [11]. In contrast, demand-aware RDCNs
allow to optimize topological shortcuts, that depend on the
traffic pattern. Demand-aware networks such as ProjecToR [7],
SplayNets [28], Gemini [26], ReNet [19] Cerberus [11], or
Duo [12] among others [33]–[38], [40], are attractive since a
large fraction of communicated bytes belongs to a small num-
ber of elephant flows [6], [7], [34], [41]–[43]. By adjusting the
datacenter topology to support such flows, e.g., by providing
direct connectivity between intensively communicating source
and destination racks, network throughput can be increased
further (even if done infrequently [26]).

In this paper, we consider the fundamental problem of con-
structing a bounded degree DAN, which has already received
much attention in the literature [8], [14]–[17]. In particular,
it has been shown that there is an intriguing connection
between the bounded-degree network design problem and the
conditional entropy of the demand matrix, and an asymptoti-
cally optimal algorithm has been presented for sparse demand
matrices [8]. However, all existing algorithms are centralized
and assume complete knowledge of the demand matrix.

From the viewpoint of distributed algorithms, computing a
demand-aware network in our model is equivalent to finding
an optimal b-matching on the demand graph. Most work in
this area has been conducted on optimal 1-matchings [23],
[44]–[46]. For b-matchings, it has been shown that a 1

6+ε -
approximation can be achieved by a randomized algorithm in
O
(

log3 n
ε log2 Pmax

Pmin

)
rounds [47], where ε > 0 is a small

constant, and Pmax and Pmin are the largest and the smallest
edge weights respectively. Later, Fischer [48] presented a
deterministic algorithm that can achieve a 1

2+ε -approximation
in O

(
log2 ∆ · log 1

ε + log∗ n
)

rounds.
Regarding distributed construction of demand-aware net-

works, we are only aware of one distributed approach in the
literature. Avin et al. [49] remarked in their paper on square
root graph sparsification that their algorithm can also be run
in a distributed manner. However, their algorithms compute
demand-aware networks whose degree depends on properties
of the demand matrix, and can not be freely chosen to match

https://github.com/inet-tub/dist-dan

for example hardware constraints. Consequently, the resulting
degree of the DAN might be too large to realize in practice.

In this paper, we contribute to the study of distributed al-
gorithms for demand-aware network construction and present
efficient solutions on how nodes can collaboratively compute
optimal or near-optimal demand-aware networks across a
fixed, capacitated network.

III. PRELIMINARIES AND MODEL

We assume that n nodes (e.g, top-of-rack switches in
datacenters) from the set V = {1, 2, ..., n} interact with each
other following a sequence of communication requests σ,
where σi = (u, v) ∈ V ×V with source node u and destination
node v. The requests in this sequence are drawn from a
discrete distribution D (the demand) over all communication
requests. The distribution D is represented by a demand matrix
MD[p(i, j)] of size n×n. An entry p(i, j) corresponds to the
probability that the source i communicates to the destination
j. We further assume that the demand matrix is normalized
and the diagonal entries p(i, i) are set to 0.

In the static variant of the demand-aware network design
problem, we are given a set of nodes V and the distribution
D. The objective is to design a demand-aware network ND in
order to serve as many of the arriving communication requests
through direct links as possible. We restrict the DAN to be se-
lected from a family of desired topologies N . In particular, we
want the demand-aware network to have a bounded degree ∆,
as switches have a bounded number of ports. Additionally, the
demand-aware network includes all edges of the underlying
topology. Consequently, we design an overlay network through
reconfigurable optical networking switches to augment the
existing fixed topology. Therefore, in our model, computing
the overlay network for a specific demand matrix is equivalent
to solving the weighted b-matching problem, where b = ∆−k,
where k is the degree of the underlying topology. In this b-
matching problem, the goal is to match each node of the graph,
represented by the demand matrix MD, with at most b other
nodes in a way that maximizes the total weight of the matched
edges. Note that the overlay network can be recomputed at
regular intervals, depending on the operational requirements.

In the distributed setting, nodes do not know the whole
demand matrix. Instead, each node v knows how much traffic
flows from v to all other nodes in the network. That is, each
node has knowledge of its row in the matrix MD. Further,
the local computation power of the nodes is not bounded. The
goal of the distributed DAN problem is to compute a DAN
ND in the network in a small number of rounds and notify
the nodes of their new neighbors in ND.

For the theoretical analysis of number of communication
rounds, we consider two underlying topologies: clique, where
the n nodes form a complete graph, and the Clos topology,
which is a standard datacenter topology. Our setting for
communication is the Congest model of distributed comput-
ing [22], where the message size for all messages is bounded
by O(log n) bits. The communication model is synchronous,
i.e. the nodes communicate in rounds.

IV. DISTIBUTED ALGORITHMS WITH COORDINATOR

In this section, we first consider distributed algorithms
which however rely on a coordinator. For this model, we first
consider a setting where the underlying topology is a clique
and then Clos topology. Later, in Section V, we decentralize
the algorithms in order to improve their round complexity.

A. Distributed DAN Computation in Congested Clique

In this section, we propose a similar, but simpler algorithm
to Lenzen’s routing algorithm [50] in order to compute the
DAN in the congested clique model. This algorithm is based
on a coordinator that computes the DAN for all nodes. In
order to forward row entries to the coordinator fast, nodes in
the network need help from their peers, as they might exceed
the capacity restrictions otherwise.

In the first round, all nodes (except for the coordinator)
broadcast how many entries their row contains. Based on the
number of row entries, the nodes are divided into two subsets
X and Y , where X ∩ Y = ∅. If the matrix contains c · n
entries, where c is a constant, then the subset X represents
the set of nodes, where the number of row entries is at most
c + 1. Subset Y is the set of nodes with at least c + 2 row
entries. The subsets X and Y are referred to as “node helpers”
and “nodes in need of help”, respectively. In the second round,
all nodes can send one value to the coordinator. In addition,
the nodes in Y can send their values to the nodes in X in a
predefined order. In further iterations, nodes in X forward the
previously received values to the coordinator, whereas nodes in
Y send their values to the coordinator and to their predefined
helper nodes from X . In the penultimate round, the coordinator
receives all values from the demand matrix and computes the
demand-aware network either optimally in super-polynomial
time or by using an approximation algorithm, e.g. [8]. When
the network is computed, the coordinator sends a message
back to each node with the information about which node
pairs should construct edges in the last round.

