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Abstract001

In-Context Learning (ICL) has emerged as002
a new paradigm in large language models003
(LLMs), enabling them to perform novel tasks004
by conditioning on a few examples embedded005
in the prompt. Yet, the highly nonlinear be-006
havior of ICL for NLP tasks remains poorly007
understood. To shed light on its underlying008
mechanisms, this paper investigates whether009
LLMs can solve ordinary differential equations010
(ODEs) under the ICL setting. We formulate011
standard ODE problems and their solutions as012
sequential prompts and evaluate GPT-2 models013
on these tasks. Experiments on two types of014
ODEs show that GPT-2 can effectively learn015
a meta-ODE algorithm, with convergence be-016
havior comparable to, or better than, the Eu-017
ler method, and achieve exponential accuracy018
gains with increasing numbers of demonstra-019
tions. Moreover, the model generalizes to out-020
of-distribution (OOD) problems, demonstrat-021
ing robust extrapolation capabilities. These em-022
pirical findings provide new insights into the023
mechanisms of ICL in NLP and its potential024
for solving nonlinear numerical problems.025

1 Introduction026

In-context learning (ICL) (Brown et al., 2020) has027

emerged as a pivotal feature among the capabil-028

ities of LLMs. It enables models to learn effec-029

tively through contextual prompts composed of030

input-output pairs without relying on parameter up-031

dates (Anil et al., 2023; Thakkar and Manimaran,032

2023). This in-context learning ability is credited033

to emergent abilities (Wei et al., 2022; Lu et al.,034

2024) of these Transformer-based LLMs (Vaswani035

et al., 2017). However, it is still unclear why or036

what these models can learn new tasks with only a037

few pairs of demonstrations.038

Recent studies (Garg et al., 2022; Xie et al.,039

2022; von Oswald et al., 2023; Vladymyrov et al.,040

2024; Fu et al., 2024) have explored the mecha-041

nisms of ICL, primarily focusing on linear regres-042

sion tasks. These works demonstrate that trained 043

Transformer models can achieve efficiency com- 044

parable to classic methods under the ICL setting. 045

In particular, models trained on linear examples 046

have been shown to mimic gradient descent (von 047

Oswald et al., 2023) and even higher-order opti- 048

mization methods (Vladymyrov et al., 2024; Fu 049

et al., 2024). However, these findings primarily 050

focus on linear patterns or simplified problems, 051

leaving the behavior of full nonlinear Transformer 052

models, especially in inherently nonlinear settings 053

like NLP, insufficiently understood. 054

This work investigates the applicability of ICL to 055

nonlinear numerical problems, extending its scope 056

to the domain of ordinary differential equations 057

(ODEs) and examining its potential in inherently 058

nonlinear settings. We show that language models 059

(e.g., GPT-2 models) can effectively learn meta- 060

ODE solvers and exhibit strong generalization to 061

new ODEs. Our main contributions are summa- 062

rized as follows: 063

• We design a tailored ICL framework for solv- 064

ing ODEs by encoding these nonlinear ODEs 065

into parameterized sequence prompts. This 066

formulation enables Transformers (e.g., GPT- 067

2) to learn the underlying dynamics, achieving 068

performance comparable to explicit and im- 069

plicit Euler methods and surpassing them in 070

some cases (see Figure 1 center right). 071

• We then demonstrate out-of-distribution 072

(OOD) generalization of ICL in ODE solv- 073

ing. The framework exhibits robustness to pa- 074

rameter distribution shifts, with deeper Trans- 075

former models showing stronger generaliza- 076

tion capabilities (see Figure 1 outer right). 077

• We evaluate the stability of ICL-based solvers 078

through multi-parameter extrapolation tests. 079

Our results show that ICL achieves greater 080
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ŷn

Output Sequence
10.05 6 7 8 9 20 30 40 50

In-context Length(log)

10−3

2× 10−3

3× 10−3

4× 10−3

E
rr

or
(l

og
)

Relative Error

Fit slope=-0.71

10.09 20 30 40

Steps(log)

10−2

10−1

100

E
rr

or
(l

og
)

