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Abstract
Large language models (LLMs) excel in many
reasoning tasks but continue to face significant
challenges, such as lack of robustness in reason-
ing, struggling with cross-task generalization, and
inefficiencies in scaling up reasoning capabilities.
Current training paradigms, including next-token
prediction and reinforcement learning from hu-
man feedback, often fall short in adaptability to di-
verse reasoning tasks. Existing approaches, such
as prompt optimization and iterative output refine-
ment, offer performance improvement, but can be
inefficient and lack effective generalization. To
overcome these limitations, this position paper
argues for a transformative shift in how LLMs
approach reasoning. Drawing inspiration from
cognitive science, particularly meta-reasoning the-
ories such as Dual-Process Theory and Metacog-
nitive Reasoning, we propose a Bayesian meta-
reasoning framework for LLMs. Our approach
integrates self-awareness, monitoring, evaluation,
regulation, and meta-reflection, to enhance LLMs’
ability to refine reasoning strategies and general-
ize across tasks. We revisit existing LLM reason-
ing methods, identify key challenges, and suggest
directions for future research. We provide a repos-
itory1 with the resources referenced in our paper.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able potential in various reasoning tasks (Wei et al., 2022a;
Hao et al., 2023a; Shao et al., 2024). Despite these ad-
vancements, they still face significant limitations, including
the generation of hallucination with high confidence (Singh
et al., 2023; Wen et al., 2024), vulnerability in trivial input
perturbations (Wu et al., 2024a), and a lack of cross-task
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generalizability (Wu et al., 2024d; Qin et al., 2023).

To understand these limitations, we revisit the prevalent
approaches for LLM reasoning. Most LLMs are built on
the GPT backbone (Brown et al., 2020), which employs
the statistical next-token prediction pretraining paradigm.
As argued by McCoy et al. (2023), the sensitivity of LLMs
to task frequency, input perturbations, and output tenden-
cies can be traced back to their reliance on language fre-
quency patterns. Secondly, reinforcement learning (RL)
algorithm (Ouyang et al., 2022; Shao et al., 2024) with
reward models are applied during reasoning-specific post-
training. For verifiable tasks with clear answers, such as
math and coding, the stepwise or outcome-level accuracy
rewards are commonly used in the state-of-the-art models,
such as OpenAI-o1 and DeepSeek-R1. For free-form ques-
tions without fixed ground truth, reward models trained
on task-specific preference data are often used to provide
feedback (DeepSeek-AI et al., 2024). However, these ap-
proaches depend on task-specific annotations, which limit
scalability and generalizability in tasks where preference
annotations are hard to obtain, such as causal reasoning (Chi
et al., 2024) and Scientific discovery (Bazgir et al., 2025; Xi-
ang et al., 2025b). Beyond the trained reward models, LLM-
generated feedback is also used to iteratively refine model
outputs (Xie et al., 2023; Shinn et al., 2023b). However,
studies show that self-generated feedback is often unreli-
able (Yan et al., 2024b; Chen et al., 2025a), and sample-wise
feedback fails to capture shared patterns underlying multiple
cases (Yang et al., 2024; 2025a).

These limitations stem from LLMs being trained to solve
tasks individually, rather than to learn how to arrive at those
solutions. Ideally, they should develop the ability to recom-
bine fundamental reasoning skills when faced with novel
problems, thereby achieving a better generalization to un-
seen tasks. To achieve this, we need to move beyond the ex-
isting autoregressive reasoning system. Instead, new learn-
ing paradigms are needed—ones that empower models to
actively engage in learning-to-reason or meta-reasoning
processes. It envisions reasoning as an adaptive process
in which models not only solve tasks but also learn to
improve their reasoning strategies over time.

Emergent LLM meta-reasoning approaches largely rely on
LLM prompting, such as comparing multiple thought pro-
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Figure 1. Our proposed Bayesian Meta-Reasoning framework.

cesses and identifying the most relevant information to an-
swer questions (Yoran et al., 2023), or storing high-level
”thought-templates”, derived from past problem-solving pro-
cesses, to guide future tasks (Yang et al., 2024; Gao et al.,
2024a; Xiang et al., 2025a). However, none of them ex-
plores new learning or inference paradigms specifically for
meta-reasoning, and most focus narrowly on math tasks.

In cognitive science, meta-reasoning theories explain how
individuals monitor and regulate their reasoning processes.
Dual-Process Theory (Kahneman, 2011) suggested that rea-
soning involves both intuitive and deliberative systems, with
meta-reasoning balancing the two. Koriat (2000) high-
lighted the “Feeling of Knowing”, which suggests that im-
plicit and automatic feedback is actively involved in control-
ling the reasoning process. “Feeling of Errors” (Gangemi
et al., 2015) explored how individuals detect errors and
adjust their reasoning accordingly.

Inspired by the meta-reasoning research in cognitive science
and building on advancements in Bayesian models for LLM
reasoning (Xie et al., 2021; McCoy et al., 2023; Zhi-Xuan
et al., 2024; Feng et al., 2025b), we propose a cognitive ar-
chitecture for LLM meta-reasoning in Figure 1. It comprises
several components in either the meta-level or task-level,
each of which could be an LLM agent or an external module.
Before generating reasoning steps for the given question,
Self-awareness firstly analyzes the task via reviewing its
own knowledge and initializing a reasoning strategy. Given
the strategy, Monitoring tracks and evaluates stepwise rea-
soning using an overarching reward 2 beyond sample-wise
annotation. Evaluation and Regulation reviews the overall
reasoning process, detects common errors across multiple
samples, and makes corrections. Meta-reflection explores al-
ternative reasoning strategies and refines the meta-reward in
Memory. LLM meta-reasoning may also combine with Ex-
ternal solvers (in Environment), such as logic engines and
calculators, which complement LLMs through verifiable
outputs grounded in rigorous methodologies. This process
iterates and aims to improve the LLMs’ reasoning quality.

2Noted that the term reward in our paper broadly refers to
general feedback, not limited to verified reward.

Paper Structure. Section 2 discusses open problems in
LLM reasoning, motivating our Bayesian Meta-reasoning
Framework in Section 3. Section 4 analyzes gaps in existing
reasoning approaches. Section 5 outlines future directions.
Finally, Section 6 presents alternative views and Section 7
concludes the paper.

2. Arguments for Meta-Reasoning in LLMs
This section outlines LLM open problems and highlights the
potential of the meta-reasoning paradigm to address them.

Open Problem 1. LLMs often exhibit a strong “Feeling of
Knowing” but lack crucial human-like cognitive attributes,
such as “awareness of limitations”(Gangemi et al., 2015)
and “awareness of situation” (Zhan et al., 2024).

LLMs should develop self-awareness to critically evaluate
whether a given task aligns with their knowledge and reason-
ing capabilities before proceeding. This capability would
help mitigate hallucinations, discourage attempts at solving
unsolvable problems, and prevent engagement in unethical
tasks, ensuring more responsible and reliable behavior.

Open Problem 2. LLMs lack the adaptivity to incorporate
question-tailored strategies, which can lead to inefficiency
and reduced generalizability across tasks (Sprague et al.,
2025; Liu et al., 2024d). For instance, Liu et al. (2024d)
identified cognitive tasks where deliberation hinders human
performance and observed similar limitations in LLMs when
using Chain-of-Thought (CoT) reasoning.

Before tackling a problem, LLMs should formulate an ab-
stract strategy based on the problem’s structure, rather than
relying on superficial cues like entities or phrasing. For
example, counterfactual thinking can be applied to infer
causality across diverse scenarios. Furthermore, through
reflective processes, LLMs should be able to dynamically
refine their reasoning strategies, such as incorporating tem-
poral coherence in counterfactual thinking. This refinement
involves learning from errors across multiple instances, ulti-
mately benefiting overall task performance.

