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ABSTRACT

Deep learning has been effective for histology image analysis in digital pathology. However, many current deep learn-
ing approaches require large, strongly- or weakly labeled images and regions of interest, which can be time-consuming
and resource-intensive to obtain. To address this challenge, we present HistoPerm, a view generation method for rep-
resentation learning using joint embedding architectures that enhances representation learning for histology images.
HistoPerm permutes augmented views of patches extracted from whole-slide histology images to improve classifica-
tion performance. We evaluated the effectiveness of HistoPerm on 2 histology image datasets for Celiac disease and
Renal Cell Carcinoma, using 3 widely used joint embedding architecture-based representation learning methods:
BYOL, SimCLR, and VICReg. Our results show that HistoPerm consistently improves patch- and slide-level classifica-
tion performance in terms of accuracy, F1-score, and AUC. Specifically, for patch-level classification accuracy on the
Celiac disease dataset, HistoPerm boosts BYOL and VICReg by 8% and SimCLR by 3%. On the Renal Cell Carcinoma
dataset, patch-level classification accuracy is increased by 2% for BYOL and VICReg, and by 1% for SimCLR. In addi-
tion, on the Celiac disease dataset, models with HistoPerm outperform the fully supervised baseline model by 6%, 5%,
and 2% for BYOL, SimCLR, and VICReg, respectively. For the Renal Cell Carcinoma dataset, HistoPerm lowers the clas-
sification accuracy gap for the models up to 10% relative to the fully supervised baseline. These findings suggest that
HistoPerm can be a valuable tool for improving representation learning of histopathology features when access to
labeled data is limited and can lead to whole-slide classification results that are comparable to or superior to fully

supervised methods.

Introduction

Digital pathology involves the visualization and analysis of whole-slide
images (WSIs) to assist pathologists in the diagnosis and prognosis of vari-
ous diseases. These WSIs are digitized at high resolutions and can be ana-
lyzed manually, using computer vision models, or a combination.
However, the large size of these images, up to 150 000 x 150 000 pixels,
can present challenges for typical computer vision-based image analysis
tools.

In recent years, various computer vision-based methods and solutions
have been proposed and developed to handle the gigapixel size of WSIs
and address other unique challenges of digital pathology.'™® In terms of
label and annotation requirements, these methods differ from those used
on natural images in several ways. Firstly, the labeling process for WSIs re-
quires highly trained experts, while natural images often require minimal
or no prerequisites for labeling. Secondly, labels are typically provided at
the slide level rather than at the patch level. Finally, the class label may
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only be determined by a small portion of the WSL These characteristics
present major challenges for the application of standard computer vision
methods in digital pathology.

Among these 3 annotation bottlenecks, the last 2 are most unique to dig-
ital pathology. Due to the large size of the WSISs, it is infeasible for patholo-
gists to label all regions of interest on a slide. Instead, the label is usually
provided at the slide level, which also applies to class-negative regions of
a slide. Moreover, an object in the average image from the ImageNet natu-
ral image dataset occupies 25% of the area,” while a typical region-of-
interest annotation in a WSI can occupy as little as 5% of the image.*'°
The combination of weak labeling and low object scale poses a unique chal-
lenge and makes applying standard computer vision methods a suboptimal
solution in digital pathology.

In the last decade, deep learning models have been highly successful in
numerous classic computer vision tasks.’~'* To make these standard deep
learning models more feasible and effective for WSIs, it is common to pre-
process the images into smaller patches, typically 224 x 224 pixels.
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However, this can lead to further issues if the weakly labeled nature of the
slides is not considered. A common approach involves the use of a
convolutional neural network (CNN) on smaller patches extracted from
large whole-slide images, with the patch classification results being aggre-
gated for whole-slide inferencing.'*>' However, this approach can have
suboptimal performance if the signal-to-noise ratio is low among the ex-
tracted patches. More advanced methods involving attention®*** or
multiple-instance learning®*~>? have been developed to use the weak-
labels, but these still require large, labeled datasets.

In recent years, self-supervised representation learning techniques have
gained significant traction for their ability to solve difficult problems in
computer vision without relying on labor-intensive, manually labeled
datasets. These methods utilize a pretext task to learn a latent representa-
tion of an unlabeled dataset, which is often readily available in the medical
domain. To address the labeling challenge, self-supervised approaches have
been successfully applied to histology images using existing computer vi-
sion techniques.>*>"*” These approaches aim to exploit the unique character-
istics of these images, such as rotation invariance or local-to-global
consistency. In addition, contrastive learning-based methods have gained
popularity in histology feature representation, **~*° with techniques such
as Contrastive Predictive Coding,***? and DSMIL*® proving effective for in-
corporating multiscale information into contrastive models. However, all
these approaches still require all input data to be labeled, whether weakly
or strongly.

