

000 001 AALAWYER: A GENERATIVE RETRIEVAL- 002 AUGMENTED LARGE LANGUAGE MODEL SYSTEM 003 FOR LEGAL REASONING 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 With the growing potential of large language models (LLMs) in the legal domain,
014 an increasing number of specialized legal models are being developed and intro-
015 duced. Among them, domain-specific finetuning and retrieval-augmented genera-
016 tion (RAG) methods have received widespread attention. However, there are still
017 some drawbacks such as hallucinated citations and limited explainability. To ad-
018 dress these challenges, we construct AALawyer, a generative retrieval-augmented
019 LLM system for legal reasoning in the criminal law domain, and Hallucination
020 Risk-Benchmark, a new benchmark designed for evaluating RAG-based mod-
021 els. Our AALawyer consists of a domain-specific legal LLM named AA-LeLLM
022 and two retrieval modules named AC-RAG and CCs-RAG. Different from both
023 traditional RAG commonly used in legal LLMs and other new RAG, we pro-
024 pose a novel generative RAG, AC-RAG, and construct a CCs-RAG with new
025 criminal cases for retrieval. Experiments demonstrate the professionalism and
026 small hallucination of AALawyer in real-world cases. The model reaches the
027 state-of-the-art level on LawBench classification tasks and scores 88.84% (im-
028 prove 71.98%) on our target classification task FAP. On the Hallucination Risk-
029 Benchmark, AALawyer outperforms the base model, reducing 37.6% hallucina-
030 tion risk and finally the average score is improved by 31.7%.

1 INTRODUCTION

031 Large Language Models (LLMs) have demonstrated remarkable capabilities in complex natural lan-
032 guage understanding and generation tasks across various domains (Wang et al., 2023a; Shi et al.,
033 2024a). In the legal domain, recent studies have shown that LLMs can perform well on legal rea-
034 soning, text comprehension (Xiao et al., 2018; Ma et al., 2021), and generation tasks (Zhong et al.,
035 2020). However, legal texts are inherently challenging for general models due to complex termi-
036 nology, specialized writing styles, and rigorous logical structures. As a result, LLMs often generate
037 inaccurate or hallucinated outputs when applied directly to legal analysis tasks (Huang et al., 2025).

038 Currently, most specific domain legal LLMs adopt the pipeline “Incremental Pretraining, Finetun-
039 ing, and Retrieve-Augmented Generation (RAG)” (Huang et al., 2023; Yue et al., 2023; Zhou et al.,
040 2024). Although this strategy improves factual foundation, traditional RAG methods involve a com-
041 plex workflow that requires fine-tuning, and often retrieves some irrelevant information to have a
042 negative effect on analysis (Yue et al., 2023; Huang et al., 2023). Moreover, many Chinese legal
043 LLMs focus solely on the benchmark score, overlooking the explainability, which is vital for real-
044 world legal applications.

045 To address these limitations, we propose **AALawyer**, a unified generative RAG-based system that
046 improves legal reasoning through enhanced factual precision and explainability. Our design is in-
047 spired by the legal syllogism theory (MacCormick, 1994), which decomposes legal reasoning into
048 three steps: (1) identifying relevant legal norms, (2) analyzing case facts, and (3) reaching a con-
049 clusion through legal interpretation. In addition to this theory, real-world judicial decisions often
050 reference precedent court decisions to enhance the persuasiveness of legal reasoning. To reflect this,
051 we also take precedent court decisions into consideration. Combining the legal syllogism theory and
052 real-world judicial practice, AALawyer performs legal reasoning in three stages: retrieving legal ar-

054 ticles¹, referencing similar precedent cases, and generating conclusions based on case facts. The
 055 pipeline is shown in Figure 6 in Appendix. Based on this framework,
 056

057 Firstly, we define the Hallucination Risk to quantitatively analyze the hallucination. To tackle the
 058 issue of hallucination, we propose Article-Content RAG (AC-RAG) to provide legal articles with
 059 low hallucination risk, corresponding to the first stage. Our AC-RAG has the following advantages,
 060 including (1) **Mitigates the hallucination risk in legal article content**: Our approach ensures that
 061 the generated content is always ground-truth, and hallucination is at a low level. (2) **Increases**
 062 **professionalism and explainability in legal analysis**: Traditional legal analysis provides limited
 063 reference or explanations, making it difficult for legal practitioners to assess the authenticity of the
 064 answers (Dahl et al., 2024; Magesh et al., 2024). In comparison, our method presents relevant legal
 065 articles related to the fact case. The evidence makes the analysis more convincing. (3) **Enables**
 066 **effective training**: While the traditional retrieval systems need two models for retrieving and gener-
 067 ation, our approach parameterizes retrieval and makes it possible to share the same backbone model
 068 for both functions. This reduces the redundant parameters making finetuning simpler.

069 In addition, we construct a Case-Cases RAG (CCs-RAG) using a large, newly collected dataset
 070 to ensure that the generated legal analyses are more comprehensive, professional, and trustworthy,
 071 thereby enhancing explainability, which corresponds to the second stage. CCs-RAG has advantages
 072 in two aspects. (1) **High retrieval accuracy**: All retrieved k cases closely match the input (shown
 073 in the Appendix). We achieve strong performance without finetuning the embedding model. As we
 074 say, “expanding the dataset is more effective than tuning the model”, which aligns with trends in
 075 recent legal LLMs that focus on dataset expansion (Yue et al., 2023; Huang et al., 2023; Cui et al.,
 076 2023). (2) **Enhances the explainability and transparency of AALawyer**: Users can view previous
 077 case judgments similar to their input. With the final output from LLM, this can provide helpful and
 078 reliable references for legal practitioners in making final decisions.

079 We also finetuned a legal LLM, Authoritative and Accurate Legal LLM (AA-LeLLM), and com-
 080 bined it with the two RAG modules to form our system, AALawyer. And we constructed a 4-
 081 dimensional HR-Benchmark for evaluation after RAG. We evaluate the performance on Lawbench,
 082 HR-Benchmark and other ablations. As shown in the results section, both our RAG strategies and
 the model achieve excellent improvement.

083 Our main contributions include the following.

- 084 • We propose a novel generator-retriever-generator pipeline (Generative RAG) and finetune
 085 a legal LLM AA-LeLLM oriented on classification and analysis objectives, reducing hal-
 086 lucination risk in legal citation.
- 087 • We design a method that retrieves reasoning reference cases to enhance the comprehen-
 088 siveness and explainability of the generated analysis. To support this, we also collect and
 089 organize a new criminal law case dataset and design a method that retrieves reasoning refer-
 090 ence cases to enhance the comprehensiveness and explainability of the generated analysis.
- 091 • We construct a legal reasoning system grounded in real-world judgments by integrating
 092 AA-LeLLM, AC-RAG, and CCs-RAG, resulting in a more professional and hallucination-
 093 resistant framework. We also construct a new 4-dimensional benchmark, **HR-Benchmark**,
 094 for evaluation after RAG processes.

096 2 PRELIMINARY

099 2.1 RETRIEVAL-AUGMENTED GENERATION MODELS

100 In the legal domain, the document collection consists of law-related texts such as legal articles, court
 101 judgments, and case descriptions. Traditionally, Retrieval-Augmented Generation(RAG) models
 102 follow the retriever-and-generator RAG pipeline (Lewis et al., 2020). It first uses a retriever η to
 103 retrieve some documents z from the given document collection. Then, z is treated as the latent
 104 variable that is marginalized via the top-k approximation. The top-k documents occupy the major
 105 probability that can approximate the full probability over all documents.

106
 107 ¹In this paper, the term “article” refers specifically to legal provisions or statutes (e.g., Article 234 of the
 Criminal Law), rather than academic publications, which is in line with conventional legal terminology.

108 The R&G RAG can approximate the posterior probability of the output sequence y . Following Lewis
 109 et al. (2020), the posterior probability is
 110

$$112 \quad p_{\text{R&G}}(y | x) \approx \sum_{z \in \text{top-}k(p_\eta(\cdot | x))} p_\eta(z | x) p_\theta(y | x, z), \quad (1)$$

115 where x denotes the input, $y = (y_1, \dots, y_N)$ denotes the output sequence generated by the generator
 116 model, $p_\eta(z | x)$ is the relevance scoring function of the retriever, and $p_\theta(y | x, z)$ is the probability
 117 that the generator predicts output y . θ is the generator.

118 Unlike traditional retriever-and-generator pipeline (Lewis et al., 2020), the generator-and-generator
 119 RAG (G&G-RAG) replaces the retriever with a generator ϕ . Instead of selecting z , the generator ϕ
 120 generates a set of representative intermediate candidates g , such as n-gram phrases, entity names, or
 121 contextual documents. The posterior probability approximated from G&G RAG can be defined as,
 122

$$124 \quad p_{\text{G&G}}(y | x) \approx \sum_{g \in \text{top-}k(p_\phi(\cdot | x))} p_\phi(g | x) p_\theta(y | x, g). \quad (2)$$

127 2.2 LARGE LANGUAGE MODEL IN LAW

128 Existing legal LLMs (Huang et al., 2023; Yue et al., 2023; Zhou et al., 2024) are typically developed
 129 following the process of “Incremental Pretraining, Finetuning, and RAG”. First, based on an open-
 130 source LLM θ , incremental pretraining is conducted on legal general-purpose datasets D_{law} and other
 131 general-domain datasets D_{general} . It is unsupervised training. Then, according to a specific legal task,
 132 the model is fine-tuned on the corresponding supervised dataset $D_{\text{law_task}}$. After finetuning, model θ_0
 133 obtains task-adapted parameters and is used as a generator in the RAG pipeline. Finally, a retrieve-
 134 and-generate RAG is employed to construct a prompt used in the final legal analysis task.
 135

136 3 AUTHORITATIVE AND ACCURATE LAWYER

138 3.1 ARTICLE-CONTENT RAG

140 The existing legal LLMs still suffer from hallucination on the citation of legal articles and their
 141 contents (Huang et al., 2025; Yue et al., 2023; Huang et al., 2023). To measure the hallucination, we
 142 use the accuracy $\text{Acc}(\theta)$ and the authenticity $\text{Auth}(\theta)$ to measure the hallucinational risk. $\text{Acc}(\theta)$
 143 denotes the accuracy on whether the model cites the correct article number, and $\text{Auth}(\theta)$ measures
 144 the correctness of the content in the cited article. Then we define the hallucinational risk as

145 **Definition 1.** *The Hallucination Risk of the model θ is*

$$147 \quad H(\theta) = 1 - \text{Acc}(\theta) \cdot \text{Auth}(\theta), \quad \text{Acc}(\theta), \text{Auth}(\theta) \in [0, 1]. \quad (3)$$

148 Intuitively, a lower dimension output of the generators helps to mitigate hallucination. The output
 149 dimension of the second generator in G&G RAG cannot be controlled. So we concentrate on the first
 150 generator. To lower the output, we use numeric identifiers to replace the intermediate candidates g in
 151 G&G-RAG (Yu et al., 2022), using the constrained generation to achieve the disentangling citation
 152 of reasoning. To fit the numeric identifiers, we extend the pipeline of G&G-RAG and propose a new
 153 pipeline named AC-RAG.
 154

155 First, we integrate the article number prediction task into a combined legal dataset for finetuning,
 156 enabling the model parameters to learn both downstream legal analysis objectives and article number
 157 retrieval capabilities. The model is an Authoritative and Accurate Legal LLM (AA-LeLLM) θ_0 .