GPT-2(12 layers), Fits slope=-1.41)

GPT-2(24 layers), Fits slope=-2.04)

Euler-Implicit, Fits slope=-1.48)

Euler-Explicit, Fits slope=-1.30)

-2.00 -1.71 -1.43 -1.14 -0.86 -0.57 -0.29 0.00 0.29 0.57 0.86 1.14 1.43 1.71 2.00

α1

-3.00

-2.37

-1.74

-1.11

-0.47

0.16

0.79

1.42

2.05

2.68

α
2

GPT-2(12 layers)

-2
.3

4

-2.34

-1.56

−3

−2

−1

0

1

2

3

4

5

Figure 1: ICL architecture and experimental results.Outer Left: Illustration of ICL setup (Garg et al., 2022); Center
left: Error variation curve as a function of context length; Center right: Comparison of GPT-2 predictions with
classical methods; Outer Right: Generalization error region plotted for GPT-2 (12 layers), where α1 and α2 are ODE
parameters scaled from the training distribution (1.5×). The dark region indicates a certain level of generalization.

stability across wider parameter ranges com-081

pared to existing Euler methods. These find-082

ings suggest that Transformer-based models,083

while originally developed for NLP tasks, may084

also be capable of solving a broader class of085

numerical problems. Our preliminary results086

indicate that such models have the potential087

to serve as universal numerical solvers.088

2 Methodology089

Problem setup. We study how GPT-2 models can090

learn to solve initial value problems (IVPs), where091

ordinary differential equations (ODEs) are defined092

by specified initial conditions (see Appendix B for093

formal definitions). This framework enables a sys-094

tematic analysis of temporal dynamics through pa-095

rameterized differential equations. Specifically, we096

consider the following nonlinear task: each training097

prompt encodes a task comprising N example pairs098

(xi,yi)
N
i=1, where xi ∈ Rd stores the ODE param-099

eters and yi ∈ Rd represents the corresponding n-100

step solution. Each input xi = (Parai, te,Stepsi)101

encodes the equation’s parameters, final time te,102

and number of time steps. The output yi = (yi(tj))103

contains the ODE solution sampled at discrete time104

points tj = 0, . . . , te for j = 1, . . . ,Stepsi. We105

apply zero-padding to standardize outputs.106

Training loss. At inference time, the model ex-107

hibits in-context learning (ICL) when it predicts108

ŷq ≈ h(xq) without any weight updates, by lever-109

aging the contextual examples in the prompt. To110

encourage this behavior during training, we use a111

sliced mean squared error (sliced-MSE) loss:112

ℓ(y, ŷ) =
1

N

N∑
i=1

∥y(: i)− ŷ(: i)∥22 , (1)113

where y(: i) and ŷ(: i) denote the first i entries of114

y and ŷ, respectively.115

Experimental setups. We primarily follow the116

experimental setups from Garg et al. (2022). For117

each experiment, we apply curriculum learning 118

(Wang et al., 2021), gradually expanding context 119

length to 41 and vector dimensionality to 64 over 120

the first 30k training steps. All models were trained 121

for 600k steps before evaluation. We use AdamW 122

(Kingma and Ba, 2015) and employ an adjusted 123

cosine annealing schedule for optimization. 124

3 Experiment Results 125

3.1 ICL Matches Euler Methods 126

Building on the promising results of the GPT-2 127

model in solving basic differential equations (an 128

initial trial is provided in Appendix C.1, where a 129

24-layer GPT-2 is introduced alongside our original 130

12-layer model), we extend our investigation to ini- 131

tial value problems (IVPs), specifically first-order 132

linear ODEs with five degrees of parametric free- 133

dom (see Appendix 4 for the formal definition). To 134

evaluate model performance more concretely, we 135

conduct comparative experiments with classical nu- 136

merical solvers, including both the Euler-Explicit 137

and Euler-Implicit methods. 138
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Figure 2: Log-log plots comparing GPT-2 and Euler
methods. Left: GPT-2 outperforms Euler methods.
Right: Comparable performance between GPT-2 and Eu-
ler. Steps denote context length for GPT-2 and iteration
steps for Euler methods.