Open Problem 3. LLMs struggle with complex planning
and generalizable reasoning. RL with predefined reward
often overfits to simplistic reward structures, leading to
reward hacking (Skalse et al., 2022; Eisenstein et al., 2024;
Qin et al., 2024), where agents exploit flaws in the reward
function to achieve high scores without genuinely learning
transferable reasoning patterns.

For human, the development of problem-solving skills does
not stem from learning isolated facts across separate cases,
but from longitudinal adaptation (Flavell, 1979). For LLMs,
this implies moving beyond alignment with case-wise anno-
tated reasoning steps, toward training objectives that evolve
over time and generalize across examples, such as enhancing
efficiency or achieving balanced learning across tasks.
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Figure 2. Left: The Bayesian framework with both task-level and meta-level components. Right: The definitions of variables and their
associated modules in the meta-reasoning framework.

Open Problem 4. LLMs struggle to efficiently internal-
ize new knowledge. Current methods, such as on-the-fly
knowledge retrieval or model fine-tuning, fail to adequately
address the knowledge conflicts and resource inefficiency.

Humans do not overhaul their entire cognitive framework
when learning new skills; instead, they selectively refine and
build upon prior knowledge. Similarly, LLMs require mod-
ular and targeted updates to avoid catastrophic forgetting
while maintaining resource efficiency.

3. Conceptualized Framework
To achieve the aforementioned characteristics, we propose
a Bayesian framework shown in Figure 2.

3.1. Bayesian Inference and Learning Processes

Bayesian Inference. In our framework, we conceptu-
alize the latent variables as I, E (can be combined as
Θ = {ΘI ,ΘE}) and F, while the generated reasoning pro-
cess is A and the observation is O. The bi-level inference
is formalized as follows;

Meta-level: p(F|ΘI,ΘE),

Task-level: p(O|A), p(A|F),
The joint posterior is:

p(ΘI,ΘE,F | O) =
p(O | I,E,F)p(I,E,F)

p(O)
, (1)

where:

ΘI (Internal View) represents inherent and foundational
knowledge, akin to long-term memory, such as world knowl-
edge encoded during pre-training.

ΘE (External View) is task-specific knowledge, comparable
to working memory, which dynamically updates based on
input and context. Examples include temporarily retrieved
facts or intermediate reasoning steps generated.

F (Reasoning Strategy) is essential to the learning-to-reason
framework, as it represents an adaptive strategy tailored to

the skills required for different input tasks.
O (Observation) is the evaluated results of A, based on
both the environment G, e.g., the sampled trajectories from
an external reference model, and internal mechanisms, e.g.,
generation confidence.

Bayesian Learning. It is employed to optimize model
parameters through bi-level updates for both the reasoning
strategy F at the task-level, and the knowledge priors ΘI

and ΘE at the meta-level. This process ensures alignment
with both task-specific and overarching rewards.

Updating reasoning strategies at the task-level. The goal is
to update the posterior distribution of reasoning strategies F
given the observations O, foundational knowledge ΘI , and
task-specific knowledge ΘE :

p(F|O,ΘI ,ΘE) ∝ p(O|F)p(F|ΘI ,ΘE), (2)
where p(F|ΘI ,ΘE) is the prior of reasoning strategies, in-
formed by the model’s internal knowledge (I) and task-
specific knowledge (E), and p(O|F,ΘI ,ΘE) is the likeli-
hood of the observation given the reasoning strategy and the
priors. The method of updating F using observation and
rewards is shown in Table 1. This iteration continues until it
identifies a F that maximizes the cumulative reward. The
implementation of how to derive the cumulative reward R
can be found in Section 4.4: inverse planning.

Table 1. Algorithm of updating reasoning strategy.
1. Choose an initial reasoning strategy F ∼ p(F|ΘI,ΘE)
2. Generate reasoning process A = {(si,ai)}Ti=1 using the current F.
3. Compute feedback O using A and the reward R(F;O,ΘI,ΘE).
4. Update F with Eq. (2), where p(O|F) ∝ exp

(
R(F,ΘI,ΘE)

)
.

Updating knowledge priors at the meta-level. ΘI (founda-
tional knowledge) and ΘE (task-specific knowledge) act as
priors that shape the reasoning strategy F. They can also be
refined based on performance feedback and meta-rewards.
This ensures that reasoning strategies not only improve for
a given task but also generalize effectively across different
tasks and domains. The posterior over knowledge priors is:

p(ΘI,ΘE|O,F) ∝
∫

p(O|F)p(F|ΘI,ΘE) dFp(ΘI)p(ΘE),
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where p(O|F) is the likelihood of the observed reasoning
process. For each reasoning episode, we can collect ob-
servations O and cumulative meta-rewards R. R could
evaluate both I and E given the updated reasoning strategy.
For example, if a reasoning strategy F derived from ΘI and
ΘE succeeds across multiple tasks, then knowledge priors
should be strengthened, otherwise, if knowledge priors lead
to contradictions or inefficiencies, they should be adjusted.

3.2. Core Components of the Framework

This framework integrates foundational knowledge, task-
specific adaptation, and reasoning strategies to enable dy-
namic and adaptive reasoning processes.

Memory stores the two priors, p(ΘI) and p(ΘE), represent-
ing inherent and task-specific insights essential for develop-
ing adaptive reasoning strategies and rewards.

Self-awareness evaluates the skill gap between the input
task and the model’s capabilities. Based on this evaluation,
it proposes an initial reasoning strategy with latent skill
distribution, p(F|ΘI,ΘE). The reasoning strategy is not a
direct solution to the task but serves as a meta-level planner.
For example, CoT is beneficial for tasks requiring multi-step
logical deduction (e.g., algorithmic problem-solving). In
contrast, direct answers are more efficient for tasks that rely
on simple knowledge recall, where excessive deliberation
can hinder performance and computational efficiency (Sab-
bata et al., 2024; Liu et al., 2024d).

Monitoring performs stepwise validation based on the
reasoning strategy F. Without loss of generalizabil-
ity, we represent a sequence of T state-action pairs as
A = [(s0,a0), (s1,a1), . . . , (sT−1,aT−1), sT ], which can
be evaluated by a reward model Qt. The reward model
leverages cognitive resources like I and E, focusing on task-
agnostic criteria like contradictions (Zhang et al., 2024b)
and task-specific proxy signals from task-related solutions.

Evaluation and regulation are applied for evaluating and
correcting the final reasoning process A using both inter-
nal resources and external solvers (e.g., a calculator gener-
ating grounding information G for arithmetic validation).
Feedback O enables the framework to iteratively revise the
reasoning process until the task requirements are satisfied.

Meta-reflection integrates feedback (O) from the environ-
ment or the system’s own evaluation processes to iteratively
improve its internal representations and strategies.

Example of scientific hypothesis generation. Here Self-
Awareness corresponds to recognizing skill gaps when gen-
erating hypotheses. Monitoring tracks reasoning steps to
ensure logical consistency and alignment with evidence.
Evaluation reviews and compares hypotheses for soundness,
feasibility, and relevance. Regulation modified the reasoning
process to address inconsistencies or flawed assumptions.

Task 1

Required Skills

(knowledge prior)

Assess Task’s 

Solvability
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Solvability
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Refuse 

to answer

Task 2 Task 3
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Figure 3. Self-awareness. It first assesses the task’s solvability
under capability awareness and mission awareness. For solvable
tasks, it initializes the reasoning strategies based on knowledge
priors. For the scientific hypothesis generation, the reasoning
strategy is a distribution over multiple skills, such as cross-domain
analogy (identify analogous phenomena across fields), constraint
satisfaction (formulate hypotheses that meet known constraints),
and anomaly-driven exploration (explain data anomalies).