158 Then, given the user’s input x , we format it with a prompt for criminal article number prediction.
 159 We convert the generation of g into a classification task by restricting the distribution space of g to
 160 a finite set of numeric identifiers. As illustrated in Figure 1a, some standard g are selected and form
 161 a sequence. Each g in the sequence can be identified with a unique numeric identifier n . Equipped
 with a classification head, the AA-LeLLM θ_0^{cls} predicts a set of numeric identifiers N instead of the

162 **Algorithm 1** AC-RAG

163 **Input:** Legal case input description: x ; Legal Article Database: $DB_{\text{law}} = \{(n_i, c_i)\}_{i=1}^m$; Prompt for
 164 article number prediction: Format_1 ; Prompt for final analysis: Format_2 ; Pretrained model
 165 parameters: θ ; General legal task dataset: $D_{\text{law_other}}$; Specific legal task dataset: $D_{\text{law_specific}}$
 166
Output: Final legal analysis y

167 1: $D_{\text{law_task_all}} = D_{\text{law_other}} \cup D_{\text{law_specific}}$;
 168 2: $\theta_0 = \text{Finetune}(\theta, D_{\text{law_task_all}})$;
 169 3: $x_1 = \text{Format}_1(x)$;
 170 4: $\hat{N} \sim p(n | x_1; \theta_0)$;
 171 5: **for all** $n_i \in \hat{N}$ **do**
 172 6: $c_i = \text{Retrieve}(DB_{\text{law}}, n_i)$;
 173 7: $a_i = (n_i, c_i)$;
 174 8: **end for**
 175 9: $x_2 = \text{Format}_2(x, \{a_i\}_{i \in \hat{N}})$;
 176 10: $\hat{y} \sim p(y | x_2; \theta_0)$;
 177 11: **return** \hat{y} ;

178
 179 contents. Each predicted number $n_i \in \hat{N}$ can retrieve the corresponding law content c_i from the law
 180 article database DB_{law} . And we assemble n_i and c_i , as $a_i = (n_i, c_i) \in A$.

182 Finally, the original input x and all retrieved articles A are incorporated into a second prompt for
 183 legal analysis. We switch the head of p_θ into a generation head. Equipped with a generation head,
 184 AA-LeLLM θ_0^{gen} generates the final analysis output y . We define the function of AC-RAG as
 185

$$p_{\text{AC-RAG}}(y | x) \approx p_{\theta_0}^{\text{cls}}(\hat{N} | x) p_{\theta_0}^{\text{gen}}(y | x, A), \quad (4)$$

186 where
 187

$$A = \{(n_i, c_i) \mid n_i \in \hat{N}, c_i = DB_{\text{law}}[n_i]\}. \quad (5)$$

188 The details of AC-RAG are shown in Algorithm 1.

189 AC-RAG uses a single model θ_0 to handle both retrieval and output generation effectively. This
 190 makes it possible to Generate-Retrieve-Generate pipeline, which differs from previous pipelines, as
 191 shown in Figure 1b.

192 The AC-RAG assigns semantic meaning to the symbols in its parameters, effectively learning a
 193 compact representation for retrieval. This helps the dimension of the feature space to stay low.
 194 Intuitively, a lower-dimensional feature space is less likely to cause hallucinations. We find that the
 195 model’s hallucinations are limited to be lower than existing models.

196 **Lemma 1.** Denote θ and θ_0 as the traditional LLM and AC-RAG. Then the hallucination risk of
 197 AC-RAG is upper bounded by that of the traditional LLM

$$H(\theta_0) = 1 - \text{Acc}(\theta_0) \leq 1 - \text{Acc}(\theta) \cdot \text{Auth}(\theta) = H(\theta). \quad (6)$$

201 The equality holds only when all generated article content is perfectly accurate and authentic, which
 202 cannot be achieved in practice. Proof is shown in the Appendix.

203 This Lemma shows that replacing intermediate candidates with numeric identifiers, the hallucination
 204 of AC-RAG is guaranteed to be lower than existing G&G RAG models.

205 3.2 CASE-CASES RAG

206 While AC-RAG can mitigate hallucination risk, it faces more challenges in the legal area. One
 207 important challenge is the inherent complexity in legal reasoning. Lawyer LLMs need professional
 208 references to assist the judgment in comprehensiveness and explainability. To address this challenge,
 209 we design the Case-Cases RAG (CCs-RAG), a retrieval method that can provide relevant precedent
 210 court cases to augment the analysis.

211 CCs-RAG need to be supported by a large number of criminal cases. As there is a lack of appropriate
 212 data, we first collected a large-scale dataset DB_{case} of 176k criminal court cases from the publicly
 213

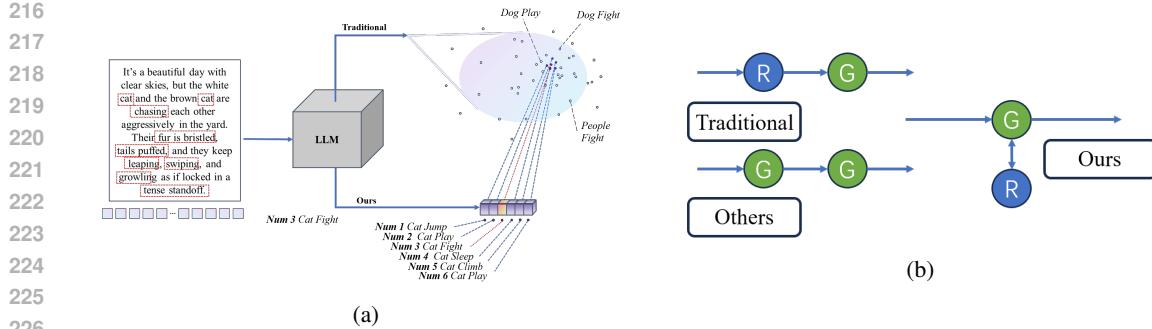


Figure 1: (a) A conceptual comparison between the traditional generation-based method and our classification-based method in the output space. (b) The pipeline comparison between traditional legal LLM RAG, other generative RAG, and our AC-RAG.

available website. Having these cases we use the embedding model (Xiao et al., 2024) to encode the criminal case dataset into a vector dataset $\{\mathbf{v}_i\}_{i=1}^n$, where each case $c_i \in \mathcal{DB}_{\text{case}}$ corresponds to a vector \mathbf{v}_i . Then, the user input x is encoded into \mathbf{v}_x and matched against the case vector dataset using Euclidean distance (Johnson et al., 2019) to retrieve the top- k most relevant cases $\{c_i\}_{i \in \mathcal{C}}$. Next, we construct the prompt x_1 by combining $x, \{c_i\}_{i \in \mathcal{C}}$, and (if available) A from AC-RAG. Finally, the prompt x_1 is fed into the finetuned model p_θ to generate the final analysis y . Algorithm 2 outlines the CCs-RAG retrieval process in the Appendix A.1.3.

3.3 AUTHORITATIVE AND ACCURATE LAWYER

In the above methods, AC-RAG mitigates the hallucination risk to provide accuracy and authentication, and CCs-RAG provides the case judgments to make legal reasoning more comprehensive and professional. To combine the above advantages in each method, achieving good performance of legal reasoning, we integrated a three-part framework named AALawyer. The three stages in the AALawyer pipeline are the AC-RAG retrieval, the CCs-RAG retrieval, and final legal analysis by AA-LeLLM, respectively. The whole structure of AA-Lawyer is shown in Figure 2.

Stage 1 AC-RAG. The input legal case e is fed into our finetuned model AA-LeLLM to predict the relevant article number(s) N . These predicted article numbers are then used to retrieve the corresponding article content C from the AC-Database DB_{law} . Finally, we integrate e , N , and C into the final input for downstream processing. This stage is shown in the figure in orange.

Stage 2 CCs-RAG. We first encode the input case e into a dense vector representation. And then we search our case vector library CCs-Database DB_{case} to retrieve the top- k most relevant case documents by Euclidean distance. These retrieved documents are then appended to the final input as auxiliary context for enhanced reasoning. This stage is shown in the figure in blue and red.

Stage 3 Final Analysis Generation. The final input, comprising the original case e , the predicted article number(s) N , the article content C , and the top- k similar cases, is fed into AA-LeLLM θ_0 to generate the final legal case analysis. In this stage, AA-LeLLM explains the answer with the relevant articles and previous judgments, thereby providing professional and explainable legal reasoning with low hallucination. This stage is shown in the figure in green.

4 HALLUCINATION RISK-BENCHMARK

Existing legal benchmark evaluations mostly focus on assessing the model weights alone, lacking a method to evaluate overall system performance. Meanwhile, usual human expert evaluations are too resource-consuming. In order to evaluate the RAG and the effectiveness of our entire system, we leverage other LLMs (Guo et al., 2025) for scoring. Models with larger parameters have stronger logical judgment and analytical professionalism, and can simulate the evaluation of our answers by experts in the legal field, which can be demonstrated in (Zheng et al., 2023; Yue et al., 2023).

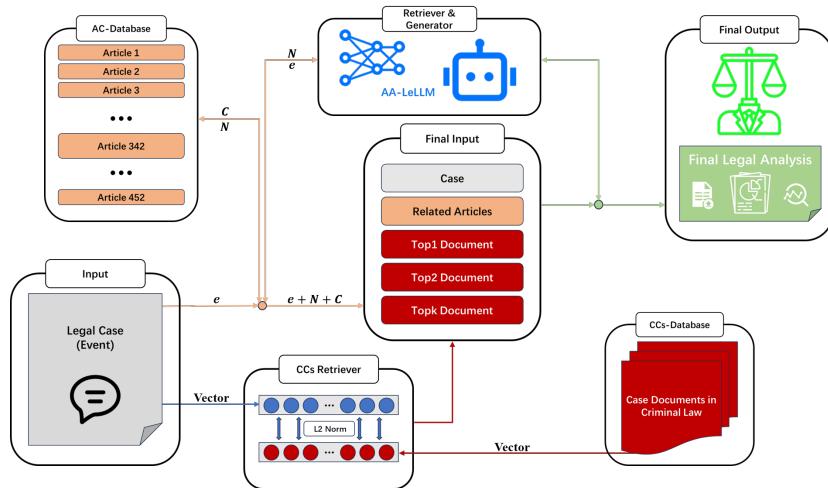


Figure 2: Overall architecture of the AALawyer, consisting of AC-RAG (orange part), CCs-RAG (blue and red part), and the AA-LeLLM generation stage (green part).

We build the Hallucination Risk-Benchmark (HR-Benchmark) to measure the overall performance of the system by focusing on the measurement of modeling hallucination and other aspects. In detail, we evaluate the generated answers from four dimensions they are hallucination score **Hallu**, professionalism **Prof**, informativeness **Info**, and explainability **Expa**. **Hallu** is the Hallucination Risk defined in Definition 1. With a lower hallucination score, the model has better performance. **Prof** is the score of the legal professionalism of the analysis. **Info** assesses the richness of information in the analysis. **Expa** refers to the transparency of legal analysis, whether it is supported by exact materials. We also calculate the average score (**Avg.**) to measure the overall performance of the model. The average score is calculated by averaging the value of $(1 - \mathbf{Hallu})$ and the other three scores. The scoring range is defined from 0% to 100%.

In the evaluation set, we randomly selected 200 cases from the dataset of CAIL2018 (Xiao et al., 2018). To avoid instability in evaluation caused by randomness, we set *temperature* to 0. When using the API, the evaluations must be conducted at the same period to prevent any potential model updates, ensuring that the evaluation is performed using the same model with identical parameters.

5 RELATED WORKS

5.1 LEGAL LARGE LANGUAGE MODELS

The early applications of AI in the legal domain focused on information retrieval and extraction (Bommarito II et al., 2021; Ji et al., 2018), as well as legal prediction and question-resolution tasks (Ma et al., 2021; Ye et al., 2018; Yang et al., 2019; Kien et al., 2020; Zhong et al., 2020), greatly improve the efficiency of legal work.

With the rise of LLMs, their great potential in the legal field has been increasingly recognized. To address domain-specific knowledge limitations and hallucination issues (Huang et al., 2025; Orgad et al., 2024; Rawte et al., 2023; Magesh et al., 2024; Colombo et al., 2024), legal domain LLMs emerged. In Chinese law, these include models based on incremental pretraining and multitask finetuning, such as LawGPT (Zhou et al., 2024), Lawyer LLaMA (Huang et al., 2023), Fuzi.Mingcha (Deng et al., 2023) and LexiLaw (Li et al., 2024); models leveraging finetuning combined with external information retrievals, such as DISC-LawLLM (Yue et al., 2023), ChatLaw (Cui et al., 2023), HanFei (He et al., 2023), and Wisdom-Interrogatory (Wu et al., 2024).

