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Abstract

In-Context Learning (ICL) has emerged as
a new paradigm in large language models
(LLMs), enabling them to perform novel tasks
by conditioning on a few examples embedded
in the prompt. Yet, the highly nonlinear be-
havior of ICL for NLP tasks remains poorly
understood. To shed light on its underlying
mechanisms, this paper investigates whether
LLMs can solve ordinary differential equations
(ODESs) under the ICL setting. We formulate
standard ODE problems and their solutions as
sequential prompts and evaluate GPT-2 models
on these tasks. Experiments on two types of
ODEs show that GPT-2 can effectively learn
a meta-ODE algorithm, with convergence be-
havior comparable to, or better than, the Eu-
ler method, and achieve exponential accuracy
gains with increasing numbers of demonstra-
tions. Moreover, the model generalizes to out-
of-distribution (OOD) problems, demonstrat-
ing robust extrapolation capabilities. These em-
pirical findings provide new insights into the
mechanisms of ICL in NLP and its potential
for solving nonlinear numerical problems.

1 Introduction

In-context learning (ICL) (Brown et al., 2020) has
emerged as a pivotal feature among the capabil-
ities of LLMs. It enables models to learn effec-
tively through contextual prompts composed of
input-output pairs without relying on parameter up-
dates (Anil et al., 2023; Thakkar and Manimaran,
2023). This in-context learning ability is credited
to emergent abilities (Wei et al., 2022; Lu et al.,
2024) of these Transformer-based LLMs (Vaswani
et al., 2017). However, it is still unclear why or
what these models can learn new tasks with only a
few pairs of demonstrations.

Recent studies (Garg et al., 2022; Xie et al.,
2022; von Oswald et al., 2023; Vladymyrov et al.,
2024; Fu et al., 2024) have explored the mecha-
nisms of ICL, primarily focusing on linear regres-

sion tasks. These works demonstrate that trained
Transformer models can achieve efficiency com-
parable to classic methods under the ICL setting.
In particular, models trained on linear examples
have been shown to mimic gradient descent (von
Oswald et al., 2023) and even higher-order opti-
mization methods (Vladymyrov et al., 2024; Fu
et al., 2024). However, these findings primarily
focus on linear patterns or simplified problems,
leaving the behavior of full nonlinear Transformer
models, especially in inherently nonlinear settings
like NLP, insufficiently understood.

This work investigates the applicability of ICL to
nonlinear numerical problems, extending its scope
to the domain of ordinary differential equations
(ODEs) and examining its potential in inherently
nonlinear settings. We show that language models
(e.g., GPT-2 models) can effectively learn meta-
ODE solvers and exhibit strong generalization to
new ODEs. Our main contributions are summa-
rized as follows:

* We design a tailored ICL framework for solv-
ing ODESs by encoding these nonlinear ODEs
into parameterized sequence prompts. This
formulation enables Transformers (e.g., GPT-
2) to learn the underlying dynamics, achieving
performance comparable to explicit and im-
plicit Euler methods and surpassing them in
some cases (see Figure 1 center right).

* We then demonstrate out-of-distribution
(OOD) generalization of ICL in ODE solv-
ing. The framework exhibits robustness to pa-
rameter distribution shifts, with deeper Trans-
former models showing stronger generaliza-
tion capabilities (see Figure 1 outer right).

* We evaluate the stability of ICL-based solvers
through multi-parameter extrapolation tests.
Our results show that ICL achieves greater
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Figure 1: ICL architecture and experimental results.Outer Left: Tllustration of ICL setup (Garg et al., 2022); Center
left: Error variation curve as a function of context length; Center right: Comparison of GPT-2 predictions with
classical methods; Outer Right: Generalization error region plotted for GPT-2 (12 layers), where a1 and aiy are ODE
parameters scaled from the training distribution (1.5x). The dark region indicates a certain level of generalization.

stability across wider parameter ranges com-
pared to existing Euler methods. These find-
ings suggest that Transformer-based models,
while originally developed for NLP tasks, may
also be capable of solving a broader class of
numerical problems. Our preliminary results
indicate that such models have the potential
to serve as universal numerical solvers.