Meta-Reflection examines the process for hypotheses gener-
ation and adapts reasoning strategies if necessary. Memory
stores previous reasoning processes for iterative learning and
generalization. We can also incorporate External Solvers,
such as simulation models, to complement and verify LLM-
generated reasoning steps. Our framework could enable
more robust scientific reasoning.

4. Gaps and Limitations
We discuss reasoning approaches that share certain charac-
teristics with our framework and highlight remaining gaps.
A detailed review is in the Appendix.

4.1. Self-Awareness

Our self-awareness module (Fig. 3) comprises two core
components, inspired by Ackerman & Thompson (2017):
(1) assessing the task’s solvability p(ΘI) and p(ΘE), based
on the model’s technic and cognitive capabilities, where
capability-aware solvability and mission-aware solvability
are considered simultaneously (2) initializing reasoning
strategies p(F|ΘI,ΘE) by analyzing the skill gaps between
LLM itself and the task, and adaptively generating the most
appropriate reasoning strategy to bridge the gaps and ap-
proach the task more effectively.

4.1.1. ASSESSING THE TASK SOLVABILITY

The self-awareness of LLMs, treating LLMs as cognitive en-
tities, has emerged as a frontier research area (Huang et al.,
2024d). Li et al. (2024b) categorized self-cognition into five
dimensions, i.e., capability, mission, emotion, culture, and
perspective. We focus on the first two dimensions here. Ca-
pability awareness is crucial, as highlighted by the Dunning-
Kruger Effect (Kruger & Dunning, 2000), a cognitive bias
where individuals tend to overestimate their knowledge or
abilities in a particular domain. Mission awareness eval-
uates whether LLMs understand their roles as AI models
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designed to serve humanity, avoiding harmful or unethical
actions (Huang et al., 2024c).

Capability-aware Solvability. While assessing capability-
aware solvability of LLMs is underexplored, confidence or
uncertainty estimation (Geng et al., 2024; Wen et al., 2024)
offers a viable alternative. Applied to our setting, a confi-
dence threshold can be set, below which the LLM outputs
should be considered unreliable (Feng et al., 2024). Con-
fidence and uncertainty estimation methods for LLMs can
be categorized into white-box and black-box. White-box
methods allow uncertainty estimation through token-level
entropy (Huang et al., 2025) or utilizing attention weights
or hidden states to build probing models (Kadavath et al.,
2022; Burns et al., 2023; Azaria & Mitchell, 2023). Black-
box methods rely solely on input-output behavior, without
accessing to model internal parameters. Examples include
prompting LLMs to express uncertainty verbally (Tian et al.,
2023; Mielke et al., 2022) or inferring uncertainty by ana-
lyzing response agreement (Manakul et al., 2023).

Mission-aware Solvability. Although LLMs trained with
RLHF (Ouyang et al., 2022) to align with human pref-
erences, they may still produce harmful responses when
presented with delibratedly unethical requests (Shen et al.,
2024; Deng et al., 2023). Some studies rely on small neural
network models such as HateBERT (Caselli et al., 2021)
and Perspective API (Lees et al., 2022) as the off-the-shelf
toxicity detectors. Jailbreak defense aims to filter and reject
malicious prompts (Xiong et al., 2024a; Mo et al., 2024; Liu
et al., 2024a). Key approaches include fine-tuning models to
reject harmful instructions (Mo et al., 2024), and adversarial
training (Liu et al., 2024a), which exposes models to diverse
attack scenarios (Liu et al., 2024a) to improve robustness.

Limitation 1: lack of a multi-view framework for task solv-
ability. While existing studies have explored methods to
measure an LLM’s capability to solve a task, they lack a
multi-view framework that integrates different perspectives
on task solvability. Current approaches often rely on iso-
lated measures, such as uncertainty estimation, but fail to
provide a holistic decision-making process that considers
efficiency, safety, and task relevance simultaneously. More-
over, balancing safety and utility remains challenging, as
models may either take unnecessary risks or overly restrict
themselves. A more comprehensive, multi-view approach
is needed for LLM task solvability assessment. Actionable
inisghts are in Section 5: Action 2.

4.1.2. INITIALIZING THE REASONING STRATEGY

For solvable and ethical tasks, the next step is to propose a
meta-level reasoning strategy, formulated before task execu-
tion. This strategy, modeled as a distribution over multiple
skills, bridges the gap between the LLM’s abilities and the
task’s requirements. Below, we detail this process by ex-

ploring three representative categories of skills: planning,
external knowledge seeking, and tool execution.

Planning Skills. For tasks requiring step-by-step deduction,
like multi-hop commonsense reasoning, CoT improves per-
formance than direct prompting (Wei et al., 2022b). Tree of
Thoughts (ToT) focuses on exploration skills, enabling the
model to explore multiple parallel solution paths (Yao et al.,
2023a), while Graph of Thought (GoT) emphasizes rela-
tional reasoning, making it suitable for tasks like knowledge
graph navigation (Besta et al., 2024).

Knowledge Retrieval Skills. For tasks requiring up-to-
date knowledge, such as Question Answering (Wang et al.,
2024b) or fact-checking (Tang et al., 2024), knowledge
retrieval bridges the skills gap. Adaptive Retrieval Aug-
mented Generation (RAG) methods use probing datasets
to determine when retrieval is necessary (Wang et al.,
2023b). SELF-RAG integrates on-demand retrieval and
self-reflection for generation quality (Asai et al., 2024).

Tool Integration Skills. For tasks beyond text processing,
e.g., online shopping assistants (Yao et al., 2022) and code
generation (Wang et al., 2024e), tool execution skills is
needed. ChatCoT (Chen et al., 2023) integrates Calculator
for math reasoning. ToolkenGPT (Hao et al., 2023b) offeres
the flexibility to plug in an arbitrary number of tools by
expanding the ‘toolkens’.

Limitation 2: lack of adaptability in latent skill selection.
The methods reviewed above typically propose a single “op-
timal” strategy, often focusing on a specific skill dimension,
such as planning. Ideally, as shown in Figure 3, a more flexi-
ble approach is needed, where a combination of latent skills
is considered. The optimal reasoning strategy should vary
not only across tasks but also across different instances of
the same task, adaptively combining multiple skills tailored
to each particular input. Actionable insights are in Section 5:
Action 3.

4.2. Monitoring

Given a reasoning strategy F from the self-awareness mod-
ule, Monitoring is employed to assess and control the gener-
ation of the reasoning process, guided by a reward model
(shown in Figure 4). In LLM reasoning, we first sample k
candidate solutions at the t-th reasoning step, such as dif-
ferent intermediate steps for an arithmetic problem. These
intermediate steps are then assessed by a reward model
Qt. Finally, a reasoning step at ∈ A is sampled from the
optimized policy model π(at|st) with respective to the Qt:

at ∼ π(at | st) =
exp(Qt(st,at;F; ΘI,ΘE))∑

a′∈A exp(Qt(st,a′t;F; ΘI,ΘE))
,

where the design of the reward model Qt is critical for
stepwise reasoning assessment. We also need to design an
iterative control mechanism for the entire reasoning process.
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Figure 4. The Monitoring module assesses and controls the t-th
reasoning step generation based on the policy model πt derived
from the reward model Qt. The reward model will provide overar-
ching meta-reward beyond suboptimal heuristics.

