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ABSTRACT

Traditionally, Machine Translation (MT) Evaluation has been treated as a regres-
sion problem—producing an absolute translation-quality score. This approach has
two limitations: i) the scores lack interpretability, and human annotators struggle
with giving consistent scores; ii) most scoring methods are based on (reference,
translation) pairs, limiting their applicability in real-world scenarios where ref-
erences are absent. In practice, we often care about whether a new MT system
is better or worse than some competitors. In addition, reference-free MT evalu-
ation is increasingly practical and necessary. Unfortunately, these two practical
considerations have yet to be jointly explored. In this work, we formulate the
reference-free MT evaluation into a pairwise ranking problem. Given the source
sentence and a pair of translations, our system predicts which translation is bet-
ter. In addition to proposing this new formulation, we further show that this new
paradigm can demonstrate superior correlation with human judgments by merely
using indirect supervision from natural language inference and weak supervision
from our synthetic data. In the context of reference-free evaluation, MT-Ranker,
trained without any human annotations, achieves state-of-the-art results on the
WMT Shared Metrics Task benchmarks DARR20, MQM20, and MQM21. On a
more challenging benchmark, ACES, which contains fine-grained evaluation cri-
teria such as addition, omission, and mistranslation errors, MT-Ranker marks
state-of-the-art against reference-free as well as reference-based baselinesﬂ

1 INTRODUCTION

Automatic MT evaluation is crucial to measure the progress of MT systems. Compared to human
evaluation, automatic evaluation is much cheaper and less subjective. Thus, progress in MT has
been synonymous with achieving a higher BLEU score (Papineni et al., 2002), the most popular
automatic MT evaluation metric. BLEU measures the similarity of a machine translation with a
reference translation using n-gram precision. Even though it is still the most widely used metric
for MT evaluation, it has a low correlation with human judgment (Freitag et al.| [2022). This has
prompted researchers to design better automatic evaluation metrics for MT (Bojar et al.,|2016; 2017
Ma et al.| 2018;2019; Mathur et al., [2020; Freitag et al., [2021b; 2022).

In recent years, the design of automatic MT evaluation metrics has been dominated by the use of
large language models (LLMs) trained on synthetic and human-annotated data (Rei et al.| [2020b;
2021;Zhang et al.|[2020). These metrics can be broadly categorized into reference-based approaches
that compare the machine translation with reference translations and reference-free approaches that
score the machine translation with only the source sentence. The latter approach is arguably more
useful in practice since reference translations may be unavailable in real-world scenarios. Inter-
estingly, reference-free evaluation has recently become competitive with reference-based evalua-
tion (Rei et al., [2021).

Irrespective of whether an MT evaluation system uses a reference translation, these systems usually
produce a quality score for the machine translation. An alternative approach to machine translation
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is pairwise ranking, where instead of predicting the quality score for a single translation, a pair
of translations are compared, and a better-worse judgment is given. This approach was initially
proposed by (Ye et al., 2007) and later used by (Duhl[2008};|Guzman et al., 2014} 2015; Mouratidis
& Kermanidis, |2019). The pairwise ranking approach is sufficient for the most important use case
of automatic evaluation metrics: comparing machine translation systems.

However, the pairwise ranking approach remains underexplored. Specifically, it has only been ap-
plied in the reference-based evaluation scenario. In this work, we focus on the reference-free sce-
nario. Given the source sentence and a pair of translations, our system will predict which translation
is better. This formulation has three benefits compared to the existing MT evaluation approaches.
(1) Simplification of the target task: The pairwise ranking task is more straightforward than a
regression-based task. (ii) Reference-free evaluation: In practice, references are often unavailable.
Additionally, the reference-based evaluation introduces a reference bias (Freitag et al., [2020). A
reference-free evaluation system bypasses these issues since it measures the translation quality di-
rectly with the source sentence. (iii) Less reliance on high quality manual annotations: Collect-
ing consistent quality scores for machine translations is difficult. For reproducible results, it requires
collecting 15 direct assessment annotations per translation (Graham et al.l 2015). In contrast, rela-
tive ranking annotation from direct assessment with a large enough threshold has been used with as
few as one annotation (Ma et al.,2018)). Generating synthetic data for the pairwise ranking problem
is also much easier. Using synthetic data for pretraining is very effective for training evaluation
metric systems (Sellam et al., |2020; Wan et al., 2021). For regression-based approaches, this re-
quires generating a synthetic quality score. In contrast, the pairwise ranking approach only requires
a better-worse judgment, which can naturally arise from the synthetic data generation technique.

