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Abstract

Graph Attention Network (GAT) is a novel
graph neural network that can process and rep-
resent types of different linguistic information
using a graph structure. Although GAT and
syntactic knowledge can primarily be used in
downstream tasks and help in performance im-
provement, there is still a lack of discussion on
what syntactic knowledge GAT is good at learn-
ing compared to other neural networks. There-
fore, we investigate the robustness of GAT for
syntactic dependency prediction in three differ-
ent languages in terms of attention heads and
the number of model layers. We can obtain
optimal results when the number of attention
heads increases and the number of layers is 2.
We also use paired t-test and F1-score to test the
prediction of GAT and the pre-trained model
BERT fine-tuned by the Machine Translation
(MT) task for syntactic dependencies. We ana-
lyze their differences in syntactic dependencies,
which can lead to syntactic complementarity
in their predictions and the possibility of them
working together on downstream tasks. We
find that GAT is competitive in syntactic de-
pendency prediction, producing good syntac-
tic complementarity with BERT fine-tuned to
MT in most cases, while BERT specifically
fine-tuned to the dependency prediction task
produces better results than GAT.

1 Introduction

The attention mechanism, which most state-of-the-
art models use, can effectively capture potential
links between input texts, as demonstrated by the
Transformer model (Vaswani et al., 2017) in Ma-
chine Translation (MT). The graph convolution
network can be an extensible, supervised learning
network for graph-structured data, which extends
the choice of convolutional architectures through
spectral and spatial graph convolution. (Velickovié
et al., 2017) propose the Graph Attention Network
(GAT) inspired by the attention mechanism. The
shared edge mechanism makes GAT independent

of the structure of the global graph, and the at-
tention mechanism also empowers it to compute
the importance of different neighbors on the graph,
which is easily used in transductive and inductive
learning. Syntactic dependency in natural language
processing is the mainstream way of analyzing sen-
tence structure, using syntactic tree structures to
represent the dependency relationships between
words in a sentence. However, the representation
of syntactic dependencies has been mainly repre-
sented by models such as LSTM or GRU (Zhang
etal.,2019a; Hao et al., 2019; Liu et al., 2021). The
cumbersome representation process and the con-
sumption of computational resources have limited
the application of syntactic knowledge in down-
stream tasks. GAT simplifies and streamlines the
representation of syntactic relationships, allowing
separate linear information and linguistic knowl-
edge in sentences to be linked via graphs and ap-
plied to various downstream tasks.

Combining the representation of GAT with the
widely utilized pre-trained model BERT (Devlin
et al., 2019) makes it possible to achieve per-
formance breakthroughs in the downstream tasks
(Huang et al., 2020; Li et al., 2022). However, it
is unclear why syntactic knowledge incorporated
and represented by GAT can work effectively with
BERT. Increasing the interpretability of GAT in
terms of syntactic knowledge can contribute to bet-
ter natural language processing, both for down-
stream tasks which require syntactic knowledge
and for the combination of pre-trained models, in-
cluding but not limited to BERT. Therefore, in this
work, we investigate the predictions of GAT on syn-
tactic knowledge. We select syntactic dependencies
of three different languages as prediction targets to
test how the number of attention heads and layers
of GAT is robust to syntactic dependencies. Sec-
ond, we add a pre-trained model BERT which is
fine-tuned for the MT task. The differences be-
tween GAT and BERT in syntactic dependencies



are compared by paired t-test and F1-score to an-
alyze their syntactic complementarity. Our main
contributions are as follows:

* We investigate which configurations of atten-
tion heads and model layers work best for
GAT for syntactic dependency learning in
three languages. We find that increasing the
number of attention heads can help GAT to be
optimal in syntactic dependency prediction,
and the best prediction results are obtained
for all languages when the number of model
layers is 2, which is not common knowledge
that the deeper, the better.

* We evaluate the predictions of GAT and the
pre-trained model BERT for typical syntactic
dependencies, interpret the discrepancies in
their predictions as syntactic complementarity,
and discuss the possibility of their syntactic
cooperation in MT tasks. We find that GAT
not only outperforms BERT fine-tuned for MT
tasks, such as “amod” for Chinese, “advmod”
for German, and “cop” for Russian but is also
competitive for syntactic knowledge learning
in most cases. The discrepancies between
GAT and BERT in gaining syntactic knowl-
edge suggest the potential of syntactic com-
plementarity.

2 Related Work

In natural language processing, graphs can repre-
sent linguistic knowledge, which carries explicit
semantic and syntactic information. GAT is a graph
network that constructs a graph over a spatial do-
main using an attention mechanism, which gen-
erates new characteristics for each node by ag-
gregating information from nearby nodes and dis-
tinguishing the importance of neighbors. As it
can be applied to inductive and transductive learn-
ing (Salehi and Davulcu, 2019; Busbridge et al.,
2019), it has garnered considerable attention. Since
GAT can supplement linguistic knowledge in dif-
ferent downstream tasks (Lyu et al., 2021; Huang
and Carley, 2019), and its fusion with the pre-
trained model BERT in downstream tasks is pos-
sible and has attracted the majority of the focus
in the study. (Huang et al., 2020) inject syntactic
cognitive knowledge into the model using GAT’s
representation of syntactic knowledge and BERT’s
pre-trained knowledge, which results in better inter-
action between context and aspectual words. In the

span-level emotion cause analysis task, (Li et al.,
2021) use the graph attention network to collect
structural information about contexts while using
BERT to obtain representations of emotions and
contexts. Graph features and word embeddings are
used to obtain semantic and syntactic information
to classify the comparative preference between two
given entities (Ma et al., 2020). However, most
of the work focuses only on the representation
and application of linguistic knowledge of GAT
in downstream tasks and still lacks to investigate
its learning of syntactic dependencies in the model
structure. What is the contribution of model lay-
ers and attention heads to syntactic dependency
learning? (Brody et al., 2021) proposes a more
expressive dynamic attention, but lacks tests of lin-
guistic knowledge. While integrating GAT and
BERT in downstream tasks can bring performance
gains, it is not yet clear how they contribute to each
other in terms of syntactic dependencies. Most of
the work has focused on the discussion and explo-
ration of the linguistic knowledge of BERT (Clark
et al., 2019; Papadimitriou et al., 2021), but the
learning of the linguistic knowledge of GAT is still
unclear. The application of GAT to MT tasks re-
mains largely unexplored. Although some works
try to use syntactic knowledge for MT tasks (Peng
et al., 2021; McDonald and Chiang, 2021), they
do not discuss the possibilities of GAT. (Dai et al.,
2022) points out that BERT acts as an MT engine
for the encoder to produce low-quality translations
when translating sentences with partially syntactic
structures, although BERT knows syntactic knowl-
edge. The syntactic knowledge that GAT needs to
learn comes mainly from parser or the gold corpus,
and it does not need to focus on additional knowl-
edge, as opposed to BERT, which needs to analyze
more in the tasks. Suppose GAT can learn syn-
tactic knowledge and perform more competitively
than BERT fine-tuned for MT tasks. In that case,
one conjecture is that if effectivity representation
of syntactic knowledge in GAT can be used to im-
prove translation quality with BERT, it may lead to
a breakthrough in MT tasks and more interpretabil-
ity of linguistic knowledge.