2 Methodology

Problem setup. We study how GPT-2 models can
learn to solve initial value problems (IVPs), where
ordinary differential equations (ODEs) are defined
by specified initial conditions (see Appendix B for
formal definitions). This framework enables a sys-
tematic analysis of temporal dynamics through pa-
rameterized differential equations. Specifically, we
consider the following nonlinear task: each training
prompt encodes a task comprising N example pairs
(xi,y5) ?;1, where x; € R¢ stores the ODE param-
eters and y; € R? represents the corresponding n-
step solution. Each input «; = (Para;, t., Steps;)
encodes the equation’s parameters, final time ¢,
and number of time steps. The output y; = (y;(t;))
contains the ODE solution sampled at discrete time
points t; = 0,...,t. for j = 1,...,Steps,. We
apply zero-padding to standardize outputs.
Training loss. At inference time, the model ex-
hibits in-context learning (ICL) when it predicts
Yq ~ h(x,) without any weight updates, by lever-
aging the contextual examples in the prompt. To
encourage this behavior during training, we use a
sliced mean squared error (sliced-MSE) loss:

1 N
(y.9) =5 D_llyG ) —aGally, D
i=1

where y(: i) and g(: i) denote the first 7 entries of
y and g, respectively.

Experimental setups. We primarily follow the
experimental setups from Garg et al. (2022). For

each experiment, we apply curriculum learning
(Wang et al., 2021), gradually expanding context
length to 41 and vector dimensionality to 64 over
the first 30k training steps. All models were trained
for 600k steps before evaluation. We use AdamW
(Kingma and Ba, 2015) and employ an adjusted
cosine annealing schedule for optimization.

3 Experiment Results

3.1 ICL Matches Euler Methods

Building on the promising results of the GPT-2
model in solving basic differential equations (an
initial trial is provided in Appendix C.1, where a
24-layer GPT-2 is introduced alongside our original
12-layer model), we extend our investigation to ini-
tial value problems (IVPs), specifically first-order
linear ODEs with five degrees of parametric free-
dom (see Appendix 4 for the formal definition). To
evaluate model performance more concretely, we
conduct comparative experiments with classical nu-
merical solvers, including both the Euler-Explicit
and Euler-Implicit methods.
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GPT
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Figure 2: Log-log plots comparing GPT-2 and Euler
methods. Left: GPT-2 outperforms Euler methods.
Right: Comparable performance between GPT-2 and Eu-
ler. Steps denote context length for GPT-2 and iteration
steps for Euler methods.

The model’s performance is shown in Figure 2.
Our benchmarks against the Euler methods re-
veal that the Transformer outperforms classical
approaches in some cases while achieving com-
parable accuracy in others.
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Figure 3: Heatmap of Solution error comparison under « shifts (extending original training range: a; € [—1,1]
towards [—2, 2]). For traditional methods, context length aligns with iteration steps for comparison. Contour lines
mark 50% (cyan) and 70% (white) of each subplot’s error range.

Figure 4: Heatmap of error region comparisons across parameter combinations. -« (trained on [—1, 1]

tested on [—2, 2] x
70% (white) of each subplot’s range.

Transformers demonstrate dual advantages in
both accuracy and adaptability compared to explicit
Euler methods. Specifically, well-trained models
achieve comparable or superior accuracy to Euler
integration while maintaining better numerical sta-
bility, and additionally exhibit stronger adaptability
when handling stiff differential equations or con-
ducting long-term integration.

Notably, deeper architectures (24-layer vs. 12-
layer) demonstrate diminishing returns when scal-
ing depth, attaining only marginal accuracy gains
despite doubled parameters — a saturation pattern
consistent with findings in Fu et al. (2024). As ex-
pected, GPT-2 struggles to match classical solvers
in scenarios requiring high-precision solutions, re-
flecting fundamental limitations of neural approxi-
mators rather than implementation flaws (see more
discussions in the Appendix C.3).

3.2 ICL Generalizes across Distributions

Building on the previous subsection, which demon-
strates that Transformers can effectively solve first-
order ODEs as shown in Figure 2, we further evalu-
ate the generalization capabilities of Transformers
by extending parameter ranges beyond the training
distribution as illustrated in Figure 3.