These benefits motivate us to explore the reference-free pairwise ranking approach to machine trans-
lation evaluation. We train our system with supervision only from multilingual natural language in-
ference and some synthetic data. Experiments on DARR20 (Mathur et al., 2020), MQM?20 (Freitag
et al.,2021a), MQM21 (Freitag et al.,[2021b), MQM22 (Freitag et al., 2022), and ACES (Amrhein
et al.}2022) demonstrate the state-of-the-art performance of our system without touching any task-
specific human supervision. Our contributions can be summarized as follows:

* We are the first to model reference-free MT evaluation as a pairwise ranking problem.

e MT-Ranker demonstrates state-of-the-art correlation with human judgments across di-
verse benchmarks without relying on human-annotated data.

* By eliminating the dependency on human-provided reference translations and comparison
data, our system exhibits enhanced practical utility.

2 RELATED WORK

Regression-based MT evaluation. Since the introduction of BLEU (Papinent et al., 2002), it has
been the dominant machine translation evaluation metric. Despite its popularity, BLEU has signifi-
cant shortcomings, such as low correlation with human judgment (Callison-Burch et al.| 2006)) and
reliance on local lexical features. Researchers have developed evaluation metrics that correlate more
with human judgment to address these issues. BERTScore (Zhang et al., 2020) used contextual em-
bedding from BERT (Devlin et al 2019) to produce a similarity score between the reference and
candidate translation, addressing two issues of BLEU: it works even if the candidate translation is
a semantically equivalent paraphrase of the reference and considers long-distance dependency. In
contrast to BLEU and BERTScore, which are unsupervised, other reference-based evaluation met-
rics such as RUSE (Shimanaka et al., [2018), BLEURT (Sellam et al., 2020), COMET (Rei1 et al.,
2020agb; 2021) were trained on human annotations of translation quality scores. BLEURT intro-
duced the use of large-scale synthetic data. The COMET family of models used a dual-encoder
architecture that separately embeds source, reference, and candidate translation using transformer
encoder models, generating features from combining the embeddings. Trained on human annota-
tions, these metrics achieved higher correlations with human judgments. Interestingly, the reference-
free COMET-QE (Rei et al., 2021) model achieved comparable performance with reference-based
models. UniTE (Wan et al.| [2022)) combined reference-free, reference-based, and source-reference-
combined evaluation into a single model by training on the three settings simultaneously using
multitask learning. PRISM (Thompson & Post, [2020) and BARTScore (Yuan et al., 2021)) formu-
lated evaluation as text generation and use the perplexity of the candidate translation as the quality



Published as a conference paper at ICLR 2024

P Traditional Reference-Based =~~~ i TTTTTTTT Traditional Reference-Free”~~ 7T
! Systems | Systems i
1 n 1
! — ! — !
|\ Reference —{ Evaluation System —— Quality Score . Source % Evaluation System —— Quality Score |
: T : B :
1 n , I
i Translation i Translation |
1 - n 1
Our System
Sourbe ~—— Evaluation System ‘ { Binary

1

1

1

1

.. 1

Decision 1

1

1

1

Translation Pair |

Figure 1: Our system receives a pair of translations and makes a binary decision on which translation
has better quality. In contrast, traditional reference-free evaluation systems generate a quality score
for a single translation. The main difference between our approach and previous approaches is
highlighted in red.

score. These were unsupervised models and performed better than previous supervised models.
T5Score (Qin et al.} [2022) extended upon BARTScore by discriminative fine-tuning on human an-
notations. Some recent works (Fernandes et al., 2023 Kocmi & Federmannl, 2023 [Rei et al.|, 2023)
have explored using GPT-4 (OpenAl, 2023)) and PALM-2 (Anil et al.| |2023)), for translation evalua-
tion, concluding that these models still lag behind on segment-level translation evaluation.