3 Methodology

3.1 Syntactic Learning through Attention
Heads and Layers

We use GAT (Brody et al., 2021) as our experi-
mental model. The model is more powerful and



robust through dynamic attention compared with
the standard GAT (Velickovié et al., 2017). The
node features given to a GAT layer are X =
[xl, x2,T3,...T;, .%'2'4_1], T; € RF, where Tit1 is
the total number of nodes, F’ is the hidden state of
each node given. The Equation (1) summarises the
attention mechanism of the GAT.
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the K multi-head attention outputs are concate-
nated in this term, o is a sigmoid function, h?*
is the output hidden state of the node i. In Equa-
tion (2), ozfj is an attention coefficient between
node i and j with the attention head &, W is lin-
ear transformation matrix, a is the context vec-
tor during training, and f(-) is LeakyReLU non-
linearity function (Maas et al., 2013). For simplic-
ity, the feature propagation in GAT can be written
as Hj.1 = GAT(H;, A;©,), where Hj 1 is the
stacked hidden states of all input nodes at layer [,
A € R™ ™ is the graph adjacency matrix in GAT.
Oy is the model parameters at that layer.

We treat each word in a sentence as a graph node,
and the edges between the nodes are derived from
the golden syntactic dependencies in the Parallel
Universal Dependencies (PUD) corpus, and the
GAT needs to learn and predict the types of syntac-
tic dependencies of the edges between the nodes.
Although syntactic dependencies in linguistics are
unidirectional from parent to child, we think of the
edges in the graph created by GAT as being of two
different kinds, from parent to child and from child
to parent, respectively. This is due to the fact that,
despite being connected, neighboring nodes have
different significance depending on whether the
current node is acting as a parent or child, and GAT
must take into account and learn the significance
of neighboring nodes in order to ascertain the syn-
tactic dependencies that must be predicted at the
time. Since PUD is a corpus containing golden lin-
guistic knowledge, such as golden lexical informa-
tion, syntactic dependencies, and other linguistic
morphological knowledge, we do not rely on any
linguistic parser to generate and extract syntactic

dependencies. We select Chinese (Zh), German
(De), and Russian (Ru) as the three languages and
their syntactic dependencies for the tests in order
to reduce the problems related to single-language
experiments. The PUD corpus for each language
has 1000 sentences that are always arranged in the
same order (UD Chinese PUD', UD Russian PUD?,
UD German PUD?). Because of syntactic depen-
dencies’ restrictions, a sentence’s sequential input
takes on a topological structure generally referred
to as a syntactic tree, providing information on the
structure of a graph.

We increase the number of attention heads and
model layers of GAT, add part-of-speech informa-
tion to as the additional syntactic knowledge of
node features, and evaluate its performance in pre-
dicting syntactic dependencies of languages under
various collocations. Given the classification im-
balance of different syntactic dependencies in the
PUD corpus, we use F1-score as an evaluation met-
ric to reflect the prediction performance of GAT
on syntactic dependencies as much as possible by
considering the effects of precision and recall. We
report the overall and individual prediction perfor-
mance of syntactic dependencies.

In experiments, GAT’s attention heads are set to
2,4, 6, and 8, respectively. Moreover, the model
depth contains a different number of layers, which
are 2, 3,4, 5, and 6. We record the variation and
trend of syntactic dependency learning of GAT for
different languages with these parameters paired
with each other. All languages include a randomly
divided training set, validation set, and test set with
the number of sentences of 800, 100, and 100, re-
spectively. Word embeddings = 768, dropout = 0.2,
optimizer = Adam, and learning rate = 2e-5.

3.2 Syntactic Dependency Complementarity
with Fine-tuned BERT

BERT is often used as a popular pre-trained model
for downstream tasks in natural language process-
ing and has achieved significant performance break-
throughs (Reimers and Gurevych, 2019; Zhang
etal., 2019b). GAT and BERT use attention mecha-
nisms as essential feature extraction, which makes
their combination in downstream tasks has become
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possible. Most of the tasks are at the application
level to discuss how GAT works with BERT in
downstream tasks and what is the performance gain
for the downstream tasks. However, there is still a
lack of investigation at the level of linguistic knowl-
edge as to why GAT can help BERT in downstream
tasks in terms of syntactic knowledge and thus im-
prove performance. In MT tasks, it is achievable
that syntactic knowledge can improve translation
quality, but the work of GAT and BERT in MT
tasks is less discussed. (Dai et al., 2022) point to
the impact of syntactic dependencies on transla-
tion quality in MT engines with BERT. Given the
feasibility of the GAT representation of syntactic
dependencies, it is possible that a more efficient
representation and complementation of syntactic
dependencies can improve the poor translation qual-
ity caused by the BERT translation engines. We,
therefore, explore the interpretability and potential
for collaboration between BERT and GAT in down-
stream tasks by examining the differences between
them in terms of syntactic dependencies, which we
refer to as syntactic complementarity.

Following (Dai et al., 2022), we select Chinese
(Zh), Russian (Ru), and German (De) as the ex-
perimental languages and the different BERT-base
versions for their corresponding languages (Ku-
ratov and Arkhipov, 2019; Cui et al., 2021; De-
vlin et al., 2019), BERTs are fine-tuned by the MT
task as the comparison objects to study the syn-
tactic dependencies possessed by the fine-tuning
in the MT scenario. Although the pre-training
strategies of BERTS are different for different lan-
guages, the model structure is the same. The United
Nations Parallel Corpus (UNPC) (Ziemski et al.,
2016) trains the Chinese and Russian MT engines,
whereas Europarl (Koehn, 2005) trains the German
MT engine. BERTSs are used as encoders in MT
engines for Zh—En, De—En, and Ru—En transla-
tions.

