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Abstract
Autonomous driving systems have made significant advances in
Q&A, perception, prediction, and planning based on local visual
information, yet they struggle to incorporate broader navigational
context that human drivers routinely utilize. We address this critical
gap between local sensor data and global navigation information
by proposing NavigScene, an auxiliary navigation-guided natural
language dataset that simulates a human-like driving environment
within autonomous driving systems. Moreover, we develop three
complementary paradigms to leverage NavigScene: (1) Navigation-
guided Reasoning, which enhances vision-language models by in-
corporating navigation context into the prompting approach; (2)
Navigation-guided Preference Optimization, a reinforcement learn-
ing method that extends Direct Preference Optimization to improve
vision-language model responses by establishing preferences for
navigation-relevant summarized information; and (3) Navigation-
guided Vision-Language-Actionmodel, which integrates navigation
guidance and vision-language models with conventional driving
models through feature fusion. Extensive experiments demonstrate
that our approaches significantly improve performance across per-
ception, prediction, planning, and question-answering tasks by
enabling reasoning capabilities beyond visual range and improving
generalization to diverse driving scenarios. This work represents a
significant step toward more comprehensive autonomous driving
systems capable of navigating complex, unfamiliar environments
with greater reliability and safety.
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1 Introduction
Autonomous driving systems [6, 8, 13, 16, 20, 26, 34, 50] have
achieved remarkable progress, enabling vehicles to perceive sur-
roundings, predict object movement, and plan actions. These sys-
tems fall into two categories: vision-language models (VLMs) [11,
18, 24, 29, 31, 35, 46, 48, 53] for question-answering and end-to-
end driving models [7, 17, 38, 52] for perception, prediction, and
planning. However, these approaches primarily rely on responses
within visual range (typically 100-150 meters), creating a critical
gap in incorporating global information for human-like long-term
planning. This limitation constrains both VLMs and end-to-end
models, hindering their ability to reason and generalize to unfamil-
iar scenes.

In real-world driving, navigation applications like Google Maps
[39] provide essential global contextual information for human
drivers. These applications communicate the ego vehicle’s intended
future maneuvers (e.g., turning left or right, proceeding straight)
alongside three critical pieces of information: distance to upcom-
ing maneuvers, intersection type, and presence of traffic signals.

0This work was done during Qucheng Peng’s internship at Xpeng Motors’ Silicon
Valley office in Santa Clara, CA, USA.
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(b): Planning with global
navigation guidance

(a): Planning without global
navigation guidance

Question: What
action should
ego take?

Answer:
Continue to go

straight

Question: What
action should
ego take?

Answer: Turn
right onto the
right-turn lane.

Navigation: Go
straight for 150

meters then
turn right.

No
Navigation

Figure 1: Comparison between a) planning without global
navigation guidance and b) planning with global navigation
guidance. In this example, the vehicle needs to turn right at
the next corner. Without beyond-view-range (BVR) knowl-
edge from navigation, the planner makes a conservative de-
cision to continue straight. With global BVR knowledge, it
appropriately directs the vehicle to merge into the right-turn
lane. Concrete examples from experiments are shown in Fig.
7 and Fig. 8.

Notably, the distance information typically extends beyond the vi-
sual perception capabilities of onboard sensors such as cameras or
LiDAR, and is therefore classified as beyond visual range (BVR)
[9, 25, 47] information. Despite being crucial for effective planning
and decision-making, BVR information remains largely unexplored
in autonomous driving research. Current Q&A datasets [11, 35] and
models [17, 38] predominantly focus on frame-by-frame percep-
tion and prediction, without adequately addressing the navigation
context necessary for comprehensive scene understanding and
long-term planning.

In Fig. 1, we demonstrate how navigation guidance enhances
both question-answering performance and end-to-end planning. In
this scenario, navigation provides critical information indicating
an intersection 150 meters ahead where the ego vehicle must exe-
cute a right turn. However, due to the limited perception range of
onboard sensors—typically 100-150 meters—the ego vehicle cannot
detect this intersection with sufficient advance notice to initiate
the necessary lane change. In contrast, by incorporating global
BVR knowledge from navigation tools, the planner proactively di-
rects the vehicle to merge into the right-turn lane well in advance,
demonstrating the tangible benefits of navigation-guided planning.

To address this gap, we propose NavigScene, an auxiliary dataset
derived from the nuScenes [5] and NAVSIM [10] datasets. Through
natural language navigation instructions, we simulate a human-like
driving environment within autonomous driving systems, effec-
tively imitating navigation tools such as Google Maps that provide
BVR knowledge critical for driving decisions and planning. Our
dataset bridges the disconnection between local sensor data and
global navigation context by providing paired data: multi-view
sensor inputs (images or videos) alongside corresponding natu-
ral language navigation guidance that captures the global driving
environment.

Building upon the human-mimicking auxiliary dataset NavigScene,
we propose three paradigms to leverage navigation guidance in
autonomous driving tasks like Q&A, perception, prediction and

planning. First is navigation-guided reasoning, which can be imple-
mented through Navigation-guided Supervised Fine-tuning (NSFT)
for driving-related Q&A tasks. By incorporating navigation guid-
ance into prompts, we enable comprehensive reasoning that con-
siders both local visual cues and global navigational context, sig-
nificantly improving the model’s ability to answer questions re-
quiring knowledge beyond the immediate visual range. Second is
Navigation-guided Preference Optimization (NPO), a reinforcement
learning method that introduces an auxiliary text summarization
task to enhance Direct Preference Optimization (DPO) [33] by es-
tablishing preference relationships between summarized answers
from vision-language models and navigation guidance, thereby
improving BVR reasoning and generalization capabilities. Third
is the Navigation-guided Vision-Language-Action (NVLA) model,
which integrates navigation guidance and vision-language mod-
els with conventional end-to-end driving models through feature
fusion, creating robust representations for downstream tasks in-
cluding perception, prediction, and planning. Our contributions
can be summarized in three main aspects:
• We propose NavigScene, a novel auxiliary dataset that pairs local
multi-view sensor inputs with global natural language navigation
guidance, addressing the critical gap between local perception
and global navigation context in autonomous driving.

