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ABSTRACT

Large language models (LLMs) are increasingly deployed as task-oriented agents,
where success depends on their ability to generate accurate function calls un-
der realistic, multilingual conditions. However, existing evaluations largely over-
look cultural and linguistic diversity, relying on monolingual or naively translated
datasets. We introduce Ticket-Bench, a benchmark for multilingual function-
calling in task-oriented scenarios. Ticket-Bench simulates the domain of soccer
ticket purchases across six major languages—Portuguese, English, Spanish, Ger-
man, Italian, and French—using localized teams, cities, and user profiles to ensure
cultural authenticity. We evaluate a wide range of commercial and open-source
LLMs, measuring function-calling accuracy and consistency across languages.
Results show that reasoning-oriented models (e.g., GPT-5, Qwen3-235B) domi-
nate performance but still exhibit notable cross-lingual disparities. These findings
underscore the need for culturally aware, multilingual benchmarks to guide the
development of robust LLM agents.

1 INTRODUCTION

Large language models (LLMs) have quickly evolved from mere text generators to agents capable of
orchestrating real-world actions through function-calling and tool use Patil et al.| (2024));|Schick et al.
(2023). This paradigm shift has fueled the adoption of LLMs in a wide array of digital assistants
and task automation platforms, where interpreting user requests and triggering appropriate actions
is essential |Guo et al.| (20244); L1 et al. (2024).

A critical gap in current research is the absence of multilingual, culturally aware benchmarks for
evaluating function-calling. Existing evaluations of tool use and agent performance cover important
ground but are predominantly English-centric Mohammadi et al.|(2025)); Patil et al.| (2025); |Castillo-
Bolado et al.|(2024); Barres et al.|(2025). Related efforts on general task completion and information
retrieval extend to multiple languages Huang et al.| (2025)); (Chirkova et al.| (2024)), yet they often
depend on monolingual or simply translated datasets. In real deployments, users converse with
assistants in many languages and reference region-specific entities that shape model interactions
and may influence how well a model executes function calls. Without benchmarks that reflect this
linguistic and cultural localization, we cannot reliably assess—or improve—models’ ability to plan
and fulfill real-world tasks across different regions.

To address this gap, we introduce Ticket-Bench, a benchmark for evaluating LLM function-calling in
the domain of purchasing soccer game tickets. Ticket-Bench features tasks in six major languages—
Portuguese, English, Spanish, German, Italian, and French. We carefully localize user queries and
context, adapting city names, team names, and contextual nuances to each language and region.
This approach ensures that LLMs are tested not only for multilingual understanding but also for
their ability to handle realistic scenarios. Ticket-Bench is available at https://anonymous.
4open.science/r/Ticket-Bench-5BC0.

Ticket-Bench provides a wide range of scenarios, requiring LLMs to interpret nuanced constraints
and user preferences when generating structured function calls to interact with the system. Our
evaluations reveal challenges in some LLMs to interpret user intent and produce the expected actions
robustly across all tested languages.

The main contributions of our paper are as follows:
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* We introduce Ticket-Bench, a benchmark designed to evaluate LLM agent capabilities in
ticket-purchasing scenarios, featuring over 1000 evaluation cases across six languages with
contextually adapted environments.

* Ticket-bench provides an LLM-free, programmatic evaluation that checks the final environ-
ment state (expected tickets booked, no unexpected bookings). To capture robustness, we
report a pass”3 consistency metric computed over multiple executions per query, rewarding
models that solve tasks reliably, not just once.

* We observe systematic, family-specific language asymmetries: no language is uniformly
“easy” or “hard,” but some model families show notable strengths and deficits across certain
languages, likely due to language imbalances in the model training data.

2 RELATED WORK

Multilingual disparities in LLMs. Recent studies have shown that LLMs perform unevenly across
regions, particularly in underrepresented countries and cultural contexts. For example, World-
Bench|Moayeri et al.| (2024) exposes gaps in factual recall tied to economic and geographic divides,
TiEBe |Almeida et al.| (2025) highlights inconsistencies in capturing temporally grounded events,
and BLEnD Myung et al.|(2024) uncovers cultural and linguistic biases in everyday knowledge.

Towards the multilingual and culturally grounded evaluation, Multi-IF |He et al.|(2024) introduces a
benchmark focused on multi-turn and multilingual instruction-following, exploring whether models
can maintain coherence and correctly execute instructions across different languages over multiple
dialogue turns. However, its scope remains restricted to textual instruction comprehension.

While multilingual disparities are explored in text-based tasks, it is unclear how they impact LLMs
function-calling capabilities, where models must correctly interpret and execute structured calls
across languages and contexts.

English-Only Function Call Benchmarks. Most function-calling benchmarks for LLMs empha-
size interaction realism and dialogue robustness, simulating policy-constrained dialogues or API-
driven tasks. However, these evaluations are largely monolingual and culturally neutral, leaving
open how models adapt to multilingual, localized settings.