After completing the fine-tuning of the BERTs
for MT tasks, we extract the BERTS in the transla-
tion systems, a simple fully-connected layer is then
added to the last layer of the fine-tuned BERTsS,
and all parameters are frozen except for the last
fully-connected layer to prevent learning new syn-
tactic knowledge from the syntactic dependency
data set. However, BERT predicts differently from
GAT because it does not know the child word of
the present parent word. Since BERT knows syn-
tactic knowledge and syntax tree can be detected

(Htut et al., 2019; Manning et al., 2020), we do
not add any additional algorithms, for example,
to specify all the parent and child words in the
sentence. This simulates syntactic knowledge in
downstream tasks as closely as possible. The cor-
rectness of the prediction of syntactic dependencies
can indirectly corroborate the difference between
the syntactic tree formed and the golden syntactic
tree. Unlike GAT, which always focuses on syntac-
tic knowledge, BERT has syntactic knowledge as
part of what it needs to learn in the MT task, and
BERT’s learning of this syntactic knowledge may
not be sufficient. We also add another BERT but
updated the PUD corpus’s parameters as a refer-
ence. Knowing how well the BERT performs is
necessary when it focuses on syntactic knowledge,
which would be considered the best performance.
If GAT can beat it on specific syntactic dependen-
cies, this implies that the syntactic knowledge of
GAT is competitive and potential. We want to in-
vestigate the complementarity and possibility of
syntactic dependencies between the GAT and the
BERT fine-tuned by downstream MT tasks and syn-
tactic tasks. We evaluate the complementarity of
GAT and BERT in terms of syntactic dependencies
in overall and individual terms. First, a paired t-test
is used to compare the overall difference between
the two models for predicting syntactic dependency
and determining whether there is significant vari-
ation. Second, considering the diversity and com-
plexity of syntactic dependencies, we also discuss
the performance variation of individual syntactic
dependencies by F1-score, examining how differ-
ent models learn different sentence constituents.

We select the number of attention heads and lay-
ers with the highest overall prediction scores as
the experimental parameters for the GAT. All lan-
guages have two layers in the GAT, although Zh
has six attention heads and Ru and De each have
four. The strategy of GAT for predicting syntactic
dependencies is the same as in the previous experi-
ment, and the PUD corpus is the data set for BERT
and GAT. We add K-fold cross-validation and en-
sure that the training and test sets are the same for
both models, and the F1-score is still used as the
evaluation metric for this experiment to maximize
the consistency of the two models on the prediction
task. The number of the training and test set of the
PUD corpus is 850 and 150. The word embeddings
for GAT and BERT are 768, the other settings are
kept the same as in Experiment 3.1.



4 Results

4.1 Syntactic Predictions with Attention and
Layers

As shown in Table 1, we observe that a specific
number of attention heads gives the optimal predic-
tion performance of GAT, and arbitrarily increasing
the number of attention heads may also lead to a
decrease in prediction. In models like Transformer
and BERT, it has been demonstrated that increas-
ing the number of attention heads can improve the
model’s capacity to extract and represent features.
Increasing the number of attention heads in GAT
by a certain amount can result in improved profits.
However, this does not imply that further increases
are helpful to the model. For instance, the optimal
performance for Ru and De is reached with two
layers and four attention heads. In Zh, however,
six or eight attention heads yield better outcomes
than that of 2 with two layers. We believe this is
associated with the input structure of the model.
Each word in a sentence can contribute to feature
extraction when sequential input models such as
Transformer are used, increasing attention heads
can collect and learn potential links between words
in various sub-spaces, leading to improved repre-
sentations. The sequence input is transformed into
a graph-based topology in GAT. We believe that
unlike with sequential input, where it is necessary
to allocate attention to discuss the potential contri-
butions of each word, the observed range of each
word in the sentence is already restricted and in-
structive due to the structure of syntactic dependen-
cies. Thus the increase in the number of attention
heads is far less straightforward than the gain of,
for example, the Transformer model. Its multiple
heads of attention may also suffer from redundancy,
which impairs the learning of syntactic dependen-
cies.

We notice that the GAT prediction for syntac-
tic dependencies is acceptable with a reasonable
number of attention heads and layers. However,
experiments also reveal that increasing the number
of layers of the neural network causes the overall
prediction to be significantly impaired, and GAT
loses learning and prediction of some syntactic de-
pendencies, as shown in Table 2*. As the number
of layers increases, GAT fails to learn some syn-
tactic dependencies, as evidenced by the F1-score
dropping entirely to 0. This phenomenon appears

*The appendix contains all experimental results for the
three languages.

”cc ,

Zh

2 Heads 4 Heads 6 Heads 8 Heads
2 Layers 0.63 0.62 0.64 0.64
3 Layers 0.64 0.61 0.62 0.63
4 Layers 0.56 0.58 0.64 0.49
5 Layers 0.49 0.50 0.51 0.50
6 Layers 0.37 0.40 0.33 0.33
Ru
2Heads 4 Heads 6 Heads 8 Heads
2 Layers 0.58 0.61 0.47 0.56
3 Layers 0.45 0.55 0.54 0.53
4 Layers 0.44 0.47 0.56 0.57
5 Layers 0.42 0.52 0.46 0.49
6 Layers 0.41 0.36 0.31 0.33
De
2 Heads 4 Heads 6 Heads 8 Heads
2 Layers 0.64 0.67 0.64 0.56
3 Layers 0.60 0.56 0.56 0.57
4 Layers 0.56 0.50 0.53 0.53
5 Layers 0.58 0.61 0.50 0.47
6 Layers 0.48 0.49 0.48 0.42

Table 1: Overall GAT predictions of syntactic relation-
ships for three languages with different numbers of at-
tention heads and layers. The increased number of atten-
tion heads and layers does not result in a performance
advantage.

in all three languages in the experiment. We record
the number of syntactic dependencies with an F1-
score of 0 under the different number of attention
heads in each layer for the three languages. As
shown in the Figure 1, they are concentrated in
the deep layers, and the increase in attention heads
does not alleviate this phenomenon. This is dif-
ferent from the intuition that the deeper the model
depth, the better the performance. The increase
in layers does not bring more significant perfor-
mance, which may be because the increase in the
number of layers of the graph network causes the
nodes to lose their properties or may absorb some
irrelevant information leading to degradation of the
model performance. Also, we observe that GAT
produces a consistent learning performance for spe-
cific syntactic dependencies when presented with
different languages, they are “advmod”, “case”,

99 99 *9 99

mark”, “nsubj”’, "punct’. When increas-
ing the number of attention heads and the depth
of the model layers, they can maintain relatively
high prediction scores, and the predicted outcome
of an Fl-score of 0 does not occur. The model
can acquire some common underlying linguistic
knowledge in a deeper layer across multiple lan-
guages, which means that GAT is more sensitive to
such syntactic knowledge and capturing the same
syntactic knowledge across languages is possible
for deep graph neural networks.