• We implement NavigScene across three complementary paradigms:
navigation-guided reasoning, navigation-guided preference opti-
mization, and a navigation-guided vision-language-action model,
enhancing autonomous driving systems’ reasoning and general-
ization capabilities beyond visual range limitations.

• We conduct comprehensive experiments on both Q&A tasks and
end-to-end driving tasks—including perception, prediction, and
planning—demonstrating the significant performance improve-
ments achieved by incorporating global navigation knowledge
into autonomous driving systems.

2 Related Works
LLMs and VLMs in Autonomous Driving. NuScenes-QA [32]
is the first Visual Question Answering benchmark specifically de-
signed for autonomous driving scenarios, establishing a foundation
with several baselines that leverage advanced 3D detection [30] and
VQA techniques. DriveGPT4 [48] introduces an interpretable end-
to-end autonomous driving system powered by Large Language
Models, while DriveLM [35] enhances Visual Language Models’ rea-
soning capabilities through graph-based visual question answering.
NuInstruct [11] places greater emphasis on crucial multi-view and
temporal information in Visual LanguageModels, which is essential
for robust autonomous driving systems. VLP [27, 54] proposes a
novel framework that exploits LLMs to bridge the gap between
linguistic understanding and autonomous driving.
End-to-end Autonomous Driving. VAD [17] employs an ego
query mechanism to predict single-mode trajectories, while VADv2
[7] advances this approach by implementing a probabilistic space
based on multiple trajectories. SparseDrive [38] innovates by de-
signing parallel motion and planning modules that reduce com-
putational demands from BEV features. DiffusionDrive [14, 19]
introduces a truncated diffusion policy to enhance the trajectory’s
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and Longitude
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Latitude and

Longitude

Google
Maps APIs

Navigation 
Video between Source

and Destination

Sampling From
Video

Prompt "Given: A sequence of F sampled frames from a navigation video 
with constant speed & Total path length: {total_length} meters
Please analyze the driving path and answer:

1. Are there any intersections or interchanges along the path?

2. If NO intersections/interchanges: Return exactly "Continue on current road for {total_length}
meters"

3. If YES intersections/interchanges:
Previous distance = 0
For each intersection/interchange encountered, provide:
a. Distance to this point = (Frame intervals to this point - Previous interval) / (F - 1) ×
{total_length} meters
b. Previous interval = Frame intervals to this point
c. Presence of traffic signals or other traffic signs
d. Required direction adjustment (left turn, right turn, or continue straight)

Please think step by step and then structure your response in exactly this format:
[One paragraph summary with concrete distances for each segment, without any mention of calculations]"

VLM-based Guidance Generation

Candidate 1

Candidate N

Self-consistency
Evaluation

Generate N
responses with the

Same Prompt

Begin your journey by continuing
straight on the current road for

approximately 50.79 meters
before making a left turn at the
intersection with a traffic signal.

Proceed straight for another
71.11 meters through an

intersection without traffic
signals. Finally, after traveling an
additional 61.11 meters, make a

right turn at an intersection with a
stop sign. Continue straight on this

path to complete the journey.

Selected Candidate
as the Navigation

Guidance

A) Visual Generation B) Text Generation

Figure 2: Navigation guidance generation process of one scene. Part A (Visual Generation): Source and destination coordinates
are calculated using the origin’s coordinate and 3D translation vectors. A navigation video is constructed via Google Maps
APIs, then evenly sampled to extract multiple frames. Part B (Text Generation): The multiple frames are processed by a vision-
language model (GPT-4o [1]) with a specialized prompt to generate several candidate responses. Self-consistency evaluation
selects the highest-scoring candidate as the final navigation guidance.

probabilistic representation, while MomAD [36] focuses on im-
proving stability and maintaining consistency across consecutive
planning decisions.

3 Navigation-based Datasets: NavigScene
Existing autonomous driving datasets predominantly emphasize
local-level descriptions, serving perception tasks effectively but
inadequately addressing the beyond-visual-range (BVR) knowledge
essential for scene understanding and decision making. To simulate
human-like driving environments and bridge this gap, we propose
NavigScene, an auxiliary navigation-guided dataset derived from
nuScenes [5] and NAVSIM [10]. Our dataset provides paired multi-
view sensor inputs alongside natural language navigation guidance
that captures global driving context, enabling autonomous systems
to reason with BVR knowledge in complex environments.

3.1 Visual Generation
To establish each scene, we first determine the latitudes and longi-
tudes of both the source and destination. This calculation incorpo-
rates the origin’s coordinates and the 3D translation vectors of the
source and destination from this origin. For an origin with coordi-
nates (𝜙, 𝜆), where 𝜙 represents latitude and 𝜆 represents longitude
(both in decimal degrees), and a translation vector (Δ𝑥,Δ𝑦,Δ𝑧) in
meters (where Δ𝑥 denotes the eastward component, Δ𝑦 the north-
ward component, and Δ𝑧 the upward component), the coordinates
of the source or destination (𝜙 ′, 𝜆′) can be calculated using [37]:

𝜙 ′ = 𝜙 + 180
𝜋

· Δ𝑦
𝑅
, 𝜆′ = 𝜆 + 180

𝜋
· Δ𝑥

𝑅 · cos( 𝜋180 · 𝜙) , (1)

where 𝑅 represents the Earth’s radius, approximately 6,378,137 m.
While Δ𝑥 and Δ𝑦 represent translations in the eastern and northern
directions in meters, Δ𝑧 is excluded from latitude and longitude
calculations as it does not influence horizontal positioning.

We leverage Google Maps APIs [39] to generate navigation
videos using these coordinates. The Direction API provides precise
routes, the Static Map API acquires sequential images along routes,
and the Distance Matrix API estimates driving distance and dura-
tion. Assuming constant velocity, we synthesize realistic navigation
videos simulating the driving experience. To facilitate analysis, we

evenly sample 𝐹 frames from these videos for subsequent text gen-
eration via VLM in Sec. 3.2.