As the field continues to evolve, several standardized benchmarks (Fei et al., 2023; Yue et al., 2023) and legal datasets (Yao et al., 2022; Xiao et al., 2018; Yue et al., 2023; Deng et al., 2023) have been introduced to support this area.

324 5.2 RETRIEVAL-AUGMENTED GENERATION
325326 Retrieval-Augmented Generation (RAG) was first introduced by (Lewis et al., 2020). With the rise
327 of LLMs, RAG has drawn increasing attention in addressing hallucination issues (Yao et al., 2023;
328 Bang et al., 2023). In Gao et al. (2023), RAG is categorized into two types: Naive RAG and
329 Advanced RAG. Naive RAG refers to the traditional Retrieve-and-Generate framework (Chen et al.,
330 2017). In contrast, Advanced RAG achieves better performance by modifying the framework.331 Among the Advanced RAG, Modular RAG breaks away from the traditional pipeline, providing
332 some powerful pipelines for reducing hallucinations and enhancing generation quality. Instead,
333 it introduces additional modules such as the Search (Wang et al., 2023b), Memory (Cheng et al.,
334 2023b; Wang et al., 2022), Extra Generation (Yu et al., 2022), Task-Adaptable (Cheng et al.,
335 2023a; Dai et al., 2022), Alignment (Yang et al., 2023; Yu et al., 2023b; Ma et al., 2023), and
336 Validation Module (Yu et al., 2023a). These approaches modify the pipeline in various ways, in-
337 cluding Rewrite-Retrieve-Generate (Ma et al., 2023), Generate-Generate (Yu et al., 2022), Recite-
338 Generate (Sun et al., 2022), ITER-Retrieve-Generate (Yang et al., 2024; Shi et al., 2024b), Retrieve-
339 Validate-Generate (Yan et al., 2024). There are some models using a Generate-Generate pipeline.
340 GENRE (De Cao et al., 2020) employs an auto-regressive language model to directly generate entity
341 names as intermediate retrieval targets. SEAL (Bevilacqua et al., 2022) generates n-gram phrases
342 that are likely to appear in relevant documents and uses them as lexical cues for downstream re-
343 trieval. GENREAD (Yu et al., 2022) directly generates contextual documents for given questions.
344345 6 EXPERIMENT
346

347 6.1 EXPERIMENT SETUP

348 We trained the model by incremental pretraining and finetuning, added two RAG processes, and
349 evaluated its performance on Lawbench and HR-Benchmark. The details of datasets and metrics are
350 in the Appendix. All tasks were run on four NVIDIA GeForce RTX 4090 GPUs.
351352 **Incremental Pretraining.** The rank r is set to 8, the scaling factor α is set to 16, and *dropout*
353 is set to 0. LoRA adaptation is applied across all Transformer layers. The optimizer is AdamW
354 with a learning rate lr of 5×10^{-5} , and a cosine learning rate scheduler is employed. Gradient
355 accumulation is performed with 8 steps and a batch size of 2 per device, while the cut-off length is
356 set to 2048. The model training is conducted with bfloat16 precision.
357358 **Finetuning.** The per-device batch size is set to 1, while all other settings remain consistent with
359 Incremental Pretraining. We choose DeepSeek-7B as the base model for AA-LeLLM. The model
360 is incrementally pretrained and finetuned using multitask datasets for both legal classification and
361 analysis tasks. The details are shown in the Appendix.
362363 **Evaluation.** In Lawbench, we set the maximum truncation length for inference to 2048 with runs
364 on 500 samples. In HR-Benchmark, *temperature* is 0. Evaluation model is *deepseek-chat* and
365 runs on 200 randomly selected samples.
366367 6.2 MAIN RESULTS
368369 As shown in Table 1, the Criminal Article Classification task (FAP), achieves a significant improve-
370 ment of 71.98% over the base DeepSeek-7B model, reaching the best classification performance
371 among all compared models. Similarly, the Criminal Case Classification task (CP) also improves by
372 29.04%. For full-domain legal classification tasks, Marital Disputes Identification (MDI) improves
373 by 6.60%, Issue Topic Identification (ITI) by 3.20%, and Event Detection (ED) by 23.01%. Al-
374 though Dispute Focus Identification (DFI) drops by 7.10%, this is expected since it belongs to the
375 full legal domain and is not aligned with our training goal, which is specifically focused on criminal
376 law. Even so, the performance remains within a reasonable range.
377378 In Table 2a, compared with our base model DeepSeek-7B, our AALawyer reduces hallucination risk
379 by 37.6%, improves professionalism by 13.4%, informativeness by 41.9%, and explainability by
380 43.4%, and achieves an overall average score increase by 34.1%. Furthermore, compared with our
381 AA-LeLLM without RAG, our AALawyer reduces the 12.2% hallucination risk, improves 10.3%

378 Table 1: Scores of models with comparable parameter sizes on LawBench classification tasks.
379

380 381 Model	382 383 384 385 386 387 388 389 Criminal		380 381 382 383 384 385 386 387 388 389 Full Domain				380 381 382 383 384 385 386 387 388 389 Average
	380 381 FAP	380 381 CP	380 381 DFI	380 381 MDI	380 381 ITI	380 381 ED	
DeepSeek-7B (Guo et al., 2025)	16.86	28.89	27.20	39.69	35.80	58.35	34.47
LawGPT-beta1.1-7B (Zhou et al., 2024)	0.15	15.68	4.95	6.85	2.40	14.94	7.50
LexiLaw-6B (Li et al., 2024)	13.15	39.99	3.30	15.60	22.80	15.30	18.36
HanFei-7B (He et al., 2023)	2.64	30.96	6.39	30.44	30.20	14.73	19.23
Wisdom-Interrogatory-7B (Wu et al., 2024)	32.84	35.09	7.84	36.72	21.00	15.98	24.91
Fuzi-Mingcha-7B (Deng et al., 2023)	25.19	55.93	19.59	28.46	18.60	16.90	27.45
Qwen3-8B (Team, 2025)	73.21	51.88	46.00	54.40	38.80	65.86	55.02
Internlm3-8B (Cai et al., 2024)	82.92	55.02	37.20	52.29	41.20	66.38	55.83
AA-LeLLM-7B(Ours)	88.84 ± 0.34	57.93 ± 0.60	20.10 ± 0.50	46.29 ± 1.19	39.00 ± 1.52	81.36 ± 0.07	55.59

390
391
392 professionalism, 57.1% informativeness, and 47.3% explainability, and achieves an overall average
393 score increase 31.7%.

394 Overall, AA-LeLLM demonstrates excellent performance on our target classification task, FAP,
395 enabling AC-RAG to resolve hallucination issues while maintaining high accuracy, resulting in ef-
396 fective legal reasoning. Moreover, AA-LeLLM also shows competitive performance on other non-
397 target classification tasks in various datasets, achieving an average score improvement of 21.12%
398 compared to the base model. This highlights its robustness and effectiveness as a legal classifier. It
399 serves as a qualified module for the retriever component of AC-RAG in our AALawyer system. In
400 the system, AC-RAG and CCs-RAG both show strong performance on HR-Benchmark, AC-RAG
401 mainly improves **Hallu**↓, **Prof** and **Expa**, while CCs-RAG mainly improves **Info** and **Expa** of legal
402 reasoning. The low **Hallu**↓ of AC-RAG also proves Lemma 1.
403

404 6.3 ABLATION STUDIES

405 6.3.1 CALCULATION OF HALLUCINATION RISK

406 To further prove our Lemma 1, we selected 150 cases from the dataset of CAIL2018 (Xiao et al.,
407 2018) and calculate the hallucination risk $H(\theta)$ on the latest criminal law as

$$408 \quad 409 \quad 410 \quad 411 \quad 412 \quad H(\theta) = \frac{1}{N} \sum_{i=1}^N (1 - \text{Acc}_i(\theta) \cdot \text{Auth}_i(\theta)) \quad (7)$$

413 The results are shown in Table 2b and the detailed metrics are shown in the Appendix A.1.2. We
414 calculate the average score of $\text{Acc}_i(\theta)$ and $\text{Auth}_i(\theta)$. The Hallu ↓ is calculated according to For-
415 mula 7, rather than directly from Avg.Acc and Avg.Auth . The result shows that our AC-RAG has
416 a score of 0.93 in Avg.Acc , indicating that it effectively mitigates the $\text{Auth}(\theta)$ component of the
417 hallucination risk. And AC-RAG reduces hallucination risk by 59% compared with base model,
418 which shows an excellent performance and achieves the goal of our AC-RAG. Furthermore, these
419 metric is grounded in a mathematically defined hallucination risk formula, enabling a more objective
420 and reliable assessment of hallucination. The results are corresponding to the result tables in Main
421 Result part, which also validate the reliability of our proposed HR-Benchmark.

422 6.3.2 COMPARED WITH OTHER TYPES OF RETRIEVAL

423 A single case may correspond to multiple legal articles due to the inherent complexity of legal cases.
424 Traditional multi-label classification methods often rely on fixed thresholds τ as $\hat{A} = \{j \mid \hat{y}_j \geq \tau\}$
425 or by selecting the top- k scoring labels as $\hat{A}_{\text{top-}k} = \arg \max_{j=1, \dots, K} \hat{y}_j$. Both have problems. As shown
426 in Table 3, when $\hat{y}_n \approx \tau$, it is unclear whether that label should be included, and the optimal
427 value of τ can vary by case. Alternatively, top- k strategies avoid threshold tuning but might include
428 low-confidence labels, risking irrelevant results. In contrast, AC-RAG trains the model to learn the
429 mapping between case textual features and legal article numbers, allowing it to decide how many
430 labels to output without relying on rigid decision boundaries, thus avoiding the pitfalls of traditional
431

432 Table 2: **(a)** Comparison of our AA-LeLLM against DeepSeek-7B (DS-7B) on HR-Benchmark. **(b)**
 433 Hallucination risk calculation by metrics.

(a)						
Baseline	Method	Hallu. \downarrow	Prof	Info	Expa	Avg.
DS-7B	Vanilla	82.4	58.8	40.0	44.6	40.2
	AC-RAG	85.4	46.4	39.4	44.2	36.2
	CCs-RAG	63.0	66.6	81.6	78.8	66.0
	AALawyer	81.4	55.0	74.0	70.8	54.6
AA-LeLLM	Vanilla	57.0	61.9	24.8	40.7	42.6
	AC-RAG	39.6	70.6	37.9	67.8	59.1
	CCs-RAG	53.9	60.9	74.7	79.5	65.3
	AALawyer	44.8	72.2	81.9	88.0	74.3
		± 1.8	± 0.2	± 0.2	± 0.2	

(b)						
Baseline	Method	Avg.Acc	Avg.Auth	H(θ). \downarrow		
DS-7B	Vanilla	0.29	0.44	0.88		
	Qwen3-8B	0.59	0.70	0.58		
Internlm3-8B	Vanilla	0.71	0.69	0.51		
	AC-RAG	0.71	0.95	0.33		
AA-LeLLM	Vanilla	0.76	0.49	0.63		
	AC-RAG	0.76	0.93	0.29		

445 Table 3: Performance comparison of different retrieval methods on the FAP task. Results are shown
 446 for different parameter: top-k (k) and thresholds (τ). The dagger (\dagger) indicates the optimal value for
 447 the parameter. The optimal parameter selections are shown in the Appendix.