Pairwise Evaluation. Reference-based pairwise evaluation of machine translations was first pro-
posed by (Ye et al, 2007). They argued that the ranking annotations have higher inter-annotator
agreement than translation quality score annotations. They designed independent features for the
reference and each translation. (Duhl |2008) compared ranking with the scoring approach by con-
sidering new features constructed from the translation pair under evaluation. (Guzman et al., 2014)
extended upon (Duh} 2008) by considering tree-based features constructed from both the reference
and the translation pairs simultaneously. (Guzman et al.| [2015) extended upon (Guzman et al.
2014)) using word embeddings to train neural network models on the pairwise evaluation task. Task-
specific pairwise ranking annotations was leveraged for training evaluation metrics (Song & Cohn,
2011; Zhang & van Genabith| [2020). While the models were trained on the comparison data, they
ultimately worked in the regression scheme, predicting the quality score for a single translation.

In contrast to all previous approaches, we explore reference-free pairwise evaluation and achieve
state-of-the-art correlation with human judgments without using supervised annotation.

3 METHODOLOGY

In this section, we first discuss the architecture of MT-Ranker and the input formulation (Sec-
tion [3.1). Then we discuss training with indirect supervision from cross-lingual NLI and weak
supervision from synthetically generated data (Section [3.2).

3.1 MODEL AND INPUT FORMULATION

We formulate the input to our system as a single text. Given the source sentence .S and two transla-
tions, Ty and 7', we formulate the input to the model as follows.

Source: S Translation 0: Ty Translation 1: T} @))]

We show an example input to our system in Figure [2| Here, two English translations of a French
sentence are being compared. The first translation mistakenly translates the French word tapis to the
English word bed, while the correct translation should be carpet. Thus, given this input we would
like our system to predict that the second translation is better.

We use the encoder of multilingual TS5 (Raffel et al.| [2020) as the backbone of our models. The
encoder model attends to all the tokens of the source and the two translations simultaneously. We
put a mean pooling and a logistic regression layer on top of the encoder model.
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Source: Le chat est sur la tapis. Translation 0:The cat is on the bed. Translation 1: The cat is on the carpet.

Figure 2: Illustration of the input format and the architecture of MT-Ranker. The source sentence
and the translation pairs are formatted as a single text input to the system. The bidirectional LLM
attends over all the tokens of the source and the translations simultaneously.

3.2 MODEL TRAINING

We train MT-Ranker on synthetically generated translation pairs where one of the translations can
be considered better than the other. Each training sample can be formally represented as follows:

(57 (TOaTl)ay) (2)

where S is the source sentence, (Tp, 71 ) is the translation pair and

O ifTy is better than Ty 3)
Y71 otherwise
The training is performed in three stages: pretraining with indirect supervision from cross-lingual
NLI, fine-tuning on the task of discriminating between human translation and machine translation,
and further fine-tuning on weakly supervised synthetic data.

Stage I: Pretraining with indirect supervision from cross-lingual NLI. We first pretrain our
model on the XNLI (Conneau et al.| 2018)) dataset. XNLI is a NLI dataset with examples of “En-
tailed”, “Non-entailed”, and “Neutral” hypotheses for each premise in fourteen languages. We take
the premise in one language and a pair of entailed and non-entailed hypotheses in another language.
We consider the entailed hypothesis to be a better translation of the premise than the non-entailed
one. Although the hypothesis in this dataset does not correspond to actual translations of the premise,
this stage serves as an indirect supervision for our model to prefer translations that do not contradict
the source sentence. The training samples for this stage can be formally represented as follows:

(57 (TO’Tl)vy) €]

[0 ifTy is entailed by S )
YW1 otherwise

Stage II: Discriminating between human translation and machine translation. At this stage,

we construct training pairs based on the assumption that a human-written reference translation is

generally better than machine translations. The reference translation R is paired with a machine

translation, and the task is to predict which one is the reference translation. The training samples for

this stage can be formally represented as follows:

(S, (To,T1),y) | eitherTy = RorTy =R (6)
[0 ifTo=R
B {1 otherwise @

We fine-tune our model from Stage I on this task and collect examples of source, reference and
machine translations from the Direct Assessment datasets published from 2017 to 2020 (Bojar et al.,
2017; Ma et al., 2018} 2019; Mathur et al., 2020). These datasets contain machine translations
generated by different machine translation systems for a given source sentence.
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Stage III: Weakly Supervised Training. One issue with the training pairs used in Stage II is that
one of the pairs is the reference translation, which can be of much higher quality than the machine
translation. The model never sees translation pairs covering the full spectrum of translation quality.
To mitigate this issue, we further fine-tune our model on synthetic data generated by two approaches.