3.2 Text Generation
While Sec. 3.1 on visual generation (Part A in Fig. 2), integrating
complete navigation videos with VLMs or end-to-end architectures
poses significant challenges due to alignment difficulties between
navigation videos and sensor-based training data. To address this
limitation, we transform sequential images into natural language
navigation descriptions using VLMs (Part B in Fig. 2). For each
sequence of frames, we generate 𝑁 candidate navigations through
a specialized prompt shown in Fig. 2. This prompt first analyzes
intersections or interchanges to determine driving directions, then
estimates distances based on frame intervals.

After obtaining 𝑁 candidate responses, we implement a novel
selection strategy to identify the optimal description. We define
three similarity metrics 𝑆𝑖𝑛𝑡𝑒𝑟 (·, ·), 𝑆𝑑𝑖𝑠𝑡 (·, ·), and 𝑆𝑤𝑜𝑟𝑑 (·, ·):
𝑆𝑖𝑛𝑡𝑒𝑟 (·, ·) represents intersection similarity, emphasizing direc-

tional keywords accuracy. For candidate 𝑎𝑖 , directional keywords
are extracted as 𝐾𝑖𝑛𝑡𝑒𝑟 (𝑎𝑖 ) = (𝑚𝑖1,𝑚

𝑖
2, . . .), then the intersection

similarity between 𝑎𝑖 and 𝑎 𝑗 is:

𝑆𝑖𝑛𝑡𝑒𝑟 (𝑎𝑖 , 𝑎 𝑗 ) =

1, if |𝐾𝑖𝑛𝑡𝑒𝑟 (𝑎𝑖 ) | = |𝐾𝑖𝑛𝑡𝑒𝑟 (𝑎 𝑗 ) |

and𝑚𝑖
𝑑
=𝑚

𝑗

𝑑
for all 𝑑

0, otherwise
(2)

𝑆𝑑𝑖𝑠𝑡 (·, ·) represents distance value similarity. Distance values in
𝑎𝑖 are 𝐾𝑑𝑖𝑠𝑡 (𝑎𝑖 ) = (𝑛𝑖1, 𝑛

𝑖
2, . . .), then the distance similarity is:

𝑆𝑑𝑖𝑠𝑡 (𝑎𝑖 , 𝑎 𝑗 ) =

E1≤𝑑≤|𝐾𝑑𝑖𝑠𝑡 (𝑎𝑖 ) |

[
1 −

|𝑛𝑖
𝑑
−𝑛 𝑗
𝑑
|

𝑚𝑎𝑥 (𝑛𝑖
𝑑
,𝑛
𝑗

𝑑
)

]
, otherwise

0, if |𝐾𝑑𝑖𝑠𝑡 (𝑎𝑖 ) | = |𝐾𝑑𝑖𝑠𝑡 (𝑎 𝑗 ) |
(3)

𝑆𝑤𝑜𝑟𝑑 (·, ·) represents lexical similarity, calculated using the Jac-
card index:

𝑆𝑤𝑜𝑟𝑑 (𝑎𝑖 , 𝑎 𝑗 ) = |𝑎𝑖 ∩ 𝑎 𝑗 |/|𝑎𝑖 ∪ 𝑎 𝑗 |. (4)

The overall similarity score 𝑆𝑜𝑣𝑒𝑟 (·, ·) between candidates is:

𝑆𝑜𝑣𝑒𝑟 (𝑎𝑖 , 𝑎 𝑗 ) = 𝜂1𝑆𝑖𝑛𝑡𝑒𝑟 (𝑎𝑖 , 𝑎 𝑗 ) + 𝜂2𝑆𝑑𝑖𝑠𝑡 (𝑎𝑖 , 𝑎 𝑗 ) + 𝜂3𝑆𝑤𝑜𝑟𝑑 (𝑎𝑖 , 𝑎 𝑗 )
(5)
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Given that directional accuracy is most critical, followed by
distance precision and then lexical similarity, we assign weights
such that 𝜂1 > 𝜂2 > 𝜂3, then select the optimal answer 𝑎∗ by
identifying the candidate with the highest cumulative similarity:

𝑎∗ = arg max
𝑎𝑖 ∈𝐴

∑︁
𝑗≠𝑖

𝑆𝑜𝑣𝑒𝑟 (𝑎𝑖 , 𝑎 𝑗 ) (6)

This approach identifies the best candidate, which serves as the
final navigation to simulate human-like driving environment.

4 Methodology
4.1 Navigation-guided Reasoning

Vision-
Language

Model

Multi-view
images/videos

Question:
What action
should ego

take?

Prompt

Answer: 
The action

is to
continue
straight. 

Vision-
Language

Model

Multi-view
images/videos

Question:
What
action
should

ego take?

Prompt

Answer: The
action is to
turn right to
move into
the right-
turn lane. 

Navigation: 
Go straight

for 123.5
meters then
turn right ...

b) Navigation-guided VLM Reasoninga) Non-navigation VLM Reasoning

Figure 3: Comparison between a) non-navigation VLM rea-
soning and b) navigation-guided VLM reasoning. In our pro-
posed navigation-guided paradigm, both the navigation guid-
ance and question together form the prompt for VLM. (Best
viewed when zoomed in.)

In traditional Q&A tasks for autonomous driving [11, 35, 45],
multi-view images or videos paired with questions serve as input
for VLM, as shown in Fig. 3a. However, this reasoning paradigm is
limited to in-scope information and overlooks beyond-visual-range
(BVR) information, which is crucial for long-term planning. To
address this limitation, we incorporate navigation guidance into
our prompting approach (as shown in Fig. 3b), thereby enriching
the reasoning process with essential global information.

The navigation-guided reasoning can be represented as:

𝑎 = 𝑀 (𝑣, 𝑔 ⊕ 𝑞), (7)

where 𝑀 is the vision-language model, 𝑎 represents natural lan-
guage outputs as the answer, 𝑣 denotes multi-view images or videos,
𝑔 is the navigation guidance, and 𝑞 is the question. The concatena-
tion of 𝑔 and 𝑞 serves as the prompt for𝑀 .

4.2 Navigation-guided Preference Optimization
While Section 4.1 introduced NSFT to enhance VLM reasoning ca-
pabilities, this approach has limitations in generalizing to unseen
scenarios. For VLMs with fewer than 10B parameters, supervised
fine-tuning restricts generalization ability [12], and reasoning ca-
pacity is constrained by parameter scale [4]. To address these short-
comings, we propose Navigation-guided Preference Optimization
(NPO), an extension of Direct Preference Pptimization (DPO) [33]
applied after NSFT to improve generalization performance on novel
navigation scenarios.