Category	Method	Parameter	F1-Score	Precision	Recall
Dense Retrieval	BGE-v1.5 (Xiao et al., 2024)	$k^\dagger = 1$	45.80	45.80	45.80
		$\tau^\dagger = 0.78$	35.83	31.47	41.60
	BGE-m3 (Chen et al., 2024)	$k^\dagger = 1$	50.60	50.60	50.60
		$k = 2$	41.73	31.30	62.60
		$k = 3$	33.80	22.53	67.60
		$\tau^\dagger = 0.63$	36.53	43.29	31.6
Sparse Retrieval	BM25	$k^\dagger = 1$	33.40	33.40	33.40
		$k = 2$	27.60	20.70	41.40
		$k = 3$	23.40	15.60	46.80
Generative Retrieval	AC-RAG (Qwen3-8B)	-	73.20	67.70	74.83
	AC-RAG (Internlm3-8B)	-	82.92	43.81	78.39
	AC-RAG (AALawyer)	-	88.94	89.67	84.26

461
 462 methods. This adaptive threshold enables more reliable predictions across diverse inputs, as
 463

$$\hat{N} = \{n \mid p_\theta^{\text{cls}}(x)[n] \geq \tau_\theta^*(x)\}. \quad (8)$$

467 6.3.3 RAG WITHOUT FINETUNING

468 Table 2a shows the non-finetuned base model DeepSeek-7B performance with each RAG. The re-
 469 sults are consistent with our prior theory. AC-RAG performs poorly on DeepSeek-7B because it
 470 need to be used combined by special finetuning process, corresponding with Algorithm 1. And
 471 it shows a good performance with CCs-RAG, because CCs-RAG is supported by a huge and pro-
 472 fessional criminal law dataset, making it highly effective for criminal law tasks regardless of model
 473 weights. This demonstrates that it is a robust and adaptable RAG method in the criminal law domain.

474 More other ablations are shown in the Appendix A.2.

477 7 CONCLUSION

479 In this paper, we introduced AALawyer, a legal analysis assistant system focused on criminal law.
 480 Inspired by legal syllogism and real-world judicial processes, the system is designed to reduce hal-
 481 lucinations in legal citation and enhance legal reasoning. Within this system, we proposed a novel
 482 Generative RAG pipeline (AC-RAG) and case retrieval module (CCs-RAG), in which we collected
 483 a new dataset of 176k criminal case judgments. Additionally, we finetuned a legal LLM, AA-
 484 LeLLM, oriented toward classification and analysis tasks in law. Furthermore, we constructed HR-
 485 Benchmark, a 4-dimensional benchmark, to evaluate the content after RAG. Experimental results
 show that AA-LeLLM, AC-RAG, and CCs-RAG all achieve strong performance in legal reasoning.

486 REFERENCES
487

488 Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
489 Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation of
490 chatgpt on reasoning, hallucination, and interactivity. *arXiv preprint arXiv:2302.04023*, 2023.

491 Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Scott Yih, Sebastian Riedel, and Fabio
492 Petroni. Autoregressive search engines: Generating substrings as document identifiers. *Advances*
493 *in Neural Information Processing Systems*, 35:31668–31683, 2022.

494 Michael J Bommarito II, Daniel Martin Katz, and Eric M Detterman. Lexnlp: Natural language
495 processing and information extraction for legal and regulatory texts. In *Research handbook on*
496 *big data law*, pp. 216–227. Edward Elgar Publishing, 2021.

497 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
498 Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. *arXiv preprint arXiv:2403.17297*,
499 2024.

500 Rich Caruana. Multitask learning. *Machine learning*, 28:41–75, 1997.

501 Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
502 domain questions. *arXiv preprint arXiv:1704.00051*, 2017.

503 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
504 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
505 tillation, 2024.

506 Daixuan Cheng, Shaohan Huang, Junyu Bi, Yuefeng Zhan, Jianfeng Liu, Yujing Wang, Hao Sun,
507 Furu Wei, Denvy Deng, and Qi Zhang. Uprise: Universal prompt retrieval for improving zero-shot
508 evaluation. *arXiv preprint arXiv:2303.08518*, 2023a.

509 Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu, Dongyan Zhao, and Rui Yan. Lift yourself up:
510 Retrieval-augmented text generation with self-memory. *Advances in Neural Information Pro-*
511 *cessing Systems*, 36:43780–43799, 2023b.

512 Pierre Colombo, Telmo Pessoa Pires, Malik Boudiaf, Dominic Culver, Rui Melo, Caio Corro, An-
513 dre FT Martins, Fabrizio Esposito, Vera Lúcia Raposo, Sofia Morgado, et al. Saullm-7b: A
514 pioneering large language model for law. *arXiv preprint arXiv:2403.03883*, 2024.

515 Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. Chatlaw: Open-source legal large
516 language model with integrated external knowledge bases. *CoRR*, 2023.

517 Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E Ho. Large legal fictions: Profiling legal
518 hallucinations in large language models. *Journal of Legal Analysis*, 16(1):64–93, 2024.

519 Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo Ni, Jing Lu, Anton Bakalov, Kelvin Guu,
520 Keith B Hall, and Ming-Wei Chang. Promptagator: Few-shot dense retrieval from 8 examples.
521 *arXiv preprint arXiv:2209.11755*, 2022.

522 Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity retrieval.
523 *arXiv preprint arXiv:2010.00904*, 2020.

524 Wentao Deng, Jiahuan Pei, Keyi Kong, Zhe Chen, Furu Wei, Yujun Li, Zhaochun Ren, Zhumin
525 Chen, and Pengjie Ren. Syllogistic reasoning for legal judgment analysis. In *Proceedings of*
526 *the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 13997–14009,
527 2023.

528 Zhiwei Fei, Xiaoyu Shen, Dawei Zhu, Fengzhe Zhou, Zhuo Han, Songyang Zhang, Kai Chen,
529 Zongwen Shen, and Jidong Ge. Lawbench: Benchmarking legal knowledge of large language
530 models. *arXiv preprint arXiv:2309.16289*, 2023.

531 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Haofen
532 Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey.
533 *arXiv preprint arXiv:2312.10997*, 2, 2023.

540 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 541 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 542 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

543 Wanwei He, Jiabao Wen, Lei Zhang, Hao Cheng, Bowen Qin, Yunshui Li, Feng Jiang, Junying Chen,
 544 Benyou Wang, and Min Yang. Hanfei-1.0, 2023. URL <https://github.com/siat-nlp/HanFei>.

545 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 546 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

547 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 548 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 549 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information
 550 Systems*, 43(2):1–55, 2025.

551 Quzhe Huang, Mingxu Tao, Chen Zhang, Zhenwei An, Cong Jiang, Zhibin Chen, Zirui Wu, and
 552 Yansong Feng. Lawyer llama technical report. *arXiv preprint arXiv:2305.15062*, 2023.

553 Lu Ji, Zhongyu Wei, Xiangkun Hu, Yang Liu, Qi Zhang, and Xuan-Jing Huang. Incorporating
 554 argument-level interactions for persuasion comments evaluation using co-attention model. In
 555 *Proceedings of the 27th International Conference on Computational Linguistics*, pp. 3703–3714,
 556 2018.

557 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. *IEEE
 558 Transactions on Big Data*, 7(3):535–547, 2019.

559 Phi Manh Kien, Ha-Thanh Nguyen, Ngo Xuan Bach, Vu Tran, Minh Le Nguyen, and Tu Minh
 560 Phuong. Answering legal questions by learning neural attentive text representation. In *Proceed-
 561 ings of the 28th International Conference on Computational Linguistics*, pp. 988–998, 2020.

562 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 563 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 564 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 565 9459–9474, 2020.

566 Haitao Li, Qingyao Ai, Qian Dong, and Yiqun Liu. Lexilaw: A scalable legal language model
 567 for comprehensive legal understanding, 2024. URL [https://github.com/CSHaitao/
 568 LexiLaw](https://github.com/CSHaitao/LexiLaw).

569 Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting in retrieval-
 570 augmented large language models. In *Proceedings of the 2023 Conference on Empirical Methods
 571 in Natural Language Processing*, pp. 5303–5315, 2023.

572 Yixiao Ma, Yunqiu Shao, Yueyue Wu, Yiqun Liu, Ruizhe Zhang, Min Zhang, and Shaoping Ma.
 573 Lecard: a legal case retrieval dataset for chinese law system. In *Proceedings of the 44th in-
 574 ternational ACM SIGIR conference on research and development in information retrieval*, pp.
 575 2342–2348, 2021.

576 Neil MacCormick. *Legal reasoning and legal theory*. Clarendon Press, 1994.

577 Varun Magesh, Faiz Surani, Matthew Dahl, Mirac Suzgun, Christopher D Manning, and Daniel E
 578 Ho. Hallucination-free? assessing the reliability of leading ai legal research tools. *arXiv preprint
 579 arXiv:2405.20362*, 2024.

580 Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and
 581 Yonatan Belinkov. Llms know more than they show: On the intrinsic representation of llm hallu-
 582 cinations. *arXiv preprint arXiv:2410.02707*, 2024.

583 Vipula Rawte, Swagata Chakraborty, Agnibh Pathak, Anubhav Sarkar, SM.Towhidul Islam Ton-
 584 moy, Aman Chadha, Amit Sheth, and Amitava Das. The troubling emergence of hallucination
 585 in large language models—an extensive definition, quantification, and prescriptive remediations.
 586 In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*.
 587 Association for Computational Linguistics, 2023.

594 Juanming Shi, Qinglang Guo, Yong Liao, and Shenglin Liang. Legalgpt: Legal chain of thought for
 595 the legal large language model multi-agent framework. In *International Conference on Intelligent*
 596 *Computing*, pp. 25–37. Springer, 2024a.

597

598 Zhengliang Shi, Shuo Zhang, Weiwei Sun, Shen Gao, Pengjie Ren, Zhumin Chen, and Zhaochun
 599 Ren. Generate-then-ground in retrieval-augmented generation for multi-hop question answering.
 600 In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*
 601 (*Volume 1: Long Papers*), pp. 7339–7353, 2024b.

602 Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and Denny Zhou. Recitation-augmented language
 603 models. *arXiv preprint arXiv:2210.01296*, 2022.

604

605 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

606

607 Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
 608 Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
 609 models. *arXiv preprint arXiv:2305.04091*, 2023a.

610

611 Shuohang Wang, Yichong Xu, Yuwei Fang, Yang Liu, Sisi Sun, Ruochen Xu, Chenguang Zhu, and
 612 Michael Zeng. Training data is more valuable than you think: A simple and effective method by
 613 retrieving from training data. *arXiv preprint arXiv:2203.08773*, 2022.

614

615 Xintao Wang, Qianwen Yang, Yongting Qiu, Jiaqing Liang, Qianyu He, Zhouhong Gu, Yanghua
 616 Xiao, and Wei Wang. Knowledgpt: Enhancing large language models with retrieval and storage
 617 access on knowledge bases. *arXiv preprint arXiv:2308.11761*, 2023b.

618

619 Yiquan Wu, Yuhang Liu, Yifei Liu, Ang Li, Siying Zhou, and Kun Kuang. wisdominterrogatory,
 620 March 2024. URL <https://github.com/zhihaiLLM/wisdomInterrogatory>.

621

622 Chaojun Xiao, Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Zhiyuan Liu, Maosong Sun, Yansong
 623 Feng, Xianpei Han, Zhen Hu, Heng Wang, et al. Cail2018: A large-scale legal dataset for judg-
 624 ment prediction. *arXiv preprint arXiv:1807.02478*, 2018.

625

626 Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
 627 Packed resources for general chinese embeddings. In *Proceedings of the 47th international ACM*
 628 *SIGIR conference on research and development in information retrieval*, pp. 641–649, 2024.

629

630 Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. Corrective retrieval augmented generation.
 631 *arXiv e-prints*, pp. arXiv–2401, 2024.

632

633 Diji Yang, Jinmeng Rao, Kezhen Chen, Xiaoyuan Guo, Yawen Zhang, Jie Yang, and Yi Zhang.
 634 Im-rag: Multi-round retrieval-augmented generation through learning inner monologues. In *Pro-
 635 ceedings of the 47th International ACM SIGIR Conference on Research and Development in In-
 636 formation Retrieval*, pp. 730–740, 2024.

637

638 Haoyan Yang, Zhitao Li, Yong Zhang, Jianzong Wang, Ning Cheng, Ming Li, and Jing Xiao. Prca:
 639 Fitting black-box large language models for retrieval question answering via pluggable reward-
 640 driven contextual adapter. *arXiv preprint arXiv:2310.18347*, 2023.