Zh

Layers Heads appos advmod clf case cc dep mark nsubj obj punct
2 0.60 0.90 0.87 098 099 0.64 099 0.64 053 0.99
2 4 0.55 0.90 0.82 099 099 063 099 0.66 0.58 0.99
6 0.61 0.91 0.89 099 099 066 098 0.68 0.61 0.99
8 0.58 0.90 0.83 099 099 062 099 0.67 059 0.99
2 0.54 0.90 0.88 0.99 099 064 090 0.68 0.63 099
3 4 0.57 0.91 0.86 0.59 099 0.64 0.96 0.66 0.58 0.99
6 0.61 0.90 0.88 0.59 099 066 096 0.66 0.60 0.99
8 0.60 0.91 090 0.59 099 0.66 0.96 0.68 0.63 0.99
2 0.55 0.89 0.68 097 099 064 095 064 055 0.99
4 4 0.60 0.90 0.66 098 099 065 098 069 0.62 0.99
6 0.56 0.91 0.69 099 099 068 092 0.67 0.60 0.99
8 0 0.90 0 098 0.80 0.64 0.96 0.62 044 098
2 0.52 0.90 0 0.56  0.99 0 0.93 0.65 056  0.99
5 4 0.62 0.90 0 092 0.75 0 0.88 0.66 0.60 0.99
6 0.54 0.90 0 0.88  0.99 0 0.91 0.65 058 0.99
8 0 0.89 0 097 0.99 0 0.84 056 052  0.99
2 0 0.83 0 0.81 0.99 0 0.82 0.42 0 0.98
6 4 0 0.86 0 0.88 0.77 0 0.87 0.50 0 0.98
6 0 0.84 0 0.83 0.75 0 0.82 0.47 0 0.96
8 0 0.86 0 0.89 0.73 0 0.84 0.51 0 0.99

Table 2: Part of Chinese syntactic dependencies is shown. As the number of layers increases, GAT gradually loses
its prediction ability for some syntactic dependencies in Chinese. Some syntactic dependencies are not significantly
affected by the number of layers increased that the F1-score drops to O.
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The number of syntactic dependencies

Figure 1: The number of F1-score dropped to 0 made
by the GAT in different layers with a different number
of attention heads. Although each layer has 2, 4, 6, and
8 attention heads, increasing the number of layers in-
variably results in more failures for syntactic knowledge
learning.

4.2 Complementarity of Syntactic
Dependencies with BERT

As shown in Table 3, the paired t-test shows that
the p-values for all three languages are less than the
significance level when the outliers of the syntactic
dependencies are removed. The null hypothesis
(Hy) that the two models would be equally effec-
tive in predicting syntactic dependencies is rejected,
and the significant differences in syntactic depen-
dencies between the GAT and the BERT fine-tuned
by machine translation (MT-B) are statistically sig-
nificant.

Investigating the learning of each syntactic de-
pendency from an F1-score perspective as shown
in Table 4, we find that GAT dominates the pre-
diction of the vast majority of syntactic dependen-
cies, with only a small proportion losing out to
MT-B. We argue that although BERT is fine-tuned
by the MT task, its learning of syntactic dependen-
cies is inadequate in this case. BERT is likely to
produce similar results under fine-tuning in other
downstream tasks, since many works have shown
that incorporating syntactic dependency through
GAT with BERT in downstream tasks can improve
performance. The complementation of syntactic
dependencies by GAT can hardly have a substan-
tial impact on downstream tasks if the syntactic
knowledge of BERT does not decrease to varying
degrees after fine-tuning. From the study of (Dai
et al., 2022): when detection of dependencies de-
teriorates, MT quality drops. Association between
quality and the relations of "appos”, "case”, flat”,
“flat:name”, and “obl” for all languages, “dep”,
“advcl”, and “mark” for Chinese, ’parataxis” and
“nummod” for Russian, compound” and “advcl”’
for German. Also, relation of “root” as the sen-
tence’s main predicate ** is the root node and is
used to express the sentence’s main substance. De-
spite GAT and BERT make predictions in differ-
ent ways, and it cannot be linked to the decrease

“*One of the orphaned dependents gets promoted to the root
position if the main predicate is absent.



Languages | Observations | Sample size | Significance level | Mean | STDev | T-value | P-value
Zh I\(/I}FK,F 29 83 g % 4.39 ;0.001
Ru I\éi,ll? 23 0.05 g; 8% 3.555 0.001
De I\éi,ll? 26 83 8 % 3.682 0.001

Table 3: Paired t-tests are used to compare the findings of GAT and BERT fine-tuned by machine translation on
syntactic dependency prediction. There is a significant difference in the prediction results between the two models.

Zh Ru De

# | MT-B GAT UD-B # | MT-B GAT UD-B # | MT-B GAT UD-B
acl 19 0 0 0 256 | 0.514 0.392 | 0.854 20 0 0 0
acl:relcl 448 | 0.478 0913 | 0.836 160 | 0.444 0.105 | 0.960 271 | 0.654 0.605 | 0.912
advcl 516 | 0.274 0376 | 0.728 197 | 0.320 0.334 | 0.842 220 | 0410 0.495 | 0.832
advmod 1332 | 0.660 0.909 | 0.946 914 | 0.830 0.902 | 0.964 | 1103 | 0.618 0.984 | 0.958
amod 420 | 0.388 0919 | 0.874 | 1791 | 0.880 0.979 | 0.982 | 1089 | 0.656 0.935 | 0.976
appos 248 | 0.522 0423 | 0.740 121 | 0.420 0.436 | 0.570 265 | 0.344 0.561 | 0.786
aux 686 | 0.746  0.875 | 0.966 42 | 0.884 0.836 | 0.932 365 | 0.820 0.862 | 0.972
aux:pass 79 | 0.842 0 0.970 128 | 0.962 0.988 | 0.968 230 | 0.832 0.934 | 0.965
case 1319 | 0.756  0.963 | 0.928 | 2121 | 0.924 0.983 | 0.981 | 2053 | 0.844 0.994 | 0.986
case:loc 351 | 0.664 0.779 | 0.954 - - - - - - - -
cc 283 | 0.842  0.990 | 0.938 599 | 0.950 0.969 | 0.988 724 | 0.822 0.981 | 0.972
ccomp 403 | 0.174  0.277 | 0.656 132 | 0.506 0.536 | 0.752 169 | 0.336 0.196 | 0.704
clf 357 | 0.804 0.737 | 0.980 - - - - - - - -
compound | 1777 | 0.604 0.881 | 0.886 9 0 0 0 251 | 0.488 0.496 | 0.850
conj 383 | 0484 0.976 | 0.842 965 | 0.728 0.862 | 0.920 842 | 0.584 0.673 | 0.912
cop 251 | 0.552 0962 | 0.842 87 | 0.762 0983 | 0.830 274 | 0.786 0.755 | 0.954
dep 397 | 0276 0.556 | 0.742 - - - - - - - -
det 338 | 0.710 0.963 | 0.956 476 | 0.866 0.997 | 0.974 | 2771 | 0.906 0.996 | 0.980
expl - - - - 7 0 0 0.890 90 | 0.760 0319 | 0.982
fixed - - - - 222 | 0.586 0.277 | 0.846 7 0 0 0
flat 91 | 0.674 0.867 | 0.965 61 | 0.174 0.483 | 0.538 14 | 0.050 0.271 | 0.344
flat:foreign 97 | 0.320 0.903 | 0.892