NPO builds upon DPO by integrating navigation-related knowl-
edge through an auxiliary text summarization task. In NPO, the

VLM still processes multi-view images 𝑣 and question 𝑞 as inputs.
We establish a preference relationship between detailed answer 𝑎
and its summarized version 𝑠 . The summarization 𝑠 is generated
online using a VLM𝑀 :

𝑠 = 𝑀 (pt ⊕ 𝑎), (8)

where 𝑎 is the original answer from supervised fine-tuning, and pt
is the prompt "Summarize this answer to a driving-relevant question
to make it simple without losing important information."

Following DPO methodology, we initialize a learnable reward
model𝑀𝜃 and a frozen reference model𝑀∗. Thus, we can obtain 𝑠𝜃
and 𝑠∗ from these two VLMs respectively. With navigation guidance
𝑔, we quantify the quality of the summarized answer 𝑠 using the
mutual information [40, 43]:

mi(𝑠 ) = 𝑝 (𝑎, 𝑠 ) log 𝑝 (𝑎, 𝑠 )
𝑝 (𝑎)𝑝 (𝑠 ) − 𝑝 (𝑠, 𝑔) log 𝑝 (𝑠, 𝑔)

𝑝 (𝑠 )𝑝 (𝑔) ,

= − log𝑝 (𝑠 ) − 𝑝 (𝑠 )𝑝 (𝑔 |𝑠 ) log 𝑝 (𝑔 |𝑠 )
𝑝 (𝑔) .

(9)

Eq. 9 has two goals: to simplify the summarized answer 𝑠 com-
pared to the original answer 𝑎, while enhancing the relevance
between the summarized answer 𝑠 and the navigation guidance
𝑔. Based on the implementation in [42, 44], Equation 9 is further
simplified to:

mi(𝑠) = − log𝑝 (𝑠) − 𝑝 (𝑠) log 𝑝 (𝑔|𝑠). (10)

By incorporating this measurement, we define the reward for
summarized answers as:

𝑟𝑠 = log 𝑝𝜃 (𝑠𝜃 |𝑣, 𝑞) − log 𝑝∗ (𝑠∗ |𝑣, 𝑞) + 𝛼 [mi(𝑠𝜃 ) −mi(𝑠∗)], (11)

where 𝛼 is a trade-off hyper parameter. This reward not only mea-
sures the difference in summarized answer 𝑠 between reward model
𝑀𝜃 and reference model 𝑀∗, but also the difference in guidance
relevance between the two summarized answers.

Similarly, the reward for the original answer 𝑎 is:

𝑟𝑎 = log 𝑝𝜃 (𝑎 |𝑣, 𝑞) − log 𝑝∗ (𝑎 |𝑣, 𝑞). (12)

The objective function of NPO is thus formulated as:

LNPO (𝜃 ) = −E(𝑣,𝑞,𝑎,𝑠𝜃 ,𝑠∗ ) ∈𝐷 [log𝜎 (𝑟𝑠 − 𝑟𝑎)] (13)

where 𝜎 is the sigmoid function, and 𝐷 represents the preference
dataset that contains tuples of (multi-view images, question, answer,
summary from reward model, summary from reference model).

In our proposed NPO method, we introduce an auxiliary task,
navigation-guided text summarization, for both the reward model
and the reference model. This strategic addition directs the reward
model to focus on guidance-relevant knowledge, significantly en-
hancing its ability to generate driving-relevant, concise responses
while preserving critical information aligned with navigation.

4.3 Navigation-guided Vision-Language-Action
Model

Beyond question-answering tasks, navigation guidance substan-
tially enhances end-to-end driving system’s performance. Conven-
tional end-to-end models [17, 38] that rely solely on sensor data
(multi-view images or videos) suffer from limited reasoning capa-
bilities and poor generalization to novel scenarios. To address these
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Table 1: Reasoning Results on NuInstruct

VLM NavigScene Perception Prediction Risk Planning ↑Dis ↓ Spe ↓ Ins ↓ Clo ↑ Sta ↑ SaR ↑ Mot ↓ Sta ↑ App ↑ Lan ↑ Onc ↑ Cro ↑ Ove ↑ Bra ↑
Llama-Adapter × 27.9 6.6 6.5 20.4 16.2 24.0 8.7 40.2 13.5 18.7 16.2 18.4 6.5 21.5 25.7

✓ 24.3 3.9 4.0 32.2 19.8 28.7 4.3 44.1 15.8 21.0 19.9 22.8 9.0 26.4 31.2

Llava-7B × 28.4 6.9 6.6 22.1 16.2 23.5 9.4 38.9 12.3 19.6 16.9 18.7 6.5 21.3 25.3
✓ 24.5 4.3 4.1 27.6 19.5 27.8 6.3 43.6 15.0 22.7 20.2 23.0 9.2 26.8 32.6

Qwen2.5-7B × 26.9 5.6 5.4 26.5 17.3 26.7 7.8 41.8 15.2 20.3 18.4 20.5 7.7 22.1 26.6
✓ 23.6 3.1 3.2 33.7 20.2 31.9 3.8 45.3 18.6 23.7 21.9 26.2 10.4 27.9 36.4

Prompt "Continue straight for
53.6 meters, then turn left at

the traffic signal. Contine
straight for 148.3 meters on

that road."

Navigation Guidance

Multi-view Images/Videos

BEV
Encoder

Vision-
Language

Model

BEV
Features

Feature
Fusion
MLP

Fused
Features

Concatenate

Perception

Prediction

Planning

Task-specific
Networks

Sparsity
Reduction

MLP

Output
Probability

Figure 4: Navigation-guided vision-language-action model
for end-to-end driving. BEV features are concatenated with
vision-language features generated by the frozen VLM and a
learnable sparsity reduction MLP, then processed through a
learnable feature fusion MLP to produce fused features for
task-specific networks.

