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Abstract

Graph Attention Network (GAT) is a novel001
graph neural network that can process and rep-002
resent types of different linguistic information003
using a graph structure. Although GAT and004
syntactic knowledge can primarily be used in005
downstream tasks and help in performance im-006
provement, there is still a lack of discussion on007
what syntactic knowledge GAT is good at learn-008
ing compared to other neural networks. There-009
fore, we investigate the robustness of GAT for010
syntactic dependency prediction in three differ-011
ent languages in terms of attention heads and012
the number of model layers. We can obtain013
optimal results when the number of attention014
heads increases and the number of layers is 2.015
We also use paired t-test and F1-score to test the016
prediction of GAT and the pre-trained model017
BERT fine-tuned by the Machine Translation018
(MT) task for syntactic dependencies. We ana-019
lyze their differences in syntactic dependencies,020
which can lead to syntactic complementarity021
in their predictions and the possibility of them022
working together on downstream tasks. We023
find that GAT is competitive in syntactic de-024
pendency prediction, producing good syntac-025
tic complementarity with BERT fine-tuned to026
MT in most cases, while BERT specifically027
fine-tuned to the dependency prediction task028
produces better results than GAT.029

1 Introduction030

The attention mechanism, which most state-of-the-031

art models use, can effectively capture potential032

links between input texts, as demonstrated by the033

Transformer model (Vaswani et al., 2017) in Ma-034

chine Translation (MT). The graph convolution035

network can be an extensible, supervised learning036

network for graph-structured data, which extends037

the choice of convolutional architectures through038

spectral and spatial graph convolution. (Veličković039

et al., 2017) propose the Graph Attention Network040

(GAT) inspired by the attention mechanism. The041

shared edge mechanism makes GAT independent042

of the structure of the global graph, and the at- 043

tention mechanism also empowers it to compute 044

the importance of different neighbors on the graph, 045

which is easily used in transductive and inductive 046

learning. Syntactic dependency in natural language 047

processing is the mainstream way of analyzing sen- 048

tence structure, using syntactic tree structures to 049

represent the dependency relationships between 050

words in a sentence. However, the representation 051

of syntactic dependencies has been mainly repre- 052

sented by models such as LSTM or GRU (Zhang 053

et al., 2019a; Hao et al., 2019; Liu et al., 2021). The 054

cumbersome representation process and the con- 055

sumption of computational resources have limited 056

the application of syntactic knowledge in down- 057

stream tasks. GAT simplifies and streamlines the 058

representation of syntactic relationships, allowing 059

separate linear information and linguistic knowl- 060

edge in sentences to be linked via graphs and ap- 061

plied to various downstream tasks. 062

Combining the representation of GAT with the 063

widely utilized pre-trained model BERT (Devlin 064

et al., 2019) makes it possible to achieve per- 065

formance breakthroughs in the downstream tasks 066

(Huang et al., 2020; Li et al., 2022). However, it 067

is unclear why syntactic knowledge incorporated 068

and represented by GAT can work effectively with 069

BERT. Increasing the interpretability of GAT in 070

terms of syntactic knowledge can contribute to bet- 071

ter natural language processing, both for down- 072

stream tasks which require syntactic knowledge 073

and for the combination of pre-trained models, in- 074

cluding but not limited to BERT. Therefore, in this 075

work, we investigate the predictions of GAT on syn- 076

tactic knowledge. We select syntactic dependencies 077

of three different languages as prediction targets to 078

test how the number of attention heads and layers 079

of GAT is robust to syntactic dependencies. Sec- 080

ond, we add a pre-trained model BERT which is 081

fine-tuned for the MT task. The differences be- 082

tween GAT and BERT in syntactic dependencies 083
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are compared by paired t-test and F1-score to an-084