4.2.1. REWARDS IN REASONING

Existing studies adopt either Outcome Reward Model
(ORM )(Ouyang et al., 2022) or Process Reward Model
(PRM )(Lightman et al., 2024; Wang et al., 2024c). ORM
assesses the quality of the completed reasoning paths, while
PRM provides fine-grained, even stepwise validation, thus
mostly demonstrating superior performance in both model
training and inference (Wang et al., 2024c; Lightman et al.,
2024). These reward models can be derived by training on
human annotations on the reasoning trajectories, such as
classification (Lightman et al., 2024; Wang et al., 2024c),
regression (Chen et al., 2024a; Wan et al., 2024) and pair-
wise preference (Ouyang et al., 2022; Xie et al., 2024); Or
advanced LLMs can be directly prompted to provide
feedback(Lightman et al., 2024; Lu et al., 2023). However,
recent studies (Huang et al., 2024b; Li et al., 2024c; Yan
et al., 2024b) reveal that LLMs often struggle to provide
reliable feedback due to limited knowledge grounding. In
contrast, Deepseek-R1 (DeepSeek-AI et al., 2025) combines
two straightforward, rule-based rewards—a correctness
reward on the final result and a format reward for adhering
to the required response structure.

Limitation 3: existing reward signals are imperfect proxy.
Reward signals, apart from rule-based ones, include LLM-
generated self-evaluations and task-specific reward models.
Self-evaluations are often unreliable, displaying biases to-
ward length, polished tone (Zeng et al., 2024b), and self-
enhancement (Gu et al., 2024). Trained reward models,
on the other hand, frequently rely on oversimplified ob-
jectives like correctness, format, failing to account for the
multi-dimensional criteria (Wang et al., 2024a). Further-
more, these models are typically stationary, making them
unsuitable for dynamic environments such as shifting data
distributions during policy optimization (Gao et al., 2022).
While methods like reward ensembles (Coste et al., 2024)
and diverse feedback (Yu et al., 2023a) show promise, cre-
ating a robust model that evaluates intermediate reasoning
steps and generalizes across scenarios remains an open chal-
lenge (Eisenstein et al., 2024). Actionable insights are in
Section 5: Action 4.

4.2.2. POST-TRAINING WITH REWARDS

To post-train LLMs for better reasoning capabilities,
we can leverage either Direct Preference Optimization
(DPO) (Rafailov et al., 2023) or Reinforcement Learning
with Human Feedback (RLHF). DPO focuses on training the
model to better distinguish between desirable and undesir-
able trajectories in a contrastive manner, while RLHF relies
on reward models to provide feedback to reasoning LLMs.
Rejection Sampling (Dong et al., 2023) finetunes the model
only on high-reward samples, aiming to shift the output dis-
tribution towards higher-quality samples, but it fails to lever-
age information from rejected samples. In contrast, Pref-
erence Learning (Grattafiori et al., 2024; Li et al., 2024a)
uses all samples to train the model on preference pairs, ei-
ther at the outcome level or at the process level. Initially
implemented within a traditional RL framework, specifi-
cally Proximal Policy Optimization (PPO) (Schulman et al.,
2017) with a trained reward model, preference learning has
largely evolved toward DPO (Rafailov et al., 2023) due to
its effectiveness and simplicity. More recently, RL with
Verifiable Rewards, exemplified by models like Deepseek-
R1 (DeepSeek-AI et al., 2025), trains policy models using
Group Relative Policy Optimization (GRPO) (Shao et al.,
2024), which removes the need for a critic model by estimat-
ing the baseline using group values, substantially reducing
training costs compared to PPO. Its impressive performance
has revitalized interests in traditional RL frameworks.

Limitation 4: overlooking reasoning diversity and effi-
ciency. Optimal reasoning trajectories are used to super-
vise the model’s alignment. This verbal alignment is based
on word-level overlap, encouraging the generated reasoning
paths to resemble the optimal ones. Such approach fails
to account for linguistic diversity of valid reasoning paths,
which can varying in expression but still lead to the same
outcome. Such an approach fails to capture underlying rea-
soning patterns, limiting the model’s generalizability across
scenarios. Moreover, using LLMs as judges to evaluate ver-
bal reasoning trajectories incurs high computational costs
from the frequent inferences (Chen et al., 2025b). Action-
able insights are in Section 5: Action 4 and 5.

4.3. Evaluation and Regulation

A complete reasoning chain A is obtained after Monitoring.
The Evaluation and Regulation module in Figure 5 lever-
ages the feedback O to refinement. It is worth noting that
while Monitoring acts as an ongoing observer of the thought
process: “thinking while doing”, i.e., the post-training phase
aimed to enhance inherent reasoning capabilities. Evalua-
tion and Regulation review the reasoning process as a whole:
“thinking after doing”, i.e., strategies applied during infer-
ence. Therefore, we focus on how existing feedback can
help reasoning error correction methods during inference.
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Figure 5. Evaluation and Regulation. Meta-thoughts from previ-
ous interactions are leveraged to enhance feedback. Other feedback
sources are summarized in the dashed box.

4.3.1. OVERALL REASONING PROCESS EVALUATION

Existing typical feedback used to evaluate entire reasoning
chains is summarized as: (i) prompting LLMs, (ii) leverag-
ing trained critic models and (iii) integrating tools (shown
in Figure 5). LLM prompting, however, does not guarantee
that the underlying reasoning chain is faithful, accurate, or
logically sound. Task-specific critic models for error de-
tection, applied in areas like mathematical reasoning (Chen
et al., 2024b), coding (Kumar et al., 2024), and logical rea-
soning (Tong et al., 2024), offer alternative approaches for
improvement. To create training data for critic models, rea-
soning processes are first generated from a base LLM, then
human annotators are asked to provide detailed annotations
of error positions (which reasoning step) and error types,
e.g., knowledge error or calculation error (Tyen et al., 2023;
Uesato et al., 2022). It is worth noting that even if the critic
model identifies errors successfully, it may still be unable
to articulate them clearly. Other approaches incorporate
external tools, such as code compilers (Shinn et al., 2023b;
Yao et al., 2023b; Zhang et al., 2023a; Chen et al., 2024c),
Search engines which allow LLMs to retrieve the latest evi-
dence to ensure factuality (Varshney et al., 2023; Yu et al.,
2023b; Peng et al., 2023), and relation topology analyzer for
analyzing complex logical relations in graph-based systems
(Zhang et al., 2023b).

The feedback generated by the aforementioned methods is
predominantly sample-specific and fails to capture general-
ized error patterns across similar questions. More recently,
thought templates (Yang et al., 2024; Wang et al., 2024g;
Yang et al., 2025a), such as symbolized questions, have
emerged as a viable approach to organizing similar ques-
tions. These templates facilitate evaluation across multiple
analogous cases, thereby enabling feedback to reflect com-
mon reasoning patterns.

4.3.2. REASONING PROCESS REGULATION

Regulation concerns about error correction. Given the feed-
back produced in the evaluation phase, LLMs are expected
to follow it and apply appropriate revisions through the so-

called self-reflection phase (Shinn et al., 2023a). However,
there is no guarantee that LLMs will strictly follow the in-
structions. In fact, Yan et al. (2024b) observed that LLMs
are often too stubborn to change their initial responses, even
when provided with explicit feedback “Your response is in-
correct, please reconsider it.”. To explicitly guide LLMs to
update their responses, TextGrad (Yuksekgonul et al., 2025)
backpropagates the textual feedback provided by LLMs
to refine the initial input prompts, effectively using natu-
ral language as a gradient. Another line of research trains
LLMs using explicit error correction trajectories (Zhang
et al., 2025a; Zelikman et al., 2024; Zeng et al., 2024a).
DeepSeek-R1 also incorporates a similar ‘think mode’, typ-
ically involving a deliberate wait, to give the model more
time to reflect on its previous thoughts, though it may also
introduce overthinking issues (Chen et al., 2024d).