Our experimental results indicate that the model
maintains stability while parameter range shifting,
representing generalization ability. Within the orig-
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x [—2,2],

[—3, 3]). From left: 12L/24L GPT-2, explicit/implicit Euler. Contours mark 50% (cyan) and

inal a; € [—1, 1] range, errors monotonically de-
crease as context length increases. Beyond this
distribution («v; € [—2, 2)), it preserves reasonable
accuracy that still improves with longer contexts.
Compared to Euler’s stepwise error decay, Trans-
formers exhibit smooth error convergence through
adaptive in-context learning.

Notably, the 24-layer variant shows better ex-
trapolation on negative «; despite overall lower
accuracy than the 12-layer model, suggesting depth
impacts generalization patterns.

3.3 ICL is Relative Stable to Classics

As Figure 2 reveals precision degradation in Euler
methods when handling stiff problems (attributed
to step size adaptation limitations), we conduct sys-
tematic cross-testing across dual parameter axes to
assess whether GPT-2 with ICL exhibits analogous
instability patterns.

Error stability regions. Under fixed context
length and iteration steps (45 precisely), test results
are shown in Figure 4. The error distributions with
stable error regions exhibited by GPT-2 model are
comparable to or larger than Euler methods. This
likely stems from its adaptive capability—adjusting
learning strategies based on context length and iter-
ation steps to maintain high precision. In contrast,
explicit Euler’s fixed-step mechanism becomes sub-
optimal with parameter variations, leading to accu-
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Figure 5: Heatmap of convergence slope comparisons. Models were trained on parameter ranges «; X g €

[—1,1] x [—2, 2] and tested on a broader range of a1 X ay € [—2,2] X

[—3, 3]. Contour lines indicate 50% (cyan)

and 70% (white) levels relative to the maximum value in each subplot.

racy deterioration.

Beyond the a parameter performance, the Trans-

former also demonstrates enhanced adaptation ca-
pability under 31-52 shifts compared to Euler meth-
ods (Appendix C.4), while exhibiting precision
variations. This phenomenon can be explained
by the model’s inherent sensitivity to input order-
ing, where consistently configured o parameters
predominantly influence the attention mechanisms
(Zhao et al., 2021; Lu et al., 2022; Chan et al.,
2022).
Convergence slope stability. When context length
and iteration steps grow, we reveal a exponential
convergence. The dynamic of convergence slope is
shown in Figure 5. Compared to error maps, slope
maps exhibit greater instability: Euler methods
maintain steady convergence rates while GPT-2
show localized volatility with sudden low-slope
valleys.

We attribute this performance to: (1) Slope, as a
global estimator of error reduction, amplifies insta-
bility from probabilistic solutions, whereas Euler
methods only show slope degradation when step
sizes are insufficient (implicit Euler demonstrates
better stability); (2) For extreme parameters, in-
context learning fails to capture logical parameter
relationships, weakening the error reduction trend
with longer contexts.

Notably, deeper models (24L) display smoother
slope transitions in a3 > 1.5 regions, suggesting
depth may mitigate convergence instability in spe-
cific parameter ranges. However, this improve-
ment is selective—deeper models show exacer-
bated volatility in aip’s negative half-axis.

3.4 Comparative Performance Analysis

As shown in Table 1, the core advantages of Trans-
formers lie in adaptive convergence and global
modeling capabilities. Compared to the O(h) con-
vergence of explicit Euler and O(h?) of implicit

Euler, 12-layer and 24-layer Transformers achieved
exponential convergence rates of O(e *V) and
O(e~*'N) respectively. We hypothesize exponen-
tial convergence of model accuracy with ICL length
(See Appendix D, Conjecture 1). This difference
stems from the attention mechanism’s comprehen-
sive utilization of historical information, enabling
implicit variable-step strategies. Notably, when
handling stiff equations, traditional methods of-
ten require frequent parameter adjustments due to
fixed-step limitations, whereas Transformers exhib-
ited smoother error reduction curves.