alyze their syntactic complementarity. Our main085

contributions are as follows:086

• We investigate which configurations of atten-087

tion heads and model layers work best for088

GAT for syntactic dependency learning in089

three languages. We find that increasing the090

number of attention heads can help GAT to be091

optimal in syntactic dependency prediction,092

and the best prediction results are obtained093

for all languages when the number of model094

layers is 2, which is not common knowledge095

that the deeper, the better.096

• We evaluate the predictions of GAT and the097

pre-trained model BERT for typical syntactic098

dependencies, interpret the discrepancies in099

their predictions as syntactic complementarity,100

and discuss the possibility of their syntactic101

cooperation in MT tasks. We find that GAT102

not only outperforms BERT fine-tuned for MT103

tasks, such as “amod” for Chinese, “advmod”104

for German, and “cop” for Russian but is also105

competitive for syntactic knowledge learning106

in most cases. The discrepancies between107

GAT and BERT in gaining syntactic knowl-108

edge suggest the potential of syntactic com-109

plementarity.110

2 Related Work111

In natural language processing, graphs can repre-112

sent linguistic knowledge, which carries explicit113

semantic and syntactic information. GAT is a graph114

network that constructs a graph over a spatial do-115

main using an attention mechanism, which gen-116

erates new characteristics for each node by ag-117

gregating information from nearby nodes and dis-118

tinguishing the importance of neighbors. As it119

can be applied to inductive and transductive learn-120

ing (Salehi and Davulcu, 2019; Busbridge et al.,121

2019), it has garnered considerable attention. Since122

GAT can supplement linguistic knowledge in dif-123

ferent downstream tasks (Lyu et al., 2021; Huang124

and Carley, 2019), and its fusion with the pre-125

trained model BERT in downstream tasks is pos-126

sible and has attracted the majority of the focus127

in the study. (Huang et al., 2020) inject syntactic128

cognitive knowledge into the model using GAT’s129

representation of syntactic knowledge and BERT’s130

pre-trained knowledge, which results in better inter-131

action between context and aspectual words. In the132

span-level emotion cause analysis task, (Li et al., 133

2021) use the graph attention network to collect 134

structural information about contexts while using 135

BERT to obtain representations of emotions and 136

contexts. Graph features and word embeddings are 137

used to obtain semantic and syntactic information 138

to classify the comparative preference between two 139

given entities (Ma et al., 2020). However, most 140

of the work focuses only on the representation 141

and application of linguistic knowledge of GAT 142

in downstream tasks and still lacks to investigate 143

its learning of syntactic dependencies in the model 144

structure. What is the contribution of model lay- 145

ers and attention heads to syntactic dependency 146

learning? (Brody et al., 2021) proposes a more 147

expressive dynamic attention, but lacks tests of lin- 148

guistic knowledge. While integrating GAT and 149

BERT in downstream tasks can bring performance 150

gains, it is not yet clear how they contribute to each 151

other in terms of syntactic dependencies. Most of 152

the work has focused on the discussion and explo- 153

ration of the linguistic knowledge of BERT (Clark 154

et al., 2019; Papadimitriou et al., 2021), but the 155

learning of the linguistic knowledge of GAT is still 156

unclear. The application of GAT to MT tasks re- 157

mains largely unexplored. Although some works 158

try to use syntactic knowledge for MT tasks (Peng 159

et al., 2021; McDonald and Chiang, 2021), they 160

do not discuss the possibilities of GAT. (Dai et al., 161

2022) points out that BERT acts as an MT engine 162

for the encoder to produce low-quality translations 163

when translating sentences with partially syntactic 164

structures, although BERT knows syntactic knowl- 165

edge. The syntactic knowledge that GAT needs to 166

learn comes mainly from parser or the gold corpus, 167

and it does not need to focus on additional knowl- 168

edge, as opposed to BERT, which needs to analyze 169

more in the tasks. Suppose GAT can learn syn- 170

tactic knowledge and perform more competitively 171

than BERT fine-tuned for MT tasks. In that case, 172

one conjecture is that if effectivity representation 173

of syntactic knowledge in GAT can be used to im- 174

prove translation quality with BERT, it may lead to 175

a breakthrough in MT tasks and more interpretabil- 176

ity of linguistic knowledge. 177

3 Methodology 178

3.1 Syntactic Learning through Attention 179

Heads and Layers 180

We use GAT (Brody et al., 2021) as our experi- 181

mental model. The model is more powerful and 182
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robust through dynamic attention compared with183

the standard GAT (Veličković et al., 2017). The184

node features given to a GAT layer are X =185

[x1, x2, x3, . . . xi, xi+1], xi ∈ RF , where xi+1 is186

the total number of nodes, F is the hidden state of187

each node given. The Equation (1) summarises the188

attention mechanism of the GAT.189

houti =
K

∥
k=1

σ

∑
j∈Ni

αk
ijW

kxj

 (1)190

αk
ij =

exp(aT f(W k[xi ∥ xj ]))∑
v∈Ni

exp(aT f(W k[xi ∥ xv]))
(2)191

1-hop neighbors j ∈ Ni for node i,
K

∥
k=1

means192

the K multi-head attention outputs are concate-193

nated in this term, σ is a sigmoid function, houti194

is the output hidden state of the node i. In Equa-195

tion (2), αk
ij is an attention coefficient between196

node i and j with the attention head k, W k is lin-197

ear transformation matrix, a is the context vec-198

tor during training, and f(·) is LeakyReLU non-199

linearity function (Maas et al., 2013). For simplic-200

ity, the feature propagation in GAT can be written201

as Hl+1 = GAT (Hl, A; Θl), where Hl+1 is the202

stacked hidden states of all input nodes at layer l,203

A ∈ Rn×n is the graph adjacency matrix in GAT.204

Θl is the model parameters at that layer.205

We treat each word in a sentence as a graph node,206

and the edges between the nodes are derived from207

the golden syntactic dependencies in the Parallel208

Universal Dependencies (PUD) corpus, and the209

GAT needs to learn and predict the types of syntac-210

tic dependencies of the edges between the nodes.211

Although syntactic dependencies in linguistics are212

unidirectional from parent to child, we think of the213

edges in the graph created by GAT as being of two214

different kinds, from parent to child and from child215

to parent, respectively. This is due to the fact that,216

despite being connected, neighboring nodes have217

different significance depending on whether the218

current node is acting as a parent or child, and GAT219

must take into account and learn the significance220

of neighboring nodes in order to ascertain the syn-221

tactic dependencies that must be predicted at the222

time. Since PUD is a corpus containing golden lin-223

guistic knowledge, such as golden lexical informa-224

tion, syntactic dependencies, and other linguistic225

morphological knowledge, we do not rely on any226

linguistic parser to generate and extract syntactic227

dependencies. We select Chinese (Zh), German 228

(De), and Russian (Ru) as the three languages and 229

their syntactic dependencies for the tests in order 230

to reduce the problems related to single-language 231

experiments. The PUD corpus for each language 232

has 1000 sentences that are always arranged in the 233

same order (UD Chinese PUD1, UD Russian PUD2, 234

UD German PUD3). Because of syntactic depen- 235

dencies’ restrictions, a sentence’s sequential input 236

takes on a topological structure generally referred 237

to as a syntactic tree, providing information on the 238

structure of a graph. 239

We increase the number of attention heads and 240

model layers of GAT, add part-of-speech informa- 241

tion to as the additional syntactic knowledge of 242

node features, and evaluate its performance in pre- 243

dicting syntactic dependencies of languages under 244

various collocations. Given the classification im- 245

balance of different syntactic dependencies in the 246

PUD corpus, we use F1-score as an evaluation met- 247

ric to reflect the prediction performance of GAT 248

on syntactic dependencies as much as possible by 249

considering the effects of precision and recall. We 250

report the overall and individual prediction perfor- 251

mance of syntactic dependencies. 252

In experiments, GAT’s attention heads are set to 253

2, 4, 6, and 8, respectively. Moreover, the model 254

depth contains a different number of layers, which 255

are 2, 3, 4, 5, and 6. We record the variation and 256

trend of syntactic dependency learning of GAT for 257

different languages with these parameters paired 258

with each other. All languages include a randomly 259

divided training set, validation set, and test set with 260

the number of sentences of 800, 100, and 100, re- 261

spectively. Word embeddings = 768, dropout = 0.2, 262

optimizer = Adam, and learning rate = 2e-5. 263

3.2 Syntactic Dependency Complementarity 264

with Fine-tuned BERT 265

BERT is often used as a popular pre-trained model 266

for downstream tasks in natural language process- 267

ing and has achieved significant performance break- 268

throughs (Reimers and Gurevych, 2019; Zhang 269

et al., 2019b). GAT and BERT use attention mecha- 270

nisms as essential feature extraction, which makes 271

their combination in downstream tasks has become 272

1https://github.com/
UniversalDependencies/UD_Chinese-PUD

2https://github.com/
UniversalDependencies/UD_Russian-PUD

3https://github.com/
UniversalDependencies/UD_German-PUD
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possible. Most of the tasks are at the application273