72-Bench Barres et al.| (2025) extends the original 7-Bench |Yao et al.| (2024) with dual-control
environments, where both agent and simulated user act on a shared state, and provides analyses that
separate reasoning from coordination errors. ConFETTI Alkhouli et al.| (2025) evaluates turn-level
function-calling across 109 human-simulated conversations (313 user turns) and 86 APIs, testing
goal changes, follow-ups, and chained calls. Both benchmarks focus on turn-level function-calling,
assessing how well LLMs manage multi-turn interactions, handle dynamic goals, and coordinate
with simulated users in English-only settings.

HammerBench [Wang et al.[(2025) evaluates LLM tool usage in long-context mobile assistant sce-
narios, incorporating multi-step task execution, error recovery, and realistic API sequences. Stable-
ToolBench Guo et al.| (2024b) focuses on robustness and reliability across diverse APIs, emphasiz-
ing consistency in multi-step interactions and using a virtual API server for stable evaluation. These
benchmarks assess interactive, multi-step tool usage, testing how LLLMs maintain context, execute
workflows, and recover from errors.

BigCodeBench [Zhuo et al.| (2024) evaluates LLM code generation across multiple programming
languages and frameworks. BFCL [Patil et al.| (2025) focuses on chain-of-thought reasoning and
problem-solving without interactive environment control. API-Bank |Li et al,| (2023) provides a
collection of APIs and tasks for evaluation, focusing on single-task multi-step API usage; it does
not involve multi-turn dialogue or agent-like decision making. These benchmarks share a focus on
evaluating LLMs’ function-calling capabilities in single-task, multi-step scenarios, reasoning, and
other aspects, but remain limited to only English.

Multilingual Function-Calling Studies. Recent work has begun to explore how multilingual con-
texts affect LLMs’ function-calling capabilities. For instance, BenchMAX Huang et al.| (2025)
introduced a multilingual evaluation suite with a Tool Use track, assessing models’ ability to invoke
correct functions across multiple languages through simple translation of the nexus jteam| (2023))
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dataset. Similarly, ACEBench [Chen et al.|(2025) extends function-calling evaluation to both En-
glish and Chinese, providing insights into cross-lingual performance.

However, existing multilingual function-calling efforts remain limited in scope and experimental
control. Most cover only a small set of languages or rely on direct translations, and do not cover the
localization of relevant entities during evaluation. Furthermore, many evaluations are dependent on
LLM-as-judge or turn-level signals instead of verifiable end-state outcomes.

TicketBench provides a simulated, culturally grounded environment across six languages, with syn-
chronized schedules, localized user profiles, and aligned question templates to ensure comparability.
Models interact through a fixed set of fully translated functions with standardized inputs and outputs,
allowing evaluation of reasoning and execution in multi-step function calls while isolating language-
specific ambiguities. This design enables a more systematic and robust multilingual assessment than
prior benchmarks.

Table [I| summarizes the key characteristics of the benchmarks reviewed alongside TicketBench.
Languages indicates the number of languages supported by the benchmark; Regional Adaptation
reflects whether datasets incorporate localized attributes or cultural context; Interactiveness denotes
whether the model’s outputs dynamically influence the environment; Multi-Step specifies whether
tasks require sequential or dependent operations to fulfill the task; LLM-Free Evaluation indicates
whether correctness can be assessed without relying on another LLM as a judge; and System Focus
identifies benchmarks designed to evaluate full agent pipelines or realistic system workflows rather
than isolated function calls.

Regional . . LLM-Free System
Adaptation Interactiveness  Multi-Step Evaluation  Focus

v

Benchmark Languages

72-Bench
ConFETTI
HammerBench
StableToolBench
BigCodeBench
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Table 1: Comparison of function-calling benchmarks, highlighting multilingual coverage, regional
adaptation, interactiveness, multi-step evaluation, LLM-free assessment, and system focus.

3 METHODOLOGY

3.1 ENVIRONMENT AND ENTITIES

To evaluate function-calling capabilities in multilingual scenarios, we constructed a simulated ticket-
purchasing environment with three main components.

Users are defined by a culturally appropriate name (sampled from common names in the target
country), a virtual account balance, and a preferred soccer team. These attributes introduce personal
constraints—such as affordability and team preference—into the simulation. For each language, we
generate 20 users, ensuring that no two share the same preferred team.

Game schedules form the core set of events. Each schedule represents a full league season, with
games specifying the home team, away team, city, stadium, ticket price, and date. All entity names
(teams, cities, stadiums) are localized to the target language and region. We simulate two types
of schedules per language: one where each of the 20 teams plays every other team once, and an-
other where they play twice, producing a total of 380 matches—the same number found in most
professional leagues that inspired our setup.
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Leaderboards capture historical league performance, enabling queries that depend on past results.
For each season, they record statistics for each team, including points, wins, draws, losses, goals
scored, and goals conceded. To generate these tables, we synthetically assign goals to each match
while enforcing consistency, ensuring the resulting distributions resemble realistic league outcomes.

Table 2: Constraint coverage across the 17 templates. A checkmark (v") indicates that the constraint
is present in the template.