Table 2: Reasoning Results on DriveLM-nuScenes

VLM NavigScene BLEU-4 ↑ METEOR ↑ CIDEr ↑ ROUGE_L ↑ SPICE ↑ GPT ↑ Comp. ↑
Llama-Adapter × 50.68 33.75 2.37 64.59 44.20 70.83 29.98

✓ 54.25 37.62 2.81 67.66 48.35 74.08 33.07

Llava-7B × 49.75 33.21 2.19 63.84 42.56 70.24 29.37
✓ 53.93 36.86 2.75 66.97 46.83 73.77 32.79

Qwen2.5-7B × 51.65 34.12 2.46 64.97 46.45 71.29 30.31
✓ 55.13 38.20 3.14 67.88 49.89 74.87 34.26

shortcomings, we propose a Navigation-guided Vision-Language-
Action (NVLA) model that integrates navigation guidance with
vision-language models into the end-to-end driving framework.

In conventional end-to-end models, the output of a driving task
𝑗 ∈ {perception, prediction, planning} can be represented as:

𝑜con𝑗 = 𝐻 𝑗 (𝐸 (𝑣)), (14)

where 𝑣 denotes multi-view images or videos, 𝐸 is the BEV encoder,
𝐻 𝑗 is the task-specific network, and 𝑜con

𝑗
is the output of task 𝑗

without navigation guidance.
In our navigation-guided VLA model, we incorporate both a

VLM post-trained by NSFT and NPO, and navigation guidance. The
output probability distribution of modern VLMs typically has a high
dimensionality due to their large vocabulary space—for example,
LlamaAdapter’s [51] output probability dimension is 32,000—mak-
ing direct alignment or fusion with BEV features (typically 256 di-
mensions in models like SparseDrive [38]) challenging. To address
this mismatch, we introduce a learnable sparsity reduction MLP
𝜙red to compress VLM features’ dimension, followed by a learnable
feature fusion MLP 𝜙 fus. The complete process is represented as:

𝑜nav𝑗 = 𝐻 𝑗 (𝜙 fus (𝐸 (𝑣) ⊕ 𝜙red (𝑀 (𝑣, 𝑔)))), (15)

where𝑀 represents the frozen VLM that has been trained via NSFT
as described in Sec. 4.1 then NPO as described in Sec. 4.2, 𝑔 is the

navigation guidance, and𝑜nav
𝑗

is the output of task 𝑗 with navigation
guidance. This integration process is illustrated in Fig. 4.

5 Experiments
Datasets.We evaluate NavigScene on two benchmark categories:
Q&A datasets for VLM training and end-to-end driving datasets.
For Q&A, we use DriveLM-nuScenes [35] ( 700 scenes with multi-
view questions, 200 for testing) and NuInstruct [11] (10,000+ pairs).
For end-to-end evaluation, we employ nuScenes [5] (1,000 scenes, 6
cameras/LiDAR/5 radars) with NavigScene-nuScenes, and NAVSIM
[10] (120 hours, 8 cameras/5 LiDAR) with NavigScene-NAVSIM.
Implementations. For NavigScene generation, we set 𝐹 = 20,
𝑁 = 5, with weights 𝜂1 = 0.5, 𝜂2 = 0.3, 𝜂3 = 0.2. We evaluate
Llama-Adapter-7B [51], Llava-v1.6-Mistral-7B [22], and Qwen2.5-
VL-Instruct-7B [49] using LoRA (rank 16, lr=1e-4, 𝛼 = 0.6) with 128-
token output limit. For end-to-endmodels VAD [17] and SparseDrive
[38], feature fusion MLPs use lr=2e-4 with AdamW optimizer [23].
NPO training uses 10 epochs, while NSFT and NVLA follow original
schedules. All experiments run thrice on Nvidia H800 GPUs.

5.1 Quantitative Results on Q&A Tasks
In Tab. 1, we present NuInstruct [11] results comparing baseline
VLMs with NavigScene post-trained models. Results show Nav-
igScene significantly improves performance across all tested VLMs
for driving-related Q&A tasks.

In Tab. 2, we compare VLMs post-trained with NavigScene via
NSFT and NPO against DriveLM [35] baselines. Using standard
metrics (BLEU-4 [28], METEOR [3], CIDEr [41], ROUGE_L [21],
SPICE [2], GPT score [1, 35], and completeness [35]), NavigScene
consistently enhances driving-relevant response quality across all
VLMs.

5.2 Qualitative Results on Q&A Tasks
In Fig. 5 and Fig. 6, we show examples of VLM responses both
with and without NavigScene integration. The BVR knowledge pro-
vided by NavigScene significantly enhances the VLM’s reasoning
capabilities, resulting in more complete and accurate answers.

5.3 Quantitative Results on End-to-end Driving
In Tab. 3, we compare end-to-end driving configurations with dif-
ferent VLAs against original models for open-loop and closed-loop
planning. For open-loop evaluation using UniAD protocols [15],
integrating VLMs with NavigScene substantially enhances per-
formance, with Qwen2.5-7B showing significant improvements
in L2 and collision metrics. For closed-loop evaluation using NC,
DAC, TTC, Comf., EP, and PDMS metrics, NavigScene integration
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In this scenario,
what actions

should the ego
vehicle take?

Keep going straight
at the same speed or
turn left gradually.

Keep going straight
or turn left.

Keep going straight.

Question w/o NavigScene w/ NavigScene Ground TruthLidar

In this scenario,
what are safe
actions to take

for the ego
vehicle?

Lidar

Keep at the same
speed or accelerate.

It is safe to maintain
current velocity,
increase speed to

proceed forward, or
reduce speed

gradually without
brakes.

Keep going at the
same speed,

accelerate and go
ahead, or decelerate
gradually without

braking.

Question w/o NavigScene w/ NavigSceneGround Truth

Figure 5: Examples of question-answering on the DriveLM dataset.

What is the next
motion for the
ego? And give
the reason.

Keep speed to
maintain distance,

because a large
vehicle is in

proximity to the
ego.

One vehicle is
moving close to the

ego, so the ego
should keep the
speed without

braking.

Other vehicles all
keep a safe distance
from the ego. Hence,
The ego would keep

go straight.

Question w/o NavigScene w/ NavigScene Ground TruthLidar

Please give the
next plan for the

ego with the
reason.