641

642 Wenmian Yang, Weijia Jia, Xiaojie Zhou, and Yutao Luo. Legal judgment prediction via multi-
 643 perspective bi-feedback network. *arXiv preprint arXiv:1905.03969*, 2019.

644

645 Feng Yao, Chaojun Xiao, Xiaozhi Wang, Zhiyuan Liu, Lei Hou, Cunchao Tu, Juanzi Li, Yun Liu,
 646 Weixing Shen, and Maosong Sun. Leven: A large-scale chinese legal event detection dataset.
 647 *arXiv preprint arXiv:2203.08556*, 2022.

648

649 Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan Ning, Yu-Yang Liu, and Li Yuan. Llm
 650 lies: Hallucinations are not bugs, but features as adversarial examples. *arXiv preprint*
 651 *arXiv:2310.01469*, 2023.

652

653 Hai Ye, Xin Jiang, Zhunchen Luo, and Wenhan Chao. Interpretable charge predictions for criminal
 654 cases: Learning to generate court views from fact descriptions. *arXiv preprint arXiv:1802.08504*,
 655 2018.

648 Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang
 649 Zhu, Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language models are
 650 strong context generators. *arXiv preprint arXiv:2209.10063*, 2022.

651

652 Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin Ma, Hongwei Wang, and Dong Yu.
 653 Chain-of-note: Enhancing robustness in retrieval-augmented language models. *arXiv preprint*
 654 *arXiv:2311.09210*, 2023a.

655 Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu. Augmentation-adapted retriever improves
 656 generalization of language models as generic plug-in. *arXiv preprint arXiv:2305.17331*, 2023b.

657

658 Shengbin Yue, Wei Chen, Siyuan Wang, Bingxuan Li, Chenchen Shen, Shujun Liu, Yuxuan Zhou,
 659 Yao Xiao, Song Yun, Xuanjing Huang, et al. Disc-lawilm: Fine-tuning large language models for
 660 intelligent legal services. *arXiv preprint arXiv:2309.11325*, 2023.

661 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 662 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 663 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

664

665 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 666 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 667 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 668 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguis-
 669 tics. URL <http://arxiv.org/abs/2403.13372>.

670 Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang Zhang, Zhiyuan Liu, and Maosong Sun. Jec-qa:
 671 a legal-domain question answering dataset. In *Proceedings of the AAAI conference on artificial
 672 intelligence*, pp. 9701–9708, 2020.

673 Zhi Zhou, Jiang-Xin Shi, Peng-Xiao Song, Xiao-Wen Yang, Yi-Xuan Jin, Lan-Zhe Guo, and Yu-
 674 Feng Li. Lawgpt: A chinese legal knowledge-enhanced large language model, 2024.

675

677 A APPENDIX

679 A.1 THEORETICAL ANALYSIS

681 A.1.1 PROOF OF LEMMA 1

683 By definition, the hallucination risk for the traditional model θ is

$$685 H(\theta) = 1 - \text{Acc}(\theta) \cdot \text{Auth}(\theta).$$

$$687 \text{Acc}(\theta) = \frac{2 \cdot |f_\theta(x) \cap y|}{|f_\theta(x)| + |y|}, \quad f_\theta(x) \subseteq A, \quad y \subseteq A$$

$$691 \text{Auth}(\theta) = \frac{(1 + \beta^2) \cdot \text{LCS}(g_\theta(x), c_y)}{\text{len}(g_\theta(x)) + \beta^2 \cdot \text{len}(c_y)}$$

693 So our objective to reduce hallucination risk is

$$696 \min_{\theta} H(\theta) = 1 - \text{Acc}(\theta) \cdot \text{Auth}(\theta).$$

698 Both $\text{Acc}(\theta)$ and $\text{Auth}(\theta)$ must be increased to reduce $H(\theta)$.

700 The overall AC-RAG prediction process can be expressed as

$$701 p_{\text{AC-RAG}}(y \mid x) \approx p_{\theta_0}^{\text{cls}}(\hat{N} \mid x) p_{\theta_0}^{\text{gen}}(y \mid x, A),$$

702 where

703
$$A = \{(n_i, c_i) \mid n_i \in \hat{N}, c_i = DB_{\text{law}}[n_i]\}.$$

704

705 For our AC-RAG model θ_0 , because the article content c_i is retrieved from a ground-truth database
706 rather than generated, we can assume the authenticity is perfect, $\text{Auth}(\theta_0) = 1$. The risk for our
707 model thus simplifies as

708
$$H(\theta_0) = 1 - \text{Acc}(\theta_0).$$

709

710 To prove the lemma, $H(\theta_0) \leq H(\theta)$, we need to show that:

711
$$\begin{aligned} 1 - \text{Acc}(\theta_0) &\leq 1 - \text{Acc}(\theta) \cdot \text{Auth}(\theta) \\ \text{Acc}(\theta_0) &\geq \text{Acc}(\theta) \cdot \text{Auth}(\theta). \end{aligned} \tag{9}$$

712

713 We now justify this premise by analyzing the optimization objectives.

714 Therefore, the original 2-dimensional optimization is reduced to a single-dimensional objective,
715 shown as

716

717
$$\min_{\text{Acc}, \text{Auth} \in [0,1]} H(\theta) = 1 - \text{Acc} \cdot \text{Auth} \implies \min_{\text{Acc} \in [0,1]} H(\theta_0) = 1 - \text{Acc}.$$

718

719 So the optimized gradient

720

721
$$\begin{aligned} \nabla_{\theta} H(\theta) &= \frac{\partial H(\theta)}{\partial \text{Acc}(\theta)} \cdot \frac{\partial \text{Acc}(\theta)}{\partial \theta} + \frac{\partial H(\theta)}{\partial \text{Auth}(\theta)} \cdot \frac{\partial \text{Auth}(\theta)}{\partial \theta} \\ &= - \left(\text{Auth}(\theta) \cdot \frac{\partial \text{Acc}(\theta)}{\partial \theta} + \text{Acc}(\theta) \cdot \frac{\partial \text{Auth}(\theta)}{\partial \theta} \right) \end{aligned}$$

722

723 becomes

724

725
$$H(\theta_0) = 1 - \text{Acc}(\theta_0) \implies \nabla_{\theta_0} H(\theta_0) = -\frac{\partial \text{Acc}(\theta_0)}{\partial \theta_0}.$$

726

727 The training of the traditional model θ involves a two-dimensional optimization, where the gradient
728 is a composite signal from two potentially conflicting objectives to improve accuracy and authentic-
729 ity simultaneously.

730

731 In contrast, the training of our model θ_0 is a simpler, single-dimensional problem focused solely
732 on maximizing $\text{Acc}(\theta_0)$. The gradient is a more direct signal. Given that the optimization of θ_0
733 is more focused and stable, it is reasonable to conclude that it can more effectively achieve a final
734 accuracy $\text{Acc}(\theta_0)$ that surpasses the $\text{Acc}(\theta) \cdot \text{Auth}(\theta)$ which has the more complex training process.
735 Therefore, the premise Equation 9 is justified, which completes the proof.

736

737 A.1.2 THE METRICS OF HALLUCINATION RISK CALCULATION

738

739 We use the metric

740
$$\text{Auth}_i(\theta) = \frac{(1 + \beta^2) \cdot \text{LCS}(g_{\theta}(x_i), c_{y_i})}{\text{len}(g_{\theta}(x_i)) + \beta^2 \cdot \text{len}(c_{y_i})}, \tag{10}$$

741

742 where we set $\beta = 0$, and

743

744
$$\text{Acc}_i(\theta) = \frac{2 \cdot |f_{\theta}(x_i) \cap y_i|}{|f_{\theta}(x_i)| + |y_i|}, \quad f_{\theta}(x_i), y_i \subseteq A \tag{11}$$

745

746 in hallucination risk $H(\theta)$ calculation.

747

748 A.1.3 ALGORITHM OF CCs-RAG

749

750 Shown in Algorithm 2.

751

756 **Algorithm 2** CCs-RAG

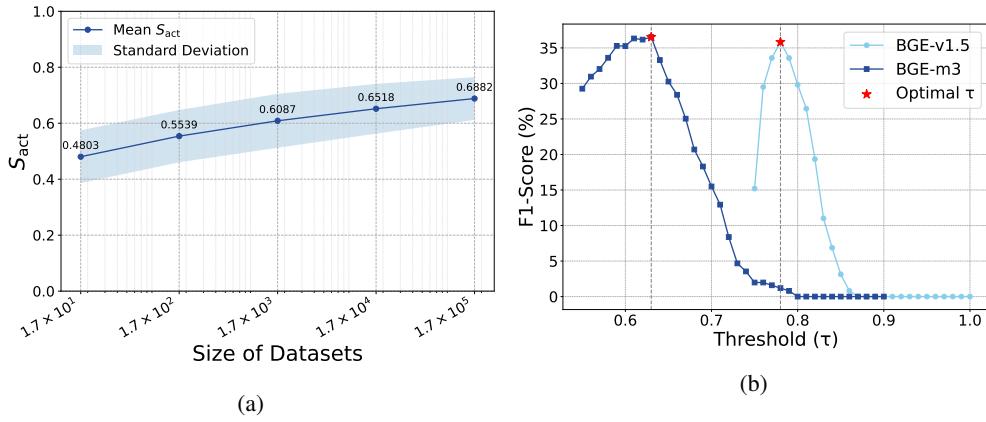
757 **Input:** User input description: x ; Legal case database: $\text{DB}_{\text{case}} = \{c_1, c_2, \dots, c_n\}$; All legal case
 758 vectors: $\{\mathbf{v}_i\}_{i=1}^n$; Encoder: $\text{Enc}(\cdot)$; Prompt formatter: Format ; Generator: $p_\theta(y \mid \cdot)$;
 759 Top- k : k ; Maximum token length: $T_{\text{max}} = 2048$; (*Optional*) Relevant legal article set:
 760 $A = \{(n_i, c_i)\}_{i=1}^m$

761 **Output:** Final legal analysis \hat{y}

762 1: $\mathbf{v}_x = \text{Enc}(x)$;
 763 2: $\mathcal{C} = \text{k-argmin}_{i=1}^n \|\mathbf{v}_x - \mathbf{v}_i\|_2$;
 764 3: **for all** $i \in \mathcal{C}$ **do**
 765 4: $c_i = \text{Retrieve}(\text{DB}_{\text{case}}, i)$;
 766 5: **end for**
 767 6: $x_1 = \text{Format}(x, \{c_i\}_{i \in \mathcal{C}}, A)$;
 768 7: $\hat{y} \sim p_\theta(y \mid x_1)$, s.t. $\text{TokenLen}(x_1) \leq T_{\text{max}}$;
 769 8: **return** \hat{y} ;

771 **A.2 ADDITIONAL EXPERIMENTS**772 **A.2.1 SELECTION OF OPTIMAL THRESHOLD**

773 As shown in Figure 3b, we evaluate the F1-score for each threshold of the RAG models, and finally
 774 present the optimal values in the main evaluation. The optimal thresholds were tested to be 0.78 for
 775 BGE-v1.5 and 0.63 for BGE-m3.

776 **A.2.2 CCS-RAG SCALE**

795 Figure 3: (a) The effectiveness of our large-scale datasets. (b) The optimal thresholds of RAG
 796 models.

797 To evaluate the retrieval effectiveness of our large-scale legal case dataset within the CCs-RAG
 798 framework, we designed an ablation study to measure performance across varying data scales. We
 799 find that original score of vectors similarity S_{ori} will produce high scores even for irrelevant queries,
 800 so we test the base noise ϵ and calculate a Actual Score S_{act} as

$$802 \quad S_{\text{act}} = \frac{S_{\text{ori}} - \epsilon}{1 - \epsilon} \quad (12)$$

803 To determine our base noise ϵ , we measured the system performance using 10 meaningless text
 804 strings. We calculated the average top-10 similarity score for each string over 100 independent runs.
 805 This test yielded a mean score of 0.6652 ± 0.0196 . To ensure a effective (positive) result in our
 806 subsequent calculations, we defined ϵ as the lower bound of this noise range: $\epsilon = 0.6456$.