5

Template (abridged) Semester Weekday Price Location Leaderboard

Next {user_team} game I can afford

Next game of my team I can afford

Next game I can afford, first semester v
Next game I can afford, not on weekend v

Cheapest game this year v

Next game in {location} v

Next game vs team with >60 points in {year} v
Next game, second semester, midweek v
Most expensive game I can afford, not weekend

10 Cheapest game in {location}

11 Next game in {location}, vs top 8 teams of {year}

12 Cheapest game, second semester, midweek v
13 Most expensive game I can afford, not weekend, in {location}

14 Cheapest game in {location}, vs team with >20 goals {year}

15 Most expensive game I can afford, 2nd semester, midweek, in {location}

16  Cheapest game I can afford, not weekend, in {location}, vs >20 goals {year}

17 Most expensive game, 2nd semester, not weekend, in {location}, vs top 3 of {yearl }/{year2} v
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3.2 QUESTION TEMPLATES

We define 17 question templates representing distinct ticket-purchasing scenarios. Each template
combines constraints drawn from five categories:

* Semester: restricts the date to the first or second semester.

* Weekday: restricts the day of the week (e.g., avoids weekends or selects midweek days).
* Price: selects the cheapest or most expensive game that satisfies other constraints.

* Location: restricts the game to a specific city.

* Leaderboard: adds conditions based on past results (e.g., top n teams, teams with more
than x goals or points).

Table 2 summarizes the 17 templates and the constraints each one involves. The actual templates
can be found in the Appendix B}

For each question template, we instantiate ten unique queries by varying user profiles, game sched-
ules, and constraint specifications. This results in 170 queries per language and a total of 1,020
queries across the six languages in TicketBench.

To capture a wider range of scenarios, we design a subset of queries for which no valid booking
exists. Specifically, 15% of the questions are constructed so that no game in the schedule satisfies
the stated constraints. This guarantees that models are not only evaluated on their ability to find
valid matches, but also on their capacity to correctly detect when no solution exists.

3.3 AVAILABLE FUNCTIONS

Models are provided with a fixed set of five callable functions to solve the user query. Each func-
tion exposes a simple interface with clearly defined inputs and outputs, ensuring consistency across
languages.

Get User Info retrieves the user profile, including the user’s name, preferred team, and current
account balance. This function allows models to check affordability constraints and align ticket
choices with the user preferences.

List Games returns a paginated list of games, with a maximum of 10 entries per page. The function
accepts optional filters on fields such as location and team, and also supports ordering (e.g., by date
or by price). Each game is represented with its identifier, teams, city, stadium, ticket price, and
scheduled date. This function is central for exploring the search space of possible tickets.
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English Portuguese Spanish
- - Y
Please buy a ticket for the next game or f_a‘or] con:ipre umtl.ngresso parato . or favor, compra una entrada para el
X 1 me 1me n| T s n . .
of my team that happens in London pro Si © g?ol 0 meu time que acontecera proximo partido de mi equipo que ocurra
&m0t avo en Valencia

Tool Call: Tool Call: Tool Call:
Get_user_info obter_info_usuario obtener_info_usuario
{User: Noah, Money: 190 euros, {User: Jodo, Money: 190 reais, {User: Ramona, Money: 200 euros,‘
Team: Everton} Team: Fluminense } Team: Valencia }
Tool Call: Tool Call: Tool Call:
List_Games(city=London) listar_partidas(city=Séo Paulo) listar_partidos(city=Valencia)
° { </Return list of games> Q { </Retornar lista de jogos> ° { </Retornar lista de juegos>
e —— — —
f Tool Call: Tool Call: Tool Call:
buy_ticket_for_game(id_234) comprar_ingresso_para_partida (id_234) comprar_boleto_para_partido (id_234),
c { Booked game with id_234 ° {lngresso comprado de id_234 ° { Partido reservado con id_234

Figure 1: Example of Ticket Bench question localization

Buy Game Ticket finalizes the decision process by purchasing a ticket for a given game identifier.
Successful execution updates the environment state by reducing the user’s balance and marking the
corresponding game as booked.

Get Leaderboard provides access to historical league performance. It returns, for a specified year,
a table of per-team statistics including points, wins, draws, losses, goals scored, and goals conceded.
This function enables queries that depend on conditions such as “top n teams” or “teams with more
than x goals.”

Get Weekday from Date returns the day of the week corresponding to a given date string in the
format YYYY-MM-DD. This function supports constraints involving weekends or midweek games.

3.4 LOCALIZATION

We instantiate the environment in six languages, each aligned with a major national soccer league:
Brasileirdo in Portuguese (Brazil), Ligue 1 in French (France), Bundesliga in German (Germany),
La Liga in Spanish (Spain), Serie A in Italian (Italy), and Premier League in English (United King-
dom), more information about our selection of Leagues can be found in the Appendix [F} For every
language, team names are sourced from the official rosters of the respective leagues, and their home
cities are used as the localized set of cities. User names are sampled from the most frequent names
in each country to ensure cultural plausibility and naturalness in the generated scenarios.