* Synthetic data from Direct Assessment datasets. We take samples of machine translation pairs
from the Direct Assessment datasets and generate labels for the translation pairs using an unsuper-
vised machine translation evaluation metric M. The metric M generates a quality score for each of
the translations, which can be used to provide a better-worse judgment for the translation pair. The
translation pairs and the target for this stage can be formally represented as follows:

(Sv (T07T1)7y) (8

_ {0 if M(S,R,Ty) > M(S,R,T})

1 otherwise

€))

Even though the evaluation metric M has access to the reference I, our model does not have access
to the R during training or testing. Further, we use an unsupervised metric, BERTSCORE, in this
work, so that the model does not have indirect access to human supervision.

» Synthetic data from machine translation datasets. Given a translation, examples of worse
translations can be generated by perturbing the translation using simple heuristics (Sellam et al.,
2020). In general, the perturbed translation has worse quality than the reference translation. Thus,
the reference translation and the perturbed translation form a training pair for which we can naturally
provide a better-worse judgment label. This provides a very simple way to generate a lot of synthetic
data for the pairwise evaluation approach. We can formally represent these samples as follows.
Given a source sentence S, the corresponding translation 7', and perturbation function P, we can
generate the following samples

(5,(T, P(T)),0) (10)

1

(57 (P(T)vT)’ ) (11

We generate these types of synthetic data from a subset of the MT-PRISM (Thompson & Post,
2020) dataset corresponding to the language pairs represented in the Direct Assessment datasets.
MT-PRISM is a machine translation dataset collected from diverse sources across 39 languages.
We apply the following perturbations to the reference translations to generate examples of worse
translations.

» Word Drop: We randomly drop 15% of words from the translation. This approach generates
examples of worse translations that are not fluent.

» Word Replacement using Masked Language Model: We randomly replaced 15% of words
in the reference translation using the pretrained XLMRoberta (Conneau et al.,2020) model.
The worse translation generated with this approach may be fluent but have a different mean-

ing.
* Backtranslation: We translate the sentence to French and back to the original language

using the M2M 100 (Fan et al.,|2021) translation model. The worse translations generated
by this approach may preserve the same meaning.

* Word Replacement after Backtranslation: We randomly replaced 15% of words from the
backtranslated sentence. With this approach, we get examples of worse translations that
may not preserve the meaning as well as being worded differently than the original trans-
lation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Our benchmark datasets are the WMT20 Shared Metrics Task dataset (DA20) (Mathur
et al., 2020), the MQM?20 (Freitag et al) [2021a), the MQM21 (Freitag et al. 2021b), the
MQM22 (Freitag et al.||2022) and the ACES (Amrhein et al.,|2022) datasets.
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* DA20 (Mathur et al.,[2020). This dataset contains machine translations from 208 MT systems
covering 18 language pairs. Each machine translation is annotated with a Direct Assessment quality
score by human annotators. Better-worse judgments of translation pairs of the same source are
constructed from these DA scores when the scores differ by at least 25 points. The dataset has about
250k such examples of better-worse translation pairs. The large size and the coverage of many
language pairs make this dataset highly suitable for evaluating MT evaluation systems.

* MQM20-22 (Freitag et al., |2021a3b; [2022). The MQM datasets are constructed by using the
Multidimensional Quality Metric (MQM) (Burchardt, [2013) approach by professional translators.
These datasets only cover a few language pairs, but the quality score annotationsare of high quality.
The MQM?20 dataset was constructed by re-annotating a subset of the DA20 dataset. The MQM21
and MQM?22 datasets were constructed for the WMT21 and WMT22 Shared Metrics tasks. The
MQM20, MQM21, and MQM?22 datasets contain 95k, 74k, and 215k examples of better-worse
translation pairs, respectively. Even though these datasets cover few language pairs, due to the higher
quality of annotations, these datasets are important for benchmarking MT evaluation systems.