To address this shortcoming, we propose a model-agnostic view gener-
ation method called HistoPerm for representation learning in histology
image classification. Unlike prior methods, HistoPerm is flexible and incor-
porates both labeled and unlabeled data into the learning process. In con-
trast to prior view generation approaches for histology images, which
produce views at random from the same instance, we perform a permuta-
tion on a portion of the mini-batch such that the view comes from the
same class but a different instance of the class. By taking advantage of the
large pool of both class-positive and class-negative patches, our approach
can derive stronger representations for histological features. Our experi-
ments show that adding HistoPerm to an existing state-of-the-art represen-
tation learning image analysis pipeline improves the histology image
classification performance.

Representation learning with joint embedding architectures

Several paradigms for representation learning have been proposed, in-
cluding contrastive learning,*”~> non-contrastive learning,>*>° and infor-
mation preservation.>”~®° These paradigms all employ joint embedding
architectures, where 2 models are trained to produce similar outputs
when given augmented views of the same source image.

Contrastive learning relies on positive and negative samples to guide the
network through learning unique identifiers for each class in the down-
stream task. However, these approaches often require large mini-batch
sizes and significant computational resources, making them impractical
for many studies and applications. Smaller mini-batch sizes can be used
by implementing “tricks” such as momentum encoders,**>° but in general,
these approaches are still resource-intensive and require massive computa-
tional power that is inaccessible to most researchers.

Non-contrastive approaches, which utilize only positive instances, also
require fewer resources but may result in a slight decrease in the down-
stream classification performance.>*>° The underlying principle that pre-
vents convergence to trivial, constant (i.e., collapsed) embeddings in
these methods is unknown, but prior works have shown that implementa-
tion details do play some part in their success.®* >

Information preservation methods, such as Barlow Twins,
Whitening-MSE,®® and VICReg,°®%” aim to decorrelate variables in the
learned representations and explicitly prevent collapse. These methods
are effective at avoiding trivial embeddings and have shown promise in nat-
ural image tasks.
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Rationale for our work

Prior work has shown that representation learning methods rely on
building representations that are invariant to irrelevant variations in the
input.®® For histopathology, many patches share similar histologic features
and visual attributes, independent of the class. Given this, many of the
patches sampled from WSIs are unsuitable as negative samples for learning
unlike natural images. Hence, we utilize the large pool of both class-positive
and class-negative patches to build stronger representations for histologic
features by allowing permutation at the mini-batch scale. While we may en-
counter instances where class-positive and class-negative instances are
paired and these instances are not morphologically similar, these hard
cases should not be common enough in a typical WSI classification task to
impact feature learning adversely, and such hard cases may even be benefi-
cial to learning according to previous research.®® Notably, HistoPerm is
model-agnostic and can be integrated into any joint-embedding
architecture-based representation learning framework operating on 2
input views to improve histologic feature representation learning.

Method

In this section, we introduce our proposed method, HistoPerm, a
permutation-based view generation technique to improve capturing histo-
logic features in representation learning frameworks. A high-level overview
of our approach is shown in Fig. 1.

WHSI to patch conversion

Let D be a dataset comprised of WSIs. Disjoint labeled and unlabeled
subsets D; and D, partition D. For each WSI S; € D;, we have an associated
ground-truth label y; corresponding to the pathologist-provided slide-level
classification label. Given a slide S;, we produce a set of patches p; and as-
sign them the slide-level label y;. In this weakly labeled setting, we can
have anywhere between 1 and |p;| class-positive patches per set p;, where
class-positive means the patch has the same class label as the slide. As dis-
cussed earlier, in histopathological classification, we can assume that the
majority of patches in p; will be negative relative to slide-level class y;.
After this step, we have labeled and unlabeled sets of patches P; and P,, pro-
duced from D; and D,, respectively. In the next section, we explain how we
generate the input views for our model, given P; and P,,.