level to discuss how GAT works with BERT in274

downstream tasks and what is the performance gain275

for the downstream tasks. However, there is still a276

lack of investigation at the level of linguistic knowl-277

edge as to why GAT can help BERT in downstream278

tasks in terms of syntactic knowledge and thus im-279

prove performance. In MT tasks, it is achievable280

that syntactic knowledge can improve translation281

quality, but the work of GAT and BERT in MT282

tasks is less discussed. (Dai et al., 2022) point to283

the impact of syntactic dependencies on transla-284

tion quality in MT engines with BERT. Given the285

feasibility of the GAT representation of syntactic286

dependencies, it is possible that a more efficient287

representation and complementation of syntactic288

dependencies can improve the poor translation qual-289

ity caused by the BERT translation engines. We,290

therefore, explore the interpretability and potential291

for collaboration between BERT and GAT in down-292

stream tasks by examining the differences between293

them in terms of syntactic dependencies, which we294

refer to as syntactic complementarity.295

Following (Dai et al., 2022), we select Chinese296

(Zh), Russian (Ru), and German (De) as the ex-297

perimental languages and the different BERT-base298

versions for their corresponding languages (Ku-299

ratov and Arkhipov, 2019; Cui et al., 2021; De-300

vlin et al., 2019), BERTs are fine-tuned by the MT301

task as the comparison objects to study the syn-302

tactic dependencies possessed by the fine-tuning303

in the MT scenario. Although the pre-training304

strategies of BERTs are different for different lan-305

guages, the model structure is the same. The United306

Nations Parallel Corpus (UNPC) (Ziemski et al.,307

2016) trains the Chinese and Russian MT engines,308

whereas Europarl (Koehn, 2005) trains the German309

MT engine. BERTs are used as encoders in MT310

engines for Zh→En, De→En, and Ru→En transla-311

tions.312

After completing the fine-tuning of the BERTs313

for MT tasks, we extract the BERTs in the transla-314

tion systems, a simple fully-connected layer is then315

added to the last layer of the fine-tuned BERTs,316

and all parameters are frozen except for the last317

fully-connected layer to prevent learning new syn-318

tactic knowledge from the syntactic dependency319

data set. However, BERT predicts differently from320

GAT because it does not know the child word of321

the present parent word. Since BERT knows syn-322

tactic knowledge and syntax tree can be detected323

(Htut et al., 2019; Manning et al., 2020), we do 324

not add any additional algorithms, for example, 325

to specify all the parent and child words in the 326

sentence. This simulates syntactic knowledge in 327

downstream tasks as closely as possible. The cor- 328

rectness of the prediction of syntactic dependencies 329

can indirectly corroborate the difference between 330

the syntactic tree formed and the golden syntactic 331

tree. Unlike GAT, which always focuses on syntac- 332

tic knowledge, BERT has syntactic knowledge as 333

part of what it needs to learn in the MT task, and 334

BERT’s learning of this syntactic knowledge may 335

not be sufficient. We also add another BERT but 336

updated the PUD corpus’s parameters as a refer- 337

ence. Knowing how well the BERT performs is 338

necessary when it focuses on syntactic knowledge, 339

which would be considered the best performance. 340

If GAT can beat it on specific syntactic dependen- 341

cies, this implies that the syntactic knowledge of 342

GAT is competitive and potential. We want to in- 343

vestigate the complementarity and possibility of 344

syntactic dependencies between the GAT and the 345

BERT fine-tuned by downstream MT tasks and syn- 346

tactic tasks. We evaluate the complementarity of 347

GAT and BERT in terms of syntactic dependencies 348

in overall and individual terms. First, a paired t-test 349

is used to compare the overall difference between 350

the two models for predicting syntactic dependency 351

and determining whether there is significant vari- 352

ation. Second, considering the diversity and com- 353

plexity of syntactic dependencies, we also discuss 354

the performance variation of individual syntactic 355

dependencies by F1-score, examining how differ- 356

ent models learn different sentence constituents. 357

We select the number of attention heads and lay- 358

ers with the highest overall prediction scores as 359

the experimental parameters for the GAT. All lan- 360

guages have two layers in the GAT, although Zh 361

has six attention heads and Ru and De each have 362

four. The strategy of GAT for predicting syntactic 363

dependencies is the same as in the previous experi- 364

ment, and the PUD corpus is the data set for BERT 365

and GAT. We add K-fold cross-validation and en- 366

sure that the training and test sets are the same for 367

both models, and the F1-score is still used as the 368

evaluation metric for this experiment to maximize 369

the consistency of the two models on the prediction 370

task. The number of the training and test set of the 371

PUD corpus is 850 and 150. The word embeddings 372

for GAT and BERT are 768, the other settings are 373

kept the same as in Experiment 3.1. 374
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4 Results375

4.1 Syntactic Predictions with Attention and376

Layers377

As shown in Table 1, we observe that a specific378

number of attention heads gives the optimal predic-379

tion performance of GAT, and arbitrarily increasing380

the number of attention heads may also lead to a381

decrease in prediction. In models like Transformer382

and BERT, it has been demonstrated that increas-383

ing the number of attention heads can improve the384

model’s capacity to extract and represent features.385

Increasing the number of attention heads in GAT386

by a certain amount can result in improved profits.387

However, this does not imply that further increases388

are helpful to the model. For instance, the optimal389

performance for Ru and De is reached with two390

layers and four attention heads. In Zh, however,391

six or eight attention heads yield better outcomes392

than that of 2 with two layers. We believe this is393

associated with the input structure of the model.394

Each word in a sentence can contribute to feature395

extraction when sequential input models such as396

Transformer are used, increasing attention heads397

can collect and learn potential links between words398

in various sub-spaces, leading to improved repre-399

sentations. The sequence input is transformed into400

a graph-based topology in GAT. We believe that401

unlike with sequential input, where it is necessary402

to allocate attention to discuss the potential contri-403

butions of each word, the observed range of each404

word in the sentence is already restricted and in-405

structive due to the structure of syntactic dependen-406

cies. Thus the increase in the number of attention407

heads is far less straightforward than the gain of,408

for example, the Transformer model. Its multiple409

heads of attention may also suffer from redundancy,410

which impairs the learning of syntactic dependen-411

cies.412

We notice that the GAT prediction for syntac-413

tic dependencies is acceptable with a reasonable414

number of attention heads and layers. However,415

experiments also reveal that increasing the number416

of layers of the neural network causes the overall417

prediction to be significantly impaired, and GAT418

loses learning and prediction of some syntactic de-419

pendencies, as shown in Table 2*. As the number420

of layers increases, GAT fails to learn some syn-421

tactic dependencies, as evidenced by the F1-score422

dropping entirely to 0. This phenomenon appears423

*The appendix contains all experimental results for the
three languages.

Zh
2 Heads 4 Heads 6 Heads 8 Heads

2 Layers 0.63 0.62 0.64 0.64
3 Layers 0.64 0.61 0.62 0.63
4 Layers 0.56 0.58 0.64 0.49
5 Layers 0.49 0.50 0.51 0.50
6 Layers 0.37 0.40 0.33 0.33

Ru
2 Heads 4 Heads 6 Heads 8 Heads

2 Layers 0.58 0.61 0.47 0.56
3 Layers 0.45 0.55 0.54 0.53
4 Layers 0.44 0.47 0.56 0.57
5 Layers 0.42 0.52 0.46 0.49
6 Layers 0.41 0.36 0.31 0.33

De
2 Heads 4 Heads 6 Heads 8 Heads

2 Layers 0.64 0.67 0.64 0.56
3 Layers 0.60 0.56 0.56 0.57
4 Layers 0.56 0.50 0.53 0.53
5 Layers 0.58 0.61 0.50 0.47
6 Layers 0.48 0.49 0.48 0.42

Table 1: Overall GAT predictions of syntactic relation-
ships for three languages with different numbers of at-
tention heads and layers. The increased number of atten-
tion heads and layers does not result in a performance
advantage.