Algorithm 1 presents the coordinator strategy as pseu-
docode.

Theorem 1. The COORDINATOR algorithm solves the DAN
design problem optimally in up to c + 3 communication
rounds in the congested clique model, when the demand matrix
contains up to c · (n+ 1) + 2 non-null entries for any c ∈ N,
where n is the number of nodes.

Proof. In Algorithm 1, at least 2c+ 2 values can be commu-
nicated to the coordinator directly within the first two rounds.
This is because each node can have at most n − 1 non-null
values and therefore at least c nodes have at least two values.
Two additional values can be added to any row, as any node
(including the node helpers) can forward two values within
the first two rounds. Note that node helpers do not forward
any values in the first or in the second round.

Observe further that no values are sent to the coordinator
in the last round. This round is used only by the coordinator
to broadcast the final result to all nodes in the network.

Algorithm 1 COORDINATOR Algorithm for Demand-aware
Network in Congested Clique Model

1: CO ← an arbitrary node ▷ this is the coordinator
2: xi ← number of non-null entries in row i, for each i
3: for each node i do
4: broadcast xi − (c+ 1) ▷ except the CO
5: if xi ≥ 1 then
6: send one entry from i to CO
7: end if
8: end for
9: s← 1; t← 1; X ← empty list

10: for each node i do ▷ except the CO
11: if xi ≤ c+ 1 then
12: X .append(i)
13: else
14: for each entry e in i’th row do
15: Y [t][e]← i
16: end for
17: t← t+ 1 ▷ A node can have multiple entries, Y

saves all entries
18: end if
19: end for
20: p← 1
21: for each t from Y [t][e] do
22: for each entry e do
23: while xX[p] ≥ c do
24: take the next node from X
25: end while
26: Y [t][e] sends one entry to X[p]
27: xX[p] ← xX[p] + 1
28: p← p+ 1
29: end for
30: end for
31: send one entry from i to CO if xi ≤ 1
32: each node from X sends its entry to CO

In the following, we will analyze how many values can be
sent and forwarded in the rounds 3, . . . , c+2 to the coordinator.
Note that at most c(n − 1) entries need to be sent to the
coordinator in these rounds. We define the nodes that hold at
least c values to be nodes in need of help (set Y), and the rest
to be helpers (set X). Observe that, on average, each node
holds at most c values. Therefore, there are always enough
helpers and rounds to forward the values in Y . It remains to
show that the helpers can receive all values that need to be
forwarded without delay. Note that in Round 2, nodes in Y
can send all values to the helpers that need to be forwarded
in Round 3. The same holds for all following rounds up to
round c+ 1. This is because all values in Y are ordered and
can be sent in this order to the available helpers. If necessary,
one node in Y can send values to several helpers in X in
one round, since no other information is exchanged between
the nodes after Round 1. This concludes the last part of the
analysis.

Fig. 1: Clos topology with levels 0, 1, 2, 3 (top to bottom)
and degree k = 4

We would like to note that the presented lower bound on the
number of exchanged messages is tight for the COORDINATOR
algorithm in the case c = 1. For larger values of c, a
constant number of additional messages can be handled by
the algorithm within c+ 3 communication rounds.

B. Distributed DAN Computation in Clos Topology

Having studied how to compute a DAN in congested clique,
in this section, we extend our investigations to study how to
enhance the wide-spread Clos network with a demand-aware
network. Clos networks are multi-rooted FatTrees and are the
most widely deployed datacenter networks today, providing
scalability and high performance [4]. A FatTree is a multi-
rooted tree structure that contains multiple bipartite subgraphs.
The topology is based on a three-tier design that holds a core
level at the root, and an edge level at the leaves, where racks
are placed, and an aggregation level in the middle. Let k be
the highest degree of the graph and L+1 the number of levels.
The number of nodes, i.e. roots in level l = 0 is (k2)

L. Each
level l contains 2 · (k2)

L nodes [4]. Nodes are divided into
(k2)

L−l blocks on each level l. The top level l = 0 contains
only one block and all nodes are directly connected to one
node from each of (k2)

L−1 blocks from level l = 1. Each
node on level L is directly connected to k

2 nodes on level
L− 1, while each rack on level l, where 0 < l < L is directly
connected to k

2 nodes from level l+1 and k
2 nodes from level

l − 1. In Figure 1, we visualize a Clos topology with 8 roots
and 4 levels.

1) The COORDINATOR Algorithm for Clos Topology.: In
the following, we adapt the COORDINATOR algorithm to the
Clos topology. We assume that the topology contains 4 levels,
numbered from 0 to 3. There are ρ roots and 2ρ servers,
that are found at the last level l = 3. It is assumed that the
demand matrix MD contains 2ρ − 1 entries and each server
has knowledge only of its own row in the matrix. In order
to compute the demand-aware network, all entries have to be
sent to a coordinator that is chosen at the beginning of the
algorithm. After receiving 2ρ−1 entries, the coordinator has to
compute the DAN and send a message to each server with the
information on what edges should be formed in the DAN. The
number of communication rounds needed for this algorithm is
4(k2)

L−1 + 4L, where k is the highest degree of the FatTree

and L + 1 the number of levels. 2(k2)
L−1 + 2L rounds are

needed to send the entries to the coordinator and 2(k2)
L−1+2L

rounds for the coordinator to send back messages to all servers.
The servers can then build edges accordingly. Observe that
ρ = (k2)

L. The expression for the number of communication
rounds for L = 3 can be therefore rewritten as 4 · (3

√
ρ)2+12.

Lemma 1. Let ρ be the number of roots on level l = 0. Then,
the DAN design problem can be solved in 4 · (3

√
ρ)2 + 12

communication rounds in the Clos topology where the demand-
aware matrix contains n− 1 entries.