To further control cross-linguistic comparability, we manually translate all question templates, along
with the function names and their descriptions that are exposed to the model during execution. An
illustration of the interaction flow is provided in Figure[T} We enforce consistent constraints across
languages and synchronize league schedules so that the distribution of games remains equivalent.
This guarantees that differences in model performance during evaluation can be attributed to the
agent’s language-specific capabilities.

3.5 EVALUATION

A query is considered correct if the resulting environment state after the LLM execution matches the
annotated state, that is, all expected games are booked and no unexpected games are booked. This
means our evaluation is not dependent on LL.Ms. More details about the evaluation can be found at
Appendix

Our main metric, pass’k, is adapted from code-generation benchmarks and estimates the probability
that a model would succeed k independent attempts in the task. For each query i, let ¢; denote the
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Table 3: pass™3 results for tested models in Ticket Bench. Results are displayed in each language
covered in Ticket bench, and considering all questions in the benchmark.

\ Pass™3
model
| en €s fr it de pt  overall

GPT-5 092 093 092 092 092 087 091
GPT-5 Mini 091 091 089 090 0.89 086 0.89
Qwen3-235B-A22B |Yang et al.| (2025) 0.88 091 090 0.85 0.88 0.86 0.88
GPT-5 Nano 0.71 0.78 083 0.69 073 0.74 0.75
GPT-OSS-120B |Agarwal et al.|(2025) 0.73 076 0.72 0.70 0.73 0.67 0.72
GPT-4.1 0.74 068 075 0.62 070 0.72 0.70
Gemini-Pro 2.5 |Comanici et al.| (2025) 085 054 076 048 059 0.6 0.63
Gemini-Flash 2.5|Comanici et al.[(2025) 072 052 064 037 043 045 0.52
Qwen3-32B |Yang et al.|(2025) 040 055 051 056 055 056 052
GPT-4.1 Mini 048 059 049 052 054 048 0.52
Qwen3-14B |Yang et al.| (2025) 034 046 040 038 044 045 0.41
Qwen2.5-72B-Instruct/Qwen et al.| (2025) 025 034 047 030 042 048 0.38
Qwen2.5-32B-Instruct|(Qwen et al.| (2025]) 0.28 030 037 025 035 043 0.33
Qwen3-30B-A3B |Yang et al.[(2025) 024 034 036 031 038 0.35 0.33
Sabia-3.1 |Abonizio et al.[ (2024) 0.30 024 027 021 029 030 0.27
xLAM-2-32b-fc-r|Prabhakar et al.[(2025) 0.22 024 021 0.27 030 031 0.26
Qwen3-8B |Yang et al.[(2025) 0.21 028 026 024 033 0.28 0.26
GPT-0SS-20B|Agarwal et al.[(2025) 0.29 027 021 0.14 029 0.31 0.25
Qwen3-4B |Yang et al.[(2025) 020 025 022 022 027 022 023
GPT-4.1 Nano 0.20 021 021 0.16 0.19 0.18 0.19
Qwen2.5-14B-Instruct Qwen et al.| (2025) 0.16 0.18 022 0.12 0.11 0.25 0.17
Qwen2.5-7B-Instruct|Qwen et al.[(2025]) 0.14 0.14 0.18 0.09 0.13 0.12 0.13
Qwen2.5-3B-Instruct|Qwen et al.[(2025])) 0.10 0.12 0.12 0.08 0.11 0.10 0.11
Llama-xLLAM-2-8b-fc-r|Prabhakar et al.|(2025) | 0.08 0.08 0.12 0.10 0.14 0.06 0.10
xLAM-2-3b-fc-rPrabhakar et al.|(2025]) 0.03 0.11 0.07 0.05 0.06 0.05 0.06

number of correct executions across M runs. The empirical probability of success for each query is

C; k

N
Zpi~
i=1

This formulation rewards consistency across runs: queries that are solved correctly in multiple at-
tempts contribute more than those solved only once. We compute metrics separately for each target
language and in aggregate over the full multilingual dataset.

And the overall score is given by

pass3 =

2l -

For this study, we set M=3 and K=3. We choose to run each model only 3 times for budget reasons, as
some of the most expensive reasoning models can be notably expensive to run, GPT-5, for example,
costs around $70 USD to run 3 times in all of Ticket Bench.

4 RESULTS

4.1 OVERALL PERFORMANCE
Table [3| reports the average pass™3 results across all tested models, broken down by language and
overall performance.

The five best-performing systems—GPT-5 (0.91), GPT-5 Mini (0.89), Qwen3-235B |Yang et al.
(2025)) (0.88), GPT-5 Nano (0.75), and GPT-OSS-120B |Agarwal et al.|(2025) (0.72)—all belong to
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the category of reasoning models. These systems are designed to use more inference tokens to solve
the task, at a higher computational cost, see Appendix [D|for further cost x performance analysis.