* ACES (Amrhein et al., 2022). The ACES dataset (Amrhein et al.| [2022) is a challenge dataset
covering 68 phenomena of translation errors in 10 broad categories: Addition (A), Omission (O),
Mistranslation (M), Untranslated (U), Do Not Translate (DNT), Overtranslation (Ov), Undertrans-
lation (Un), Real World Knowledge (RWK), Wrong Language (WK) and Punctuation (P). The
dataset contains about 36k samples covering 146 language pairs. We use this dataset for fine-grained
evaluation of our systems on different challenge scenarios.

Evaluation Metric. Since WMT14 (Machacek & Bojar, |2014), the Kendall-like Tau correlation
with human judgments has been used to evaluate machine translation evaluation systems. We use
this metric to evaluate our system. The formal definition of the metric is given in Appendix [A.T]

Baseline Systems. We compare our system against reference-free evaluation metrics. For eval-
uation on the WMT20 Shared Metrics Task dataset, our baselines are the two best-performing
reference-free systems submitted to WMT20 Metrics Shared Task: COMET-QE (Rei et al.|, |2020b)
and OPENKIWI-XLMR (Kepler et al., [2019) and the reference-free version of T5-SCORE (Qin
et al., 2022) which is a recent state-of-the-art system. For the MQM datasets, our baselines are
UNITE (Wan et al.l 2022), COMET-QE and COMETKIWI (Rei et al., 2022). COMET-QE, and
COMETKIWTI are the state-of-the-art reference-free evaluation metrics on the MQM21 and MQM?22
benchmarks, respectively. We additionally consider KG-BERTScore (Wu et al., 2023) as a baseline
for the ACES benchmark since it is the state-of-art on that benchmark.

Implementation Details. We consider three variants of the multilingual T5 model with increasing
parameter count: Base (290M), Large (600M), and XXL (5.5B). We use the implementation of these
models available in the Huggingface library (Wolf et al., 2019). Additional details, including hy-
perparameters, development set construction for fine-tuning hyperparameters, and training hardware
setup, are given in Appendix [A.3]

4.2 RESULTS

4.2.1 RESULTS ON WMT20 SHARED METRICS TASK DATASET

We evaluate our systems on seven X-to-English language pairs and seven English-to-X language
pairs from the WMT20 Shared Metrics Task dataset. In addition to the baselines mentioned in
sectionEl], we also show results for SENTBLEU (Post,[2018)) and BERTSCORE (Zhang et al.,2020),
which are popular reference-based unsupervised machine translation evaluation metrics.

Table [I] shows the segment level Kendall’s Tau correlation for all the language pairs. Results for
the best-performing model are shown in bold. All our models outperform the baselines. On the X-
to-English language pairs, our best-performing model, MT-Ranker-XXL, outperforms the nearest
supervised baseline OPENKIWI-XLMR by 4.4 points on average. On the English-to-X language
pairs, our best-performing model, MT-Ranker-XXL, outperforms the nearest supervised baseline
T5SCORE-XLgyp by 3.8 points on average.
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Table 1: Segment-level Kendall’s Tau correlations on language pairs from the WMT20 Shared Met-
rics Task dataset. Avg. denotes the average score across all language pairs.

cs-en de-en ja-en pl-en ru-en ta-en zh-en Avg

UNSUPERVISED BASELINES

SENTBLEU 6.8 41.1 188  -25 -0.5 163 9.3 128
BERTSCORE 11.7 452 243 4.7 6.0 219 134 182
T5SCORE-XLyy 39 266 197 24 6.6 16.1 5.1 115
(5 SUPERVISED BASELINES
2 COMET-QE 9.2 408 153 46 101 167 9.2 151
™ OPENKIWI-XLMR 93 463 220 59 92 188 1.5 17.6
T5SCORE-XLsyp 7.1 41.7 221 3.0 73 247 74 162
OUR SYSTEMS
MT-Ranker-Base 10.7 468 232 6.8 169 209 14.8 20.0
MT-Ranker-Large 11.8  48.6 262 88 164 242 163 218
MT-Ranker-XXL 13.1 485 25.6 9.2 163 249 162 22.0
en-cs en-de en-ja en-pl en-ru en-ta en-zh Avg
UNSUPERVISED BASELINES
SENTBLEU 432 302 479 153 51 395 397 31.6
BERTSCORE 51.1 395 538 285 205 604 411 421
T5SCORE-XLyy 19.0 207 477 111 125 399 182 242
E SUPERVISED BASELINES
2 COMET-QE 61.3 346 4677 358 264 512 398 423
M OpENKIWI-XLMR  60.7 369 553 347 279 604 377 448
T5SCORE-XLsyp 627 400 587 376 282 662 456 484