Proof. In order to compute the demand-aware network, all
racks at level l = 3 have to send their entries to an arbitrary
coordinator in the graph. The coordinator computes the DAN
and it replies to all servers at level l = 3 which edges should
be constructed. This process can be divided into two parts.
The first part refers to all the racks sending their entries to
the coordinator and lasts up to 2 · (3

√
ρ)2 + 6 communication

rounds. This will be proved by induction in the following. The
second part requires 2 ·(3

√
ρ)2+6 communication rounds. The

coordinator has to send to each rack from level l = 3 one
message (in total 2(k2)

L messages). Since the coordinator is
an arbitrary rack from level l = 3, it has degree k

2 . Therefore,
2(k2)

L+2L or 2·(3
√
ρ)2+6 communication rounds are needed,

where L = 3 and ρ = (k2)
L.

Base case: Let ρ = 8 be the number of roots in a FatTree,
n = 16 the number of racks on each level 0 < l ≤ 3, and MD

an n×n demand-aware matrix with n−1 = 15 entries. Sending
these entries from racks in the bottom level l = 3 to the
roots takes 3 rounds. The congestion occurs when sending the
entries from roots to the coordinator, since the number of pods
on each lower level increases. Sending entries from level 0 to
level 1, and from level 1 to level 2 takes two communication
rounds each. Sending entries from level 2 to the coordinator on
level 3 takes four more rounds. This results in 11 < 2(3

√
8)2+6

rounds.
Hypothesis: Let MD be an n × n demand-aware matrix.

n − 1 entries can be sent to a coordinator with n racks with
x = 8t, t ∈ N roots in 2 · (3

√
ρ)2 + 6 communication rounds.

Induction step: We prove that 2 · (3
√
ρ+ 8)2+6 rounds are

needed in in the Clos topology with ρ+8 roots and n = 2ρ+16
servers on level l = 3 in order to transmit n − 1 entries to
the coordinator. According to the hypothesis, 2ρ entries can be
sent over ρ roots in 2·(3

√
ρ)2+6 rounds. The remaining 8 roots

have to forward 15 messages. This matches the base case and
can be done in 11 rounds. Observe, that some communication
rounds can be spared when sending messages from servers
at level l = 3 to the roots and from the roots to racks at
level l = 1. It is possible to send the 2ρ entries from the
hypothesis and 15 entries from the base concurrently. This
lowers the number of rounds by 5. The total number needed
for this transmission is 2 · (3

√
ρ)2 + 12. Observe further that

the inequality 2 · (3
√
ρ)2 + 12 ≤ 2 · (3

√
ρ+ 8)2 + 6 holds for

all ρ ∈ N. Therefore, sending n−1 entries in a topology with
ρ+ 8 roots takes at most 2 · (3

√
ρ+ 8)2 + 6 rounds.

Corollary 1. Let the number of levels in the FatTree be L = 3.
If the number of communication rounds is noted as f(k) and
the number of servers as g(k), where k is the highest degree
of the FatTree, then f ∈ o(g).

V. DISTRIBUTED ALGORITHMS WITHOUT COORDINATOR

In this section, we explore whether DANs can also be
computed without coordinators. We start by presenting a
distributed algorithm to compute a DAN for tree demands.
We then use this idea to generalize the algorithm to general
demand graphs. In order to compute a DAN from MD, we
transform the demand matrix into a corresponding graph,
where an edge {i, j} exists iff p(i, j) > 0 and has weight
p(i, j). Then, we must choose a subset of edges with maximum
weight, such that every vertex is incident to at most b edges.
This problem is known as weighted b-matching.

A. Efficient Algorithms For Tree Demand

In this section, we show that it is possible to compute an
almost optimal DAN without relying on a coordinator in the
network. In particular, we present a distributed algorithm to
compute a DAN where the demand matrix is a tree. Note that
in Clos topology (see Figure 1), nodes are already connected
with k

2 links. Since the degree of a DAN is bounded by a
constant ∆, computing an overlaying DAN for a particular de-
mand matrix corresponds to solving the weighted b-matching
problem for b = ∆ − k

2 on a graph described by the matrix
MD. In the b-matching, the goal is to match each node of
a graph with at most b other nodes such that the sum of the
weights of all matched edges is maximized. Observe that many
distributed algorithms solving the b-matching problem require
a logarithmic number of rounds (either in the number of nodes
or in the maximum degree of MD). There are however also
algorithms that only need a constant number of communication
rounds on special graph classes. Here, we present an extension
of an existing 1-matching algorithm on trees and show that this
algorithm reaches a 1/6-approximation of the optimal solution.

Our algorithm is based on the distributed matching algo-
rithm for 1-matchings presented by Wattenhofer and Watten-
hofer [23]. In this algorithm, each rack tries to establish a
link to a neighboring rack with the highest demand. From
all requests to establish a link, each rack picks the one with
the highest demand. This way, the demand tree is split into
disjoint paths. In order to compute a 1-matching, the authors
further compute a maximal matching along each path. We
adjust this algorithm to compute a 2-matching in the first
step by letting the racks accept all disjoint paths as matching
edges. For b > 2, we repeat the algorithm on a graph, where
the matched edges from the previous round are removed.
Algorithm 2 presents this adapted version of the algorithm
for any even b > 1.

In the following, we will show that one round (inside the
while loop) of the algorithm provides a 1/2-approximation of
the optimal 2-matching.

Lemma 2. For b = 2, Algorithm 2 achieves a 1/2-
approximation of the maximum weighted 2-matching.

Algorithm 2 TREE Algorithm for Demand-aware Network in
Clos Topology

1: while b ≥ 2 do
2: for each node u do
3: u requests its heaviest incident edge eu
4: end for
5: for each node u do
6: u confirms the heaviest received request from ev

where ev ̸= eu
7: if u got a request from v then
8: confirm eu
9: end if

10: end for ▷ Each rack has at most degree 2. The
resulting graph is a set of disjoint paths.

11: delete confirmed edges
12: b = b− 2
13: end while
14: All confirmed edges form a b-matching.

Proof. Let A denote Algorithm 2 and w(A) denote the total
weight of edges that were added in the first round of A to
the b-matching. Wattenhofer and Wattenhofer [23] proved that
the collection of paths and cycles computed in one round of
A contains edges that have at least the same weight as the
edges in a maximum 1-matching. Note that these edges can be
mapped one to one to the edges in a maximum 1-matching. Let
now M1 be an optimal 1-matching with weight w(M1). A 2-
matching M2 in trees consists of two 1-matchings with weight
w(M2) ≤ 2·w(M1). Therefore, the following inequality holds:
w(M2) ≤ 2 · w(A).