Outside the top models, accuracy starts to drop. GPT-4.1 (0.70 overall) remains a strong non-
reasoning baseline, but its smaller variant GPT-4.1 Mini (0.52) falls behind, and GPT-4.1 Nano
(0.19) shows a very lackluster performance. Qwen3-32B and Qwen3-14B show moderate perfor-
mance (0.52 and 0.41), but the majority of Qwen2.5 models and smaller Qwen3 variants remain
below 0.40 overall. This demonstrates that while instruction tuning improves usability, it does not
provide the robustness required for complex multilingual function-calling.

An interesting trend emerges in the xLAM models|Prabhakar et al.|(2025])), which were fine-tuned for
function-calling based on BFCL and tau-bench tasks: their performance is consistently worse than
their base Qwen2.5 models. For example, xXLAM-2-32B-fc-r (0.26) underperforms Qwen2.5-32B-
Instruct (0.33), and xXLAM-2-3B-fc-r (0.06) falls behind Qwen2.5-3B-Instruct (0.11). This suggests
that the specialized fine-tuning applied to xLAM may have improved capabilities in the target task
but negatively impacted generalization across languages and tasks. These findings are consistent
with the ones found by Acebench Chen et al.| (2025).

For a more detailed analysis of the type of errors each model committed, see Appendix

4.2 SCALING TRENDS

Overall Pass Power K 3

Std Between Languages Pass Power K 3

100
Model Size (B parameters) Model Size (B parameters)

(a) Scaling Law of various LLMs families on Ticket- (b) Standard deviation between different languages of
Bench. various LLM families.

Figure 2: Scaling tendencies of open source models in Ticket Bench.

Figures [2a] and [2b] provide additional perspective by analyzing scaling behavior across model fami-
lies.

Figure |2af illustrates the scaling behavior of different LLM families on Ticket Bench. The results
follow a clear scaling law: as model size increases, accuracy steadily improves across most families.
However, the slope of this improvement differs significantly. The Qwen3 (MoE) family shows the
steepest growth, reaching competitive performance at large parameter counts. GPT-OSS models
also follow a near-linear scaling trend, reinforcing the value of additional capacity. In contrast, the
Qwen2.5 and xLAM-2 families scale more slowly, plateauing at considerably lower performance
levels. This suggests that scaling alone is not sufficient; architectural and training choices (e.g.,
reasoning optimization) strongly mediate gains from larger parameter budgets.

Figure[2b|reports the standard deviation of accuracy across languages for each family. Larger models
generally exhibit greater cross-lingual consistency, as evidenced by the declining variance in GPT-
0SS and Qwen3 (MoE) models at the highest scales. By contrast, Qwen2.5, Qwen3 (dense) and
XLAM-2 models show increasing variance as parameters grow, indicating uneven improvements
across languages.

4.3 CROSS-LINGUAL VARIATION

Figure 3] analyzes the relative performance of each model across languages by subtracting the
model’s overall average performance from its per-language score. Positive values indicate languages
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GPT-5 - 0.67 1.67 0.67 0.67 0.67 -4.33 20
GPT-5 Mini - 1.67 1.67 -0.33 0.67 -0.33 -3.33
GPT-5 Nano - -3.67 BASS! 8.33 -5.67 -1.67 -0.67
Gemini-Pro pPARCE} -9.67 12.33 -4.67 -3.67
Gemini-Flash -0.17 11.83 917 7.7 13
GPT-4.1 - 3.83 -2.17 4.83 -8.17 -0.17 1.83
GPT-4.1 Mini - -3.67 7,55 -2.67 ©.38 233 -3.67
GPT-4.1 Nano - 0.83 1.83 1.83 -3.17 -0.17 -1.17 -10
Qwen2.5-72B-Instruct -3.67 9.33 -7.67 4.33 10.33
Qwen2.5-32B-Instruct - -5.00 -3.00 4.00 -8.00 2.00 10.00
Qwen2.5-14B-Instruct - -1.33 0.67 4.67 25,348 -6.33 7.67 -5
Qwen?2.5-7B-Instruct - 0.67 0.67 4.67 -4.33 -0.33 =il
Qwen?2.5-3B-Instruct - -0.50 1.50 1.50 -2.50) 0.50 -0.50
Sabia-3.1 - 3.17 -2.83 0.17 -5.83 2.17 3.17 -0
GPT-0SS-1208B - 117 4.17 0.17 -1.83 1.17 -4.83
XLAM-2-32b-fc-r - -3.83 -1.83 -4.83 1.17 4.17 5.17
Llama-xLAM-2-8b-fc-r - -1.67 -1.67 2,35 0.33 4.33 -3.67
XLAM-2-3b-fc-r - -3.17 4.83 0.83 -1.17 -0.17 -1.17 >
Qwen3-2358B - 0.00 3.00 2.00 -3.00 0.00 -2.00
Qwen3-30B-A3B - -9.00 1.00 3.00 -2.00 5.00 2.00
Qwen3-32B - 2.83 -1.17 3.83 2.83 3.83 --10
Qwen3-14B - 717 4.83 -1.17 =317 2.83 3.83
Qwen3-8B - -5.67 133 -0.67 -2.67 6.33 1.33
Qwen3-4B - -3.00 2.00 -1.00 -1.00 4.00 -1.00 -15
Eng;lish Spa‘nish Fre‘nch Ital‘ian Ger;nan Portuéuese

Figure 3: Heatmap showing the difference between each model per-language pass™3 performance
and its own mean pass”3 performance among all languages. Models of the same family are displayed
together.

where the model performs better than its own mean, while negative values highlight languages where
the model performs worse than it’s average performance.