The model’s performance is shown in Figure 2. 139

Our benchmarks against the Euler methods re- 140

veal that the Transformer outperforms classical 141

approaches in some cases while achieving com- 142

parable accuracy in others. 143
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Figure 3: Heatmap of Solution error comparison under α1 shifts (extending original training range: α1 ∈ [−1, 1]
towards [−2, 2]). For traditional methods, context length aligns with iteration steps for comparison. Contour lines
mark 50% (cyan) and 70% (white) of each subplot’s error range.
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Figure 4: Heatmap of error region comparisons across parameter combinations. α1-α2 (trained on [−1, 1]× [−2, 2],
tested on [−2, 2]× [−3, 3]). From left: 12L/24L GPT-2, explicit/implicit Euler. Contours mark 50% (cyan) and
70% (white) of each subplot’s range.

Transformers demonstrate dual advantages in144

both accuracy and adaptability compared to explicit145

Euler methods. Specifically, well-trained models146

achieve comparable or superior accuracy to Euler147

integration while maintaining better numerical sta-148

bility, and additionally exhibit stronger adaptability149

when handling stiff differential equations or con-150

ducting long-term integration.151

Notably, deeper architectures (24-layer vs. 12-152

layer) demonstrate diminishing returns when scal-153

ing depth, attaining only marginal accuracy gains154

despite doubled parameters – a saturation pattern155

consistent with findings in Fu et al. (2024). As ex-156

pected, GPT-2 struggles to match classical solvers157

in scenarios requiring high-precision solutions, re-158

flecting fundamental limitations of neural approxi-159

mators rather than implementation flaws (see more160

discussions in the Appendix C.3).161

3.2 ICL Generalizes across Distributions162

Building on the previous subsection, which demon-163

strates that Transformers can effectively solve first-164

order ODEs as shown in Figure 2, we further evalu-165

ate the generalization capabilities of Transformers166

by extending parameter ranges beyond the training167

distribution as illustrated in Figure 3.168

Our experimental results indicate that the model169

maintains stability while parameter range shifting,170

representing generalization ability. Within the orig-171

inal α1 ∈ [−1, 1] range, errors monotonically de- 172

crease as context length increases. Beyond this 173

distribution (α1 ∈ [−2, 2]), it preserves reasonable 174

accuracy that still improves with longer contexts. 175

Compared to Euler’s stepwise error decay, Trans- 176

formers exhibit smooth error convergence through 177

adaptive in-context learning. 178

Notably, the 24-layer variant shows better ex- 179

trapolation on negative α1 despite overall lower 180

accuracy than the 12-layer model, suggesting depth 181

impacts generalization patterns. 182

3.3 ICL is Relative Stable to Classics 183

As Figure 2 reveals precision degradation in Euler 184

methods when handling stiff problems (attributed 185

to step size adaptation limitations), we conduct sys- 186

tematic cross-testing across dual parameter axes to 187

assess whether GPT-2 with ICL exhibits analogous 188

instability patterns. 189

Error stability regions. Under fixed context 190

length and iteration steps (45 precisely), test results 191

are shown in Figure 4. The error distributions with 192

stable error regions exhibited by GPT-2 model are 193

comparable to or larger than Euler methods. This 194

likely stems from its adaptive capability—adjusting 195

learning strategies based on context length and iter- 196

ation steps to maintain high precision. In contrast, 197

explicit Euler’s fixed-step mechanism becomes sub- 198

optimal with parameter variations, leading to accu- 199
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Figure 5: Heatmap of convergence slope comparisons. Models were trained on parameter ranges α1 × α2 ∈
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racy deterioration.200