Limitation 5: lack of adaptive meta-level error analy-
sis. Existing studies on refining LLMs primarily focus
on instance-wise error detection and correction, which ad-
dress errors for individual instances without leveraging in-
sights from recurring error patterns (Yuksekgonul et al.,
2025; Wang et al., 2024d). However, achieving broader
improvements in LLM performance requires a meta-level
approach that analyzes error patterns to identify underly-
ing systemic issues or biases, thereby facilitating the de-
velopment of strategies to prevent similar errors in future
instances. While methods like the meta-buffer (Yang et al.,
2024) and semantic-symbol prompts (Wang et al., 2024g)
have shown the effectiveness of leveraging previous inter-
actions and structured reasoning, they rely heavily on the
inherent capabilities of LLMs and rigid, manually created
prompt templates. Additionally, the thought templates may
be suboptimal due to LLMs’ limited instruction-following
ability. Actionable insights are in Section 5: Action 3&4.

4.4. Meta-Reflection

Meta-reflection is the Bayesian learning process, designed to
update the model’s original views based on feedback across
multiple tasks. It adopts a bi-level approach: first, the initial
strategy F is refined, and then the meta-parameters ΘI and
ΘE are optimized accordingly (the dash lines in Figure 2).
The central challenge lies in efficiently consolidating the
relationships among diverse tasks, ensuring that the meta-
update remains optimal for all possible inputs.

MAML (Model-Agnostic Meta-Learning) (Finn et al., 2017)
is a general framework for meta-learning, which learns a
task-agnostic model initialization for quick adaptation to
new tasks via bi-level optimization. To make this approach
suitable for LLM deployment, several existing techniques
can be adapted: (i) bi-level prompt optimization. (ii) modu-
lar training approaches such as LoRA. (iii) Bayesian inverse
planning. Earlier methods such as MetaICL (Min et al.,
2022) and MetaICT (Chen et al., 2022) avoid bi-level opti-
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mization by training models on batches of diverse tasks in a
continuous manner, simplifying the process to resemble con-
ventional fine-tuning. Qin et al. (2023); Sinha et al. (2024)
propose the meta-prompt and follow a bi-level optimiza-
tion process. Dynamic modular composition (Huang et al.,
2024a; Yang et al., 2025b), particularly when combined
with LoRA, provides a flexible mechanism for recombining
and reorganizing capability-specific components, enabling
efficient generalization to new tasks through modular recom-
bination. Multi-agent RL framework, such as ReMA (Wan
et al., 2025) introduces a meta-thinking agent to coordinate
among task-level agents, though they train the meta-level
and task-level components separately rather than in an inte-
grated manner.

To derive the optimized reasoning strategy F based on
the cumulative reward R, we can get inspiration from
Inverse planning, which is to infer the agent’s unob-
served states, such as goals and beliefs, rooted in theory-of-
mind (Shum et al., 2019). Specifically, we need to approxi-
mate R(F;O,ΘI ,ΘE). One research direction leverages
LLM preferences (Zhang et al., 2025c), for example, by
using the model’s generation logits given current observa-
tions and a candidate strategy for scoring. Alternatively, a
Bradley–Terry model trained on preference data can serve
as a proxy for the cumulative reward (Liu et al., 2024c).

Limitation 6: lack of explainability and efficiency of meta-
optimization. While methods like LoraHub can decom-
pose and recombine specialized capabilities for new tasks,
they often suffer from safety and reliability issues (Ham-
moud et al., 2024; Hsu et al., 2024) during model merge.
These risks highlight the limited understanding of the under-
lying mechanisms that govern model transfer learning and
model parameter composition. Furthermore, there is a press-
ing need for efficient meta-optimization frameworks, such
as multi-agent or multi-stage RL. Such approaches could
serve as a foundational infrastructure for complex reasoning
tasks, enabling better agent coordination, tool integration,
and evolutionary skills for unseen tasks. Actionable insights
are in Section 5: Action 5 & 6.

5. Actionable Insights
This section, driven by the limitations outlined in Section 4,
presents potential future research directions.

Action 1: Benchmark and metrics for meta-reasoning
evaluation To evaluate LLMs’ meta-reasoning capabil-
ities, well-defined benchmarks assessing self-awareness,
introspection, and reflective reasoning are needed. Recent
datasets like the SAD (Laine et al., 2024), AwareBench (Li
et al., 2024b), and MM-SAP (Wang et al., 2024f) focus
on introspection and multimodal reasoning, while MR-
BEN (Zeng et al., 2024a) and MR-GSM8k (Zeng et al.,

2025) extend the evaluation to error analysis and qualita-
tive insights. However, most of the existing benchmarks
are on math and coding tasks, not generalized to wider
reasoning tasks yet. Future work should aim to integrate
these benchmarks into a unified framework and develop
metrics beyond accuracy, such as calibration error, logical
consistency, consistency rates, and generalization perfor-
mance to assess meta-reasoning. For example, a very recent
benchmark Feedbacker (Wang et al., 2025), provides a com-
prehensive evaluation framework to analyze the model’s
strengths and weaknesses via multifaceted feedback over
various reasoning tasks, such as legal, ethical and causality.

Action 2: Multi-view solvability with neuro-symbolic
systems While uncertainty or confidence scores can in-
dicate capability-aware solvability, they are insufficient on
their own. As discussed earlier, mission-aware solvability,
such as rejecting unethical requests, must also be consid-
ered (Li et al., 2024b). The challenge lies in integrating these
diverse solvability aspects into a unified decision-making
framework. A neuro-symbolic approach could be explored,
which combines symbolic reasoning’s precision with neu-
ral modules’ expressiveness (Andreas et al., 2016; Gupta
et al., 2020). Different solvability metrics can be incor-
porated as neural modules, with the modular framework
adapting to new metrics. The choice of a symbolic method
to coordinate and execute neural modules is crucial: a prob-
abilistic framework offers robustness (Nafar et al., 2024),
while a logic-based method ensures precision (Servantez
et al., 2024), depending on the task’s priorities.

Action 3: Adaptive reasoning strategy generation Cur-
rent “plan-to-plans” methods typically generate a single
strategy for a given reasoning instance or for all instances
within a task (Zou et al., 2023; Gao et al., 2024b). However,
tasks may require multiple reasoning skills, such as knowl-
edge retrieval and numeric calculation. To enable LLMs
generalize across various tasks, we could map input con-
text representations into a latent concept space, where each
concept corresponds to a distinct reasoning skill. Solving
a task would involve identifying relevant skills and gener-
ating answers conditional on them. The Mixture-of-Expert
(MoE) framework allows dynamic allocation of reasoning
skills (experts) to specific instances. Recent work combin-
ing MoE with parameter-efficient fine-tuning has enhanced
the efficiency. Furthermore, hierarchical MoE could further
improve skill sharing across tasks (Li et al., 2025b). Another
possible way is to utilize Bayesian inverse planning (Wu
et al., 2021; Zhang et al., 2025c) by treating the reasoning
skills as the latent variable between meta knowledge and
reasoning actions. By observing the results of reasoning ac-
tions, the posterior of the reasoning skills can be updated by
the Bayes rule (Tonolini et al., 2024), enabling an adaptive
reasoning skill selection.
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Action 4: Self-play for meta-rewards seeking Human
intelligence develops multifaceted self-assessment for rea-
soning and dynamically introduces new criteria through in-
teractions with the environment. In contrast, current reward
systems for reasoning monitoring are monofaceted, focusing
primarily on correctness and remaining static, making it dif-
ficult to adapt to evolving distributions in policy models (Tao
et al., 2024). Therefore, we propose leveraging multifaceted
and dynamic meta-rewards through self-play. This claim
aligns with recent theoretical and empirical findings that
scaling feedback/rewards could lead to significant improve-
ments in both training and inference phases (Snell et al.,
2024; Wu et al., 2024c). Such a self-evolutionary system
enables LLMs to autonomously acquire, refine, and learn
from self-generated experiences or nuanced internal signals,
such as confidence (Zhao et al., 2025). Additionally, a self-
play paradigm reduces the reliance on human preference
data and mitigates reward hacking issues. Achieving this
paradigm requires algorithms that provably converge to the
Nash equilibrium of two-player constant-sum games (Wu
et al., 2025) and fully exploit the internal feedback during
the interaction process.