in all three languages in the experiment. We record 424

the number of syntactic dependencies with an F1- 425

score of 0 under the different number of attention 426

heads in each layer for the three languages. As 427

shown in the Figure 1, they are concentrated in 428

the deep layers, and the increase in attention heads 429

does not alleviate this phenomenon. This is dif- 430

ferent from the intuition that the deeper the model 431

depth, the better the performance. The increase 432

in layers does not bring more significant perfor- 433

mance, which may be because the increase in the 434

number of layers of the graph network causes the 435

nodes to lose their properties or may absorb some 436

irrelevant information leading to degradation of the 437

model performance. Also, we observe that GAT 438

produces a consistent learning performance for spe- 439

cific syntactic dependencies when presented with 440

different languages, they are ”advmod”, ”case”, 441

”cc”, ”mark”, ”nsubj”, ”punct”. When increas- 442

ing the number of attention heads and the depth 443

of the model layers, they can maintain relatively 444

high prediction scores, and the predicted outcome 445

of an F1-score of 0 does not occur. The model 446

can acquire some common underlying linguistic 447

knowledge in a deeper layer across multiple lan- 448

guages, which means that GAT is more sensitive to 449

such syntactic knowledge and capturing the same 450

syntactic knowledge across languages is possible 451

for deep graph neural networks. 452
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Zh
Layers Heads appos advmod clf case cc dep mark nsubj obj punct

2

2 0.60 0.90 0.87 0.98 0.99 0.64 0.99 0.64 0.53 0.99
4 0.55 0.90 0.82 0.99 0.99 0.63 0.99 0.66 0.58 0.99
6 0.61 0.91 0.89 0.99 0.99 0.66 0.98 0.68 0.61 0.99
8 0.58 0.90 0.83 0.99 0.99 0.62 0.99 0.67 0.59 0.99

3

2 0.54 0.90 0.88 0.99 0.99 0.64 0.90 0.68 0.63 0.99
4 0.57 0.91 0.86 0.59 0.99 0.64 0.96 0.66 0.58 0.99
6 0.61 0.90 0.88 0.59 0.99 0.66 0.96 0.66 0.60 0.99
8 0.60 0.91 0.90 0.59 0.99 0.66 0.96 0.68 0.63 0.99

4

2 0.55 0.89 0.68 0.97 0.99 0.64 0.95 0.64 0.55 0.99
4 0.60 0.90 0.66 0.98 0.99 0.65 0.98 0.69 0.62 0.99
6 0.56 0.91 0.69 0.99 0.99 0.68 0.92 0.67 0.60 0.99
8 0 0.90 0 0.98 0.80 0.64 0.96 0.62 0.44 0.98

5

2 0.52 0.90 0 0.56 0.99 0 0.93 0.65 0.56 0.99
4 0.62 0.90 0 0.92 0.75 0 0.88 0.66 0.60 0.99
6 0.54 0.90 0 0.88 0.99 0 0.91 0.65 0.58 0.99
8 0 0.89 0 0.97 0.99 0 0.84 0.56 0.52 0.99

6

2 0 0.83 0 0.81 0.99 0 0.82 0.42 0 0.98
4 0 0.86 0 0.88 0.77 0 0.87 0.50 0 0.98
6 0 0.84 0 0.83 0.75 0 0.82 0.47 0 0.96
8 0 0.86 0 0.89 0.73 0 0.84 0.51 0 0.99

Table 2: Part of Chinese syntactic dependencies is shown. As the number of layers increases, GAT gradually loses
its prediction ability for some syntactic dependencies in Chinese. Some syntactic dependencies are not significantly
affected by the number of layers increased that the F1-score drops to 0.

Figure 1: The number of F1-score dropped to 0 made
by the GAT in different layers with a different number
of attention heads. Although each layer has 2, 4, 6, and
8 attention heads, increasing the number of layers in-
variably results in more failures for syntactic knowledge
learning.

4.2 Complementarity of Syntactic453

Dependencies with BERT454

As shown in Table 3, the paired t-test shows that455

the p-values for all three languages are less than the456

significance level when the outliers of the syntactic457

dependencies are removed. The null hypothesis458

(H0) that the two models would be equally effec-459

tive in predicting syntactic dependencies is rejected,460

and the significant differences in syntactic depen-461

dencies between the GAT and the BERT fine-tuned462

by machine translation (MT-B) are statistically sig-463

nificant.464

Investigating the learning of each syntactic de- 465

pendency from an F1-score perspective as shown 466

in Table 4, we find that GAT dominates the pre- 467

diction of the vast majority of syntactic dependen- 468

cies, with only a small proportion losing out to 469

MT-B. We argue that although BERT is fine-tuned 470

by the MT task, its learning of syntactic dependen- 471

cies is inadequate in this case. BERT is likely to 472

produce similar results under fine-tuning in other 473

downstream tasks, since many works have shown 474

that incorporating syntactic dependency through 475

GAT with BERT in downstream tasks can improve 476

performance. The complementation of syntactic 477

dependencies by GAT can hardly have a substan- 478

tial impact on downstream tasks if the syntactic 479

knowledge of BERT does not decrease to varying 480

degrees after fine-tuning. From the study of (Dai 481

et al., 2022): when detection of dependencies de- 482

teriorates, MT quality drops. Association between 483

quality and the relations of ”appos”, ”case”, ”flat”, 484

”flat:name”, and ”obl” for all languages, ”dep”, 485

”advcl”, and ”mark” for Chinese, ”parataxis” and 486

”nummod” for Russian, ”compound” and ”advcl” 487

for German. Also, relation of ”root” as the sen- 488

tence’s main predicate ** is the root node and is 489

used to express the sentence’s main substance. De- 490

spite GAT and BERT make predictions in differ- 491

ent ways, and it cannot be linked to the decrease 492

**One of the orphaned dependents gets promoted to the root
position if the main predicate is absent.
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Languages Observations Sample size Significance level Mean STDev T-value P-value

Zh MT-B 29

0.05

0.6 0.2 4.39 ¡0.001GAT 0.7 0.3

Ru MT-B 23 0.7 0.2 3.555 0.001GAT 0.7 0.3

De MT-B 26 0.6 0.2 3.682 0.001GAT 0.7 0.3

Table 3: Paired t-tests are used to compare the findings of GAT and BERT fine-tuned by machine translation on
syntactic dependency prediction. There is a significant difference in the prediction results between the two models.