There are
<pedestrian>

[c1,232,460,430,835];
crossing the ego car.

Hence, stay still

Go straight as there
are no objects that

would have risks for
the ego.

Please remain
stationary as there
are <pedestrian>

[c1,232,462,429,836]
crossing in front of

your vehicle.

Lidar Question w/o NavigScene w/ NavigScene Ground Truth

Figure 6: Examples of question-answering on the NuInstruct dataset.

Table 3: Results for both open-loop and closed-loop planning settings. Left: Open-loop planning performance on nuScenes.
Right: Closed-loop planning performance on NAVSIM. All VLMs underwent post-training via NSFT then NPO on DriveLM-
nuScenes and NavigScene-nuScenes, followed by prompting with NavigScene-nuScenes and NavigScene-NAVSIM respectively
during training.

End-to-end
Model VLM

Open-loop Planning on nuScenes Closed-loop Planning on NAVSIM
L2 (m)↓ Collision Rate (‱) ↓ NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑1s 2s 3s Avg. 1s 2s 3s Avg.

VAD

None 0.54 1.15 1.98 1.22 9.76 24.20 95.93 43.30 97.0 86.5 89.7 100 75.4 80.6
Llama-Adapter 0.42 1.02 1.76 1.07 6.28 21.85 81.37 36.50 97.9 88.8 91.6 100 77.6 82.2

Llava-7B 0.45 1.04 1.79 1.09 6.93 22.09 83.41 37.48 97.7 88.1 91.3 100 76.8 81.8
Qwen2.5-7B 0.37 0.96 1.65 0.99 4.52 18.10 74.62 32.41 98.3 90.6 92.4 100 79.0 84.0

Sparse
Drive

None 0.44 0.92 1.69 1.01 7.38 19.46 70.60 32.48 97.2 91.7 91.4 100 77.9 82.4
Llama-Adapter 0.33 0.78 1.47 0.86 5.97 15.65 58.41 26.68 98.0 93.5 93.0 100 80.4 83.9

Llava-7B 0.36 0.80 1.46 0.87 6.26 16.34 62.58 28.39 98.1 93.3 92.8 100 78.6 83.1
Qwen2.5-7B 0.29 0.64 1.35 0.76 4.38 12.99 44.75 20.71 98.3 96.0 94.1 100 81.7 86.5

Table 4: Object detection, tracking, mapping, and motion forecasting on nuScenes. All VLMs were first post-trained via NSFT
then NPO on DriveLM-nuScenes and NavigScene-nuScenes, then prompted using NavigScene-nuScenes during training.

End-to-end Model VLM Detection Tracking Mapping Motion Forecasting
mAP ↑ mATE ↓ mASE ↓ NDS ↑ AMOTA ↑ AMOTP ↓ Recall ↑ IDS ↓ 𝐴𝑃𝑝𝑒𝑑 ↑ 𝐴𝑃𝑑𝑖𝑣 ↑ 𝐴𝑃𝑏𝑜𝑢 ↑ mAP ↑ mADE ↓ mFDE ↓ MR ↓ EPA ↑

VAD

None 0.27 0.70 0.30 0.39 - - - - 40.6 51.5 50.6 47.6 0.78 1.07 0.121 0.598
Llama-Adapter 0.33 0.58 0.28 0.44 - - - - 43.0 53.6 53.7 50.1 0.73 1.04 0.112 0.605

Llava-7B 0.30 0.61 0.29 0.41 - - - - 42.7 52.9 53.4 49.7 0.75 1.04 0.116 0.601
Qwen2.5-7B 0.36 0.56 0.27 0.44 - - - - 47.1 54.2 55.2 52.2 0.69 0.98 0.110 0.609

SparseDrive

None 0.42 0.57 0.28 0.53 0.39 1.25 0.50 886 49.9 57.0 58.4 55.1 0.62 0.99 0.136 0.482
Llama-Adapter 0.45 0.52 0.25 0.56 0.43 1.22 0.53 864 52.3 58.1 58.9 56.4 0.60 0.94 0.131 0.489

Llava-7B 0.43 0.52 0.27 0.54 0.42 1.22 0.52 879 51.8 58.0 58.6 56.1 0.61 0.97 0.133 0.487
Qwen2.5-7B 0.46 0.50 0.24 0.57 0.45 1.20 0.53 857 55.0 58.5 59.3 57.6 0.58 0.92 0.129 0.498

significantly improves performance, particularly in DAC, EP, and
PDMS—metrics strongly correlated with human-like driving and
navigation interpretation.

In Tab. 4, we compare configurations across detection, tracking,
mapping, and motion forecasting tasks. NavigScene enhances per-
formance even in non-planning tasks, achieving detection mAP
improvements of 0.09 over VAD and 0.04 over SparseDrive with
Qwen2.5-7B.

5.4 Qualitative Results on End-to-end Driving
In Fig. 7, we present two open-loop planning examples comparing
performance with and without NavigScene integration. Leverag-
ing beyond-view-range knowledge from NavigScene enables the

autonomous driving system to generate more accurate driving com-
mands and route planning. This is particularly evident in the right
case, where the vehicle correctly anticipates a right turn by ini-
tiating an early lane change with the help of global navigation
guidance.

In Fig. 8, we present two closed-loop planning examples demon-
strating the impact of NavigScene integration. In the left example,
the vehicle intends to switch to the fast track but should continue
straight. Without navigation guidance, the driving model incor-
rectly turns left. Similarly, in the right example, the vehicle needs
to turn right at the upcoming intersection. Without NavigScene,
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w/o NavigScene

"Turn
Left"

w/ NavigScene

"Go
Straight"

"Go
Straight"

Ground Truth w/o NavigScene

"Go
Straight"

w/ NavigScene

"Turn
Right"

Ground Truth

"Turn
Right"

Figure 7: BEV visualization of open-loop planning on nuScenes dataset. “w/o NavigScene” indicates the original SparseDrive,
and “w/ NavigScene” is the VLA model integrates Qwen2.5-7B (post-trained on DriveLM and NavigScene via NSFT and NPO)
with SparseDrive. Arrows point at ego vehicles, and text in bottom-left displays predicted driving commands, and orange curves
represent predicted driving routes. Left: Vehicle proceeds straight and reduces speed to stop. Right: Vehicle anticipates a right
turn by initiating an early lane change.

w/o NavigScene w/ NavigScene Human w/o NavigScene w/ NavigScene Human

Figure 8: BEV Visualization of closed-loop planning on NAVSIM dataset. w/o NavigScene indicates the original SparseDrive,
and w/ NavigScene is the VLA model integrates Qwen2.5-7B (post-trained on DriveLM and NavigScene via NSFT and NPO)
with SparseDrive. Arrows point at ego vehicles, with orange routes generated by models and green routes showing human
operations. Left: Vehicle anticipates a left turn by initiating an early lane change. Right: Vehicle anticipates a right turn by
slowing down and waiting.