flat:name 142 | 0.778 0.897 | 0.936 222

iobj 15 0 0 0.134 190
mark 291 | 0.536  0.980 | 0.905 287
mark:adv 22 1 0990 0400 | 0.970 -
mark:prt 338 | 0414 0.237 | 0.838 -
mark:relcl 626 | 0.862 0.756 | 0.944 -
nmod 702 | 036 0919 | 0.826 | 1934
nsubj 1776 | 0.608  0.612 | 0.906 | 1362

nsubj:pass 70 | 0.138 0 0.766 186
nummod 809 | 0.844 0.993 | 0.988 181

obj 1526 | 0.482  0.558 | 0.858 749
obl 578 | 0232  0.846 | 0.738 | 1465
obl:agent 22 | 0.714 0 0.888 12
obl:patient 39 0 0 0.986 -
obl:tmod 214 | 0.504 0.104 | 0.816 -
parataxis - - - - 195
punct 2902 | 0.748  0.990 | 0.990 | 2977
root 1000 | 0.486  0.968 | 0.894 | 1000
xcomp 476 | 0278  0.437 | 0.804 331

0.890 0.588 | 0.986 164 | 0.502 0.844 | 0.762
0.508 0 0.730 95 | 0.430 0 0.874
0.776  0.867 | 0.854 459 | 0.822  0.992 | 0.980

0.696  0.870 | 0.920 | 1102 | 0.580 0.749 | 0.888
0.726 0.666 | 0.936 | 1481 | 0.672 0.678 | 0.950
0.272 0 0.904 207 | 0.440 0 0.974
0.530  0.690 | 0.732 226 | 0.758 0.808 | 0.926
0.550 0.518 | 0.928 895 | 0.592 0.485 | 0.960
0.670 0911 | 0.914 | 1344 | 0.604 0.801 | 0.918
0 0 0.520 - - - -
- - - 10 | 0.618 0.216 | 0.832
0.520 0.200 | 0.706 68 0 0 0.524
0.958  0.990 | 0.990 | 2770 | 0.928 0.999 | 0.981
0.880 0.994 | 0.982 | 1000 | 0.704 0.932 | 0.982
0.580 0.634 | 0.880 190 | 0464 0.291 | 0.820

Table 4: Prediction scores of machine translation fine-tuned BERT (MT-B) and GAT and BERT fine-tuned for PUD
corpus (UD-B) in syntactic dependencies. GAT is more competitive than MT-B in predicting syntactic dependencies,
shown in bold format, and some syntactic dependencies can surpass UD-B, shown in the non-italic format in the

column of UD-B.

in MT quality (because it is present in every sen-
tence), the fact that GAT and BERT fine-tuned for
the PUD corpus (UD-B) are better in detecting it
means that BERT fine-tuned for the MT task lack
the ability to detect. GAT has better predictive

performance in most cases for all languages, it is
possible that translation quality can be further im-
proved if these mentioned syntactic dependencies
that affect translation quality are targeted to be sup-
plemented by GAT. If all syntactic knowledge can



be incorporated into a translation system through
GAT, clearer sentence structure may lead to more
fluent translation results. Based on the prediction
of syntactic dependencies, we believe that GAT and
MT-B in MT tasks are complementary in terms of
syntactic dependencies and are highly competitive
in predicting at least most syntactic dependencies.

UD-B performs best on the F1-score, but it does
not substantially outperform the GAT with only
two layers. In most cases, their prediction scores
are close to each other. Given that BERT is pre-
trained with a large amount of data and is more
complicated than GAT regarding the number of
attention heads and the model structure, the pre-
diction results are not surprising. However, the
GAT still outperform UD-B for some relations,
such as “amod”, ”conj” for Chinese, "advmod”,
“flat:name” for German, and “cop” for Russian.
We record the common relations that outperformed
UD-B in prediction in all three languages: “case”,
“mark”, ’det”’, and “cc”. This means that GAT
can learn the four mentioned syntactic dependen-
cies efficiently and can successfully predict and
outperform BERT without pre-training. Although
the prediction results are different for all relations,
at least we can assume that GAT is more learned
for these four syntactic dependencies and can have
potential syntactic complementarity with BERT.

The majority of syntactic dependencies number
fewer than 500 indicating that the training sample
cost of GAT is not expensive, and the same number
of training samples can outperform MT-B in the
majority of syntactic dependencies and UD-B in
a few cases. How to learn linguistic knowledge
from a limited number of training samples can be
a challenge for both BERT and GAT. Pre-training
and more robust model structures allow BERT to
effectively alleviate this problem when faced with
learning from small samples. However, GAT may
be unable to learn them. Examples are "acl” for Zh
and De, "aux:pass” for Chinese, and "obl:agent”
for Zh and Ru. Not only that, the learning of spe-
cific syntactic dependencies is difficult for GAT.
’iobj” and “nsubj:pass’ in the three languages can-
not be predicted by GAT. These two relations are
consistent in linguistic knowledge classification,
with core arguments as their functional categories
and nominals as their structural categories. GAT
may lack sufficient learning of the syntactic sub-
jects of indirect objects and passive clauses. In
most cases, the lightweight and inexpensive GAT

shows acceptable performance in syntactic knowl-
edge learning relative to BERT fine-tuned for the
MT task, and it is possible to complement BERT’s
deficiencies in syntactic dependencies in the MT
task. Furthermore, GAT can outperform BERT
fine-tuned for syntactic dependencies on specific
dependencies, the same pre-trained GAT may lead
to a superior representation of linguistic knowledge
in the future.