OUR SYSTEMS

MT-Ranker-Base 63.1 380 569 356 233 66.6 36.7 457
MT-Ranker-Large 69.5 466 606 429 277 69.7 41.1  51.1
MT-Ranker-XXL 69.1 475 632 441 300 704 410 522

4.2.2 RESULTS ON MQM

We report the Kendall’s Tau of baselines and our systems on the MQM benchmark datasets. How-
ever, the implementation differs from the one used in (Freitag et al., [2021b} 2022). (Freitag et al.,
2021b) flattened the segment-system score matrix before calculating the correlation. Since our sys-
tem does not predict a quality score for a translation, this approach to Kendall’s Tau is unsuitable.
Thus, we keep Kendall’s tau implementation the same as the one used for evaluation on the DA20
dataset. We note that this implementation is the same as the segment averaging approach discussed
in (Freitag et al., 2022).

We report the MQM20, MQM21, and MQM22 results in Table[2] We only show results on MQM22
for COMETKIWI since it uses MQM20 and MQM?21 as training data. Our best-performing model,
MT-Ranker-XXL, outperforms the nearest baselines on MQM20, MQM21, and MQM?22 by 1.3,
0.4 and 2.8 points respectively.

4.2.3 RESULTS ON ACES

In Table[3] we show the performance of our system on the ten categories of the ACES dataset. The
final column on the table shows the ACES-Score, a weighted combination of performance in the ten
categories. Our system achieves state-of-the-art results in terms of ACES-Score against the previous
state-of-the-art system, KG-BERTScore (Wu et al., [2023). Besides the wrong-language category of
errors that are unsolvable for reference-free systems (Amrhein et al., [2022), our system performs
well in all categories. We see especially strong performances by our system in detecting omission,
mistranslation, do-not-translate, and punctuation errors.
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Table 2: Segment-level Kendall’s Tau correlation on the MQM datasets. Avg denotes the average
correlation achieved by a system across all language pairs on each dataset.

MQM20 MQM21 MQM22
en-de zh-en Avg en-de zh-en Avg en-de zh-en en-ru  Avg
UNITE 1.1 122 11.6 114 73 93 163 224 248 212
COMET-QE 234 186 21.0 152 88 12.0 253 216 272 247
COMETKIWI - - - - - - 208 253 317 259

MT-Ranker-Base 194 137 165 131 70 100 154 182 185 174
MT-Ranker-Large 11.6 179 148 110 106 108 198 219 272 23.0
MT-Ranker-XXL 255 191 223 147 101 124 249 266 315 277

Table 3: Kendall’s Tau correlation on the ACES dataset.

A (6] M U DNT Ov Un RWK WL P ACES-

Score
UNITE 029 093 060 -062 086 070 054 054 -042 0.73 15.70
COMET-QE -0.54 040 038 0.14 0.12 0.62 044 032 -0.51 0.25 6.61
COMETKIWI 036 083 0.63 023 0.78 0.74 057 058 -036 0.49 16.95

KG-BERTScorRe  0.79 081 049 -046 0.76 0.65 053 049 031 026 17.49
MT-Ranker-XXL 0.65 097 0.63 025 0.84 0.63 054 0.66 -0.53 0.97 18.46

5 ANALYSIS

We analyze our systems to answer four questions: 40

(Q1) How much does each stage of training con-
tribute to the final system? (Qs) How much fur-
ther can the performance be improved given access
to human-annotated training data? (Qs) Does our
system generalize to unseen language pairs? (Qy4) Is
there any specific scenario where our systems per-
form poorly?

w
w

Average Kendall's Tau
w
o

Ablation Study. To answer Q;, we study whether

the three training stages are necessary for our
, ) 25 ‘ ‘

model’s good performance. In Figure [3] we show All Stages  w/o | w/o Il w/o Ill

the performance of our MT-Ranker-Large model

on the DA20.d§1taset after removing different stages Figure 3: Impact of removing training stages

from the training process. We plot t.he average on the performance of MT-Ranker-Large

Kendall’s Tau across all 14 language pairs. We see o5 the DA20 dataset.

that performance drops after removing each of the

training stages, indicating the necessity of each training stage. The highest performance drop hap-

pens from removing stage 3, showing the effectiveness of our synthetic data generation approach.