Zh Ru De
# MT-B GAT UD-B # MT-B GAT UD-B # MT-B GAT UD-B

acl 19 0 0 0 256 0.514 0.392 0.854 20 0 0 0
acl:relcl 448 0.478 0.913 0.836 160 0.444 0.105 0.960 271 0.654 0.605 0.912
advcl 516 0.274 0.376 0.728 197 0.320 0.334 0.842 220 0.410 0.495 0.832
advmod 1332 0.660 0.909 0.946 914 0.830 0.902 0.964 1103 0.618 0.984 0.958
amod 420 0.388 0.919 0.874 1791 0.880 0.979 0.982 1089 0.656 0.935 0.976
appos 248 0.522 0.423 0.740 121 0.420 0.436 0.570 265 0.344 0.561 0.786
aux 686 0.746 0.875 0.966 42 0.884 0.836 0.932 365 0.820 0.862 0.972
aux:pass 79 0.842 0 0.970 128 0.962 0.988 0.968 230 0.832 0.934 0.965
case 1319 0.756 0.963 0.928 2121 0.924 0.983 0.981 2053 0.844 0.994 0.986
case:loc 351 0.664 0.779 0.954 - - - - - - - -
cc 283 0.842 0.990 0.938 599 0.950 0.969 0.988 724 0.822 0.981 0.972
ccomp 403 0.174 0.277 0.656 132 0.506 0.536 0.752 169 0.336 0.196 0.704
clf 357 0.804 0.737 0.980 - - - - - - - -
compound 1777 0.604 0.881 0.886 9 0 0 0 251 0.488 0.496 0.850
conj 383 0.484 0.976 0.842 965 0.728 0.862 0.920 842 0.584 0.673 0.912
cop 251 0.552 0.962 0.842 87 0.762 0.983 0.830 274 0.786 0.755 0.954
dep 397 0.276 0.556 0.742 - - - - - - - -
det 338 0.710 0.963 0.956 476 0.866 0.997 0.974 2771 0.906 0.996 0.980
expl - - - - 7 0 0 0.890 90 0.760 0.319 0.982
fixed - - - - 222 0.586 0.277 0.846 7 0 0 0
flat 91 0.674 0.867 0.965 61 0.174 0.483 0.538 14 0.050 0.271 0.344
flat:foreign - - - - 97 0.320 0.903 0.892 - - - -
flat:name 142 0.778 0.897 0.936 222 0.890 0.588 0.986 164 0.502 0.844 0.762
iobj 15 0 0 0.134 190 0.508 0 0.730 95 0.430 0 0.874
mark 291 0.536 0.980 0.905 287 0.776 0.867 0.854 459 0.822 0.992 0.980
mark:adv 22 0.990 0.400 0.970 - - - - - - - -
mark:prt 338 0.414 0.237 0.838 - - - - - - - -
mark:relcl 626 0.862 0.756 0.944 - - - - - - - -
nmod 702 0.36 0.919 0.826 1934 0.696 0.870 0.920 1102 0.580 0.749 0.888
nsubj 1776 0.608 0.612 0.906 1362 0.726 0.666 0.936 1481 0.672 0.678 0.950
nsubj:pass 70 0.138 0 0.766 186 0.272 0 0.904 207 0.440 0 0.974
nummod 809 0.844 0.993 0.988 181 0.530 0.690 0.732 226 0.758 0.808 0.926
obj 1526 0.482 0.558 0.858 749 0.550 0.518 0.928 895 0.592 0.485 0.960
obl 578 0.232 0.846 0.738 1465 0.670 0.911 0.914 1344 0.604 0.801 0.918
obl:agent 22 0.714 0 0.888 12 0 0 0.520 - - - -
obl:patient 39 0 0 0.986 - - - - - - - -
obl:tmod 214 0.504 0.104 0.816 - - - - 10 0.618 0.216 0.832
parataxis - - - - 195 0.520 0.200 0.706 68 0 0 0.524
punct 2902 0.748 0.990 0.990 2977 0.958 0.990 0.990 2770 0.928 0.999 0.981
root 1000 0.486 0.968 0.894 1000 0.880 0.994 0.982 1000 0.704 0.932 0.982
xcomp 476 0.278 0.437 0.804 331 0.580 0.634 0.880 190 0.464 0.291 0.820

Table 4: Prediction scores of machine translation fine-tuned BERT (MT-B) and GAT and BERT fine-tuned for PUD
corpus (UD-B) in syntactic dependencies. GAT is more competitive than MT-B in predicting syntactic dependencies,
shown in bold format, and some syntactic dependencies can surpass UD-B, shown in the non-italic format in the
column of UD-B.

in MT quality (because it is present in every sen-493

tence), the fact that GAT and BERT fine-tuned for494

the PUD corpus (UD-B) are better in detecting it495

means that BERT fine-tuned for the MT task lack496

the ability to detect. GAT has better predictive497

performance in most cases for all languages, it is 498

possible that translation quality can be further im- 499

proved if these mentioned syntactic dependencies 500

that affect translation quality are targeted to be sup- 501

plemented by GAT. If all syntactic knowledge can 502
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be incorporated into a translation system through503