In order to show that the algorithm provides a 1/6-
approximation for any b, we will first compare the weight of
the collection of b iteratively computed optimal 1-matchings
to the weight of the optimal b-matching. We assume that in
the iterative computation, the matched edges are deleted from
the graph, and the new optimal matching is computed on the
remaining graph. We refer to this strategy as b-iterative-1-
matching.

Lemma 3. The b-iterative-1-matching is a 1/3-approximation
of the b-matching.

Proof. We start by considering matching edges that are present
in the b-matching, but not in the b-iterative-1-matching. For b
iterations, each such edge has not been added to any of the
optimal 1-matchings. For the following analysis, we fix an
edge eb that is in the optimal, but not in the b-iterative-1-
matching. Since the optimal 1-matching is maximal, eb must
have at least one neighboring edge, with which it shares a
vertex, that is included in the optimal matching for each
iteration. We can now use the assumption that we want to reach
a 1/3-approximation of the optimal b-matching, and assign to
each edge of the iterative matching tokens that have three times
the weight of this edge. In the following, we will redistribute
the tokens among all edges that are part of the optimal b-

matching as well as the b-iterative-1-matching, thus showing
that the iterative algorithm is in fact a 1/3-approximation of
the optimal b-matching.

Consider the edge eb in some iteration i. Assume that it
has two neighboring edges e1(1) and e1(2) that are part of
the optimal 1-matching in this iteration. Note that w(eb) <
w(e1(1)) + w(e1(2)) must hold since, otherwise, the optimal
matching would have added edge eb. We can now redistribute
1
2b · 2 ·w(e1(1)) tokens from e1(1) to eb, and 1

2b · 2 ·w(e1(2))
tokens from e1(2) to eb. Observe that this covers a 1

b fraction
of the weight of eb. If eb has only one neighboring edge
e1 in the optimal 1-matching, then w(eb) < w(e1). We can
redistribute 1

2b · 2 ·w(e1) tokens to eb, and thus cover 1
b of its

weight.
Over b iterations, we can thus cover the whole weight of

each edge eb of the maximum b-matching. Next, we need to
show that the edges of the optimal matching do not give up too
many of their tokens, i.e. the remaining tokens should cover
the total weight. This is true because each edge in the optimal
matching can prevent at most 2b− 2 neighboring edges from
joining the b-matching. Thus, at least one third of the tokens
will remain for each edge of the optimal matching.

Using the previous results, we can now prove that Algo-
rithm 2 indeed is a 1/6-approximation:

Theorem 2. Algorithm 2 computes a 1
6 -approximation of the

maximum b-matching in trees.

Proof. In this proof, we compare the solution of the algo-
rithm to the b-iterative-1-matching from Lemma 3. We will
show that, in each iteration, Algorithm 2 computes at least
a 1/2-approximation of the iterative solution. Together with
Lemma 3, this will give us the 1/6-approximation of the
optimal result.

In Lemma 2, we discussed that the collection of disjoint
paths resulting from the first step of the algorithm already
contains edges that have a larger weight than an optimal 1-
matching. Observe that an optimal 1-matching provides a 1/2-
approximation to the optimal 2-matching. Further, in each
round of the algorithm, we compute a 2-matching on the edges
that have not been chosen for a 2-matching in previous rounds.
Thus, in each round, we compute a 1/2-approximation of the
optimal 2-matching on the remaining edges.

Observe that iteratively computed optimal 2-matchings
(b/2-iterative-2-matching) provide at least a 1/3-
approximation of the optimal solution. This follows from
Lemma 3 and the fact that a 2i-iterative-1-matching has at
most the same weight as any i-iterative-2-matching.

Algorithm 2 provides a 1/2-approximation of the optimal
2-matching in each round after matched edges of the algorithm
have been removed. This solution is also at least a 1/2-
approximation of the optimal iterative solution in the corre-
sponding iteration, as the algorithm might have not matched
edges from the optimal solution with better weight in previous
rounds. Altogether, Algorithm 2 gives a 1/6-approximation to
the optimal b-matching for even b.

In the following, we turn our attention to the number of
communication rounds of the algorithm. The communication
in Algorithm 2 takes place in the following parts: when each
rack requests one edge and when each rack confirms up to
two edges. In the best case, each rack requests a different
rack, which takes 2L rounds, and each rack that has received
a request sends up to two confirmed request messages in 2L
rounds. This is repeated b

2 times. The worst case corresponds
to the COORDINATOR algorithm (Algorithm 1). The number
of rounds for requesting the same rack in all iterations is b

2 ·
(2(k2)

L−1+2L), and for confirming up to two edges is b
2 ·4L.

This results in the following observation:

Observation 1. The number of communication rounds needed
in Algorithm 2 is b

2 · 4L in the best case and b
2 · (2(

k
2)

L−1 +
2L) + b

2 · 4L in the worst case, where k is the highest degree
of the graph and L+1 the number of levels in Clos topology.

B. Distributed Propose-and-Reject Algorithm

In this section, we will introduce the PROPOSE AND REJECT
algorithm for computing the DAN based on a demand matrix
MD. This algorithm is inspired by the Gale-Shapley algorithm
for the stable matching problem [51] and is a simple gener-
alization of Algorithm 2. Observe that also Wattenhofer and
Wattenhofer [23] proposed an algorithm for approximating an
optimal matching on general graphs. Their solution however
does not require the resulting chosen edges to form a matching.
The idea of our generalization is the following: every rack
with non-null values starts by proposing to the rack to which
it has the highest traffic. Racks can accept at most b proposals
and they break ties depending on the highest traffic load. The
DAN computed in such a way is not necessarily optimal, but
the advantage is that the algorithm only needs few rounds to
terminate.