No “‘easy” or ‘“hard” language across the board.. No single language consistently depresses
scores across all systems. Instead, each language interacts differently with different families. For ex-
ample, Qwen2.5-72B and Qwen2.5-32B achieve strong gains in Portuguese but show sharp deficits
in English and Italian, while GPT-4.1 performs well in French yet struggles in Italian.

Family-specific asymmetries. Certain families show systematic biases. Qwen2.5 instruct models
tend to favor French and Portuguese but lose accuracy in English and Italian. Qwen3 models also
display a relative drop in English while improving in German and Spanish. Most surprisingly, both
Gemini models display a disproportionate increase in English performance, with a secondary gain
in French, but weaker results in all other languages. By contrast, the largest GPT-5 models maintain
more balanced cross-lingual results, with the main exception being Portuguese, where deviations
are more pronounced. These family-specific patterns are likely a reflection of the training data
distribution used in each family.

The best performing models are also more robust between languages.. The strongest models
overall—GPT-5, GPT-5 Mini, and Qwen3-235B—are also the most consistent across languages.
Their performance remains close to their own mean, indicating greater robustness. Nevertheless,
even these models exhibit differences of at least five points between their best- and worst-performing
languages, showing that cross-lingual performance remains an open challenge. Further analysis on
cross-lingual performance can be found at Appendix [E

Taken together, these findings show that multilingual function-calling remains uneven among most
advanced models. While scale and reasoning can contribute to reducing variation, residual gaps
across languages indicate that balanced and diverse multilingual training is still necessary.
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5 CONCLUSION

In this work, we introduced Ticket-Bench, a benchmark designed to evaluate multilingual capa-
bilities and variations in LLM agents. By simulating soccer ticket purchases across six major
languages with localized teams, cities, and user profiles, Ticket-Bench provides a systematic and
realistic framework for assessing LLM agent capabilities in multiple languages.

Our experiments reveal three central findings. First, reasoning-oriented models such as GPT-5 and
Qwen3-235B show the most impressive performance. Second, scaling trends confirm that larger
models generally achieve higher accuracy and more consistent results across languages, though
families differ in their scaling efficiency. Third, cross-lingual variation remains a persistent chal-
lenge: no language is universally “easy” or “hard”, and model families exhibit distinct asymmetries,
underscoring the influence of training data distributions.

Ticket-Bench highlights both the progress of state-of-the-art reasoning models and their limitations.
We hope that this benchmark will serve as a foundation for future research, encouraging the design
of models and training regimes that are not only more powerful but also more equitable and reliable
across the diverse linguistic and cultural contexts in which they will ultimately be deployed.

6 REPRODUCIBILITY STATEMENT

The code necessary to run the benchmark is available at https://anonymous.4open.
science/r/Ticket-Bench-5BCO. The methodology and components of Ticket-Bench are
explained in section |3} The complete list of templates used for English is shown in Appendix
Further details about the evaluation and the models used can be found in Appendix [C}
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A USAGE OF LLMS

In the creation of this paper, LLMs were used to aid the writing process and to improve the flow
of text. No LLMs were used during the idealization of the methodology or the elaboration of the
results

B TEMPLATE LIST

This appendix shows the English version of all the templates used in Ticket Bench. Placeholders
denoted between {} are dynamically filled when instantiating the templates.

1. Please buy a ticket for the next {user_team} game that I can afford.
2. Please buy a ticket for the next game of my team that I can afford.

3. Please buy a ticket for the next game of my team that I can afford, and that
happens in the first semester of the year.
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4. Please buy a ticket for the next game of my team that I can afford and that is
not on a weekend.

5. Please buy a ticket for the cheapest game of my team that happens this year.

6. Please buy a ticket for the next game of my team that happens in
{location}.

7. Please buy a ticket for the next game of my team that is against a team that
scored more than 60 points in {year}.

8. Please buy a ticket for the next game of my team that happens in the second
semester of the year and that takes place in the middle of the week (Tuesday,
Wednesday, or Thursday).

9. Please buy a ticket for the most expensive game of my team that I can afford
and that is not on a weekend.

10. Please buy a ticket for the cheapest game of my team thatisin {Location}.

11. Please buy a ticket for the next game of my team that happens in
{location} and is against one of the top 8 teams of {year}.

12. Please buy a ticket for the cheapest game of my team that happens in the
second semester of the year and that takes place in the middle of the week
(Tuesday, Wednesday, or Thursday).

13. Please buy a ticket for the most expensive game of my team that I can afford
and that is not on a weekend and that is in {location}.