GAT, clearer sentence structure may lead to more504

fluent translation results. Based on the prediction505

of syntactic dependencies, we believe that GAT and506

MT-B in MT tasks are complementary in terms of507

syntactic dependencies and are highly competitive508

in predicting at least most syntactic dependencies.509

UD-B performs best on the F1-score, but it does510

not substantially outperform the GAT with only511

two layers. In most cases, their prediction scores512

are close to each other. Given that BERT is pre-513

trained with a large amount of data and is more514

complicated than GAT regarding the number of515

attention heads and the model structure, the pre-516

diction results are not surprising. However, the517

GAT still outperform UD-B for some relations,518

such as ”amod”, ”conj” for Chinese, ”advmod”,519

”flat:name” for German, and ”cop” for Russian.520

We record the common relations that outperformed521

UD-B in prediction in all three languages: ”case”,522

”mark”, ”det”, and ”cc”. This means that GAT523

can learn the four mentioned syntactic dependen-524

cies efficiently and can successfully predict and525

outperform BERT without pre-training. Although526

the prediction results are different for all relations,527

at least we can assume that GAT is more learned528

for these four syntactic dependencies and can have529

potential syntactic complementarity with BERT.530

The majority of syntactic dependencies number531

fewer than 500 indicating that the training sample532

cost of GAT is not expensive, and the same number533

of training samples can outperform MT-B in the534

majority of syntactic dependencies and UD-B in535

a few cases. How to learn linguistic knowledge536

from a limited number of training samples can be537

a challenge for both BERT and GAT. Pre-training538

and more robust model structures allow BERT to539

effectively alleviate this problem when faced with540

learning from small samples. However, GAT may541

be unable to learn them. Examples are ”acl” for Zh542

and De, ”aux:pass” for Chinese, and ”obl:agent”543

for Zh and Ru. Not only that, the learning of spe-544

cific syntactic dependencies is difficult for GAT.545

”iobj” and ”nsubj:pass” in the three languages can-546

not be predicted by GAT. These two relations are547

consistent in linguistic knowledge classification,548

with core arguments as their functional categories549

and nominals as their structural categories. GAT550

may lack sufficient learning of the syntactic sub-551

jects of indirect objects and passive clauses. In552

most cases, the lightweight and inexpensive GAT553

shows acceptable performance in syntactic knowl- 554

edge learning relative to BERT fine-tuned for the 555

MT task, and it is possible to complement BERT’s 556

deficiencies in syntactic dependencies in the MT 557

task. Furthermore, GAT can outperform BERT 558

fine-tuned for syntactic dependencies on specific 559

dependencies, the same pre-trained GAT may lead 560

to a superior representation of linguistic knowledge 561

in the future. 562

5 Conclusions 563

This work investigates the effect of the number of 564

attention-head and model layers in GAT on syntac- 565

tic dependency learning and whether there is syn- 566

tactic complementarity with the pre-trained model 567

BERT. We find that appropriately increasing the 568

number of attention-head in GAT does allow for 569

better model optimization, despite the possible re- 570

dundancy of these attention heads. However, con- 571

trary to our previous knowledge, the increase in the 572

number of model layers produces an F1-score of 0 573

for predicting syntactic dependencies. The reason 574

for this is unclear, but according to experimental 575

results, GAT with a layer of 2 is the most friendly 576

for syntactic-dependent learning. Moreover, paired 577

t-tests and F1-score suggest that GAT is capable of 578

syntactic complementarities at different levels than 579

BERT fine-tuned by MT and syntactic tasks. UD- 580

BERT specifically trained for the UD prediction 581

task is overall better than GAT, especially for the 582

rare syntactic categories, as it benefits from seeing 583

many more examples of them at the pre-training 584

stage, while GAT only learns from the explicit trees. 585

Still, GAT is competitive for syntactic dependency 586

learning and can be incorporated into downstream 587

tasks, and these syntactic complementarities be- 588

tween BERT and GAT may have the potential for 589

the fusion of pre-trained models and graph neural 590

networks. Future work includes further investigat- 591

ing the possibility of using GAT’s representation of 592

syntactic dependencies to improve the translation 593

quality of translation engines with BERT. 594
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6 Appendices722

6.1 Syntactic Predictions with Attention and723

Layers724

We investigate syntactic dependency learning in725

GAT for Chinese (Zh), Russian (Ru), and German726

(De) for different numbers of attention heads (A)727

and layers (L) as shown in Table 5 to Table 9. As728

some syntactic dependencies in the PUD corpus729

are uncommon with only a small number of sam-730

ples, they do not reasonably reflect the learning731

performance of the model, so we remove them in732

the experiments. Due to the diversity of language733

knowledge, the categories of syntactic dependen-734

cies may vary between languages.735
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Zh
L-A acl:relcl advcl advmod amod appos aux case case:loc cc ccomp
2–2 0.82 0 0.90 0.80 0.60 0.90 0.98 0.95 0.99 0
2–4 0.83 0 0.90 0.81 0.55 0.91 0.99 0.94 0.99 0.40
2–6 0.87 0.14 0.91 0.85 0.61 0.91 0.99 0.91 0.99 0.53
2–8 0.84 0.15 0.90 0.80 0.58 0.91 0.99 0.94 0.99 0.30
3–2 0.87 0 0.90 0.84 0.54 0.90 0.99 0.92 0.99 0.66
3–4 0.85 0 0.91 0.83 0.57 0.89 0.59 0.95 0.99 0.38
3–6 0.88 0 0.90 0.87 0.61 0.90 0.59 0.95 0.99 0.66
3–8 0.87 0 0.91 0.85 0.60 0.91 0.59 0.94 0.99 0.64
4–2 0.83 0 0.89 0.80 0.55 0.90 0.97 0.89 0.99 0
4–4 0.87 0 0.90 0.80 0.60 0.90 0.98 0.94 0.99 0
4–6 0.89 0.19 0.91 0.83 0.56 0.90 0.99 0.94 0.99 0.21
4–8 0.83 0 0.90 0.78 0 0.87 0.98 0.95 0.80 0
5–2 0 0.36 0.90 0.74 0.52 0.88 0.56 0.83 0.99 0
5–4 0.91 0.38 0.90 0.76 0.62 0.90 0.92 0 0.75 0
5–6 0.87 0.36 0.90 0.79 0.54 0.87 0.88 0 0.99 0
5–8 0.86 0 0.89 0.80 0 0.86 0.97 0.85 0.99 0
6–2 0.79 0 0.83 0.71 0 0.82 0.81 0 0.99 0
6–4 0.84 0 0.86 0.73 0 0.88 0.88 0 0.77 0
6–6 0 0 0.84 0.59 0 0.86 0.83 0 0.75 0
6–8 0 0 0.86 0 0 0.85 0.89 0 0.73 0
L-A clf compound conj cop dep det discourse:sp flat flat:name mark
2–2 0.87 0.86 0.99 0.88 0.64 0.97 0.22 0.96 0.88 0.99
2–4 0.82 0.86 0.99 0.95 0.63 0.97 0.22 0.99 0.88 0.99
2–6 0.89 0.87 0.99 0.97 0.66 0.97 0.29 0.96 0.88 0.98
2–8 0.83 0.87 0.99 0.98 0.62 0.97 0.33 0.99 0.88 0.99
3–2 0.88 0.87 0.99 0.94 0.64 0.97 0.22 0.96 0.92 0.90
3–4 0.86 0.85 0.99 0.95 0.64 0.97 0.20 0.96 0.94 0.96
3–6 0.88 0.86 0.99 0.97 0.66 0.97 0 0.96 0.94 0.96
3–8 0.90 0.87 0.99 0.97 0.66 0.97 0.22 0.92 0.97 0.96
4–2 0.68 0.82 0.97 0.91 0.64 0.95 0.18 0.96 0 0.95
4–4 0.66 0.82 0.99 0.97 0.65 0.95 0.22 0.99 0 0.98
4–6 0.69 0.84 0.99 0.97 0.68 0.97 0.29 0.99 0 0.92
4–8 0 0.78 0 0.92 0.64 0.85 0 0.76 0 0.96
5–2 0 0.83 0.99 0.91 0.64 0.84 0.33 0.99 0 0.93
5–4 0 0.81 0 0.97 0 0.84 0.29 0.99 0.80 0.88
5–6 0 0.82 0.99 0.95 0 0.85 0 0.99 0 0.91
5–8 0 0.83 0.86 0.97 0 0.85 0.22 0.81 0.84 0.84
6–2 0 0.83 0.53 0.92 0 0.85 0 0.96 0 0.82
6–4 0 0.76 0 0.94 0 0.83 0 0.73 0 0.87
6–6 0 0.66 0 0.91 0 0.82 0 0.88 0 0.82
6–8 0 0.62 0 0.92 0 0.83 0 0.81 0.72 0.84
L-A mark:prt mark:relcl nmod nsubj nummod obj obl obl:tmod punct root
2–2 0.68 0.96 0.92 0.64 0.97 0.53 0.79 0.40 0.99 0.98
2–4 0.66 0.97 0.93 0.66 0.98 0.58 0.79 0.42 0.99 0.98
2–6 0.71 0.97 0.92 0.68 0.98 0.61 0.77 0.44 0.99 0.98
2–8 0.70 0.97 0.92 0.67 0.98 0.59 0.80 0.41 0.99 0.98
3–2 0.75 0.98 0.92 0.68 0.98 0.63 0.81 0.42 0.99 0.99
3–4 0.73 0.74 0.73 0.66 0.99 0.58 0.84 0.44 0.99 0.98
3–6 0.69 0.77 0.72 0.66 0.99 0.60 0.79 0.42 0.99 0.98
3–8 0.69 0.79 0.71 0.68 0.99 0.63 0.84 0.53 0.99 0.99
4–2 0 0.97 0.92 0.64 0.97 0.55 0.80 0.34 0.99 0.99
4–4 0 0.96 0.94 0.69 0.99 0.62 0.82 0.37 0.99 0.98
4–6 0.72 0.97 0.92 0.67 0.99 0.60 0.82 0.44 0.99 0.99
4–8 0 0.97 0.90 0.62 0.98 0.44 0.78 0.34 0.98 0.98
5–2 0 0.62 0.72 0.65 0.98 0.56 0 0.36 0.99 0.98
5–4 0 0.97 0.92 0.66 0.86 0.60 0.77 0 0.99 0.99
5–6 0 0.97 0.91 0.65 0.85 0.58 0.73 0.37 0.99 0.98
5–8 0 0.97 0.92 0.56 0.83 0.52 0.73 0 0.99 0.89
6–2 0 0.97 0.89 0.42 0.83 0 0 0 0.98 0
6–4 0 0.97 0.90 0.50 0.86 0 0.64 0 0.98 0.82
6–6 0 0.88 0.68 0.47 0 0 0.66 0 0.96 0.88
6–8 0 0.72 0.80 0.51 0 0 0.66 0 0.99 0.79