Action 5: Latent-space reasoning for better diversity
and efficiency Most existing reasoning approaches gen-
erate explicit verbal intermediate steps in an autoregressive
manner. However, errors in these steps can accumulate,
leading to cascading mistakes, challenges in self-correction,
and inefficiencies (Deng et al., 2024; Lin et al., 2021; Ye
et al., 2024). By internalizing explicit thoughts into a la-
tent space, we can capture reasoning patterns independent
of linguistic style, encourage the model to think more and
talk less, as well as avoid unnecessary cost on generated
lengthy sequences to accelerate the model inference speed
at the same time. Preliminary work (Deng et al., 2024; Hao
et al., 2024; Shen et al., 2025) has shown promise in faster
inference by completely bypassing lengthy intermediate ver-
bal steps, though still lagging behind the verbalized CoT
approaches. Instead of leveraging additional tokens, looped
transformers are also promising as they enhance the think-
ing via leveraging additional depth for more computation to
reason, which can also be interpreted as a form of latent rea-
soning (Geiping et al., 2025; Saunshi et al., 2025; Yu et al.,
2025). Additionally, A well-regularized latent space can fur-
ther improve interpretability and global controllability (Ye
et al., 2024; Su et al., 2025), as well as accelerate the sim-
ulation process via embedding search (Chen et al., 2025b).
An appropriate manipulation in the latent space can also
encourage the exploration for better math reasoning (Zhu
et al., 2025; Zhang et al., 2025b) and retrieved-augmented
QA (Hu et al., 2025).

Action 6: Interpretable and efficient training for meta-
knowledge consolidation To enhance the adaptability
and efficiency of large models, it is crucial to identify and

leverage the distinct roles of different subnetworks or skill-
specific agents/tools, allowing selective leveraging/updating
of the most relevant components for particular inputs. This
targeted approach improves the model’s ability to under-
stand LLMs’ knowledge learning and consolidation process.
Recent work shows that large performance gains often come
from updating 5%-30% of model parameters (Mukherjee
et al., 2025). Therefore, mechanistic interpretability can pro-
vide valuable insights into rigorous causal effects (Yan et al.,
2024a; Bereska & Gavves, 2024) linking specific model
components to outputs. Moreover, equipping agents with the
capability to recognize and understand their own knowledge
boundaries (Qiao et al., 2025) is crucial in multi-objective
cooperative frameworks (), in which a meta-level coordina-
tor oversees the collaboration among multiple agents. Such
self-awareness enables agents to contribute more effectively,
fostering robust collaboration and reducing the risk of con-
flicts or redundant efforts.

6. Alternative Views
Some suggested that LLMs should operate under hu-
man oversight to ensure robust reasoning and decision-
making (Rafailov et al., 2023). Others argued that robust rea-
soning can be achieved by integrating structured knowledge
bases and symbolic reasoning into LLMs (Hao et al., 2023b;
Shu et al., 2024). Our proposed LLM meta-reasoning frame-
work may also face criticism for adding complexity and
computational overhead. Our arguments are: (i) Human
oversight is resource-intensive and impractical to scale for
every use case, especially in real-time applications. (ii)
Symbolic reasoners alone struggle with the complexity and
nuance of natural language. External solvers, including sym-
bolic reasoners, are part of our meta-reasoning framework.
(iii) Unlike task-specific models, meta-reasoning allows
LLMs to generalize better across unfamiliar tasks by reflect-
ing on and adapting their reasoning strategies. Instead of
fine-tuning separate models for every domain, we can adapt
dynamically, reducing development time and computational
costs in the long run.

7. Conclusion
We introduced a Bayesian Meta-Reasoning framework that
integrates key components such as self-awareness, moni-
toring, evaluation, and meta-reflection, inspired by human
cognitive processes. It addresses fundamental limitations in
existing approaches, such as a lack of dynamic adaptability,
limited variety in reasoning pathways, and inefficiencies in
task-specific updates. By incorporating external resources,
meta-knowledge-based assessments, and flexible sampling
mechanisms, our approach could show significant promise
in complex, unstructured reasoning across domains. Fur-
thermore, we highlighted key challenges in meta-reasoning
and proposed potential future research directions.
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A. Appendix: Litereature Review
This appendix presents a brief literature review of existing studies that offer insights relevant to components of our meta-
reasoning framework, including meta-reasoning in cognitive science and machine intelligence, uncertainty estimation and
calibration, LLM reasoning with reward models, and LLM refinement through feedback.

A.1. Meta-Reasoning

meta-reasoning, the process of thinking about one’s own thinking, is of significance in both human and artificial intelligence
(Cox & Raja, 2011; Ackerman & Thompson, 2017).

Meta-Reasoning in Cognitive Science Meta-reasoning in cognitive science involves several key theories explaining how
individuals monitor and regulate their reasoning processes. Dual-Process Theory (Kahneman, 2011) suggests that reasoning
involves intuitive and deliberative systems, with meta-reasoning influencing how individuals balance these systems. The
Metacognitive Reasoning Theory (Koriat, 2000) highlights the “Feeling of Knowing”, which guides when further cognitive
effort is required. The Diminishing Criterion Model (Ackerman, 2014) suggests that confidence declines over time, leading
individuals to accept answers with lower confidence. Judgment of Solvability (Lauterman & Ackerman, 2019) focuses
on how individuals assess whether a problem is solvable, influencing their persistence or decision to abandon the task.
“Feeling of Errors” (Gangemi et al., 2015) explores how people detect errors and adjust their reasoning accordingly. These
theories highlight how metacognitive processes control cognitive effort and shape decision-making. Grounded in the seminal
framework proposed by Nelson (1990) for monitoring learning and memory, Ackerman & Thompson (2017) proposed a
meta-reasoning framework, which consists of two main components, metacognitive monitoring and metacognitive control.
Metacognitive monitoring involves subjective assessment of the likelihood of success or failure in a particular cognitive task,
and guide decisions on action, time, and effort allocation. Metacognitive control determines the initiation, termination, or
adjustment of the allocation of metal effort to a cognitive task.

Meta-Reasoning in Decision-Making and Multi-Agent Systems Cox & Raja (2011) discussed meta-reasoning from
both AI and cognitive science perspectives, structured around a central model where meta-reasoning controls and monitors
reasoning, guiding decisions on when to act or continue thinking. In AI research, meta-reasoning has been extensively
studied in search and planning. For example, Lin et al. (2015) focused on the general meta-reasoning decision problem,
which involves balancing the cost of planning with the quality of the resulting actions to maximize an agent’s long-term
utility. They proposed approximate algorithms within Markov decision processes (MDPs) using the Bounded Real-Time
Dynamic Programming technique to evaluate the computational value of further reasoning without relying on prior domain-
specific data. Van Zee & Icard (2015) focused on one aspect of meta-reasoning, which is reconsidering or adjusting plans as
new information becomes available. They explored optimal strategies for when an agent should ‘think’ (re-plan) versus
‘act’ under changing conditions, suggesting that flexible and meta-level strategies can enhance decision-making across
diverse environments. Elboher et al. (2023) studied situated temporal planning and proposed algorithms for concurrent
action execution and deliberation. There are different aspects of meta-reasoning, such as using meta-level control in
decision-making and multi-agent systems (Raja & Lesser, 2007; Cheng et al., 2013; Langlois et al., 2020), introspective
monitoring for self-improvement (Murdock & Goel, 2008; Cox, 2011; Toy et al., 2024), models of self-awareness in
cognitive agents (Samsonovich et al., 2008; Proust, 2013; Samsonovich & De Jong, 2013; Chatila et al., 2018; Subagdja
et al., 2021), and using metacognitive reinforcement learning to understand how to think (Krueger et al., 2017).