807 Then we measured S_{act} by running the experiment 20 times for 5 law cases randomly selected from
 808 the China Court Website. This evaluation was performed on subsets of our entire dataset, randomly

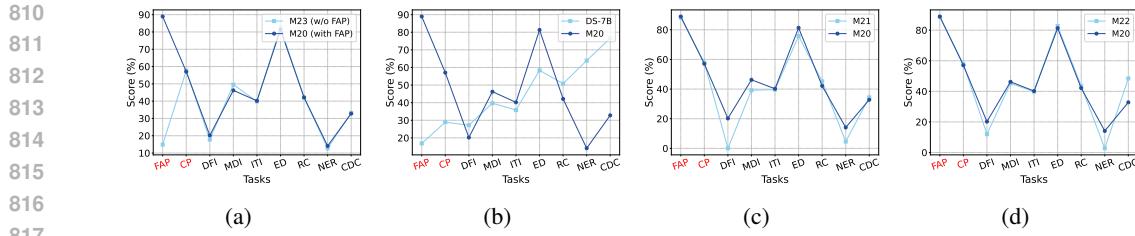


Figure 4: Comparison between different versions of AA-LeLLM: (a) Training without FAP, (b) M_{20} vs. DS-7B, (c) M_{20} vs. M_{21} , (d) M_{20} vs. M_{22} . M_{20} is our final version.

sampled at scales of 17, 170, 1,700, 17,000, and 170,000 documents at each running time, with the average top-10 S_{act} being calculated. The results in Figure 3a shows that a larger dataset leads to the retrieval of cases that are more similar to the query, which demonstrate the effectiveness of our large-scale datasets in CCs-RAG.

A.2.3 TRAINING WITHOUT AC-RAG

For the completeness of the experiment, we excluded the target task FAP from the finetuning, resulting in M_{23} , as shown in Figure 4a. We can observe that the results of other tasks only have minor fluctuations. This further demonstrates the effectiveness of our proposed AC-RAG training approach, which does not negatively impact the performance of other finetuning tasks. The primary focus of this work is to validate the effectiveness of AC-RAG. So we are not focus on task-specific data augmentation or finetune for other task objectives. If further work intends to improve performance on other non-oriented tasks, expanding the finetuning data or methods would be a viable strategy. And integrating our AC-RAG retrieval module into the training pipeline does not interfere with the performance of other task objectives.

We trained multiple versions of AA-LeLLM and finally selected M_{20} as our final model. The comparisons are shown in Figure 4. The training differences, detailed results, and further analyses are in the Appendix A.2.5.

A.2.4 TRAINING-FREE DEPLOYMENT WITH SOTA LLMS

We have observed that as large models evolve, SOTA models are approaching the performance of our fine-tuned AA-LeLLM on the FAP task (around 80%), as shown in Table 1. This indicates the possibility of a training-free AC-RAG, where general models already has the necessary legal prediction and analysis capabilities without specific fine-tuning. To assess this, we conducted an ablation study on SOTA models using the latest version of the criminal law. We find an advantage of our AC-RAG method that when laws are modified, we only need to update our legal article retrieval database. Since the crime corresponding to an article number generally remains unchanged during modified, this approach avoids the hard process of re-annotating data when it becomes a new version of law. This is proved by the result in Table 4 that our baselines (DS-7B and AA-LeLLM) maintained trends consistent with our main tables with old version of law contents.

The recent SOTA level model Qwen3-8B showed a different trend: AC-RAG improved overall performance but unexpectedly increased the Hallu \downarrow . We check the result and find that this stems not from a failure in legal reasoning, but from the model’s inability to follow the unseen prompt format for the information-sparse numeric prediction task. This suggests that finetuning remains necessary for now, and a better-designed prompt could be key for future training-free deployment. Meanwhile, our Table 2b shows that SOTA models are becoming increasingly accurate at the prediction task, reaching a high level, suggesting that as foundation models evolve, they may acquire sufficient latent legal knowledge to make AC-RAG a truly training-free method.

A.2.5 DATASETS SELECTION OF TRAINING PROCESS

We experimented with three different training strategies, resulting in M_{20} , M_{21} , and M_{22} . After careful consideration, we selected M_{20} as our final AA-LeLLM into the AALaywer. The training

864
865 Table 4: Comparison of models on HR-Benchmark on the latest criminal law (different setting with
866 main part table).

867 Baseline	868 Method	869 Hallu \downarrow	870 Prof	871 Info	872 Expa	873 Avg.
874 DS-7B (non-finetuned)	Vanilla	77.22 \pm 0.63	56.13 \pm 0.46	38.73 \pm 0.12	45.63 \pm 0.35	40.82 \pm 0.33
	AC-RAG	79.76 \pm 0.41	45.93 \pm 0.35	37.27 \pm 0.40	43.57 \pm 0.45	36.75 \pm 0.36
	AALawyer	74.30 \pm 0.18	53.12 \pm 0.07	72.72 \pm 0.27	66.31 \pm 0.34	54.46 \pm 0.17
875 Qwen3-8B (non-finetuned)	Vanilla	31.21 \pm 0.68	72.00 \pm 0.36	35.60 \pm 0.10	57.50 \pm 0.10	58.47 \pm 0.28
	AC-RAG	36.61 \pm 0.50	77.23 \pm 0.05	48.63 \pm 0.23	75.63 \pm 0.25	66.22 \pm 0.20
	AALawyer	29.74 \pm 0.14	92.87 \pm 0.32	97.77 \pm 0.05	96.93 \pm 0.32	89.45 \pm 0.03
876 AA-LeLLM (finetuned)	Vanilla	46.77 \pm 0.43	64.07 \pm 0.12	28.40 \pm 0.10	48.53 \pm 0.46	48.56 \pm 0.21
	AC-RAG	31.68 \pm 0.06	74.97 \pm 0.21	42.00 \pm 0.10	73.63 \pm 0.15	64.73 \pm 0.07
	AALawyer	36.40 \pm 0.44	70.73 \pm 0.15	78.70 \pm 0.17	84.70 \pm 0.40	74.43 \pm 0.05

876 Table 5: Datasets of training: We use a number to represent the source. (1) fuzi.mingcha (Deng
877 et al., 2023) (2) CAIL2018 (Xiao et al., 2018) (3) DISC (Yue et al., 2023) (4) law-lib.

879 Process	880 Source	881 Type	882 Num	883 Size	884 M_{20}	885 M_{21}	886 M_{22}	887 M_{23}
888 IPT	(1)	Full Domain Chinese Legal Articles	57k	21MB	✓	✓	✓	✓
	(1)	Articles of the Criminal Law	452	266kB	✓	✓	✓	✓
	(1)	Legal Case Documents	1k	16MB	✓	✓	✓	✓
	(4)	Case Documents in Criminal Law	172k	1052MB	✓			
889 SFT	(2)	Case - Charge(s)	155k	248MB	✓	✓	✓	✓
	(2)	Case - Article Number(s)	155k	251MB	✓	✓	✓	
	(2)	Case - Criminal	155k	250MB	✓	✓	✓	✓
	(2)	Case - Fine	155k	244MB	✓	✓		✓
	(2)	Case - Sentencing	155k	252MB	✓	✓		✓
	(3)	Criminal Law QA Events Analyses	13k	43MB	✓	✓	✓	✓
	(3)	Full Legal Domain QA Events Analyses	19k	69MB	✓	✓	✓	✓
	(3)	Full Legal Domain QA Tasks	205k	361MB	✓	✓	✓	✓
890 AC-RAG	(1)	Criminal Article Number - Content	452	164kB	✓	✓	✓	✓
891 CCs-RAG	(4)	Vector of Case in Criminal Law	172k	676MB	✓	✓	✓	✓

892
893 datasets used for each model are shown in Table 5. The comparison results are displayed in Figure 4,
894 where we compare the performance of all Group 1 classification tasks and those tasks in Group 2.
895896
897 **Change in Incremental Pretraining.** We explored different incremental pretraining strategies
898 to generate M_1 . One strategy included only all law articles, criminal law articles and some case
899 documents, resulting in M_{10} , while the other added extra case documents from criminal law to
900 the training data, generating M_{11} . M_{10} was fine-tuned to produce M_{20} , and M_{11} was fine-tuned
901 to produce M_{21} . The results showed that the model M_{21} , which was trained with more data for
902 incremental pretraining, performed worse. This is because our new data consisted of pure criminal
903 law cases, which affected the general legal classification tasks. Additionally, our focus tasks in
904 criminal law, FAP and CP, did not show significant improvement on M_{21} . Therefore, we chose M_{10}
905 for the subsequent SFT stage.906
907 **Change in SFT.** In the SFT task, we excluded the amount prediction and sentence prediction tasks
908 that influenced CDC (Criminal Damages Calculation) and then fine-tuned M_{10} to produce M_{22} . The
909 results showed that CDC performance improved, confirming our later reasoning that these two tasks
910 indeed affected the model’s mathematical operations and logic. However, our AALawyer does not
911 require mathematical logic computation, and the focus identification ability of the DFI (Dispute
912 Focus Identification) model in M_{22} declined, which is more important for our model. Therefore, we
913 decided to continue including the amount prediction and sentence prediction training data.914
915

A.2.6 SINGLE TASK TRAINING

916 When we use single-task training, we find that only the training task can work well, as shown in
917 Table 6. So we choose the multi-task training (Caruana, 1997; Yue et al., 2023), combining multiple
918 tasks’ training data, as shown in line M_{20} of Table 5, to train our model. We can see that the
919 performance of M_2 -multi works well in all tasks, maintain the good performance from DeepSeek-

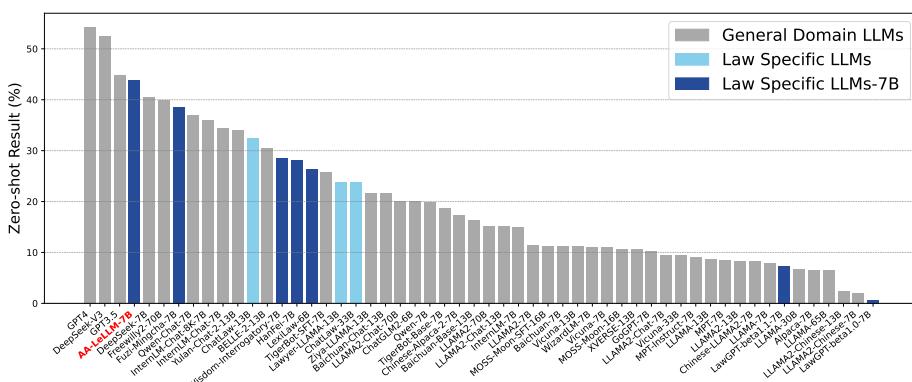


Figure 5: Full domain evaluation on LawBench.

7B and outperforms in our classification task. However, comparing with single-task training, the performance shows slight degradation in CP, but the impact is small, and other tasks perform excellently. For our multi-task training requirements in AALawyer and training efficiency, this approach is clearly better, with minimal impact on the valuable pretrained weights of DeepSeek-7B.

A.2.7 EVALUATION ON FULL DOMAIN LEGAL TASKS

We further calculate the average score of 11 metrics in LawBench (Fei et al., 2023), comparing with the base model and other models. As shown in the Figure 5, despite being tested on general-domain tasks, our model still maintained a strong level of performance. Since we focus on the classification and analysis of criminal law, and the training data primarily consists of single-label classification and legal analysis tasks, performance on some unseen tasks in some Full-domain legal evaluation is suboptimal. However, the model still maintains a good overall performance. Among all models with comparable parameter sizes, it achieved the SOTA level.

Our performance on some unseen tasks in the full-domain legal evaluation is suboptimal. However, the following analysis indicates that these tasks do not impact the primary objectives of AALawyer. The results are shown in Table 7.