Table 5: GAT predictions of syntactic dependence in Chinese.
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Zh
L-A xcomp
2–2 0.48
2–4 0.54
2–6 0.56
2–8 0.58
3–2 0.63
3–4 0.53
3–6 0.65
3–8 0.68
4–2 0.47
4–4 0.44
4–6 0.56
4–8 0.47
5–2 0.41
5–4 0.53
5–6 0.48
5–8 0
6–2 0
6–4 0
6–6 0
6–8 0

Table 6: GAT predictions of syntactic dependence in Chinese.
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Ru
L-A acl acl:relcl advcl advmod amod appos aux aux:pass case cc
2–2 0.54 0 0 0.90 0.98 0.32 0.75 0.96 0.99 0.97
2–4 0.52 0 0.71 0.91 0.98 0.55 0.89 0.96 0.99 0.99
2–6 0.64 0.81 0 0.89 0.98 0.24 0 0 0.98 0.96
2–8 0.54 0 0 0.90 0.98 0.50 0.67 0.92 0.98 0.97
3–2 0.57 0 0 0.90 0.98 0.12 0 0 0.98 0.96
3–4 0.63 0 0.56 0.92 0.98 0.45 0 0 0.98 0.96
3–6 0.63 0.84 0 0.90 0.98 0.48 0 0 0.98 0.96
3–8 0.67 0.72 0 0.91 0.98 0.13 0 0 0.99 0.96
4–2 0.51 0 0 0.92 0.97 0 0 0 0.97 0.84
4–4 0.60 0.64 0 0.89 0.97 0 0.67 0 0.99 0.82
4–6 0.73 0.84 0.39 0.90 0.98 0.65 0 0.86 0.99 0.82
4–8 0.65 0 0 0.92 0.99 0.55 0.44 0 0.99 0.96
5–2 0.57 0 0.23 0.91 0.96 0 0 0 0.97 0.85
5–4 0.67 0.78 0.49 0.91 0.97 0 0 0 0.98 0.82
5–6 0.77 0.75 0.17 0.91 0.97 0.44 0 0 0.97 0.81
5–8 0.56 0 0 0.91 0.96 0.54 0 0.86 0.99 0.86
6–2 0 0 0 0.90 0.96 0 0 0.89 0.94 0.83
6–4 0 0.42 0 0.88 0.88 0 0 0 0.95 0.78
6–6 0.30 0 0 0.88 0.91 0 0 0 0.94 0.79
6–8 0 0 0 0.90 0.96 0 0 0 0.96 0.85
L-A ccomp conj cop csubj det fixed flat flat:forign flat:name mark
2–2 0.70 0.84 0.96 0 0.99 0.43 0.86 0.87 0.58 0.97
2–4 0.67 0.87 0.99 0 0.99 0.57 0.86 0.92 0.56 0.94
2–6 0.54 0.88 0.58 0 0.98 0 0 0.80 0.52 0.96
2–8 0.57 0.87 0.96 0 0.99 0.50 0.86 0.87 0.64 0.90
3–2 0.50 0.88 0.56 0 0.98 0 0 0.74 0.51 0.93
3–4 0.81 0.90 0.67 0 0.99 0.67 0.86 0.87 0.55 0.94
3–6 0.67 0.89 0.67 0 0.99 0.56 0.77 0.83 0.59 0.93
3–8 0.63 0.87 0.65 0 0.99 0.67 0.86 0.92 0.61 0.93
4–2 0.60 0 0.63 0 0.99 0 0 0.69 0.52 0.94
4–4 0.31 0 0.73 0 0.99 0.76 0.77 0.83 0.64 0.94
4–6 0 0 0.96 0.13 0.99 0.84 0.67 0.83 0.69 0.97
4–8 0.72 0.88 0.85 0 0.99 0.80 0.80 0.92 0.68 0.94
5–2 0.63 0 0.56 0 0.99 0 0.55 0.88 0.59 0.93
5–4 0.69 0 0.58 0 0.99 0.71 0.77 0.87 0.59 0.96
5–6 0 0 0.61 0 0.99 0 0.67 0.80 0.62 0.93
5–8 0.49 0 0.96 0 0.99 0.80 0.48 0 0.61 0.96
6–2 0.28 0 0.88 0 0 0 0 0.71 0.58 0.91
6–4 0.48 0 0.63 0 0.94 0 0 0.81 0.43 0.97
6–6 0 0 0.58 0 0.93 0 0 0.74 0.43 0.93
6–8 0.49 0 0.56 0 0.99 0 0 0.83 0.55 0.93
L-A nmod nsubj nummod nummod:gov obj obl punct root xcomp
2–2 0.90 0.71 0.76 0.33 0.58 0.89 0.99 0.98 0.53
2–4 0.90 0.67 0.75 0.43 0.56 0.91 0.99 0.98 0.53
2–6 0.88 0.67 0.76 0 0.48 0.90 0.99 0.98 0
2–8 0.90 0.69 0.75 0 0.54 0.91 0.99 0.98 0
3–2 0.88 0.67 0.65 0.31 0.55 0.93 0.99 0.98 0
3–4 0.89 0.69 0.71 0.43 0.59 0.92 0.99 0.99 0.56
3–6 0.91 0.67 0.73 0.50 0.52 0.92 0.99 0.98 0
3–8 0.91 0.70 0.71 0.40 0.60 0.93 0.99 0.99 0
4–2 0.83 0.70 0.70 0.43 0.57 0.90 0.99 0.94 0.45
4–4 0.86 0.65 0.71 0.43 0.52 0.91 0.99 0 0
4–6 0.91 0.72 0.75 0.43 0.59 0.92 0.99 0.98 0
4–8 0.92 0.71 0.77 0.40 0.63 0.93 0.99 0.98 0.61
5–2 0.87 0.63 0.78 0.53 0.44 0.90 0.99 0 0
5–4 0.83 0.71 0.72 0.31 0.56 0.90 0.99 0.97 0.52
5–6 0.87 0.69 0.72 0.31 0.60 0.89 0.99 0 0.52
5–8 0.89 0.68 0.79 0.43 0.50 0.91 0.99 0.98 0
6–2 0.78 0.67 0.68 0 0.41 0.88 0.98 0.96 0
6–4 0 0.64 0.62 0 0.46 0.75 0.99 0.95 0
6–6 0 0.53 0.54 0 0.40 0.75 0.98 0 0
6–8 0.83 0.53 0.63 0 0.40 0.88 0.99 0 0