Table 5: Ablation study on DriveLM-nuScenes

VLM NSFT NPO BLEU-4 ↑ METEOR ↑ CIDEr ↑ ROUGE_L ↑ SPICE ↑ GPT ↑ Comp. ↑

Llama-Adapter

× × 50.68 33.75 2.37 64.59 44.20 70.83 29.98
✓ × 52.20 35.46 2.45 66.53 45.79 72.18 31.74
× ✓ 51.73 34.89 2.53 66.20 46.38 71.46 31.44
✓ ✓ 54.25 37.62 2.81 67.66 48.35 74.08 33.07

Llava-7B

× × 49.75 33.21 2.19 63.84 42.56 70.24 29.37
✓ × 51.66 34.54 2.41 65.28 44.15 71.59 30.62
× ✓ 50.84 34.07 2.35 64.86 44.01 71.19 30.46
✓ ✓ 53.93 36.86 2.75 66.97 46.83 73.77 32.79

Qwen2.5-7B

× × 51.65 34.12 2.46 64.97 46.45 71.29 30.31
✓ × 53.47 35.95 2.77 66.23 47.84 73.15 32.08
× ✓ 52.97 36.04 2.82 65.55 47.36 73.08 31.99
✓ ✓ 55.13 38.20 3.14 67.88 49.89 74.87 34.26

Table 6: Cross-city generalization results on nuScenes. All
VLMs were first conducted NSFT on DriveLM-nuScenes and
NavigScene-nuScenes.

End-to-end Model VLM NPO Boston→ Singapore Singapore→ Boston
Avg. L2 (m) ↓ Avg. Col (‱) ↓ Avg. L2 (m) ↓ Avg. Col (‱) ↓

VAD

None N/A 0.86 26.83 0.63 20.44

Llama-Adapter × 0.94 27.08 0.75 21.19
✓ 0.75 23.29 0.64 19.30

Qwen2.5-7B × 0.97 27.51 0.81 21.85
✓ 0.70 22.55 0.61 18.46

SparseDrive

None N/A 0.97 30.17 0.84 33.62

Llama-Adapter × 1.04 27.84 0.87 34.48
✓ 0.88 27.32 0.72 20.99

Qwen2.5-7B × 1.11 28.06 0.93 35.64
✓ 0.82 24.70 0.69 19.66

it continues straight for an extended distance, whereas with Nav-
igScene, it appropriately slows down and waits for an opportunity
to turn right.

5.5 Cross-city End-to-end Generalization
Table 6 presents cross-city generalization results on nuScenes, exam-
ining Boston → Singapore and Singapore → Boston transfer tasks
following [27]. VLAmodels with NPO consistently outperform both
original end-to-end architectures and VLA models without NPO,
demonstrating NPO’s effectiveness in enhancing robustness when
navigating unfamiliar urban environments with different traffic
patterns and infrastructures.

5.6 Ablation Study on Q&A Tasks
In Tables 5 and 7, we present ablation studies conducted onDriveLM-
nuScenes and NuInstruct datasets, respectively. We examine four
experimental settings: (1) without NSFT and NPO, where the VLM
is finetuned without NavigScene; (2) with NSFT only, where the
VLM undergoes fine-tuning with NavigScene; (3) with NPO only,
where the VLM is first finetuned without NavigScene and then
trained using NPO and NavigScene; and (4) with both NSFT and
NPO, where the VLM is first finetuned with NavigScene and subse-
quently trained with NPO and NavigScene.

Both DriveLM-nuScenes and NuInstruct datasets demonstrate
consistent performance improvements when applying NSFT and
NPO across all three VLMs. The most significant gains occur when
both techniques are combined, with Qwen2.5-7B achieving the
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Table 7: Ablation study on NuInstruct

VLM NSFT NPO Perception Prediction Risk Planning ↑Dis ↓ Spe ↓ Ins ↓ Clo ↑ Sta ↑ SaR ↑ Mot ↓ Sta ↑ App ↑ Lan ↑ Onc ↑ Cro ↑ Ove ↑ Bra ↑

Llama-Adapter

× × 27.9 6.6 6.5 20.4 16.2 24.0 8.7 40.2 13.5 18.7 16.2 18.4 6.5 21.5 25.7
✓ × 25.8 5.3 5.5 24.9 17.4 26.1 7.2 41.8 14.4 20.1 17.9 20.7 7.6 23.9 27.7
× ✓ 26.0 5.5 5.7 24.1 17.0 25.8 7.5 42.2 14.6 19.2 17.3 19.9 7.5 22.8 27.4
✓ ✓ 24.3 3.9 4.0 32.2 19.8 28.7 4.3 44.1 15.8 21.0 19.9 22.8 9.0 26.4 31.2

Llava-7B

× × 28.4 6.9 6.6 22.1 16.2 23.5 9.4 38.9 12.3 19.6 16.9 18.7 6.5 21.3 25.3
✓ × 26.3 5.8 5.4 24.7 17.5 25.1 8.0 40.4 13.6 20.5 18.0 20.4 7.7 23.0 27.2
× ✓ 26.9 5.5 5.1 24.4 17.1 24.7 8.6 39.9 13.8 20.7 18.5 20.0 7.3 23.2 27.0
✓ ✓ 24.5 4.3 4.1 27.6 19.5 27.8 6.3 43.6 15.0 22.7 20.2 23.0 9.2 26.8 32.6