In Algorithm 3, we present this idea in pseudocode. This
algorithm consists of four different routines: Firstly, in Rou-
tine 1, each server orders its own entries from the matrix in
descending order. After that, in Routine 2, all servers send
a proposal containing the probability from the first entry to
the corresponding server. The status of these servers is set to
tentative, since they are waiting for one possible acceptance
of the proposal. In Routine 3, all received proposals are
examined, and are either accepted or rejected. The proposals
are in the form (u, v, p) where u is the source server, v
is the destination and p is the probability (frequency) of
having traffic between u and v. Each server that has received
a proposal has to add up the probability p with its own
probability of the entry (v, u). These values are considered
together with v′s non-used entries. The list of these values
is ordered in descending order and only the first bv entries
of the list are taken into account. Proposals are accepted in
accordance with satisfying the constraint that a rack v can have
at most bv edges. If v’s state is tentative, then v is waiting for a
possible match from another rack. In this case, there has to be
one edge saved for this possible match and up to bv−1 edges
can be formed. Racks that have accepted a proposal send a

Algorithm 3 PROPOSE AND REJECT

Routine 1: Sort the entries

1: for each server v do
2: order non-null entries in descending order
3: bv ← b
4: end for

Routine 2: Send proposals

1: for each server u that has ordered non-null entries in the
form (u, v) ∧ bu > 0 do

2: send the first not used entry to v
3: (u, v)← used
4: u← tentative
5: end for

Routine 3: Receive and examine proposals

1: for each proposal (u, v, p) at rack v do
2: add p + probability in entry (v, u) to values[] ▷ v’s

preferences must also be considered
3: end for
4: add non-used entries of v to values
5: sort values[] in a descending order
6: consider the first bv entries of values
7: if v == tentative then ▷ did v send a proposal to

another rack?
8: accept up to bv − 1 proposals from values
9: else

10: accept up to bv proposals from values
11: end if

Routine 4: Receive match

1: for each server v that receives accepted proposal do
2: bv ← bv − 1
3: v ← available ▷ not tentative
4: end for
5: for each server v where v == tentative do ▷ proposal

is rejected
6: v ← available ▷ cannot stay tentative
7: end for

message to the source servers, in order for them to change
their state to available (not tentative) in Routine 4. If servers
do not receive any acceptance of the proposal or are rejected,
their state must be switched to available for the next round
of the algorithm starting at Routine 2. There are b iterations
at most, since each rack can have up to b edges in DAN. All
rounds except for the first round start at Routine 2, continue
with Routine 3, and end with Routine 4.

1) Discussion of the Propose-and-Reject Algorithm.: In
order to analyze the number of communication rounds of the
modified version of the PROPOSE AND REJECT algorithm, the
best and the worst cases are considered. The best case occurs
when no two servers propose the same server. This implies that
sending the proposals within an iteration can be represented
by an injective function. Correspondingly, in the worst case,

all servers in each iteration send proposals to the same server.
It is important to note that this algorithm is not limited to
sparse matrices and works on all underlying topologies.

From Observation 1 we can derive the number of rounds
that the PROPOSE AND REJECT algorithm takes in the Clos
topology. The number of communication rounds in the best
case with a sparse matrix is 4L, where L + 1 is the number
of levels. In this case, each rack sends exactly one proposal,
which needs 2L rounds, and each rack that has received a
proposal sends an accepted proposal message in 2L rounds.
In the best case with a non-sparse matrix, the number of
rounds is b · 4L, where b is the highest degree in the DAN.
The explanation follows from the previous case: a non-sparse
matrix represents b iterations of an algorithm for the sparse
matrix, where each rack holds one entry in each iteration, and
therefore the number of rounds is b · 4L. The worst case in
a sparse matrix corresponds to the COORDINATOR algorithm.
The number of communication rounds is 2(k2)

L−1 + b
k
2

+4L,
where k is the highest degree of the FatTree. Sending proposals
to one rack takes 2(k2)

L−1+2L rounds. The rack has to accept
b proposals and send them through its k

2 edges in the FatTree.
In the worst case with a non-sparse matrix, the number of
rounds is b · (2(k2)

L−1 + 2L) + b · (b
k
2

+ 2L). This can be
derived from the previous case for a sparse matrix. Since the
sparse matrix indicates one iteration of the algorithm, a non-
sparse matrix contains up to b iterations. Hence, the number
of communication rounds has to be multiplied by b.

VI. EXPERIMENTAL EVALUATION

In this section, we complement our analytical results and
empirically evaluate the PROPOSE AND REJECT algorithm
on different datasets and compare it to the COORDINATOR
algorithm. We evaluate our PROPOSE AND REJECT and the
COORDINATOR algorithm on real-world datacenter traffic [6]
and analyze round complexity on a Clos topology.

A. Methodology

Datasets. For the practical evaluation, we used Facebook,
High Performance Computing (HPC) and pFabric datacenter
traces [6]. The Facebook dataset consists of three clusters:
cluster A, cluster B and cluster C. Clusters A and C have 300M
requests, whereas cluster B has 2B requests over 24 hours.
Each trace entry contains a timestamp, a source, a destination
rack, and some additional information such as packet length
and IP protocol. For the evaluation, we consider 15 snapshots
of 10 minutes, where each snapshot consists of 5900 to 15,000
racks with up to 15M requests. Since clusters A, B and C
have dense traffic, we additionally extracted 15 snapshots of
10 minutes with sparse traffic from cluster C. The HPC data
consists of 1024 racks and up to 20M requests, where each
entry contains a sequence number, source and destination rack.
The pFabric dataset contains 30M requests and 144 racks. For
the evaluation, the HPC and pFabric traces were tested in their
entirety, without being divided into smaller snapshots.

Due to the distributed nature of the presented algorithms,
and in order to measure their round complexity in practice,

the experiments were simulated on a widely adopted Clos
topology with 3 levels. Note that adding more layers to the
Clos topology will not change the quality of the solution. The
number of communication rounds for both COORDINATOR and
PROPOSE AND REJECT algorithm will increase, at most two
rounds per layer.
Optimal solution. In order to compute the optimal solution
for the COORDINATOR algorithm to which we will compare
the PROPOSE AND REJECT algorithm, we solve the following
ILP using Gurobi 11.0 [52]:

maximize:
∑
e∈E

w(e)xe

subject to:
∑

u∈N(v)

x{u,v} ≤ b for all v ∈ V

xe ∈ {0, 1} for all e ∈ E

Here, the set E denotes the communication edges from the
matrix MD, and w(e) the corresponding edge weights.