5 Conclusions

This work investigates the effect of the number of
attention-head and model layers in GAT on syntac-
tic dependency learning and whether there is syn-
tactic complementarity with the pre-trained model
BERT. We find that appropriately increasing the
number of attention-head in GAT does allow for
better model optimization, despite the possible re-
dundancy of these attention heads. However, con-
trary to our previous knowledge, the increase in the
number of model layers produces an F1-score of 0
for predicting syntactic dependencies. The reason
for this is unclear, but according to experimental
results, GAT with a layer of 2 is the most friendly
for syntactic-dependent learning. Moreover, paired
t-tests and F1-score suggest that GAT is capable of
syntactic complementarities at different levels than
BERT fine-tuned by MT and syntactic tasks. UD-
BERT specifically trained for the UD prediction
task is overall better than GAT, especially for the
rare syntactic categories, as it benefits from seeing
many more examples of them at the pre-training
stage, while GAT only learns from the explicit trees.
Still, GAT is competitive for syntactic dependency
learning and can be incorporated into downstream
tasks, and these syntactic complementarities be-
tween BERT and GAT may have the potential for
the fusion of pre-trained models and graph neural
networks. Future work includes further investigat-
ing the possibility of using GAT’s representation of
syntactic dependencies to improve the translation
quality of translation engines with BERT.
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6 Appendices

6.1 Syntactic Predictions with Attention and
Layers

We investigate syntactic dependency learning in
GAT for Chinese (Zh), Russian (Ru), and German
(De) for different numbers of attention heads (A)
and layers (L) as shown in Table 5 to Table 9. As
some syntactic dependencies in the PUD corpus
are uncommon with only a small number of sam-
ples, they do not reasonably reflect the learning
performance of the model, so we remove them in
the experiments. Due to the diversity of language
knowledge, the categories of syntactic dependen-
cies may vary between languages.
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Zh

L-A  aclirelcl advcl advmod amod appos aux case case:loc cc ccomp
2-2 0.82 0 0.90 0.80 0.60 0.90 0.98 0.95 0.99 0
2-4 0.83 0 0.90 0.81 0.55 0.91 0.99 0.94 0.99 0.40
2-6 0.87 0.14 091 0.85 0.61 0.91 0.99 091 0.99 0.53
2-8 0.84 0.15 0.90 0.80 0.58 0.91 0.99 0.94 0.99 0.30
3-2 0.87 0 0.90 0.84 0.54 0.90 0.99 0.92 0.99 0.66
34 0.85 0 0.91 0.83 0.57 0.89 0.59 0.95 0.99 0.38
3-6 0.88 0 0.90 0.87 0.61 0.90 0.59 0.95 0.99 0.66
3-8 0.87 0 0.91 0.85 0.60 0.91 0.59 0.94 0.99 0.64
4-2 0.83 0 0.89 0.80 0.55 0.90 0.97 0.89 0.99 0
4-4 0.87 0 0.90 0.80 0.60 0.90 0.98 0.94 0.99 0
4-6 0.89 0.19 0.91 0.83 0.56 0.90 0.99 0.94 0.99 0.21
4-8 0.83 0 0.90 0.78 0 0.87 0.98 0.95 0.80 0
5-2 0 0.36 0.90 0.74 0.52 0.88 0.56 0.83 0.99 0
5-4 0.91 0.38 0.90 0.76 0.62 0.90 0.92 0 0.75 0
5-6 0.87 0.36 0.90 0.79 0.54 0.87 0.88 0 0.99 0
5-8 0.86 0 0.89 0.80 0 0.86 0.97 0.85 0.99 0
62 0.79 0 0.83 0.71 0 0.82 0.81 0 0.99 0
64 0.84 0 0.86 0.73 0 0.88 0.88 0 0.77 0
6-6 0 0 0.84 0.59 0 0.86 0.83 0 0.75 0
6-8 0 0 0.86 0 0 0.85 0.89 0 0.73 0
L-A clf compound conj cop dep det  discourse:sp flat flatname  mark
2-2 0.87 0.86 0.99 0.88 0.64 0.97 0.22 0.96 0.88 0.99
2-4 0.82 0.86 0.99 0.95 0.63 0.97 0.22 0.99 0.88 0.99
2-6 0.89 0.87 0.99 0.97 0.66 0.97 0.29 0.96 0.88 0.98
2-8 0.83 0.87 0.99 0.98 0.62 0.97 0.33 0.99 0.88 0.99
3-2 0.88 0.87 0.99 0.94 0.64 0.97 0.22 0.96 0.92 0.90
34 0.86 0.85 0.99 0.95 0.64 0.97 0.20 0.96 0.94 0.96
3-6 0.88 0.86 0.99 0.97 0.66 0.97 0 0.96 0.94 0.96
3-8 0.90 0.87 0.99 0.97 0.66 0.97 0.22 0.92 0.97 0.96
4-2 0.68 0.82 0.97 0.91 0.64 0.95 0.18 0.96 0 0.95
4-4 0.66 0.82 0.99 0.97 0.65 0.95 0.22 0.99 0 0.98
4-6 0.69 0.84 0.99 0.97 0.68 0.97 0.29 0.99 0 0.92
4-8 0 0.78 0 0.92 0.64 0.85 0 0.76 0 0.96
5-2 0 0.83 0.99 0.91 0.64 0.84 0.33 0.99 0 0.93
5-4 0 0.81 0 0.97 0 0.84 0.29 0.99 0.80 0.88
5-6 0 0.82 0.99 0.95 0 0.85 0 0.99 0 0.91
5-8 0 0.83 0.86 0.97 0 0.85 0.22 0.81 0.84 0.84
62 0 0.83 0.53 0.92 0 0.85 0 0.96 0 0.82
64 0 0.76 0 0.94 0 0.83 0 0.73 0 0.87
66 0 0.66 0 0.91 0 0.82 0 0.88 0 0.82
6-8 0 0.62 0 0.92 0 0.83 0 0.81 0.72 0.84
L-A  mark:prt mark:relcl nmod nsubj nummod  obj obl obl:tmod punct root
2-2 0.68 0.96 0.92 0.64 0.97 0.53 0.79 0.40 0.99 0.98
2-4 0.66 0.97 0.93 0.66 0.98 0.58 0.79 0.42 0.99 0.98
2-6 0.71 0.97 0.92 0.68 0.98 0.61 0.77 0.44 0.99 0.98
2-8 0.70 0.97 0.92 0.67 0.98 0.59 0.80 0.41 0.99 0.98
3-2 0.75 0.98 0.92 0.68 0.98 0.63 0.81 0.42 0.99 0.99
34 0.73 0.74 0.73 0.66 0.99 0.58 0.84 0.44 0.99 0.98
3-6 0.69 0.77 0.72 0.66 0.99 0.60 0.79 0.42 0.99 0.98
3-8 0.69 0.79 0.71 0.68 0.99 0.63 0.84 0.53 0.99 0.99
4-2 0 0.97 0.92 0.64 0.97 0.55 0.80 0.34 0.99 0.99
4-4 0 0.96 0.94 0.69 0.99 0.62 0.82 0.37 0.99 0.98
4-6 0.72 0.97 0.92 0.67 0.99 0.60 0.82 0.44 0.99 0.99
4-8 0 0.97 0.90 0.62 0.98 0.44 0.78 0.34 0.98 0.98
5-2 0 0.62 0.72 0.65 0.98 0.56 0 0.36 0.99 0.98
5-4 0 0.97 0.92 0.66 0.86 0.60 0.77 0 0.99 0.99
5-6 0 0.97 0.91 0.65 0.85 0.58 0.73 0.37 0.99 0.98
5-8 0 0.97 0.92 0.56 0.83 0.52 0.73 0 0.99 0.89
62 0 0.97 0.89 0.42 0.83 0 0 0 0.98 0
64 0 0.97 0.90 0.50 0.86 0 0.64 0 0.98 0.82
6-6 0 0.88 0.68 0.47 0 0 0.66 0 0.96 0.88
6-8 0 0.72 0.80 0.51 0 0 0.66 0 0.99 0.79