Method Convergence Rate  Generalization
Euler-Explicit O(h) Low
Euler-Implicit O(h?) Medium
GPT-2 (L = 12) O(e ") Medium-High
GPT-2 (L = 24) O(e ¥ Ny High

Table 1: Comparison between GPT-2 models and tra-
ditional explicit/implicit Euler methods across various
metrics.

4 Conclusions and discussions

This study demonstrates that Transformers can
effectively solve ordinary differential equations
through in-context learning, offering three key find-
ings: (1) Exponential error decay with increas-
ing context length via adaptive convergence mech-
anisms, (2) Generalization capability under ex-
tended parameter distributions, with maintained
convergence efficacy as context length grows, and
(3) Preserved convergence rates during parameter
extrapolation, despite increased volatility in slope
stability. Experiments confirm that the model main-
tains numerical stability comparable to Euler meth-
ods for nonlinear numerical problem: ODE numer-
ical solution, while exhibiting promising general-
ization under parameter distribution shifts.



Limitations

Our results may have the following limitations:
current observations are from only GPT-2 models.
Larger model configurations could be conducted.

We conducted a conjecture, waiting for theoreti-
cal analysis of Transformers’ internal mechanisms
for learning differential equations, internal impact
from optimization of in-context learning strategies
(e.g., positional encoding and attention masking).
While the model’s parallel prediction offers signifi-
cant advantages for real-time simulations, .

Ethical considerations. As our research in-
volves synthetic mathematical data and does not
engage with human subjects, sensitive content, or
real-world applications, we do not foresee direct
ethical risks.
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A Related Work

ICL capabilities of LLMs. In-context learning
(Brown et al., 2020) is a learning paradigm that
models learn intrinsic logical relationships to make
accurate predictions without parameter updates.
This capability proves particularly advantageous
for many NLP tasks, numerical tasks like linear
regression (Garg et al., 2022; Fu et al., 2024), and
Markov chain settings (Edelman et al., 2024; Chen
et al., 2024; Bondaschi et al., 2025). The early ex-
ploration work (Elhage et al., 2021; Olsson et al.,
2022) explains the ICL modeling via the induction
heads. Lu et al. (2024) empirically established that
LLMs’ fine-tuning efficacy stems from ICL. Their
large-scale tests in zero-shot settings revealed poor
performance across models, confirming ICL as es-
sential for emergent abilities. Grazzi et al. (2024)
extended this research to the Mamba architecture,
observing similar ICL capabilities in linear regres-
sion tasks. One can find more details in the survey
of Dong et al. (2024) and references therein.

To further study whether the attention mecha-
nisms are the key components in ICL, Ren et al.
(2024) and Todd et al. (2024) identified distinct
yet effective self-attention head types facilitating
parameter transfer during ICL. Zhao et al. (2021)
demonstrated significant output variations based on
prompt ordering, a sensitivity further validated (Lu
et al., 2022; Chan et al., 2022).

ICL for linear tasks. Bai et al. (2023) pio-
neered adaptive algorithm selection via ICL, en-
abling models to integrate statistical methods for
regression problems. Garg et al. (2022) employed
a decoder-only GPT-2 Transformer (12 layers, 8
attention heads, and embedding dimension 256)
for numerical tasks. Their model processes linear
regression coefficients w; (matrix notation) with

randomly sampled (a:,(f), y,(:)) pairs, forming ICL

sequences (mgl), y%l), - mg\l,), yg\l,), mc(lﬁ)ery). Zero-
padding aligns function values with inputs before
projection into the embedding space via fully con-
nected layers. Post-Transformer processing maps
embeddings back to the output space, demonstrat-
ing both in-distribution learning of regression algo-
rithms and out-of-distribution generalization. How-
ever, these models are only for linear tasks. But, the
generalization ability of ICL is highly nonlinear.

B More Experimental Details

Model size and budget. Consistent with the exper-
imental setup in (Garg et al., 2022), our model com-

prises either 12 or 24 network layers, equipped with
8 attention heads, and employs a 256-dimensional
embedding space. The model was trained on
NVIDIA RTX A6000 GPUs, with an average train-
ing time of approximately 50 hours for 600k steps.