View generation

View augmentation. Given a weakly labeled patch dataset 7; and un-
labeled patch dataset P,, we sample without replacement mini-batches X;
and X, such that X;~P; and X, ~P,. Furthermore, let a € [0, 1] be a
hyperparameter representing the fraction of the mini-batch sampled from
Pi. Given a mini-batch size of N, we have |X;| =|aN] and |X,| =
N — |X)|. When a=0, this reduces to the default view generation scheme.
Starting with data transformation sets 77 and 7, we compute xf}l) =t
(x,) and x,(ﬁ») = to(x,) witht; ~7 7 and t; ~ T, forall x,; € X These aug-

mented instances are combined to form views vy,; =
1) . 1 2) (2 2

{XL,I)’xl(i,Z)’ H.,xfl,‘))(ul} and v,z = {xfl,f,xfl,%, ...,xi}f/m}. Analogously,

we produce augmented views of the labeled mini-batch A}, denoted as

Vi1 = {x{ll),xf,lz), ...,xf)l‘/)m} and v, = {x{‘?,xg), ..A,xﬁ/)m}. Next, we de-

scribe the view permutation process on labeled views v;; and v 5.

View permutation. Given labeled augmented views, v; ; and v, 5, we
define a bijective permutation function 7 : {1, ..., ||} — {1, ..., |X1|}
to generate a random permutation of v;» denoted as ¥;,. Our permuted
view, V;», is defined as v;, = {xl(_zﬂ)@ : xﬁ)evl_z, Yi= yﬂ(l-)}. Now, vy, is a per-

mutation of v , where the original image differs, but the ground-truth class
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Fig. 1. Overview of our HistoPerm method. The joint embedding networks are fed randomly augmented views v, ; and v,  ,. For the labeled mini-batch of patches, X}, the
solid or dashed patch outlines represent the labels. The numbers for labeled views v, , and v;, show the change in patch order before and after the permutation operation,
respectively. The unlabeled mini-batch of views, Xy, is fed to joint embedding networks without permutation as in the standard architectures.

is the same. Through this permutation, we augment the size of possible
view pairings, enabling the model to learn richer representations. Note
that it was an arbitrary choice to permute v; », and due to symmetry either
view could be permuted without loss of generality. Moreover, we only shuf-
fle v > and not both v;; and v, ; as shuffling both does not change the desired
outcome.

Experimental setup
Datasets

We applied and evaluated our approach on 2 datasets from the Dart-
mouth-Hitchcock Medical Center (DHMC), a tertiary academic medical
center in New Hampshire, USA. This study, and the usage of human partic-
ipant data in this project, were approved by the Dartmouth-Hitchcock Med-
ical Center Institutional Review Board (IRB) with a waiver of informed
consent. Our datasets are representative of Celiac Disease (CD) and Renal
Cell Carcinoma (RCC). Each dataset consists of hematoxylin-eosin-
stained, formalin-fixed, paraffin-embedded slides scanned at either 20 X
(0.5 pm/pixel) or 40 x (0.25 pm/pixel) magnification. For run-time pur-
poses, we downsampled the slides to 5% (2 pm/pixel) magnification
using the Lanczos filter.”° We divided the slides into overlapping
224 x 224-pixel patches for use with the PyTorch deep learning
framework.”! A different overlapping factor was used across each class in
the training set to produce approximately 80 000 patches per class. For
the development and testing sets, we used a constant overlap factor of
112 pixels among patches. We provide dataset statistics in the supplemen-
tary material. Although these datasets are labeled in their original form,
we have ignored the labels for a portion of the dataset used in the unlabeled
section of the architecture in each epoch according to the formulation pro-
vided in the Method Section to simulate the intended use of our approach.
This means that D; and D,, are varying and built dynamically in each epoch
where |D;| = La|D|) and |Dy| = |D| — |D;|. When the desired a does not
match the proportion of unlabeled to labeled data, either under- or over-
sampling can be employed. Alternatively, the value of a could be modified
to match the ratio of unlabeled to labeled data.

Implementation details

Image augmentation. We used a typical set of image augmentations in
our experiments according to common joint embedding architecture-based
representation learning methods. A crop from each image is randomly se-
lected and resized to 224 x 224 pixels with bilinear interpolation. Next,
we randomly flip the patches over both the horizontal and vertical axes,
as histology patches are rotation invariant. Finally, we performed random
Gaussian blurring on the augmented images. Empirical justification, as

well as exact implementation details for these transformations, are pro-
vided in the supplementary material.

Pretraining. In the pretraining phase, we used the LARS optimizer”* for
50 epochs of training the networks with a 5-epoch warm-up and cosine
learning rate decay’” thereafter. The initial learning rate was 0.45 with a
mini-batch size of 256 and weight decay of 10°°. We choose a=0.75
(i.e., 64 unlabeled and 192 labeled examples) as the optimal balance be-
tween the unlabeled and labeled portions of the mini-batch. We provide de-
tails of how we selected a=0.75 in the supplementary material. For
experiments without HistoPerm, all 256 examples in the mini-batch are
considered unlabeled.