Table 7: GAT predictions of syntactic dependence in Russian.
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De
L-A acl acl:relel advcl advmod amod appos aux aux:pass case
2–2 0 0.71 0.83 0.99 0.95 0.39 0.85 0.81 0.99
2–4 0.5 0.75 0.89 0.99 0.95 0.56 0.91 0.81 0.99
2–6 0.5 0.75 0.89 0.99 0.95 0.56 0.91 0.81 0.99
2–8 0 0.41 0 0.99 0.94 0 0.86 0.81 0.99
3–2 0 0.60 0 0.99 0.94 0 0.85 0.81 0.99
3–4 0 0.45 0 0.99 0.94 0 0.85 0.81 0.99
3–6 0 0.41 0 0.98 0.94 0 0.88 0.81 0.99
3–8 0 0.46 0 0.99 0.94 0 0.88 0.81 0.99
4–2 0 0.52 0 0.99 0.95 0 0.81 0 0.99
4–4 0 0.45 0 0.99 0.94 0 0 0 0.99
4–6 0 0.40 0 0.98 0.93 0 0 0.48 0.99
4–8 0 0.45 0 0.98 0.93 0 0 0.52 0.99
5–2 0 0.42 0 0.99 0.92 0 0.86 0.81 0.99
5–4 0 0.68 0 0.99 0.93 0 0.85 0.81 0.99
5–6 0 0.44 0 0.99 0.94 0 0 0 0.99
5–8 0 0.43 0 0.97 0.94 0 0 0 0.99
6–2 0 0 0 0.98 0.9 0.07 0.62 0 0.98
6–4 0 0 0 0.97 0.91 0 0 0.7 0.98
6–6 0 0 0 0.97 0.91 0 0 0 0.98
6–8 0 0.37 0 0.97 0.91 0 0 0 0.98
L-A cc ccomp compound compound:prt conj cop det flat:name mark
2–2 0.99 0.56 0.80 0 0.78 0.93 0.99 0.83 0.97
2–4 0.99 0.60 0.81 0 0.81 0.98 0.99 0.85 0.97
2–6 0.99 0.60 0.81 0 0.81 0.98 0.99 0.85 0.97
2–8 0.99 0 0.72 0 0.80 0.95 0.99 0.81 0.96
3–2 0.99 0.48 0.83 0 0.78 0.93 0.99 0.82 0.95
3–4 0.99 0 0.80 0 0.80 0.95 0.99 0.84 0.86
3–6 0.99 0 0.78 0 0.80 0.95 0.99 0.81 0.91
3–8 0.99 0 0.72 0 0.80 0.95 0.99 0.84 0.91
4–2 0.99 0 0.86 0 0.76 0.93 0.99 0.90 0.93
4–4 0.99 0 0.82 0 0.79 0.57 0.99 0.82 0.84
4–6 0.99 0 0.76 0 0.79 0.90 0.99 0.85 0.93
4–8 0.99 0 0.80 0 0.80 0.88 0.99 0.84 0.85
5–2 0.99 0 0.82 0 0.82 0.95 0.99 0.83 0.92
5–4 0.99 0.52 0.74 0 0.82 0.95 0.99 0.8 0.94
5–6 0.99 0 0.75 0 0.82 0.65 0.99 0.78 0.85
5–8 0.99 0 0 0 0.79 0.57 0.99 0.78 0.86
6–2 0.98 0 0.65 0.67 0.74 0 0.96 0.84 0.82
6–4 0.99 0 0.69 0 0.78 0.70 0.97 0.83 0.84
6–6 0.99 0 0.63 0.69 0.68 0.54 0.98 0.71 0.81
6–8 0.93 0 0.71 0 0 0.55 0.99 0.73 0.87
L-A nmod nmod:poss nsubj nummod obj obl obl:tmod punct root
2–2 0.82 0.85 0.75 0.84 0.63 0.80 0 0.99 0.96
2–4 0.83 0.88 0.72 0.84 0.63 0.83 0 0.99 0.97
2–6 0.83 0.88 0.72 0.84 0.63 0.83 0 0.99 0.97
2–8 0.76 0.86 0.69 0.84 0.56 0.80 0 0.99 0.94
3–2 0.80 0.85 0.78 0.87 0.67 0.84 0 0.99 0.97
3–4 0.80 0.86 0.71 0.84 0.37 0.84 0 0.99 0.92
3–6 0.79 0.85 0.72 0.87 0.56 0.86 0 0.99 0.93
3–8 0.81 0.83 0.74 0.87 0.59 0.84 0 0.99 0.93
4–2 0.81 0.86 0.74 0.84 0.65 0.85 0 0.99 0.95
4–4 0.78 0.85 0.73 0.87 0.51 0.86 0 0.99 0.93
4–6 0.81 0.82 0.77 0.84 0.65 0.85 0 0.99 0.93
4–8 0.78 0.86 0.74 0.87 0.64 0.86 0 0.99 0.95
5–2 0.81 0.83 0.78 0.90 0.62 0.83 0.44 0.99 0.89
5–4 0.82 0.84 0.79 0.90 0.66 0.87 0.44 0.99 0.96
5–6 0.82 0.85 0.72 0.87 0.56 0.82 0 0.99 0.96
5–8 0.76 0.83 0.73 0.80 0.60 0.85 0 0.97 0.89
6–2 0.73 0.81 0.65 0.67 0.23 0.72 0 0.97 0.89
6–4 0.75 0.85 0.65 0.76 0.23 0.87 0 0.97 0.79
6–6 0.81 0.85 0.67 0.81 0.22 0.85 0 0.98 0.90
6–8 0.66 0 0.63 0.81 0 0.86 0 0.98 0.89

Table 8: GAT predictions of syntactic dependence in German.
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De
L-A xcomp
2–2 0.55
2–4 0.49
2–6 0.49
2–8 0
3–2 0.38
3–4 0
3–6 0
3–8 0
4–2 0.41
4–4 0
4–6 0
4–8 0
5–2 0
5–4 0
5–6 0
5–8 0
6–2 0
6–4 0
6–6 0
6–8 0

Table 9: GAT predictions of syntactic dependence in German.
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