Software packages. We employed the
solve_ivp function from the SciPy (Scientific
Python) package to compute numerical solutions
of differential equations required for training.

Training techniques. Bengio et al. (2009) im-
plemented curriculum learning, progressively in-
creasing problem dimensionality to mirror human
learning curves and reduce computational costs
(Wu et al., 2021; Wang et al., 2021). Cosine
annealing (Johnson et al., 2023) optimized train-
ing via cyclical learning rate adjustments (peaking
then decaying following cosine curves), prevent-
ing local optima convergence—a technique widely
adopted in models like YOLO-v8 (Varghese and
Sambath, 2024) and DeepSeek-V3 (DeepSeek-Al
et al., 2025).

Departing from approach of Garg et al. (2022),
we introduce sliced mean squared error (Sliced-
MSE) as the optimization objective. For vector
v = (v;)I, and integer k, < n, define slice v(:
ky) = (vo, .oey Uk, ):

Definition 1 (Sliced Mean Squared Error). For
ground truth y € R¢ and prediction § € R?, the
Sliced-MSE at Steps < d is:

U(y,y) = MSE (y(: Steps), y(: Steps)) .

We implement progressively complex ODE
IVPs, initially testing a 12-layer GPT-2 model be-
fore parallel evaluations with a 24-layer variant.

The training protocol adapts DeepSeek-V3’s
learning rate scheduling (DeepSeek-Al et al., 2025)
with modifications:

* Warm-up phase: Linear learning rate in-
crease with sample size

* Plateau phase: Stabilized learning rate period

* Cosine decay: Gradual reduction following
cosine annealing (Johnson et al., 2023)

This multi-stage approach (detailed in Section 3.1,
Figure 6) enhances parameter stability during early
training while promoting eventual convergence.

Complementing this, we employ curriculum
learning to gradually increase problem dimension-
ality over 30k steps, lowering initial training diffi-
culty and accelerating meaningful parameter acqui-
sition.



While training the first-order ODE, we imple-
ment an adjusted cosine annealing schedule (Fig-
ure 6). For specific research questions, it can be
found after Definition 3 and Definition 4

learning_rate

Figure 6: Three-phase learning rate schedule combin-
ing warm-up, plateau, and cosine annealing. Initial rate
1 x 107° linearly increases to 3 x 10~* over 10k steps,
maintains for 40k steps, then decays via cosine anneal-
ing to 1 x 10~° over 10k steps before stabilization.

IVP formalization. Here we formally define
the initial value problem of our research object as
follows:

Definition 2 (Initial Value Problem). For mapping
f:Q — R with open domain Q2 C R x R, an IVP
exists given initial condition (to,ug) € ) satisfy-
ing:

{‘5; = f(u.1), -
uw(0) =wug, t€0,t].

For specific research questions, it can be found
in Definition 3 and Definition 4.

C More Experimental Results

C.1 Preliminary Exploration: Predictive
Accuracy of ICL Models

This section investigates the efficacy of in-context
learning (ICL) for nonlinear differential equation
solving through a fundamental initial value prob-
lem. Our experiments demonstrate that the model
successfully predicts solutions within acceptable er-
ror margins, with prediction accuracy exhibiting ex-
ponential convergence as context length increases.
These findings reveal ICL’s substantial potential
for nonlinear numerical problems when properly
trained.

Current research lacks comprehensive explo-
ration of ICL’s capabilities for nonlinear numerical
solutions. As established earlier, differential equa-
tion solving inherently involves nonlinear charac-
teristics. To facilitate the model’s initial foray into
this domain, we begin with the most elementary
form of initial value problems under our framework,
which we term the Simple Initial Value Problem
(Simple-IVP):

Definition 3 (Simple Initial Value Problem (Sim-

ple-1VP)). A simplified form of Definition 2 is given
by:

f(u,t) = ay + b,

{ o) 3)

y(0) =yo, te[0,t].

The input data distribution D, = {x;: x; =
(Parai,t., Steps;) } for Simple-1VP contains param-
eter sets Para; with three degrees of freedom cor-
responding to coefficients a, b, yo.