Meta Reasoning for Language Models Most recent work conducts prompt-engineering on the frozen LLMs for so-called
meta-reasoning. Wang et al. (2024h) adapted meta-prompt to identify the specific task before conducting the sample-level
reasoning. Yang et al. (2024) distilled the knowledge from multiple instances and their solutions into thought template saved
in a buffet, which will be accessed before instantiated Reasoning. Wang et al. (2024g) deconstructed reasoning-independent
semantic information into generic symbolic form and therefore transform various questions into meta-from. Performances
improvements are observed in arithmetic, symbolic, and logical reasoning and multi-agent mental gaming. Some studies
claimed that task-agonistic instructions help LLMs learn to think. Wu et al. (2024b) prompted LLMs to generate thoughts
before its response via feeding a thought template filled with human instruction, then used the self-generated responses for
direct preference optimization (DPO). The deliberate thought, thought hidden from the end user, is supposed to be part of
the internal thought of LLMs, making LLMs perform better in general reasoning tasks.

The gap between machine meta-reasoning and human intelligence Despite the advancements discussed, existing
meta-reasoning approaches in LLMs remain limited in capturing the depth and complexity of human cognition. While

21



Position: LLMs Need a Bayesian Meta-Reasoning Framework

methods such as meta-training, prompt-engineering, and instruction-tuning have demonstrated efficacy in task-specific
generalization and structured reasoning, they often rely on rigid templates or narrowly defined optimization frameworks.
These strategies lack the ability to dynamically adapt to diverse, unstructured contexts or to introspectively evaluate their
reasoning processes—core aspects of human meta-reasoning. For instance, the ability to reflect on one’s knowledge
state (“knowing what one knows”) and detect gaps or uncertainties (Flavell, 1979). This extends to the awareness of
errors (Gangemi et al., 2015), where humans can identify and correct mistakes through introspection and feedback processes.

A.2. Uncertainty Estimation and Calibration

In the meta-reasoning process of humans, one will first have an initial judgment of solvability on the given task to prepare for
the assessment of knowledge and strategies. Similarly, in the meta-reasoning process of LLMs, an LLM should also assess
its initial judgment of the solvability and difficulty of the given task, which can be achieved by estimating the confidence
score or uncertainty score of the LLM’s generation. To be more specific, there are two types of uncertainty estimation
methods. Uncertainty calibration further refines these estimates by improving their reliability.

Real-Time Uncertainty Estimation The first type of method is real-time uncertainty estimation, where the LLMs generate
the output and its uncertainty simultaneously (Geng et al., 2024). Linguistic-based methods prompt LLMs to express
uncertainty in human language, which assumes LLMs are well-calibrated with verbalized confidences, i.e., LLMs can
express their uncertainty towards output either in numeric expression (e.g., 0-1) or in linguistic expression (e.g., certain,
likely, no chance) (Tian et al., 2023; Mielke et al., 2022). Logit-based methods estimate the sentence uncertainty by
token-level entropy (Huang et al., 2025). To incorporate semantics, Duan et al. (2023) introduced the concept of token-level
relevance, which evaluates the relevance of the token by comparing semantic change before and after moving the token with
a semantic similarity metric. Then, sentence uncertainty can be adjusted based on the token’s relevance.

Post-hoc Uncertainty Estimation The second type of method is the post-hoc uncertainty estimation, where the uncertainty
is estimated after the output has been generated. Consistency-based methods assume that when the LLM is certain about
a given concept, the sampled responses are likely to be similar and contain consistent facts, while for hallucinated facts,
stochastically sampled responses are likely to diverge and may contradict one another. Manakul et al. (2023) proposed to
sample multiple generations based on one input and calculate the similarity score between the target and generations, then
the similarity scores are aggregated and taken as the uncertainty towards the target. Distribution-based methods convert the
LLM outputs into embeddings and estimate the output uncertainty based on the distribution of the embeddings. Catak &
Kuzlu (2024) proposed a novel geometric approach to uncertainty quantification using convex hull analysis, which leveraged
the spatial properties of response embeddings to measure the dispersion and variability of model outputs. Kuhn et al. (2023)
proposed semantic entropy, an entropy that incorporates linguistic invariance created by shared meanings.

Uncertainty Calibration Uncertainty calibration aims to align confidence scores with actual correctness to improve
prediction reliability. Supervised-based methods fine-tune LLMs on datasets containing both correct and incorrect answers
along with their uncertainties to improve the model’s ability to estimate uncertainty (Liu et al., 2024b; Kapoor et al., 2024).
Prompting-based methods leverage prompt augmentation techniques, such as paraphrasing or option permutation, to create
ensembles that enhance calibration without additional training (Jiang et al., 2023; Xiong et al., 2024b).

A.3. LLM Post-training with Reward

There are currently two training paradigms to enhance LLMs to reason after pre-training: Supervised Finetuning (SFT), or
Imitation Learning, and Reinforcement Learning (RL). SFT allows the model the finetune on annotated reasoning chains to
learn the reasoning pattern. While RL, the current SOTA method, requires a reward for the LLM to maximize, and the LLM
learns the reasoning patterns via its own explorations.

Reward Modelling In the LLM framework, reward models are generally categorized into two types: Outcome Reward
Models (ORMs) and Process Reward Models (PRMs). ORMs primarily evaluate completed outputs, and rule-based rewards
applied to entire outputs—though not learned—can also be regarded as a form of ORM. PRMs, by contrast, have shown
effectiveness in both inference (Lightman et al., 2024) and training (Wang et al., 2024c). Recently, with the release of
Deepseek-R1, rule-based ORMs have gained increasing attention as a practical method for post-training policy models.

A significant limitation of PRMs is their reliance on high-cost human annotations for CoT paths. To address this, methods
such as Monte Carlo (MC) estimates have been employed to quantify the quality or value of each reasoning step (Wang et al.,

22



Position: LLMs Need a Bayesian Meta-Reasoning Framework

Methods Process or Outcome Reward Type Ex(Im)Plicit Training Algorithm

Llama3-Instruct Models (Grattafiori et al., 2024) ORM Preference Explicit SFT+DPO
Qwen2.5-Instruct Models (Qwen et al., 2025) ORM Preference Explicit SFT+DPO+GRPO

AlphaMath (Chen et al., 2024a) PRM Correctness Explicit SFT
Math-Shepherd (Wang et al., 2024c) PRM Correctness Explicit SFT+PPO

Chain of Preference Optimization (Zhang et al., 2024c) PRM Correctness Explicit SFT+DPO
DeepSeek-R1-Zero (DeepSeek-AI et al., 2025) ORM (Rule-based) Correctness, Format Explicit GPRO

DeepSeek-R1 (DeepSeek-AI et al., 2025) ORM (Rule-based) Correctness, Format Explicit SFT+GPRO
EBRM (Lochab & Zhang, 2025) ORM Energy Implict SFT+PPO

Table 2. Feebback signals used for LLMs post-training (RL-based).

2024c; Chen et al., 2024a). Additionally, due to the strong in-context learning capabilities of LLMs, the “LLM-as-a-judge”
approach (Yao et al., 2023a; Zhang et al., 2024a) has become a popular alternative to replace PRMs. Recently, (Zhang et al.,
2025d) advanced this approach by integrating MC estimation with LLM-as-a-judge, establishing a new state-of-the-art
(SOTA) on the PRM benchmark (Zheng et al., 2025).