14. Please buy a ticket for the cheapest game of my team thatisin {location}
and is against a team that scored more than 20 goals in {year}.

15. Please buy a ticket for the most expensive game of my team that I can afford
and that happens in the second semester of the year, takes place in the middle
of the week (Tuesday, Wednesday, or Thursday), and is in { Location}.

16. Please buy a ticket for the cheapest game of my team that I can afford, that
is not on a weekend, is in {location}, and is against a team that scored
more than 20 goals in {year}.

17. Please buy a ticket for the most expensive game of my team that I can afford,
that is in {Location}, is against one of the top 3 teams of {yearl} or
{year2}, that is not on a weekend, and that happens in the second semester
of the year.

C EVALUATION DETAILS

The anonymized repository for Ticket-Bench is available in https://anonymous.4open.
science/r/Ticket-Bench-5BC0. The repository contains the source code used to run eval-
uations, as well as all the data that comprises our benchmark, namely, user definition, schedule
definitions, and the question sets.

This section provides more detailed information on our model evaluation process. All models were
tested with a temperature of 0.7, except GPT-5 which enforces a temperature of 1 in its API. Models
were allowed to generate up to 6 thousand tokens per round, and we enforced a limit of 20 interaction
rounds (i.e a maximum of 20 sets of function calls), if the model reached such limit, the current task
would be marked as wrong and the evaluation would continue.

Open source models up to 30B were used in a VM with 2A6000 GPUs, we used VLLM V.0.10.1 as
the engine and interacted with models through the openai compatible endpoints exposed, all models
were instanciated with the limit of at least 32k tokens and used the appropriate templates. Open
source models larger than 30B were executed with the help of third-party providers that served the
necessary models as paid endpoints. Finally, Maritaca Al and OpenaAl models were executed using
the respective proprietary APIs.

One exception was the Gemini models; we were unable to run our experiments using the direct
Gemini API provided by Google, due to limited usage quotas that made it infeasible to run the
whole benchmark. As a workaround, we used Gemini through the proxy offered by Deepinfra.

Table 4| shows the used providers for each of the tested Models.
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Table 4: Inference provider for all tested models in our research.

Models Inference provider

Open source models < 32B  VLLM 0.10.1, local GPUs
Qwen-2.5-72B-Instruct Together AI API
Qwen3-235B-A22B Together AT API
GPT-OSS-120B Deeplnfra API

Gemini Models Deeplnfra API

Sabia-3.1 Maritaca AI API

GPT-4.1 models OpenAl API

GPT-5 models OpenAl API

D CoST ANALYSIS OF LLMS

This appendix provides an analysis of the trade-off between cost and performance of large language
models (LLMs) based on Ticket-Bench results. Figure [4] presents the relationship between overall
accuracy (measured with the pass® metric) and the total benchmark cost in USD (logarithmic scale).
Costs combine prompt and completion tokens under published input/output rates. The x-axis is
logarithmic, so small horizontal shifts can represent large price differences. All models ran the same
workload with identical prompts and temperature; variation reflects token usage and pricing, not
setup.

High-performing reasoning models, such as GPT-5 and Qwen3-235B, achieve the best results, with
scores above (.88, but they are also the most expensive to run. GPT-5 Mini stands out as a more
efficient alternative, since it reaches nearly the same accuracy as GPT-5 while reducing costs signif-
icantly. This highlights that scaling down reasoning-oriented architectures can preserve robustness
at a fraction of the price.

Mid-range models, including GPT-5 Nano and GPT-OSS-120B, deliver solid performance between
0.70 and 0.75 at moderate costs. These models represent a reasonable balance between reliabil-
ity and affordability, making them good candidates for cost-sensitive deployments. Open-source
options, particularly GPT-OSS, show a favorable cost-to-performance profile, proving competitive
when compared to proprietary systems at similar scales.

Low-cost models, such as the Qwen2.5 Instruct family (3B—14B) and GPT-4.1 Nano, remain in-
expensive but present limited accuracy, generally below 0.40. Their affordability is offset by low
reliability, especially in multilingual function-calling tasks. Similarly, Gemini models (2.5 Flash
and 2.5 Pro) are relatively expensive for their accuracy levels, which remain around 0.50-0.60.

In summary, reasoning-optimized models dominate performance but at a high financial cost. GPT-
5 Mini and GPT-5 Nano offer a better cost-effectiveness trade-off within the GPT family, while
GPT-OSS demonstrates that open-source alternatives can compete at a lower price point.

E CROSS-LINGUAL VARIATION ANALYSIS

This appendix presents an analysis of cross-lingual variation in model performance, as shown in
Figure[5] The figure compares, for each model, its best-performing and worst-performing languages
according to the pass® metric. The horizontal bars illustrate the performance gap between the two
extremes.