Table 5: GAT predictions of syntactic dependence in Chinese.
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N
=

L-A xcomp
2-2 0.48
2-4 0.54
2-6 0.56
2-8 0.58
3-2 0.63
34 0.53
3-6 0.65
3-8 0.68
4-2 0.47
4-4 0.44
4-6 0.56
4-8 0.47
5-2 0.41
54 0.53
5-6 0.48
5-8 0
6-2 0
64 0
6-6 0
6-8 0

Table 6: GAT predictions of syntactic dependence in Chinese.
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Ru

L-A acl acl:relcl advcl advmod amod appos  aux aux:pass case cc
2-2 0.54 0 0 0.90 0.98 032  0.75 0.96 0.99 0.97
2-4 0.52 0 0.71 0.91 0.98 0.55 0.89 0.96 0.99 0.99
2-6 0.64 0.81 0 0.89 0.98 0.24 0 0 0.98 0.96
2-8 0.54 0 0 0.90 0.98 050  0.67 0.92 0.98 0.97
3-2 0.57 0 0 0.90 0.98 0.12 0 0 0.98 0.96
34 0.63 0 0.56 0.92 0.98 0.45 0 0 0.98 0.96
3-6 0.63 0.84 0 0.90 0.98 0.48 0 0 0.98 0.96
3-8 0.67 0.72 0 0.91 0.98 0.13 0 0 0.99 0.96
4-2 0.51 0 0 0.92 0.97 0 0 0 0.97 0.84
4-4 0.60 0.64 0 0.89 0.97 0 0.67 0 0.99 0.82
4-6 0.73 0.84 0.39 0.90 0.98 0.65 0 0.86 0.99 0.82
4-8 0.65 0 0 0.92 0.99 0.55 0.44 0 0.99 0.96
5-2 0.57 0 0.23 091 0.96 0 0 0 0.97 0.85
5-4 0.67 0.78 0.49 0.91 0.97 0 0 0 0.98 0.82
5-6 0.77 0.75 0.17 091 0.97 0.44 0 0 0.97 0.81
5-8 0.56 0 0 091 096  0.54 0 0.86 0.99 0.86
62 0 0 0 0.90 0.96 0 0 0.89 0.94 0.83
64 0 0.42 0 0.88 0.88 0 0 0 0.95 0.78
6-6 0.30 0 0 0.88 091 0 0 0 0.94 0.79
6-8 0 0 0 0.90 0.96 0 0 0 0.96 0.85
L-A ccomp conj cop csubj det fixed flat  flat:forign flatthame mark
2-2 0.70 0.84 0.96 0 0.99 0.43 0.86 0.87 0.58 0.97
2-4 0.67 0.87 0.99 0 0.99 0.57 0.86 0.92 0.56 0.94
2-6 0.54 0.88 0.58 0 0.98 0 0 0.80 0.52 0.96
2-8 0.57 0.87 0.96 0 099 050 0.86 0.87 0.64 0.90
3-2 0.50 0.88 0.56 0 0.98 0 0 0.74 0.51 0.93
34 0.81 0.90 0.67 0 0.99 0.67 0.86 0.87 0.55 0.94
3-6 0.67 0.89 0.67 0 0.99 056  0.77 0.83 0.59 0.93
3-8 0.63 0.87 0.65 0 099  0.67 0.86 0.92 0.61 0.93
4-2 0.60 0 0.63 0 0.99 0 0 0.69 0.52 0.94
4-4 0.31 0 0.73 0 099 076  0.77 0.83 0.64 0.94
4-6 0 0 0.96 0.13 0.99 0.84  0.67 0.83 0.69 0.97
4-8 0.72 0.88 0.85 0 0.99 0.80  0.80 0.92 0.68 0.94
5-2 0.63 0 0.56 0 0.99 0 0.55 0.88 0.59 0.93
5-4 0.69 0 0.58 0 099  0.71 0.77 0.87 0.59 0.96
5-6 0 0 0.61 0 0.99 0 0.67 0.80 0.62 0.93
5-8 0.49 0 0.96 0 0.99 0.80 048 0 0.61 0.96
6-2 0.28 0 0.88 0 0 0 0 0.71 0.58 0.91
64 0.48 0 0.63 0 0.94 0 0 0.81 0.43 0.97
6-6 0 0 0.58 0 0.93 0 0 0.74 0.43 0.93
6-8 0.49 0 0.56 0 0.99 0 0 0.83 0.55 0.93
L-A nmod nsubj nummod  nummod:gov obj obl punct root xcomp

2-2 0.90 0.71 0.76 0.33 0.58 0.89 0.99 0.98 0.53

2-4 0.90 0.67 0.75 0.43 056 091 0.99 0.98 0.53

2-6 0.88 0.67 0.76 0 0.48 090  0.99 0.98 0

2-8 0.90 0.69 0.75 0 054 091 0.99 0.98 0

3-2 0.88 0.67 0.65 0.31 0.55 0.93 0.99 0.98 0

34 0.89 0.69 0.71 0.43 059 092 099 0.99 0.56

3-6 091 0.67 0.73 0.50 052 092 099 0.98 0

3-8 0.91 0.70 0.71 0.40 0.60 093 0.99 0.99 0

4-2 0.83 0.70 0.70 0.43 0.57 090  0.99 0.94 0.45

4-4 0.86 0.65 0.71 0.43 052 091 0.99 0 0

4-6 091 0.72 0.75 0.43 0.59 092 099 0.98 0

4-8 0.92 0.71 0.77 0.40 0.63 0.93 0.99 0.98 0.61

5-2 0.87 0.63 0.78 0.53 044 090 0.9 0 0

5-4 0.83 0.71 0.72 0.31 056 090 0.9 0.97 0.52

5-6 0.87 0.69 0.72 0.31 0.60  0.89 0.99 0 0.52

5-8 0.89 0.68 0.79 0.43 050 091 0.99 0.98 0

62 0.78 0.67 0.68 0 0.41 0.88 0.98 0.96 0

64 0 0.64 0.62 0 046  0.75 0.99 0.95 0

6-6 0 0.53 0.54 0 040  0.75 0.98 0 0

6-8 0.83 0.53 0.63 0 040  0.88 0.99 0 0

Table 7: GAT predictions of syntactic dependence in Russian.
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De