Randomized Propose-and-Reject algorithm. To overcome
the problem of proposing to the same rack, we can randomize
the transmission of proposals. The randomized PROPOSE
AND REJECT algorithm changes Routine 2 in Algorithm 3 in
the following manner: the first b proposals are sent in random
order. This way, we reduce the probability of the racks to
propose to the same rack and avoid congestion.

B. Results

For the evaluation, we grouped the data into two sets:
FB and HPC, and report on the averages in these sets. FB
consists of 15 snapshots from all three clusters A, B and C,
whereas HPC is comprised of HPC traces, pFabric traces and
15 snapshots of sparse cluster C. In this grouping the FB
matrices are much denser than the HPC ones.

In Figure 2a, we compare the randomized and non-
randomized PROPOSE AND REJECT algorithm to the COOR-
DINATOR algorithm for the Facebook and HPC traces. We
plot the average number of rounds for varying values for b.
For the sake of comparison, we lower bound the number of
entries that each rack can send to at most b messages in
the COORDINATOR algorithm instead of communicating all
the entries to the Coordinator. The communicated b messages
represent the largest b entries of each rack. However, we
assume that at the end of the communication phase the
Coordinator has complete knowledge of all entries of the
demand matrix.

Firstly, it can be concluded, that the COORDINATOR al-
gorithm needs significantly more communication rounds than
the randomized and non-randomized PROPOSE AND REJECT
algorithm for both datasets. As previously explained, all
source racks send b many messages to the Coordinator in
the COORDINATOR algorithm, and the Coordinator sends back
one message to all destination racks. Since the assumed Clos
topology has 3 levels, the Coordinator can only send out 2
messages per round. Therefore, the number of rounds for the

2 4 8 16 32 64
Degree of DAN

102

103

104

A
ve

ra
ge

N
u

m
b

er
of

R
ou

n
d

s

PR FB NoRandom

PR FB Random

Coordinator FB

PR HPC NoRandom

PR HPC Random

Coordinator HPC

(a) Number of rounds of the PROPOSE AND REJECT and COORDINA-
TOR algorithm

2 4 8 16 32 64
Degree of DAN

0%

20%

40%

60%

80%

Q
u

al
it

y
of

th
e

S
ol

u
ti

on

PR FB NoRandom

PR FB Random

Coordinator FB

PR HPC NoRandom

PR HPC Random

Coordinator HPC

(b) Solution quality of the PROPOSE AND REJECT and COORDINATOR
algorithms.

Fig. 2: PROPOSE AND REJECT algorithm compared to the
COORDINATOR algorithm in terms of the number of rounds
and solution quality for varying maximum allowed degree b.

COORDINATOR algorithm grows proportionally to the number
of destination racks. The PROPOSE AND REJECT algorithm, on
the other hand, needs considerably fewer rounds than in the
analytical worst-case computed in Section V-B. This suggests
that there is no distinguished node in the demand matrix of the
HPC data to which all other nodes are proposing. Further, we
can see that the randomized PROPOSE AND REJECT algorithm
needs fewer rounds than the non-randomized PROPOSE AND
REJECT for the Facebook data. This is also illustrated in
Figure 3. Facebook clusters encompass between 2M and 15M
requests distributed across 200,000 to 600,000 entries in the
demand matrix. These clusters exhibit a star-like structure and
are regarded as dense. Randomization in this case solves the
problem of proposing the same node and therefore avoids

2 4 8 16 32 64
Degree of DAN

102

103

A
ve

ra
ge

N
u

m
b

er
of

R
ou

n
d

s

PR FB A NoRandom

PR FB B NoRandom

PR FB C NoRandom

PR FB A Random

PR FB B Random

PR FB C Random

Fig. 3: Number of rounds of the randomized and non-
randomized PROPOSE AND REJECT algorithm for Facebook
clusters

congestion. The largest reduction in the number of rounds due
to randomization is observed in cluster B, which is also the
densest cluster, containing 15M requests and 600,000 entries
in the demand matrix.

Figure 2b represents the achieved quality of the b-matching
for the PROPOSE AND REJECT and the COORDINATOR al-
gorithm. The quality of the solution measures how much of
the communication is covered by the DAN. A solution of
100% quality means all edges of the graph are taken. Since
the maximum degree b is bounded, it may not be possible
to take all edges, however, the goal is then to take as many
high weight edges as possible without breaking the degree
constraint. The COORDINATOR algorithm delivers the optimal
solution for each b, which is computed via an ILP solver in
Section VI-A. Firstly, the HPC data surpasses the Facebook
data regarding quality. The reason for this is that the HPC
data is sparse, containing up to 10,000 entries in the demand
matrix. In contrast, the Facebook dataset is dense, with up to
600,000 entries. Consequently, the COORDINATOR algorithm
can cover no more than 35% of the graph for Facebook
clusters. When comparing PROPOSE AND REJECT and the
COORDINATOR algorithm for the Facebook data, it can be
concluded that PROPOSE AND REJECT covers over 77% of the
optimal solution computed by the COORDINATOR algorithm
for b = 64. It is important to mention that the randomized
and non-randomized PROPOSE AND REJECT deliver a DAN
of same quality. Thus, for dense traffic it is beneficial to use
the randomized PROPOSE AND REJECT, since the number of
communication rounds is lower. For this see Figure 3. For the
HPC data, the quality of the solution is at around 80% for
the PROPOSE AND REJECT and 85% for the COORDINATOR
algorithm. The HPC data is sparse and the average degree
of its demand graph is 72. This results in higher graph
coverage and better quality compared to the Facebook data.
For larger values of b, randomization of the PROPOSE AND

REJECT algorithm is not very advantageous. For b = 64 the
randomized PROPOSE AND REJECT covers 77% of the graph,
whereas the non-randomized overlays 83%. For the sparse
datasets, it is effective to use the non-randomized PROPOSE
AND REJECT, since the number of rounds is smaller than
in the COORDINATOR algorithm, while the quality remains
unchanged (see Figure 2b).