Regarding RC (Reading Comprehension), the reference answers are short, but our model’s answers include more analysis (long), leading to a lower score. However, the answers are mostly correct, just with some differences in similarity to the reference examples (the examples are short, and ours are longer), but longer answers are more suitable for our analysis task. The model’s performance is not good in NER (Named-Entity Recognition) because our SFT training data only includes tasks related to recognizing criminals, and it doesn’t involve other entity recognition tasks, which means it can only recognize criminals. However, as our main tasks are classification and analysis, primarily focusing on identifying the criminal and the relevant legal article numbers, this metric does not have a significant effect. OS (Opinion Summarization) metric is effective for case analysis to supports legal analysis tasks. The model’s performance is well. CDC (Criminal Damages Calculation) evaluate the model’s numbers extraction and mathematical ability. Due to the presence of tasks related to predicting criminal financial amounts in the SFT training data, this may affected normal calculations. After testing with standard mathematical summation tasks, the results were correct. So we deem that the math level maintains a enough level. And the target tasks do not involve financial amount calculation, so this metric has little impact. Co (Consultation) questions are general law issues, and since our model specializes in criminal law, it can’t answer the question in other legal domains accurately, but the results are comparable to other legal domain-specific models.

A.2.8 SHOWCASES

We randomly selected a case in the Chinese Court Website as input, and the showcase result is shown in the Table 8. In this real-world case analysis, our AALawyer accurately find the relevant legal articles, generates professional legal reasoning, and retrieves highly similar cases. This demonstrates

972 its high accuracy in legal citation and strong explainability. And even when increasing CCs-RAG
 973 cases k to 5 or varying the input x , the retrieved cases are still closely match to the input.
 974

975 **A.3 ADDITIONAL DETAILS**
 976

977 **A.3.1 BENCHMARK AND DATASETS**
 978

979 **Benchmarks.** We use 11 metrics in Lawbench, and a 4-dimension HR-Benchmark.
 980

981 LawBench is a legal benchmark designed based
 982 on Bloom’s cognitive model, covering Knowledge
 983 Memorization, Knowledge Understanding,
 984 and Knowledge Applying. We chose LawBench
 985 as the benchmark for model ability testing. The
 986 evaluation results are in the main paper under the
 987 Main Results section. Before evaluation, we
 988 analyzed the principles and objectives of the related
 989 metrics, removed metrics that were ineffective for
 990 all models and excluded all multiple-choice ques-
 991 tions. In the end, we leave 11 relevant metrics
 992 and created an automated evaluation script to as-
 993 sess each model. The selected metrics are divided into two groups:
 994

995 The 1st group is based on classification-related tasks in LawBench, which are consistent with our
 996 project model’s training goals, as shown in Main Result. It includes 2 criminal law domain MLC
 997 (Multi-label Classification) tasks: FAP and CP, 3 full legal domain MLC tasks: DFI, MDI, and ED,
 998 and 1 SLC (Single-label Classification) task: ITI. The evaluation details and metrics for each task
 999 are as follows:
 1000

1001 **FAP** (Fact-based Article Prediction) predicts the relevant criminal law article numbers for a given
 1002 event. **CP** (Charge Prediction) predicts the criminal charge related to a given event. **DFI** (Dispute
 1003 Focus Identification) provides several focus categories for disputes and gives an event sentence to
 1004 predicts the focus category. **MDI** (Marital Disputes Identification) assigns a classification label to
 1005 the sentence for marital events and predicts the sentence category. **ED** (Event Detection) provides
 1006 several event types and makes the model determine which event type is involved. The evaluation
 1007 metric is F1-Score, shown in Formulas 13, 14, and 15.
 1008

1009 **ITI** (Issue Topic Identification) provides a set of consultation category labels and legal questions,
 1010 then predicts the consultation category of the given sentence. The evaluation metric is Accuracy,
 1011 shown in Formula 20.
 1012

1013 The 2nd group focuses on the model’s performance on other types of tasks in the full legal domain,
 1014 including 2 extraction tasks, RC and NER, 2 generation tasks, OS and Co, and 1 regression task,
 1015 CDC. Results are shown in Table 7. The evaluation details and metrics for each task are as follows:
 1016

1017 **RC** (Reading Comprehension) gives an event and a related question, and the task is to answer the
 1018 question. Most of the questions are focused on information extraction. The evaluation metric is
 1019 rc-F1, as shown in Formulas 13, 16 and 17.
 1020

1021 **NER** (Named-Entity Recognition) focuses on identifying multiple named entities, such as crimi-
 1022 nals, victims, stolen currency, time, and location. The evaluation metric is soft-F1, as shown in
 1023 Formulas 13, 18 and 19.
 1024

1025 **OS** (Opinion Summarization) extracts key elements from input to generate event summaries. **Co**
 1026 (Consultation) involves answering questions and providing reasons. The evaluation metric is
 1027 ROUGE-L, as shown in Formulas 21, 22 and 23.
 1028

1029 **CDC** (Criminal Damages Calculation) involves summing the criminal financial amount in the
 1030 examples to evaluate the model’s numbers extraction and mathematical ability. The evaluation metric
 1031 is Accuracy, as shown in Formula 20.
 1032

1033 **Baselines.** We selected six models for performance comparison, including the base model
 1034 DeepSeek-R1-Distill-Qwen-7B (DeepSeek-7B) and five legal models of similar parameter scale:
 1035

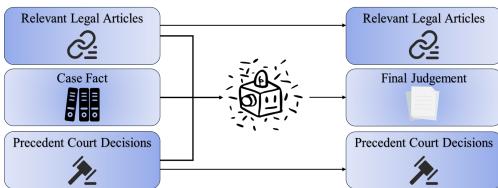


Figure 6: The system concept based on the legal syllogism and actual legal judgment.

Table 6: Comparison of Single and Multiple Task Training under Different Tasks.

Model	Criminal		Full Domain					
	FAP	CP	DFI	MDI	ITI	RC	OS	Co
DeepSeek-7B	16.86	28.89	27.20	39.69	35.80	50.83	31.66	15.10
M_2 -single	0.00	59.03	0.00	3.60	0.00	0.00	0.01	0.05
M_2 -multi	88.94	57.05	20.20	46.24	40.20	42.14	43.10	15.29

Table 7: Scores for criminal law and full domain law tasks on Lawbench.

Model	Criminal		Full Domain				
	FAP	CP	RC	NER	OS	CDC	Co
DeepSeek-7B	16.86	28.89	50.83	63.90	31.66	76.60	15.10
LawGPT-beta1.1-7B	0.15	15.68	2.27	2.00	8.61	15.40	7.62
LexiLaw-6B	13.15	39.99	45.39	48.74	33.12	35.80	15.82
Fuzi-Mingcha-7B	25.19	55.93	97.59	44.07	54.32	47.20	16.64
AA-LeLLM-7B	88.94	57.05	42.14	14.10	43.10	32.80	15.29

LaWGPT-7B-beta1.1, LexiLaw, HanFei, Wisdom-Interrogatory and Fuzi-Mingcha. In the LawBench paper, the Fuzi-Mingcha model was the best-performing 7B legal domain model in their evaluation. As our research progressed, we also conducted supplementary tests on newly emerged SOTA models, such as Qwen3-8B and Internlm3-Instruct-8B.

After checking the output, we found that the DeepSeek model outputs the `<think>` tag along with the regular output, affecting evaluations. Therefore, we designed a script to process the output, removing the content within the `<think></think>` tag to only maintain the valid output, which ensure the normal operation of the evaluations.

Datasets. The metrics that we used in benchmarks use CAIL2018, CAIL2019, CAIL2021, CAIL2022, LAIC2021, LEVEN, CrimeKgAssitant, AIStudio, hualv.com. And we use DISC-Law-SFT, fuziminghca to train our model, use lawlib in our CCs-RAG.

A.3.2 EVALUATION METRICS

F1-score FAP (Fact-based Article Prediction), CP (Charge Prediction), DFI (Dispute Focus Identification), MDI (Marital Disputes Identification) and ED (Event Detection) use this metric, as shown in Formulas 13, 14, and 15. ϵ is a small constant (e.g., 10^{-10}) to prevent division by zero. TP is true positive. FP is false positive. FN is false negative.

$$F_1 = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall} + \epsilon} \quad (13)$$

$$\text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \quad (14)$$

$$\text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} \quad (15)$$

rc-F1 RC (Reading Comprehension) use this metric, as shown in Formulas 13, 16 and 17. $|P|$ is the total number of tokens in the predicted answer. $|R|$ is the total number of tokens in the reference(answer). $|S|$ is the number of overlapping tokens between the predicted answer and the reference.

$$\text{Precision} = \frac{|S|}{|P|} \quad (16)$$

$$\text{Recall} = \frac{|S|}{|R|} \quad (17)$$

1080 **soft-F1** ER (Named-Entity Recognition) use this metric, as shown in Formulas 13, 18 and 19. P
 1081 represents the set of predicted legal entities by the model. R represents the set of actual legal entities
 1082 in the reference (answer).

1083

$$1084 \quad \text{Precision} = \frac{\sum_{i \in P \cap R} F1_i}{|P|} \quad (18)$$

1085

$$1086 \quad \text{Recall} = \frac{\sum_{i \in P \cap R} F1_i}{|R|} \quad (19)$$

1087

1090 **Accuracy** ITI (Issue Topic Identification) use this metric, as shown in Formula 20. TP is true
 1091 positive. FP is false positive. FN is false negative. TN is false negative.

1092

$$1093 \quad \text{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN} \quad (20)$$

1094

1095 **ROUGE-L OS** (Opinion Summarization), Co (Consultation) use this metric, as shown in Formu-
 1096 las 13, 18 and 19. LCS (Longest Common Subsequence) is a sequence that appears in the same
 1097 relative order in both input sequences, but not necessarily consecutively. We choose $\beta = 1$ because
 1098 there is no specific need to favor either Precision or Recall over the other.

1099

$$1100 \quad F_{\text{lcs}} = \frac{(1 + \beta^2) \cdot R_{\text{lcs}} \cdot P_{\text{lcs}}}{R_{\text{lcs}} + \beta^2 \cdot P_{\text{lcs}}} \quad (21)$$

1101

$$1103 \quad P_{\text{lcs}} = \frac{|LCS(P, R)|}{|P|} \quad (22)$$

1104

$$1106 \quad R_{\text{lcs}} = \frac{|LCS(P, R)|}{|R|} \quad (23)$$

1107

1109 A.4 MORE DETAILS IN EXECUTION PROCESS

1110

1111 A.4.1 DATA COLLECTION AND DATA PREPROCESSING

1112 The data for the Incremental Pretraining (IPT) consists of 57k full domain Chinese legal articles,
 1113 452 articles of the criminal law and 1k legal case documents. The data is processed into a JSON
 1114 format containing only the “text” attribute, which is suitable for model pretraining.

1115

1116 Considering that these model pretraining data is insufficient, may resulting in poor performance.
 1117 We have used a web scraper to collect legal case documents from the website, collecting 172k
 1118 documents.

1119

1120 In the Supervised Fine-Tuning (SFT), we applied part of the CAIL2018 training datasets and DISC
 1121 training dataset. The data was divided into nine parts. The first five tasks used CAIL, where key
 1122 information in the documents was masked to predict the charges, relevant legal article numbers,
 1123 criminals, fines, and sentencing. The remaining four tasks were processed using DISC, generated
 1124 13k criminal law QA events analyses, 19k full legal domain QA events analyses, and 66k and 139k
 1125 full legal domain QA tasks.

1126

1127 Although we only trained the model with the training set, considering that DISC and 2 evaluation
 1128 tasks use the same dataset. To ensure the final accuracy, we converted the text into TF-IDF (Term
 1129 Frequency-Inverse Document Frequency) vectors and computed the cosine similarities

1130

$$1131 \quad \cos(\vec{\alpha}, \vec{\beta}) = \frac{\vec{\alpha} \cdot \vec{\beta}}{\|\vec{\alpha}\| \|\vec{\beta}\|} \quad (24)$$

1132

1133 for the overlapping portions of the training set and the test set, with a threshold set at 0.5. We find
 1134 that no segments in the test sets exceeded this threshold.