L-A acl acl:relel advcl advmod amod  appos aux aux:pass  case
2-2 0 0.71 0.83 0.99 0.95 0.39 0.85 0.81 0.99
2-4 0.5 0.75 0.89 0.99 0.95 0.56 0.91 0.81 0.99
2-6 0.5 0.75 0.89 0.99 0.95 0.56 0.91 0.81 0.99
2-8 0 0.41 0 0.99 0.94 0 0.86 0.81 0.99
3-2 0 0.60 0 0.99 0.94 0 0.85 0.81 0.99
34 0 0.45 0 0.99 0.94 0 0.85 0.81 0.99
3-6 0 0.41 0 0.98 0.94 0 0.88 0.81 0.99
3-8 0 0.46 0 0.99 0.94 0 0.88 0.81 0.99
4-2 0 0.52 0 0.99 0.95 0 0.81 0 0.99
4-4 0 0.45 0 0.99 0.94 0 0 0 0.99
4-6 0 0.40 0 0.98 0.93 0 0 0.48 0.99
4-8 0 0.45 0 0.98 0.93 0 0 0.52 0.99
5-2 0 0.42 0 0.99 0.92 0 0.86 0.81 0.99
5-4 0 0.68 0 0.99 0.93 0 0.85 0.81 0.99
5-6 0 0.44 0 0.99 0.94 0 0 0 0.99
5-8 0 0.43 0 0.97 0.94 0 0 0 0.99
6-2 0 0 0 0.98 0.9 0.07 0.62 0 0.98
64 0 0 0 0.97 091 0 0 0.7 0.98
6-6 0 0 0 0.97 0.91 0 0 0 0.98
6-8 0 0.37 0 0.97 0.91 0 0 0 0.98
L-A cc ccomp compound compound:prt  conj cop det flat:name  mark
2-2 | 0.99 0.56 0.80 0 0.78 0.93 0.99 0.83 0.97
2-4 | 0.99 0.60 0.81 0 0.81 0.98 0.99 0.85 0.97
2-6 | 0.99 0.60 0.81 0 0.81 0.98 0.99 0.85 0.97
2-8 | 0.99 0 0.72 0 080  0.95 0.99 0.81 0.96
3-2 | 0.99 0.48 0.83 0 0.78 0.93 0.99 0.82 0.95
34 | 0.99 0 0.80 0 080  0.95 0.99 0.84 0.86
3-6 | 0.99 0 0.78 0 080  0.95 0.99 0.81 091
3-8 | 0.99 0 0.72 0 080  0.95 0.99 0.84 0.91
4-2 | 0.99 0 0.86 0 076 0.93 0.99 0.90 0.93
44 | 0.99 0 0.82 0 079 057 0.99 0.82 0.84
4-6 | 0.99 0 0.76 0 0.79  0.90 0.99 0.85 0.93
4-8 | 0.99 0 0.80 0 080  0.88 0.99 0.84 0.85
5-2 | 0.99 0 0.82 0 082 095 0.99 0.83 0.92
5-4 | 0.99 0.52 0.74 0 082 095 0.99 0.8 0.94
5-6 | 0.99 0 0.75 0 0.82  0.65 0.99 0.78 0.85
5-8 | 0.99 0 0 0 079 057 0.99 0.78 0.86
6-2 | 0.98 0 0.65 0.67 0.74 0 0.96 0.84 0.82
64 | 0.99 0 0.69 0 0.78 0.70 0.97 0.83 0.84
6-6 | 0.99 0 0.63 0.69 0.68 0.54 0.98 0.71 0.81
6-8 | 0.93 0 0.71 0 0 0.55 0.99 0.73 0.87
L-A  nmod nmod:poss nsubj nummod obj obl obl:tmod punct root
2-2 | 0.82 0.85 0.75 0.84 0.63 0.80 0 0.99 0.96
2-4 | 0.83 0.88 0.72 0.84 0.63 0.83 0 0.99 0.97
2-6 | 0.83 0.88 0.72 0.84 0.63 0.83 0 0.99 0.97
2-8 | 0.76 0.86 0.69 0.84 056  0.80 0 0.99 0.94
3-2 | 0.80 0.85 0.78 0.87 0.67 0.84 0 0.99 0.97
34 | 0.80 0.86 0.71 0.84 0.37 0.84 0 0.99 0.92
3-6 | 0.79 0.85 0.72 0.87 056  0.86 0 0.99 0.93
3-8 | 0.81 0.83 0.74 0.87 059 0.84 0 0.99 0.93
4-2 | 0.81 0.86 0.74 0.84 0.65 0.85 0 0.99 0.95
44 1 0.78 0.85 0.73 0.87 0.51 0.86 0 0.99 0.93
4-6 | 0.81 0.82 0.77 0.84 0.65 0.85 0 0.99 0.93
4-8 | 0.78 0.86 0.74 0.87 064  0.86 0 0.99 0.95
5-2 | 0.81 0.83 0.78 0.90 062 0.83 0.44 0.99 0.89
5-4 | 0.82 0.84 0.79 0.90 0.66  0.87 0.44 0.99 0.96
5-6 | 0.82 0.85 0.72 0.87 056 0.82 0 0.99 0.96
5-8 | 0.76 0.83 0.73 0.80 060  0.85 0 0.97 0.89
6-2 | 0.73 0.81 0.65 0.67 0.23 0.72 0 0.97 0.89
64 | 0.75 0.85 0.65 0.76 0.23 0.87 0 0.97 0.79
6-6 | 0.81 0.85 0.67 0.81 022 085 0 0.98 0.90
6-8 | 0.66 0 0.63 0.81 0 0.86 0 0.98 0.89

Table 8: GAT predictions of syntactic dependence in German.
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L-A xcomp
2-2 0.55
2-4 0.49
2-6 0.49
2-8 0
3-2 0.38
34 0
3-6 0
3-8 0
4-2 0.41
4-4 0
4-6 0
4-8 0
5-2 0
54 0
5-6 0
5-8 0
6-2 0
64 0
6-6 0
6-8 0

Table 9: GAT predictions of syntactic dependence in German.
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