VII. CONCLUSION

This paper initiated the study of distributed algorithms to
efficiently compute a bounded-degree DAN across a fixed
network. We presented three algorithms that are designed to
compute a DAN in the congested clique model as well as
to enhance general topologies, such as the Clos topology.
Our results consist of a constant-time distributed algorithm
in the Congest model, and two efficient algorithms when
the fixed network is a Clos topology. We complemented our
theoretical results with simulations and found that our PRO-
POSE AND REJECT algorithm, even with limited knowledge of
the demand matrix, performs almost optimally on real traffic
demands using significantly fewer communication rounds than
the COORDINATOR algorithm’s optimal solution. Note that
our algorithms can be used to recompute the demand-aware
networks periodically, with intervals tailored to the system’s
needs.

This paper leaves several interesting open questions for
future work.

Our PROPOSE AND REJECT algorithm performs well on
the Facebook dataset, benefiting from its sparse and clustered
structure, which is characteristic for datacenter networks. It
would be valuable to investigate whether similar patterns
emerge in other datacenter traces and how more frequent
reconfiguration could enhance result quality. Furthermore, ana-
lyzing the performance of both the PROPOSE AND REJECT and
COORDINATOR algorithms in such scenarios would provide
deeper insights. Sadly, the availability of datasets in this
context is quite limited.

It would also be interesting to explore online algorithms
for computing DANs dynamically, as well as generalizing the
Clos topology to AB-FatTrees [53], which provide better fault
tolerance than FatTrees.

REFERENCES

[1] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising: A
decade of clos topologies and centralized control in Google’s datacenter
network,” Proc. ACM SIGCOMM Computer Communication Review
(CCR), vol. 45, no. 4, pp. 183–197, 2015.

[2] R. W. Alaskar and I. Ahmad, “Data center architectures: Challenges and
opportunities,” International journal of new computer architectures and
their applications, pp. 117–129, 2014.

[3] C. Avin and S. Schmid, “Toward demand-aware networking: A theory
for self-adjusting networks,” ACM SIGCOMM Comput. Commun. Rev.
(CCR), vol. 48, no. 5, pp. 31–40, 2019.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Communica-
tion Review (CCR), vol. 38, no. 4, pp. 63–74, Aug. 2008.

[5] M. N. Hall, K.-T. Foerster, S. Schmid, and R. Durairajan, “A survey
of reconfigurable optical networks,” Optical Switching and Networking,
vol. 41, p. 100621, 2021.

[6] C. Avin, M. Ghobadi, C. Griner, and S. Schmid, “On the complexity
of traffic traces and implications,” Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems, vol. 4, no. 1, pp. 1–29,
2020.

[7] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni,
G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper,
“Projector: Agile reconfigurable data center interconnect,” in Proceed-
ings of the 2016 ACM SIGCOMM Conference, 2016, p. 216–229.

[8] C. Avin, K. Mondal, and S. Schmid, “Demand-aware network designs
of bounded degree,” Distributed Computing, vol. 33, pp. 1–15, 2020.

[9] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical
datacenter network,” in Proc. ACM SICOMM 2017 conference. ACM,
2017, pp. 267–280.

[10] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and
G. Porter, “Expanding across time to deliver bandwidth efficiency and
low latency,” in Proc. 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), 2020, pp. 1–18.

[11] C. Griner, J. Zerwas, A. Blenk, M. Ghobadi, S. Schmid, and C. Avin,
“Cerberus: The power of choices in datacenter topology design (a
throughput perspective),” Proc. ACM Meas. Anal. Comput. Syst., vol. 5,
no. 3, dec 2021.

[12] J. ZERWAS, C. Gyorgyi, A. Blenk, S. Schmid, and C. Avin, “Duo: A
high-throughput reconfigurable datacenter network using local routing
and control,” in ACM SIGMETRICS, 2023.

[13] V. Addanki, C. Avin, and S. Schmid, “Mars: Near-optimal throughput
with shallow buffers in reconfigurable datacenter networks,” in ACM
SIGMETRICS (accepted), 2023.

[14] C. Avin, K. Mondal, and S. Schmid, “Demand-aware network design
with minimal congestion and route lengths,” IEEE/ACM Transactions
on Networking, vol. 30, no. 4, pp. 1838–1848, 2022.

[15] C. Avin, A. Hercules, A. Loukas, and S. Schmid, “rdan: Toward robust
demand-aware network designs,” Information Processing Letters, vol.
133, pp. 5–9, 2018.

[16] M. Pacut, W. Dai, A. Labbe, K.-T. Foerster, and S. Schmid, “Improved
scalability of demand-aware datacenter topologies with minimal route
lengths and congestion,” ACM SIGMETRICS Performance Evaluation
Review, vol. 49, no. 3, pp. 35–36, 2022.

[17] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus:
a topology malleable data center network,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[18] Y. Xia, X. S. Sun, S. Dzinamarira, D. Wu, X. S. Huang, and T. S. E.
Ng, “A tale of two topologies: Exploring convertible data center network
architectures with flat-tree,” in Proc. ACM SICOMM Conference, 2017,
p. 295–308.

[19] C. Avin and S. Schmid, “Renets: Statically-optimal demand-aware
networks,” in Proc. SIAM Symposium on Algorithmic Principles of
Computer Systems (APOCS), 2021.

[20] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proc. 9th
ACM SIGCOMM conference on Internet measurement, 2009, pp. 202–
208.

[21] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 123–137.

[22] L. Feuilloley and P. Fraigniaud, “Survey of distributed decision,” 2016.
[23] M. Wattenhofer and R. Wattenhofer, “Distributed weighted matching,”

in Distributed Computing, 2004.
[24] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik,

F. Karinou, S. Lange, K. Shi, B. Thomsen et al., “Sirius: A flat datacenter
network with nanosecond optical switching,” in Proc. ACM SIGCOMM
2020 Conference, 2020, pp. 782–797.

[25] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid
electrical/optical switch architecture for modular data centers,” ACM
SIGCOMM Comput. Commun. Rev. (CCR), vol. 41, no. 4, pp. 339–350,
2011.