Qwen2.5-7B

× × 26.9 5.6 5.4 26.5 17.3 26.7 7.8 41.8 15.2 20.3 18.4 20.5 7.7 22.1 26.6
✓ × 25.2 4.4 4.1 29.8 18.9 28.0 6.5 43.7 17.1 21.9 20.3 23.2 8.4 24.5 29.9
× ✓ 25.5 4.8 4.5 29.3 18.4 28.3 6.9 43.2 16.8 21.5 20.4 23.4 8.1 24.2 29.7
✓ ✓ 23.6 3.1 3.2 33.7 20.2 31.9 3.8 45.3 18.6 23.7 21.9 26.2 10.4 27.9 36.4

Table 8: Ablation study on both open-loop and closed-loop planning settings. Left: Open-loop planning performance on
nuScenes. Right: Closed-loop planning performance on NAVSIM. All VLMs’ NSFT and NPO are based on DriveLM-nuScenes
and NavigScene-nuScenes.

End-to-end
Model VLM NSFT NPO

Open-loop Planning on nuScenes Closed-loop Planning on NAVSIM
L2 (m)↓ Collision Rate (‱) ↓ NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑1s 2s 3s Avg. 1s 2s 3s Avg.

VAD

None N/A N/A 0.54 1.15 1.98 1.22 9.76 24.20 95.93 43.30 97.0 86.5 89.7 100 75.4 80.6

Llama-Adapter

× × 0.69 1.48 2.64 1.60 11.35 28.64 104.57 48.19 95.6 84.2 87.1 99.8 72.5 78.2
✓ × 0.50 1.07 1.88 1.15 8.53 22.84 89.77 40.38 97.3 87.7 90.2 100 76.6 81.3
× ✓ 0.52 1.12 1.90 1.18 8.79 23.01 91.24 41.01 97.2 87.4 90.0 100 75.9 81.0
✓ ✓ 0.42 1.02 1.76 1.07 6.28 21.85 81.37 36.50 97.9 88.8 91.6 100 77.6 82.2

Qwen2.5-7B

× × 0.66 1.50 2.58 1.58 12.48 29.96 107.25 49.90 95.3 84.4 86.6 99.5 72.8 77.8
✓ × 0.45 1.03 1.82 1.10 7.24 22.38 85.69 38.44 97.5 88.0 90.4 100 76.9 81.5
× ✓ 0.49 1.06 1.85 1.12 7.85 22.46 87.33 39.21 97.6 88.4 91.1 100 77.2 81.9
✓ ✓ 0.37 0.96 1.65 0.99 4.52 18.10 74.62 32.41 98.3 90.6 92.4 100 79.0 84.0

SparseDrive

None N/A N/A 0.44 0.92 1.69 1.01 7.38 19.46 70.60 32.48 97.2 91.7 91.4 100 77.9 82.4

Llama-Adapter

× × 0.62 1.38 2.40 1.47 10.53 25.57 98.19 44.76 96.1 85.9 87.6 100 73.3 78.7
✓ × 0.39 0.87 1.62 0.96 7.10 18.35 65.99 30.48 97.6 92.2 91.7 100 78.2 82.7
× ✓ 0.42 0.89 1.66 0.99 7.25 18.67 68.23 31.38 97.6 92.6 92.3 100 78.6 82.9
✓ ✓ 0.33 0.78 1.47 0.86 5.97 15.65 58.41 26.68 98.0 93.5 93.0 100 80.4 83.9

Qwen2.5-7B

× × 0.58 1.27 2.35 1.40 10.06 24.94 97.83 44.28 96.4 86.6 88.1 99.8 73.4 79.0
✓ × 0.38 0.87 1.60 0.95 6.97 17.84 64.41 29.74 97.8 92.3 92.0 100 79.0 83.6
× ✓ 0.40 0.88 1.66 0.98 7.03 18.06 67.69 30.93 97.8 92.0 91.8 100 78.9 83.5
✓ ✓ 0.29 0.64 1.35 0.76 4.38 12.99 44.75 20.71 98.3 96.0 94.1 100 81.7 86.5

highest overall scores across metrics in both datasets. For DriveLM-
nuScenes, theNSFT+NPO combination substantially improved BLEU-
4, METEOR, and CIDEr scores, with Qwen2.5-7B reaching the best
CIDEr score of 3.14. In NuInstruct, this combined approach led to
strong reductions in Dis and Spe metrics. These results suggest that
NSFT and NPO collaboration enhances VLMs’ ability to understand
complex driving scenarios and generate appropriate responses.

5.7 Ablation Study on Open-loop and
Closed-loop Planning

In Tab. 8, we present ablation studies on nuScenes (open-loop) and
NAVSIM (closed-loop) examining five settings: (1) without VLM;
(2) without NSFT/NPO (VLM finetuned without NavigScene); (3)
NSFT only; (4) NPO only; and (5) both NSFT and NPO. All VLMs
are frozen and connected with end-to-end models to construct VLA
models.

Table 8 shows clear performance improvements when incorpo-
rating NSFT and NPO in both open-loop and closed-loop planning
across VAD and SparseDrive models. SparseDrive generally out-
performs VAD, while Qwen2.5-7B consistently outperforms Llama-
Adapter. VLM integration with NSFT+NPO provides substantial

gains over baselines, particularly reducing collision rates and im-
proving trajectory accuracy, demonstrating that navigation-specific
fine-tuning followed by preference optimization creates the most
effective autonomous driving systems.

6 Conclusion
In this paper, we address a critical limitation in current autonomous
driving systems: the disconnection between local sensor data and
global navigation context. First we introduced NavigScene, an
auxiliary navigation-guided natural language dataset that bridges
this gap by simulating human-like driving environments. Besides,
through three complementary paradigms based on NavigScene:
Navigation-guided Reasoning, Navigation-guided Preference Opti-
mization, and Navigation-guided Vision-Language-Action model,
we achieve significant improvements in driving-related tasks across
Q&A, perception, prediction, and planning. We enable reasoning ca-
pability beyond visual range and enhance generalization ability to
diverse driving scenarios. In a word, this work brings autonomous
driving systems closer to human-like ability to navigate complex,
unfamiliar environments with improved reliability and safety.
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