Beyond the α parameter performance, the Trans-201

former also demonstrates enhanced adaptation ca-202

pability under β1-β2 shifts compared to Euler meth-203

ods (Appendix C.4), while exhibiting precision204

variations. This phenomenon can be explained205

by the model’s inherent sensitivity to input order-206

ing, where consistently configured α parameters207

predominantly influence the attention mechanisms208

(Zhao et al., 2021; Lu et al., 2022; Chan et al.,209

2022).210

Convergence slope stability. When context length211

and iteration steps grow, we reveal a exponential212

convergence. The dynamic of convergence slope is213

shown in Figure 5. Compared to error maps, slope214

maps exhibit greater instability: Euler methods215

maintain steady convergence rates while GPT-2216

show localized volatility with sudden low-slope217

valleys.218

We attribute this performance to: (1) Slope, as a219

global estimator of error reduction, amplifies insta-220

bility from probabilistic solutions, whereas Euler221

methods only show slope degradation when step222

sizes are insufficient (implicit Euler demonstrates223

better stability); (2) For extreme parameters, in-224

context learning fails to capture logical parameter225

relationships, weakening the error reduction trend226

with longer contexts.227

Notably, deeper models (24L) display smoother228

slope transitions in α1 > 1.5 regions, suggesting229

depth may mitigate convergence instability in spe-230

cific parameter ranges. However, this improve-231

ment is selective—deeper models show exacer-232

bated volatility in α2’s negative half-axis.233

3.4 Comparative Performance Analysis234

As shown in Table 1, the core advantages of Trans-235

formers lie in adaptive convergence and global236

modeling capabilities. Compared to the O(h) con-237

vergence of explicit Euler and O(h2) of implicit238

Euler, 12-layer and 24-layer Transformers achieved 239

exponential convergence rates of O(e−kN ) and 240

O(e−k′N ) respectively. We hypothesize exponen- 241

tial convergence of model accuracy with ICL length 242

(See Appendix D, Conjecture 1). This difference 243

stems from the attention mechanism’s comprehen- 244

sive utilization of historical information, enabling 245

implicit variable-step strategies. Notably, when 246

handling stiff equations, traditional methods of- 247

ten require frequent parameter adjustments due to 248

fixed-step limitations, whereas Transformers exhib- 249

ited smoother error reduction curves. 250

Method Convergence Rate Generalization

Euler-Explicit O(h) Low
Euler-Implicit O(h2) Medium
GPT-2 (L = 12) O(e−kN ) Medium-High
GPT-2 (L = 24) O(e−k′N ) High

Table 1: Comparison between GPT-2 models and tra-
ditional explicit/implicit Euler methods across various
metrics.

4 Conclusions and discussions 251

This study demonstrates that Transformers can 252

effectively solve ordinary differential equations 253

through in-context learning, offering three key find- 254

ings: (1) Exponential error decay with increas- 255

ing context length via adaptive convergence mech- 256

anisms, (2) Generalization capability under ex- 257

tended parameter distributions, with maintained 258

convergence efficacy as context length grows, and 259

(3) Preserved convergence rates during parameter 260

extrapolation, despite increased volatility in slope 261

stability. Experiments confirm that the model main- 262

tains numerical stability comparable to Euler meth- 263

ods for nonlinear numerical problem: ODE numer- 264

ical solution, while exhibiting promising general- 265

ization under parameter distribution shifts. 266
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Limitations267

Our results may have the following limitations:268

current observations are from only GPT-2 models.269

Larger model configurations could be conducted.270

We conducted a conjecture, waiting for theoreti-271

cal analysis of Transformers’ internal mechanisms272

for learning differential equations, internal impact273

from optimization of in-context learning strategies274

(e.g., positional encoding and attention masking).275

While the model’s parallel prediction offers signifi-276

cant advantages for real-time simulations, .277

Ethical considerations. As our research in-278

volves synthetic mathematical data and does not279

engage with human subjects, sensitive content, or280

real-world applications, we do not foresee direct281

ethical risks.282
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A Related Work455