The gap between the best and worst language differs by model scale and architecture. Larger
reasoning-oriented systems such as GPT-5, GPT-5 Mini, and Qwen3-235B display smaller gaps,
usually under 0.10 in absolute pass® score, which indicates greater robustness. Gemini models, in
contrast, show a bias toward English and French with weaker results in other languages. Smaller or
instruction-tuned models often show wide disparities exceeding 0.30, highlighting inconsistencies
in multilingual handling.
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LLM Cost vs. Performance Analysis
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Figure 4: Cost vs. performance analysis of LLMs on Ticket-Bench. The x-axis shows the total
benchmark cost in USD (log scale), while the y-axis shows overall performance using the pass®
metric.

Finally, the figure reinforces the observation that multilingual robustness remains a challenge even
for advanced systems. While scaling improves overall consistency, family-specific asymmetries tied
to training data distributions persist.

Best vs. Worst Language Performance
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Figure 5: Best vs. worst language performance for each model on Ticket-Bench. Red markers indi-
cate the lowest-scoring language per model, blue markers the highest-scoring language. Horizontal

bars show the performance gap.
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F LEAGUE/LANGUAGE SELECTION CRITERIA

To represent the most relevant football competitions across different languages, we selected the
Premier League (English), Ligue 1 (French), Serie A (Italian), Brasileirdo Série A (Portuguese),
Bundesliga (German), and La Liga (Spanish). These leagues were chosen for their combination of
competitive strength in recent years [FIFA| (2025); of Football History & Statistics|(2023)), financial
relevance |SportingPedial (2025), international influence [Wright (2022), and historically successful
national teamsOlympics| (2024). They consistently perform at the highest levels in continental and
global competitions and represent the leading football cultures in their respective languages and
regions.

G ERROR ANALYSIS

This section aims to examine the errors made by the models during the execution of the benchmark.
Given the specific patterns of questions, it is possible to programmatically detect these errors and
determine both their nature and the stage of agentic reasoning in which they occurred. To address
this, we have implemented several mandatory checklists that a model must satisfy to fully accom-
plish the task. Our analyses will be based on these checklists that are presented below for each of
the questions in the appendix

Common Checklists Applied to All Questions:
1. User Info Is the First Tool Call, since all questions require specific knowledge about the

user, such as the user team or the money balance, this checklist verifies whether the first
tool call made by the model was to read the user’s information.

2. Listed Games: To solve the task, models must list the available games at least once.

3. Bought Correct Number of Games, did the models buy exactly one game?

4. Bought the Correct Game, models are expected to buy the correct (i.e., expected) game.
5. User Can Afford, did the model attempt to buy a game the user could not afford?

Specific Checklists In the following, we present the specific checklists applied only to the questions
where it is required.

1. Correct location: Whether the models bought a game in the correct location.

2. Correct opponent score: This verifies whether the model attempted to buy only games
where the required opponent score was satisfied, such as being in the top 8 on the leader-
board or having more than 60 points.

3. Correct price choice: Whether the model succeeded in buying a game that met the price
restrictions, such as being the cheapest or most expensive game among the possible options
(considering affordability, location, etc).

4. Correct period: Whether the models bought a game scheduled in the correct time period,
such as on the weekend, specific days of the week, or within a particular semester.

5. Used leaderboard: Some questions require inspecting the leaderboard. Did the models
use it at least once?

Heatmaps

We present the heatmaps of the analysis, showing the percentage of success across all checklists.
These visualizations provide a comparative view of model behaviors for each language.

Figure [6] illustrates the results for German, followed by the English case in Figure[7} Spanish (Fig-
ure [8), French (Figure ), Italian (Figure [I0), and Portuguese (Figure [TI). Together, these six
heatmaps provide a comprehensive multilingual perspective on checklist-level variation. It is im-
portant to note that each checklist is independent of whether the model bought the correct game;
that is, if the model purchased a game within the correct time period, the checklist item is marked
as True, regardless of whether it was the correct game.
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Figure 6: German heatmap of success rates for each error reason checklist.

Other limitations might also apply. For example, smaller models often fail to buy any game at all
in a significant number of matches. In such cases, certain checklists cannot be computed and are
therefore set to None, primarily because there is no game to evaluate.
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Figure 7: English heatmap of success rates for each error reason checklist.
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Figure 8: Spanish heatmap of success rates for each error reason checklist.
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Figure 9: French heatmap of success rates for each error reason checklist.

19

%



Under review as a conference paper at ICLR 2026

oes - T
Qwen3-235B-A22B ﬂ.
100

80

Qwen2.5-32B-Instruct -m. . ! - 60
Sabia-3.1 E

Qwen3-14B

40

Qwen3-30B-A3B E.

20

oweso (R

O L& @ N »© O H» O @
PO SRR g G
E R T M O S S S Y R
Qs N7 X © bq & 9 K &
2 & RS 2 Y oSS
G ET T N g0 @S
& & N S S H DI M
F X 7 L LT L 7
s o8 NP &
< 4 o N
& %Q, C &7 00
& &
S
7
)
o
kS

Figure 10: Italian heatmap of success rates for each error reason checklist.
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Figure 11: Portuguese heatmap of success rates for each error reason checklist.
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