Linear evaluation. Linear training uses the SGD optimizer with
Nesterov momentum’® for 80 epochs of training a linear layer on top of
the frozen encoders with cosine learning rate decay.”® Moreover, we use
the cross-entropy loss for our objective as we are solving a multi-class clas-
sification problem for both datasets. We used an initial learning rate of 0.2
and a mini-batch size of 256. Unlike the pretraining step, we only per-
formed affine transformations to the input data. In this phase, we utilized
all data in the respective training set.

Results

We now present the performance of HistoPerm in the patch- and slide-
level classification scenarios. All presented experimental configurations
were run 3 times to account for run-to-run variation from the stochastic na-
ture of the optimization process. For each configuration, we report the
mean and standard deviation of the metrics across the 3 runs.

Patch-level results

First, we investigated the effect of HistoPerm on model patch-level clas-
sification performance. Table 1 shows that the use of HistoPerm consis-
tently resulted in improved accuracy compared to baseline approaches
across all datasets. Specifically, BYOL with HistoPerm outperformed stan-
dard BYOL by 8% and 2% on the CD and RCC datasets, respectively, in
terms of classification accuracy. SimCLR with HistoPerm also demon-
strated improved accuracy by 3% and 1% on the CD and RCC datasets,
respectively. Additionally, the incorporation of HistoPerm into VICReg
led to an increase in accuracy by 8% and 2% on the CD and RCC
datasets, respectively.

Slide-level results
In Table 2, we present the effects of HistoPerm on slide-level classifica-

tion performance. For slide-level classification, we utilized average-pooling
to aggregate the patch-level predictions. This slide-level aggregation
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Patch-level linear performance results on the respective test sets. All reported values are the mean of 3 different runs with standard deviation in parentheses. The top results

for each architecture are presented in boldface.

Celiac disease

Renal cell carcinoma

Method Accuracy F1-score AUC Accuracy F1-score AUC

BYOL 0.7958 (0.0205) 0.7750 (0.0286) 0.9427 (0.0092) 0.5802 (0.0072) 0.5334 (0.0151) 0.8390 (0.0073)
BYOL + HistoPerm 0.8770 (0.0049) 0.8773 (0.0062) 0.9721 (0.0018) 0.6084 (0.0101) 0.5604 (0.0055) 0.8530 (0.0066)
SimCLR 0.8507 (0.0031) 0.8473 (0.0038) 0.9583 (0.0016) 0.5920 (0.0069) 0.5359 (0.0029) 0.8452 (0.0104)
SimCLR + HistoPerm 0.8855 (0.0057) 0.8832 (0.0061) 0.9767 (0.0023) 0.6033 (0.0121) 0.5433 (0.0109) 0.8634 (0.0041)
VICReg 0.7717 (0.0164) 0.7394 (0.0266) 0.9218 (0.0073) 0.5621 (0.0033) 0.4940 (0.0075) 0.8074 (0.0068)
VICReg + HistoPerm 0.8501 (0.0092) 0.8442 (0.0109) 0.9602 (0.0039) 0.5890 (0.0005) 0.5336 (0.0033) 0.8263 (0.0022)

Table 2

Slide-level linear performance results on the respective test sets. All reported values are the mean of 3 different runs with standard deviation in parentheses. The top results for
each architecture are presented in boldface. We provide the supervised results on the top row for comparison.

Celiac disease

Renal cell carcinoma

Method

Accuracy F1-score AUC Accuracy F1-score AUC
Fully supervised 0.9167 (0.0111) 0.9168 (0.0109) 0.9856 (0.0005) 0.7393 (0.0074) 0.6716 (0.0122) 0.9608 (0.0071)
BYOL 0.8077 (0.0333) 0.7918 (0.0477) 0.9823 (0.0035) 0.6068 (0.0074) 0.5274 (0.0190) 0.9409 (0.0058)
BYOL + HistoPerm 0.9808 (0.0000) 0.9804 (0.0000) 0.9967 (0.0015) 0.6410 (0.0128) 0.5661 (0.0111) 0.9477 (0.0097)
SimCLR 0.9423 (0.0192) 0.9421 (0.0185) 0.9928 (0.0044) 0.6410 (0.0256) 0.5695 (0.0333) 0.9422 (0.0060)
SimCLR + HistoPerm 0.9679 (0.0111) 0.9672 (0.0114) 0.9961 (0.0028) 0.6282 (0.0222) 0.5331 (0.0319) 0.9536 (0.0043)
VICReg 0.7821 (0.0111) 0.7669 (0.0169) 0.9823 (0.0030) 0.5726 (0.0196) 0.4430 (0.0336) 0.9196 (0.0094)
VICReg + HistoPerm 0.9423 (0.0192) 0.9424 (0.0204) 0.9978 (0.0014) 0.5897 (0.0000) 0.4888 (0.0063) 0.9287 (0.0032)

approach is straightforward and keeps the evaluation focus on the impact of
HistoPerm. Our results showed that incorporating HistoPerm improved
performance for all cases of the CD dataset compared to the fully supervised
baseline. On the RCC dataset, the models with HistoPerm showed improved
performance for BYOL and VICReg, although all models fell short of the
fully supervised baseline.