[26] M. Zhang, J. Zhang, R. Wang, R. Govindan, J. C. Mogul, and A. Vahdat,
“Gemini: Practical reconfigurable datacenter networks with topology and
traffic engineering,” 2021.

[27] Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav, “Quartz: A new
design element for low-latency dcns,” SIGCOMM Comput. Commun.
Rev. (CCR), vol. 44, no. 4, pp. 283–294, Aug. 2014.

[28] S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler,
and Z. Lotker, “Splaynet: Towards locally self-adjusting networks,”
IEEE/ACM Transactions on Networking, vol. 24, no. 3, pp. 1421–1433,
2016.

[29] S. B. Venkatakrishnan, M. Alizadeh, and P. Viswanath, “Costly circuits,
submodular schedules and approximate carathéodory theorems,” Queue-
ing Systems, vol. 88, no. 3-4, pp. 311–347, 2018.

[30] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng,
M. Kozuch, and M. Ryan, “c-through: Part-time optics in data centers,”
ACM SIGCOMM Comput. Commun. Rev. (CCR), vol. 41, no. 4, pp.
327–338, 2011.

[31] R. Schwartz, M. Singh, and S. Yazdanbod, “Online and Offline Algo-
rithms for Circuit Switch Scheduling,” in 39th IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2019), 2019.

[32] L. Chen, K. Chen, Z. Zhu, M. Yu, G. Porter, C. Qiao, and S. Zhong, “En-
abling wide-spread communications on optical fabric with megaswitch,”
in Proc. 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), USA, 2017, pp. 577–593.

[33] M. Hampson, “Reconfigurable optical networks will move supercompu-
terdata 100x faster,” in IEEE Spectrum, 2021.

[34] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang,
X. Wen, and Y. Chen, “Osa: An optical switching architecture for data
center networks with unprecedented flexibility,” IEEE/ACM Transactions
on Networking (TON), vol. 22, no. 2, pp. 498–511, 2014.

[35] F. Douglis, S. Robertson, E. Van den Berg, J. Micallef, M. Pucci,
A. Aiken, M. Hattink, M. Seok, and K. Bergman, “Fleet—fast lanes for
expedited execution at 10 terabits: Program overview,” IEEE Internet
Computing, vol. 25, no. 3, pp. 79–87, 2021.

[36] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin,
H. Shah, and A. Tanwer, “Firefly: A reconfigurable wireless data center
fabric using free-space optics,” in ACM SIGCOMM Comput. Commun.
Rev. (CCR), vol. 44, no. 4. ACM, 2014, pp. 319–330.

[37] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao,
and H. Zheng, “Mirror mirror on the ceiling: Flexible wireless links for
data centers,” ACM SIGCOMM Comput. Commun. Rev. (CCR), vol. 42,
no. 4, pp. 443–454, 2012.

[38] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data
center networks,” in Proc. ACM Workshop on Hot Topics in Networks
(HotNets), 2009.

[39] D. Amir, N. Saran, T. Wilson, R. Kleinberg, V. Shrivastav, and H. Weath-
erspoon, “Shale: A practical, scalable oblivious reconfigurable network,”
ser. ACM SIGCOMM ’24. New York, NY, USA: Association for
Computing Machinery, 2024, p. 449–464.

[40] M. Y. Teh, Z. Wu, and K. Bergman, “Flexspander: augmenting expander
networks in high-performance systems with optical bandwidth steering,”

IEEE/OSA Journal of Optical Communications and Networking, vol. 12,
no. 4, pp. B44–B54, 2020.

[41] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM SIGCOMM conference on
Internet measurement. ACM, 2010, pp. 267–280.

[42] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proc. 2017 Internet Mea-
surement Conference, ser. IMC ’17, 2017, pp. 78–85.

[43] S. Zou, X. Wen, K. Chen, S. Huang, Y. Chen, Y. Liu, Y. Xia, and
C. Hu, “Virtualknotter: Online virtual machine shuffling for congestion
resolving in virtualized datacenter,” Computer Networks, vol. 67, pp.
141–153, 2014.

[44] S.-E. Huang and H.-H. Su, “(1-ϵ)-approximate maximum weighted
matching in poly(1/ϵ, log n) time in the distributed and parallel settings,”
in Proceedings of the 2023 ACM Symposium on Principles of Distributed
Computing, ser. PODC ’23, 2023.

[45] D. G. Harris, “Distributed local approximation algorithms for maximum
matching in graphs and hypergraphs,” in 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), 2019.

[46] M. Ahmadi, F. Kuhn, and R. Oshman, “Distributed Approximate
Maximum Matching in the CONGEST Model,” in 32nd International
Symposium on Distributed Computing (DISC 2018), 2018.

[47] A. Panconesi and M. Sozio, “Fast primal-dual distributed algorithms for
scheduling and matching problems,” Distributed Comput., vol. 22, no. 4,
2010.

[48] M. Fischer, “Improved deterministic distributed matching via rounding,”
in 31st International Symposium on Distributed Computing, DISC 2017,
October 16-20, 2017, Vienna, Austria, 2017.

[49] O. Peres and C. Avin, “Distributed demand-aware network design using
bounded square root of graphs,” in INFOCOM 2023 - IEEE Conference
on Computer Communications, ser. Proceedings - IEEE INFOCOM,
2023.

[50] C. Lenzen, “Optimal deterministic routing and sorting on the congested
clique,” in Proceedings of the 2013 ACM Symposium on Principles
of Distributed Computing, ser. PODC ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 42–50.

[51] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, pp. 9–15,
1962.

[52] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[53] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A
fault-tolerant engineered network,” in Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, ser.
nsdi’13. USA: USENIX Association, 2013, p. 399–412.

https://www.gurobi.com

	Introduction
	Contributions
	Organization

	Related Work
	Preliminaries and Model
	Distibuted Algorithms with Coordinator
	Distributed DAN Computation in Congested Clique
	Distributed DAN Computation in Clos Topology
	The Coordinator Algorithm for Clos Topology.

	Distributed Algorithms without Coordinator
	Efficient Algorithms For Tree Demand
	Distributed Propose-and-Reject Algorithm
	Discussion of the Propose-and-Reject Algorithm.

	Experimental Evaluation
	Methodology
	Results

	Conclusion
	References