1135

1136 Table 5 provides detailed descriptions of each dataset used in our project and specifies which data
 1137 were utilized for training each weight of the model.

1134 A.4.2 TRAINING PROCESS
1135

1136 DeepSeek has demonstrated strong general-
1137 domain capabilities and shows promising per-
1138 formance on legal-domain tasks even before
1139 fine-tuning, as shown in Table 5. To further
1140 enhance its effectiveness on our AA Lawyer-
1141 related legal tasks, we incremental pretrained
1142 and finetuned it using domain-specific legal
1143 datasets via LlamaFactory (Zheng et al., 2024),
1144 enabling the model to better adapt to our target objectives. Followed by the normal pipeline de-
1145 scribed in Section 2.2, our entire process is shown in Figure 7.

1146 **Stage 1 Incremental Pretraining (IPT).** Our goal was to adapt the base DeepSeek-R1-Distill-
1147 Qwen-7B model (Guo et al., 2025) to the legal domain’s language and style. We used the datasets
1148 described in Section A.4.1 for unsupervised Causal Language Modeling (CLM), with the training
1149 objective

$$1150 \quad L_{\text{IP}} = - \sum_{t=1}^T \log P_{\theta}(y_t | y_{<t}). \quad (25)$$

1152 This process, which resulted in model M_1 , was conducted using LoRA (Hu et al., 2022).

1153 For the LoRA adaptation, we set the rank r to 8, the scaling factor α to 16, and the dropout rate to 0.
1154 We used the AdamW optimizer with a learning rate of 5×10^{-5} and a cosine learning rate scheduler.
1155 The training was conducted with a per-device batch size of 2, 8 gradient accumulation steps, and a
1156 sequence length of 2048.

1158 **Stage 2 Supervised Finetuning (SFT).** We then finetuned model M_1 to create our final model,
1159 AA-LeLLM, improving its performance on the legal tasks we are focusing on. Recognizing that
1160 single-task training was ineffective for other tasks, we employed multi-task training (Caruana, 1997;
1161 Yue et al., 2023) by mixing all SFT datasets. The SFT and multi-task learning objectives are

$$1162 \quad L_{\text{SFT}} = - \sum_{t=1}^T \log P_{\theta}(y_t | x, y_{<t}) \quad (26)$$

1165 and

$$1166 \quad L_{\text{MTL}} = \sum_{i=1}^N \lambda_i \cdot L_{\text{SFT}}^{(i)}. \quad (27)$$

1169 The per-device batch size was set to 1, while other settings remained consistent with the IPT stage.

1170 A.5 LIMITATIONS AND FUTURE WORK
1171

1172 Due to limitations in computational resources and datasets, the current model has only been exper-
1173 imented on criminal law data using a 7B-scale model. However, it can be extended to other legal
1174 fields or even other application domains.

1176 One limitation is that our training data is focused on classification and analysis tasks within criminal
1177 law to verify our RAG approaches. While this specialization leads to strong performance on our
1178 target tasks, it restricts the model’s generalization to other legal domains and tasks. Future work
1179 will involve expanding and adjusting our dataset to enrich the training materials, cover more legal
1180 domains tasks, annotating data that aligns with our model’s analysis structure to enhance post-RAG
1181 effectiveness.

1182 For our proposed HR-Benchmark, we use the LLM-as-a-Judge approach. While this method allows
1183 for professional and consistent evaluation, addressing our experts limitation. We acknowledge it
1184 has limitations. There has the potential for bias and the risk of circular validation. If possible,
1185 further work should incorporate a small-scale evaluation evaluated by legal experts to cross-verify
1186 the results from our LLM-as-a-Judge approach.

1187 Furthermore, a key area for future work is achieving a truly training-free deployment for AC-RAG.
1188 Our ablations show that with the development of LLM, this goal is becoming more achievable. We

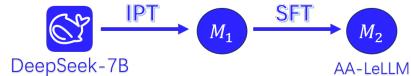


Figure 7: Model Training Flowchart

1188 can make the fine-tuning process cost less, or even find a proper prompt or another collaborative
 1189 method to complete training-free deployment.
 1190

1191 A.6 CLARIFY OF LLMS USAGE 1192

1193 We used ChatGPT and Gemini to improve the phrasing and grammar of our paper during the writing
 1194 process. In the experimental phase, these models were also used to debug and modify our code. All
 1195 content is authentic, and the final wording and the effectiveness of the code and results have been
 1196 checked by us.

1197
 1198 Table 8: Output of AALawyer

<p>1199 1200 Input(Case): Concert tickets turn out to be a blank cheque “Scalpers” buy concert tickets 1201 on behalf of the “mystery”. 1202 In October 2023, the defendant Gao Moqi published a false advertisement for the sale of 1203 concert tickets of a star’s fans in the wechat group, and the victim Xiao Ji (a pseudonym) 1204 contacted him to buy concert tickets after seeing it. Gao Moqi defrauded Xiao Ji of a total 1205 of 4,500 yuan by issuing tickets. In November of the same year, the defendant Gao Mouqi 1206 was seized by the public security organs and was released on bail on the same day. In July 1207 2024, the defendant Gao Mou Qi resumed his old business, published false advertisements 1208 for the sale of concert tickets under a star’s microblog dynamics, and defrauded multiple 1209 victims of a total of 19,723 yuan by issuing tickets and unfreezing accounts.</p>
<p>1210 Related Articles: 1211 Article 266 Whoever defrauds public or private property, if the amount involved is rela- 1212 tively large, shall be sentenced to fixed-term imprisonment of not more than three years, 1213 criminal detention or public surveillance and shall also, or shall only, be fined; If the 1214 amount involved is huge, or if there are other serious circumstances, he shall be sentenced 1215 to fixed-term imprisonment of not less than three years but not more than 10 years and 1216 shall also be fined; If the amount involved is especially huge or if there are other espe- 1217 cially serious circumstances, he shall be sentenced to fixed-term imprisonment of not less 1218 than 10 years or life imprisonment and shall also be fined or have property confiscated. 1219 Where this Law provides otherwise, such provisions shall prevail.</p>
<p>1220 Case Analysis: 1221 The defendant Gao Mouqi is guilty of fraud. According to Article 266 of the Criminal 1222 Law, whoever, with the purpose of illegal possession, defrauds another person of money 1223 or property, if the amount involved is relatively large, shall be sentenced to fixed-term 1224 imprisonment of not more than three years, criminal detention or public surveillance and 1225 shall also, or shall only, be fined. Gao Mou Qi defrauded Xiao Ji with a total of 4,500 yuan 1226 on the grounds of ticket issuance, and defrauded a number of victims with a total of 19,723 1227 yuan on the grounds of ticket issuance and unfreezing accounts, which is a large amount, 1228 which is in line with the constitutive requirements of the crime of fraud. Therefore, Gao 1229 should be sentenced to less than three years in prison and fined.</p>
<p>1230 Similar Cases: 1231 (Too long, shown in Table 9)</p>

1242

1243

1244

1245

1246

1247

(2020) Shanghai No. 0101 Criminal Case 621

The public prosecutor is the People's Procuratorate of Huangpu District, Shanghai.

Defendant Wang 2, female, born on March 9, 1997, of the Yi ethnic group, has her registered residence in Yunnan Province.

The defense attorney is Sun Peng, a lawyer from Shanghai Hushi Law Firm.

The People's Procuratorate of Huangpu District, Shanghai Municipality, with the indictment No. 80 of criminal prosecution of Huangpu District, Shanghai Municipality [2020], charged the defendant Wang 2 with fraud and filed a public prosecution with this court on September 3, 2020. This court lawfully applied the simplified procedure, conducted a trial by a single judge, and held a public hearing on this case. The People's Procuratorate of Huangpu District, Shanghai Municipality, assigned prosecutor Chen Mou 2 to support the public prosecution in court. The defendant Wang 2 and his defense lawyer Sun Peng attended the trial. The case has now been concluded.

The People's Procuratorate of Huangpu District, Shanghai Municipality, has charged that between June 2018 and September 2019, the defendant Wang 2 repeatedly posted false information online claiming to have concert tickets for sale and fabricated a counterfeit "Zhuanzhuan" second-hand trading website page to deceive multiple victims who were seeking to purchase tickets. Subsequently, Wang 2 sent false payment links from the "Zhuanzhuan" website to the victims, defrauding them of a total of 24,125 yuan (the currency used hereinafter is the same). After obtaining the money, Wang 2 cut off contact with the victims and squandered all the ill-gotten gains. The specific facts are as follows:

1. On June 14, 2018, the defendant Wang 2 falsely claimed on Weibo that he had EXO concert tickets for sale, defrauding the victim Zhong Moumou of 4,022 yuan for ticket purchases. On September 30, 2019, the defendant Wang 2 fabricated on Weibo that he had tickets for Troye Sivan's concert in Chengdu and defrauded the victim Zhou 3 of 1,498 yuan for the ticket purchase. On April 28, 2020, the public security authorities arrested the defendant Wang 2 in Kunming City, Yunnan Province. After being apprehended, with the assistance of his family, Wang 2 has returned all the ill-gotten gains.

The above facts are confirmed by the statements of the victims Zhong Moumou, Wan Moumou, Li Moumou, Xu Moumou, Dai Moumou, Man Moumou, Chen Mou1, Zhang Moumou, Shen Moumou, Zhou Mou1, Xue Mou, Yuan Moumou, Zhou Mou2, and Zhou Mou3; the testimony of witness Wang 1; screenshots of relevant WeChat chat records; screenshots of WeChat transfer records; the seizure decision and list issued by the Cultural Security Division of the Shanghai Municipal Public Security Bureau; the working situation issued by the public security authorities; the seizure decision, list of seized property and documents issued by the People's Procuratorate of Huangpu District, Shanghai; the letter of forgiveness; and the multiple confessions of the defendant Wang 2.

The public prosecutor believes that the defendant Wang 2, with the intent of illegal possession, fabricated facts and concealed the truth to defraud others of their property in a relatively large amount. His actions have violated Article 266 of the Criminal Law of the People's Republic of China and he should be held criminally responsible for fraud. The defendant Wang 2 has confessed to the crime and accepted the punishment. According to Article 15 of the Criminal Procedure Law of the People's Republic of China, he may be given leniency. The defendant Wang 2 has truthfully confessed to the criminal facts. According to Article 67, Paragraph 3 of the Criminal Law of the People's Republic of China, he may be given a lighter punishment. It is suggested that Wang 2 be sentenced to 11 months in prison and fined 2,000 yuan.

The defendant Wang 2 has no objection to the facts, evidence, charges and sentencing suggestions made by the public prosecutor regarding his crime of fraud and has signed and confirmed them. During the court hearing, he also expressed no objection. The defense lawyer has no objection to the facts, evidence, charges and sentencing suggestions made by the public prosecutor. The lawyer believes that the defendant Wang 2 can truthfully confess his criminal facts, has returned all the ill-gotten gains and has obtained the forgiveness of the victims Li Moumou and Zhang Moumou, and thus should be given a lighter punishment.

This court holds that the defendant Wang 2, with the intent of illegal possession, repeatedly posted false information on the internet and concealed the truth, defrauding multiple victims of a considerable amount of property. His actions have violated the criminal law and constitute the crime of fraud, for which he should bear criminal responsibility. The facts charged by the public prosecutor against the defendant Wang 2 for fraud are clear, the evidence is solid and sufficient, and the charge is valid. This court supports it. The defendant Wang 2 can truthfully confess his crime after being arrested, and thus can be given a lighter punishment; he can also accept the punishment and thus can be given leniency. The defense lawyer's opinion that the defendant Wang 2 should be given a lighter punishment is adopted. Therefore, in accordance with Article 266 and Article 67, Paragraph 3 of the Criminal Law of the People's Republic of China,

1294

1295

Table 9: Similar Cases