For initial model exploration, we used 12-layer
GPT-2 model and employed a curriculum learning
scheme with a fixed learning rate of 10~* over 200k
training steps. Figure 7 demonstrates the model’s
performance:

Figure 7: Performance of the Transformer model during
preliminary training. Left: Solution curve with context
length = 40 for parameters ¢ = 1.7, b = 1.0, yo =
0.1, t. = 1.9, showing near-perfect alignment with
ground truth. Right: Log-log plot of Sliced-MSE versus
context length, with fitted slope —0.92 confirming the
convergence properties of the ICL approach.

The model demonstrates competent numerical
solving capabilities, with two key observations:

* The solution curve exhibits close approxima-
tion to the analytical solution

* The linear relationship in the log-log error plot
reveals exponential convergence of estimation
error with increasing context length

C.2 Further training settings

Definition 4 (First-Order Linear ODE). A first-
order linear ordinary differential equation relates
a function to its first derivative through:

@+ oty = q(t), @
y(O) = y(]at S [07t6]7
where p(t) = oaqt + as, q(t) = pre’,

The input distribution D, = {x;: x; =
(Para;, te, Steps;)} exhibits five degrees of free-
dom in Para;: o, oo, 51, B2, Yo



Training Configuration: Both models employ
curriculum learning, gradually expanding context
length to 41 and vector dimensionality to 64 over
the first 30k training steps. The 24-layer vari-
ant was introduced for comprehensive comparison
alongside the original 12-layer architecture. All
models were trained for 600k steps before evalua-
tion.

C.3 Limitations of In-Context Precision

Figure 8 shows the model’s performance under
specific parameter conditions. It can be observed
that for zero-solution and low-rigidity solutions, the
classical solution achieves zero error and low error
perfectly, while the model maintains its original

accuracy as expected.
; &\ V4
\/W'

Figure 8: Performance on edge cases (initial value
y(0) = 0.6). Left: ay = 1 with other parameters
zero. Right: All parameters zero.

9 100 0
Steps(log)

C.4 Another Composite Testing

The patterns observed in the slope heatmap are con-
sistent with the findings in the main text, though
with some notable variations. The error heatmap
(Fig. 9) suggests that GPT-2 solutions tend to
maintain broader stable regions in the 5-parameter
space, though with relatively modest precision im-
provements. This observed pattern could poten-
tially relate to the input sequence ordering effect
discussed in prior works (Zhao et al., 2021). As
[-parameters typically appear later in the input se-
quence than a-parameters, the self-attention archi-
tecture may allocate comparatively less attention
weight to these parameters during feature process-
ing. Such positional bias, if present, might simul-
taneously explain the preserved solution stability
(through more consistent global patterns) and the
limited precision gains (due to reduced focus on
later inputs). However, this interpretation requires
further verification as the underlying mechanisms
remain incompletely understood.

Figure 9: 31-05 test region comparisons across param-
eter combinations.Upper: error heatmap; Lower: con-
vergence slop (trained on [—2,2] x [—3, 3], tested on
[—3,3] x [=5,5]). In Each subfigure: Top: 12L/24L
GPT-2; Bottom: Euler Explicit/Implicit. Contours mark
50% (cyan) and 70% (white) of each subplot’s range.

D A Conjecture of In-Context ODE solver

Building upon the observed relationship between
convergence accuracy and context length, this
study proposes a conjecture (inspired by Liu et al.
(2025).) regarding the convergence properties of
in-context learning for ODE solving. We consider
this conjecture could provide theoretical founda-
tions for Transformer applications in differential
equation solving.

Conjecture 1 (Convergence of In-Context Learn-
ing for ODE Solving). Let 6 € (0,1), ¢ be a
positive constant. For a Transformer model with
L layers and H attention heads, when Ny €
[1: N —1] satisfies specific condition P(6,c, L, H),
there exists a parameter set such that for any n €
[No: N — 1], the query result y,+1 of randomly
generated first-order linear ODEs and model pre-
diction g satisfy with probability at least 1 — 6:

|Yni1 — 9| <ce™™, N>Ny (5

indicating exponential convergence of prediction
accuracy with increasing context length.
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