ICL capabilities of LLMs. In-context learning456

(Brown et al., 2020) is a learning paradigm that457

models learn intrinsic logical relationships to make458

accurate predictions without parameter updates.459

This capability proves particularly advantageous460

for many NLP tasks, numerical tasks like linear461

regression (Garg et al., 2022; Fu et al., 2024), and462

Markov chain settings (Edelman et al., 2024; Chen463

et al., 2024; Bondaschi et al., 2025). The early ex-464

ploration work (Elhage et al., 2021; Olsson et al.,465

2022) explains the ICL modeling via the induction466

heads. Lu et al. (2024) empirically established that467

LLMs’ fine-tuning efficacy stems from ICL. Their468

large-scale tests in zero-shot settings revealed poor469

performance across models, confirming ICL as es-470

sential for emergent abilities. Grazzi et al. (2024)471

extended this research to the Mamba architecture,472

observing similar ICL capabilities in linear regres-473

sion tasks. One can find more details in the survey474

of Dong et al. (2024) and references therein.475

To further study whether the attention mecha-476

nisms are the key components in ICL, Ren et al.477

(2024) and Todd et al. (2024) identified distinct478

yet effective self-attention head types facilitating479

parameter transfer during ICL. Zhao et al. (2021)480

demonstrated significant output variations based on481

prompt ordering, a sensitivity further validated (Lu482

et al., 2022; Chan et al., 2022).483

ICL for linear tasks. Bai et al. (2023) pio-484

neered adaptive algorithm selection via ICL, en-485

abling models to integrate statistical methods for486

regression problems. Garg et al. (2022) employed487

a decoder-only GPT-2 Transformer (12 layers, 8488

attention heads, and embedding dimension 256)489

for numerical tasks. Their model processes linear490

regression coefficients wi (matrix notation) with491

randomly sampled (x
(i)
k ,y

(i)
k ) pairs, forming ICL492

sequences (x
(i)
1 ,y

(i)
1 , ...,x

(i)
N ,y

(i)
N ,x

(i)
query). Zero-493

padding aligns function values with inputs before494

projection into the embedding space via fully con-495

nected layers. Post-Transformer processing maps496

embeddings back to the output space, demonstrat-497

ing both in-distribution learning of regression algo-498

rithms and out-of-distribution generalization. How-499

ever, these models are only for linear tasks. But, the500

generalization ability of ICL is highly nonlinear.501

B More Experimental Details502

Model size and budget. Consistent with the exper-503

imental setup in (Garg et al., 2022), our model com-504

prises either 12 or 24 network layers, equipped with 505

8 attention heads, and employs a 256-dimensional 506

embedding space. The model was trained on 507

NVIDIA RTX A6000 GPUs, with an average train- 508

ing time of approximately 50 hours for 600k steps. 509

Software packages. We employed the 510

solve_ivp function from the SciPy (Scientific 511

Python) package to compute numerical solutions 512

of differential equations required for training. 513

Training techniques. Bengio et al. (2009) im- 514

plemented curriculum learning, progressively in- 515

creasing problem dimensionality to mirror human 516

learning curves and reduce computational costs 517

(Wu et al., 2021; Wang et al., 2021). Cosine 518

annealing (Johnson et al., 2023) optimized train- 519

ing via cyclical learning rate adjustments (peaking 520

then decaying following cosine curves), prevent- 521

ing local optima convergence—a technique widely 522

adopted in models like YOLO-v8 (Varghese and 523

Sambath, 2024) and DeepSeek-V3 (DeepSeek-AI 524

et al., 2025). 525

Departing from approach of Garg et al. (2022), 526

we introduce sliced mean squared error (Sliced- 527

MSE) as the optimization objective. For vector 528

v = (vi)
n
i=0 and integer kv ≤ n, define slice v(: 529

kv) = (v0, ..., vkv): 530

Definition 1 (Sliced Mean Squared Error). For
ground truth y ∈ Rd and prediction ŷ ∈ Rd, the
Sliced-MSE at Steps ≤ d is:

ℓ(y, ŷ) = MSE (y(: Steps), ŷ(: Steps)) .