Discussion

In this study, we presented HistoPerm, an approach for generating
views of histology images to improve representation learning. HistoPerm
leverages the weakly labeled nature of histology images to expand the
available pool of views. By expanding the available view pool, we improved
the learned representation quality and observed enhanced downstream
performance. Our results suggest that HistoPerm is a promising approach
for medical image analysis in digital pathology when access to labeled
data is limited.

We incorporated HistoPerm into BYOL, SimCLR, and VICReg, and
showed improvement in classification performance on 2 histology datasets.
At the patch level, adding HistoPerm to BYOL, SimCLR, and VICReg im-
proved accuracy by 8%, 3%, and 8% on the CD dataset. Similarly, on the
RCC dataset, models with HistoPerm outperformed on accuracy by 2%,
1%, and 2% for BYOL, SimCLR, and VICReg, respectively. For CD, we see
that models with HistoPerm at the slide-level increase accuracy by 18%,
2%, and 22% for BYOL, SimCLR, and VICReg, respectively. On the RCC
data, HistoPerm increases slide-level accuracy by 4% on BYOL and 1% on
VICReg, but decreases performance by 2% for SimCLR. Critically,
HistoPerm was able to outperform fully supervised models at the slide-
level without patch-level annotations. These findings have important impli-
cations for using unlabeled histology images in clinical settings, as image
annotation can be a labor-intensive and highly skilled process. Reducing
the need for labeled data using HistoPerm, would increase the utility of
existing representation learning approaches.

We demonstrated that the addition of HistoPerm can lead to a notable
performance improvement on the CD dataset compared to the fully super-
vised baseline. However, this trend was not observed on the RCC dataset,
where all models performed worse than the fully supervised baseline. For

whole-slide classification, we used an average-pooling approach to
aggregate the patch-level predictions. We expect that as we utilize more so-
phisticated approaches, like multi-head attention or self-attention, our
slide-level classification results will outperform the presented results, in-
cluding the fully supervised ones.

Of note, the results on the RCC dataset did not show as much improve-
ment as those on the CD dataset. It is possible that this difference is due to
the higher morphological complexity and variability of the RCC samples, as
indicated by the original study on this dataset.'* Despite the smaller improve-
ments on the RCC dataset, the use of HistoPerm on both datasets showed
clear benefits over standard representation learning approaches. In future
work, we plan to investigate the relationship between histological pattern
complexity and learned representation quality to enhance the ability of the
model to generate more representative features. Furthermore, we intend on
expanding our work to explore the biological underpinnings in depth.

While HistoPerm requires less labeled data than fully supervised ap-
proaches, it still requires some labeled data. In future work, we aim to re-
duce the labeled data requirements further for HistoPerm to enable use in
labeled data-constrained settings. We also plan to examine the impact of in-
corporating unlabeled data from diverse data sources to explore the gener-
alizability of HistoPerm across histology datasets with varied preparation
and scanning procedures. In addition, we intend to utilize datasets from
multiple disease types and evaluate the effectiveness of the learned histo-
logic representations for transfer learning. This is particularly relevant as
data for certain disease types may be scarce, and pretrained representations
could provide a solution for building effective image analysis models. Due
to the infeasible compute required, we did not perform thorough experi-
mentation on the impact of mini-batch sizes on HistoPerm. In future
work, we will explore the effects of the mini-batch size in order to deter-
mine the robustness of HistoPerm. Finally, we will explore datasets for
tasks like survival prediction in future work.

Conclusion
The presented study showed that the proposed permutation-based view

generation method, HistoPerm, offered improved histologic feature repre-
sentations and resulted in enhanced classification accuracy compared to
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current representation learning techniques. In some cases, HistoPerm even
outperformed the fully supervised model. This approach allows for the in-
corporation of unlabeled histology data alongside labeled data for represen-
tation learning, resulting in overall higher classification performance.
Additionally, the use of HistoPerm may reduce the annotation workload
for pathologists, making it a viable option for various digital pathology
applications.
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