Search with Rewards Once suitable rewards are identified, they can be leveraged to control the LLM’s reasoning process
generation. A straightforward and intuitive method for incorporating rewards is Best-of-N (Lightman et al., 2024), which
selects the highest-scored generation from a set of candidates. PRMs further enable fundamental tree search algorithms,
such as Depth First Search (DFS) and Breadth First Search (BFS) (Yao et al., 2023a). Although DFS is rarely used due to its
limited exploration capabilities, BFS is frequently extended into Beam Search (Yao et al., 2023a; Xie et al., 2023), offering a
balance between search quality and computational efficiency.

For more computationally demanding scenarios, Monte Carlo Tree Search (MCTS) can be used in conjunction with PRMs
(Hao et al., 2023a; Wan et al., 2024). Interestingly, as shown by (Snell et al., 2025), the more complex MCTS often
underperforms the simpler Beam Search, which in turn only outperforms Best-of-N under low computational budgets. This
counterintuitive trend is often attributed to reward over-optimization, where methods are misled by imperfect reward signals
(Qin et al., 2024). Despite these challenges, MCTS has shown promise on more challenging questions. Moreover, (Zhang
et al., 2024a) demonstrated that integrating MCTS with a self-refine module enabled an 8B model to achieve performance
comparable to GPT-4 Turbo, highlighting the potential of advanced search algorithms like MCTS.

Training with Rewards Rewards can also be leveraged to further improve the performance of policy models. Popular
instruction-finetuned models such as LLaMA3 (Grattafiori et al., 2024) and Qwen2.5 (Qwen et al., 2025) follow a two-stage
training process: they are first finetuned on annotated QA datasets, and then refined using preference data via DPO. The
main distinction lies in the online reinforcement learning stage—Qwen2.5 employs GRPO, while LLaMA3 continues with
DPO.

Models like AlphaMath, Mathshepherd, and Chain of Preference Optimization utilize PRMs to assign values to intermediate
reasoning steps, though their training strategies vary. Empirical evidence suggests that reinforcement learning typically
outperforms simple rejection sampling.

A recent breakthrough, Deepseek-R1-Zero (DeepSeek-AI et al., 2025), achieves state-of-the-art (SOTA) performance by
entirely skipping the supervised finetuning (SFT) stage. Instead, it trains a model from scratch using a pure RL method
(GRPO) with only two simple reward signals: a correctness reward, which checks whether the final answer is correct, and
a format reward, which ensures the answer is presented in the correct format. Despite the simplicity of these signals, the
model achieves performance comparable to OpenAI-o1 (OpenAI, 2024), the leading reasoning model at the time.

However, Deepseek-R1-Zero tends to produce reasoning chains with poor readability, as the rewards do not explicitly
encourage clarity. To address this, the authors also release Deepseek-R1 (DeepSeek-AI et al., 2025), which includes a
finetuning stage before RL and achieves similar performance with significantly better readability.

Lastly, EBRM explores the use of implicit rewards for training, demonstrating improved robustness and generalization
capabilities. This approach opens the door to leveraging rewards that go beyond human-interpretable signals.

A.4. LLM Refinement During Inference

Refining the reasoning process of LLMs using feedback has emerged as a promising approach to enhance their performance,
reliability, and adaptability across diverse tasks. Feedback enables iterative improvements in reasoning by providing explicit
information about errors and areas requiring adjustment.
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Types of Feedback Existing feedback are falls into two categories, scalar and verbal. Scalar feedback can be Boolean
values (e.g., integers 0 or 1), or consistency scores (e.g., a decimal probability) (Wang et al., 2023a; Fu et al., 2023a; Pan
et al., 2024), which is observed to be highly correlated with correctness (Yao et al., 2023a; Li et al., 2023; Yan et al., 2024b).
Verbal feedback is more informative and explainable. The most direct way of generating feedback is to prompt the LLMs to
assess their current reasoning process (Lu et al., 2023; Liang et al., 2024). However, recent studies (Huang et al., 2024b;
Li et al., 2024c; Yan et al., 2024b) observed that LLMs often fail to provide reliable feedback due to their limitations in
knowledge grounding. Researchers then retrieve external knowledge or incorporate external tools, such as code compiler
to improve the validity of verbal feedback (Shinn et al., 2023b; Yao et al., 2023b). Verbal feedback from multi-agents or
multi-perspective is also shown to be more robust (Fu et al., 2023b; Bo et al., 2024; Zhang et al., 2024b).

Feedback Category Representative Papers

Template-based feedback Self-Refine (Madaan et al., 2023), PromptAgent (Wang et al.,
2024d), LLMsCF (Tyen et al., 2023), LargeLM (Huang et al.,
2024b)

Critic model feedback Step-Level Preference (Chen et al., 2024b), Self-Correct (Kumar
et al., 2024), Learning from Mistakes (Tong et al., 2024), Math
Error Localization (Uesato et al., 2022), REFINER (Paul et al.,
2024), DARS (Li et al., 2025a)

Token-based backtracking Backtracking (Zhang et al., 2025a), QuietStar (Zelikman et al.,
2024)

Tool-assisted feedback Code Interpreter: Self-Edit (Zhang et al., 2023a),
Self-Debug (Chen et al., 2024c), CRITIC (Gou et al., 2024),
ReTool (Feng et al., 2025a), ToolRL (Qian et al., 2025);
Search Engines: ReAct (Yao et al., 2023b), CheckFacts (Peng
et al., 2023), ASI (Varshney et al., 2023), Search R1 (Jin et al.,
2025), R1 Searcher (Song et al., 2025); Logic and relation topol-
ogy: Logic/Graph Analyser (Zhang et al., 2023b)

Table 3. Categorization of feedback techniques for refining LLM reasoning.

Refining Reasoning Process with Feedback To update the original reasoning process, we can directly prompt the LLMs
with feedback (Madaan et al., 2023; Yan et al., 2024b; Bo et al., 2024), train a separate critic model, introduce explicit
backtrack tokens and utilize external solvers.

(i) As much of the feedback is template-based (Huang et al., 2024b; Tyen et al., 2023), they typically offers limited
information about the error. Wang et al. (2024d) then proposed PromptAgent to dynamically optimize the initial prompt
template based on feedback. Specifically, a base LLM is used to collect errors from samples and the optimized LLM
(usually superior to the base LLM) is then used to offer error feedback and update the initial prompt. Additionally, multi-
agent framework enable the multi-faceted feedback for complex reasoning tasks, such as scientific paper replication (Xiang
et al., 2025b).

(ii) Many task-specific critic models are trained for error correction in math (Chen et al., 2024b), coding (Kumar et al.,
2024), QA and logic reasoning (Tong et al., 2024) tasks. To create the training data for critic models, they first sample
LLM-generated reasoning processes from a base model and ask human annotators to provide detailed annotations of error
positions (which reasoning step) and error types, e.g., knowledge error or calculation error (Tyen et al., 2023; Uesato et al.,
2022).

(iii) Some studies abandon the separate critic models and instead introduce special tokens, such as [RESET] to trigger
explicit error correction processes (Zhang et al., 2025a; Zelikman et al., 2024).

(iv) Tools like a Code Interpreter enable LLMs to validate reasoning and refine outputs based on compiler results (Feng
et al., 2025a; Qian et al., 2025), applied in mathematical and logical reasoning tasks (Yao et al., 2023b; Zhang et al.,
2023a; Chen et al., 2024c). Search engines allow LLMs to retrieve the latest evidence to ensure factual correctness and
validity (Varshney et al., 2023; Yu et al., 2023b; Peng et al., 2023; Jin et al., 2025; Song et al., 2025). Logic and relation
topology analyzer assists in analyzing complex logical relations and dependencies in graph-based reasoning systems (Zhang
et al., 2023b).
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