We implement progressively complex ODE 531

IVPs, initially testing a 12-layer GPT-2 model be- 532

fore parallel evaluations with a 24-layer variant. 533

The training protocol adapts DeepSeek-V3’s 534

learning rate scheduling (DeepSeek-AI et al., 2025) 535

with modifications: 536

• Warm-up phase: Linear learning rate in- 537

crease with sample size 538

• Plateau phase: Stabilized learning rate period 539

• Cosine decay: Gradual reduction following 540

cosine annealing (Johnson et al., 2023) 541

This multi-stage approach (detailed in Section 3.1, 542

Figure 6) enhances parameter stability during early 543

training while promoting eventual convergence. 544

Complementing this, we employ curriculum 545

learning to gradually increase problem dimension- 546

ality over 30k steps, lowering initial training diffi- 547

culty and accelerating meaningful parameter acqui- 548

sition. 549
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While training the first-order ODE, we imple-550

ment an adjusted cosine annealing schedule (Fig-551

ure 6). For specific research questions, it can be552

found after Definition 3 and Definition 4553

Figure 6: Three-phase learning rate schedule combin-
ing warm-up, plateau, and cosine annealing. Initial rate
1× 10−6 linearly increases to 3× 10−4 over 10k steps,
maintains for 40k steps, then decays via cosine anneal-
ing to 1× 10−5 over 10k steps before stabilization.

IVP formalization. Here we formally define554

the initial value problem of our research object as555

follows:556

Definition 2 (Initial Value Problem). For mapping557

f : Ω → R with open domain Ω ⊆ R× R, an IVP558

exists given initial condition (t0, u0) ∈ Ω satisfy-559

ing:560 {
du
dt = f(u, t),

u(0) = u0, t ∈ [0, te].
(2)561

For specific research questions, it can be found562

in Definition 3 and Definition 4.563

C More Experimental Results564

C.1 Preliminary Exploration: Predictive565

Accuracy of ICL Models566

This section investigates the efficacy of in-context567

learning (ICL) for nonlinear differential equation568

solving through a fundamental initial value prob-569

lem. Our experiments demonstrate that the model570

successfully predicts solutions within acceptable er-571

ror margins, with prediction accuracy exhibiting ex-572

ponential convergence as context length increases.573

These findings reveal ICL’s substantial potential574

for nonlinear numerical problems when properly575

trained.576

Current research lacks comprehensive explo-577

ration of ICL’s capabilities for nonlinear numerical578

solutions. As established earlier, differential equa-579

tion solving inherently involves nonlinear charac-580

teristics. To facilitate the model’s initial foray into581

this domain, we begin with the most elementary582

form of initial value problems under our framework,583

which we term the Simple Initial Value Problem584

(Simple-IVP):585

Definition 3 (Simple Initial Value Problem (Sim- 586

ple-IVP)). A simplified form of Definition 2 is given 587

by: 588{
f(u, t) = ay + b,

y(0) = y0, t ∈ [0, te].
(3) 589

The input data distribution Dx = {xi : xi = 590

(Parai, te, Stepsi)} for Simple-IVP contains param- 591

eter sets Parai with three degrees of freedom cor- 592

responding to coefficients a, b, y0. 593

For initial model exploration, we used 12-layer 594

GPT-2 model and employed a curriculum learning 595

scheme with a fixed learning rate of 10−4 over 200k 596

training steps. Figure 7 demonstrates the model’s 597

performance: 598
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Time

0

2

4

6

8

10

12

14

16

y
(t

)

Analytic Solution

Numerical Solution

10.05 6 7 8 9 20 30 40 50

Length of In-context

10−3

R
el

at
iv

e
E

rr
or

Relative Error

Fit (slope=-0.92)

Figure 7: Performance of the Transformer model during
preliminary training. Left: Solution curve with context
length = 40 for parameters a = 1.7, b = 1.0, y0 =
0.1, te = 1.9, showing near-perfect alignment with
ground truth. Right: Log-log plot of Sliced-MSE versus
context length, with fitted slope −0.92 confirming the
convergence properties of the ICL approach.

The model demonstrates competent numerical 599

solving capabilities, with two key observations: 600

• The solution curve exhibits close approxima- 601

tion to the analytical solution 602

• The linear relationship in the log-log error plot 603

reveals exponential convergence of estimation 604

error with increasing context length 605

C.2 Further training settings 606

Definition 4 (First-Order Linear ODE). A first- 607

order linear ordinary differential equation relates 608

a function to its first derivative through: 609{
dy
dt + p(t)y = q(t),

y(0) = y0, t ∈ [0, te],
(4) 610

where p(t) = α1t + α2, q(t) = β1e
β2t. 611

The input distribution Dx = {xi : xi = 612

(Parai, te, Stepsi)} exhibits five degrees of free- 613

dom in Parai: α1, α2, β1, β2, y0. 614
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Training Configuration: Both models employ615

curriculum learning, gradually expanding context616

length to 41 and vector dimensionality to 64 over617

the first 30k training steps. The 24-layer vari-618

ant was introduced for comprehensive comparison619

alongside the original 12-layer architecture. All620

models were trained for 600k steps before evalua-621

tion.622

C.3 Limitations of In-Context Precision623

Figure 8 shows the model’s performance under624

specific parameter conditions. It can be observed625

that for zero-solution and low-rigidity solutions, the626

classical solution achieves zero error and low error627

perfectly, while the model maintains its original628

accuracy as expected.

10.09 20 30 40
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E
rr

or
(l

og
)

GPT-2(12 layers), Fits slope=-0.66)

GPT-2(24 layers), Fits slope=-0.70)

Euler-Implicit, Fits slope=-1.38)
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E
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og
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GPT-2(24 layers), Fits slope=-0.38)

Euler-Implicit, Fits slope=nan)

Euler-Explicit, Fits slope=nan)

Figure 8: Performance on edge cases (initial value
y(0) = 0.6). Left: α2 = 1 with other parameters
zero. Right: All parameters zero.

629

C.4 Another Composite Testing630

The patterns observed in the slope heatmap are con-631

sistent with the findings in the main text, though632

with some notable variations. The error heatmap633

(Fig. 9) suggests that GPT-2 solutions tend to634

maintain broader stable regions in the β-parameter635

space, though with relatively modest precision im-636

provements. This observed pattern could poten-637

tially relate to the input sequence ordering effect638

discussed in prior works (Zhao et al., 2021). As639

β-parameters typically appear later in the input se-640

quence than α-parameters, the self-attention archi-641

tecture may allocate comparatively less attention642

weight to these parameters during feature process-643

ing. Such positional bias, if present, might simul-644

taneously explain the preserved solution stability645

(through more consistent global patterns) and the646

limited precision gains (due to reduced focus on647

later inputs). However, this interpretation requires648

further verification as the underlying mechanisms649

remain incompletely understood.650
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Figure 9: β1-β2 test region comparisons across param-
eter combinations.Upper: error heatmap; Lower: con-
vergence slop (trained on [−2, 2] × [−3, 3], tested on
[−3, 3] × [−5, 5]). In Each subfigure: Top: 12L/24L
GPT-2; Bottom: Euler Explicit/Implicit. Contours mark
50% (cyan) and 70% (white) of each subplot’s range.

D A Conjecture of In-Context ODE solver 651

Building upon the observed relationship between 652

convergence accuracy and context length, this 653

study proposes a conjecture (inspired by Liu et al. 654

(2025).) regarding the convergence properties of 655

in-context learning for ODE solving. We consider 656

this conjecture could provide theoretical founda- 657

tions for Transformer applications in differential 658

equation solving. 659

Conjecture 1 (Convergence of In-Context Learn- 660

ing for ODE Solving). Let δ ∈ (0, 1), c be a 661

positive constant. For a Transformer model with 662

L layers and H attention heads, when N0 ∈ 663

[1 : N−1] satisfies specific condition P (δ, c, L,H), 664

there exists a parameter set such that for any n ∈ 665

[N0 : N − 1], the query result yn+1 of randomly 666

generated first-order linear ODEs and model pre- 667

diction ŷ satisfy with probability at least 1− δ: 668

||yn+1 − ŷ|| ≤ ce−kN , N ≥ N0 (5) 669

indicating exponential convergence of prediction 670

accuracy with increasing context length. 671
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