Using Human Supervision. To answer Qs, we study whether the performance of our system can
be further improved by fine-tuning on human annotations. We construct better-worse translation
pairs following the Direct Assessment Relative Ranking approach (Ma et al.l 2019) from the Di-
rect Assessment datasets from WMT17, WMT18 and WMT19 Shared Metrics Tasks. We show the
results in Figure [d Across all benchmark datasets, the supervised systems show improved perfor-
mance over the unsupervised systems.

Zero-shot performance on unseen language pairs. Except for the XNLI pretraining stage, our
systems are trained on language pairs from the WMT Direct Assessment datasets. To answer Qs,
we investigate whether our system generalizes well to language pairs unseen during training. In
Table ] we show Kendall’s Tau correlation for WMT and non-WMT language pairs and their cor-
relation difference on three phenomena from the ACES dataset. The three phenomena and the



Published as a conference paper at ICLR 2024

Table 4: Correlation difference of our system between WMT and non-WMT language pairs on three
phenomena from the ACES dataset.

antonym- real-world- nonsense
replacement knowledge-
commonsense
WMT Non- ) WMT Non- é WMT Non- 0 Avg-
WMT WMT WMT 0

MT-Ranker-Base  0.360 0326 0.034 0321 0.262 0.059 0.832 0470 0.362 0.152
MT-Ranker-Large 0.728 0.621 0.107 0.490 0.490 0.000 0.804 0.531 0.273 0.127
MT-Ranker-XXL  0.776 0.735 0.041 0.650 0.591 0.060 0.930 0.711 0.219 0.107

Table 5: Kendall’s Tau correlation on the untranslated phenomena of the ACES dataset.

copy-source  untranslated-vs-ref-word  untranslated-vs-synonym

MT-Ranker-Base 0.91 -0.29 -0.47
MT-Ranker-Large 0.93 -0.16 -0.28
MT-Ranker-XXL 0.41 -0.25 -0.30

language pairs were chosen following (Amrhein et al., 2022). We can make the two observations
from the results. First, the correlation difference between seen and unseen language pairs is small for
the antonym-replacement and real-world-knowledge-commonsense phenomena. Second, the corre-
lation difference falls with increasing model size, indicating higher generalization as we scale up
our models.

Performance on the Untranslated Phenomena.
To answer Q4, we focus on the three phenomena of
errors in the ACES dataset covered under the cat-
egory untranslated: copy-source, untranslated-vs-
ref-word and untranslated-vs-synonym. Part or the
whole machine translation remains untranslated in
these types of errors. The untranslated portion can
make the translation more similar to the source sen-
tence, and thus, these translation errors can be partic-
ularly challenging for reference-free evaluation sys- 15
tems. Table 5] shows the the performance of our sys-

tems on these three types of errors. On the copy- T DpA20 MQM20  MQM21  MQM22
source errors our systems perform well. On the other
two phenomena, our systems perform poorly. This
shows our systems’ limitations, indicating room for
further improvement.

Supervised Baseline
35 Unsupervised MT-Ranker
B Supervised MT-Ranker

w
o

Average Kendall's Tau
N N
o w

Figure 4: Performance improves on all
benchmarks after supervised training.

6 CONCLUSION AND DISCUSSION

Machine translation evaluation has been focused on predicting translation quality scores. The alter-
native approach pairwise evaluation has remained underexplored. The pairwise evaluation approach
is sufficient for the most important application of machine translation evaluation systems, compar-
ing machine translation systems. In this paper, we explored pairwise evaluation in the reference-free
scenario. This approach can deal with the most practical scenario where reference translation is un-
available. We show that this approach can achieve state-of-the-art correlation with human judgments
across five benchmark datasets without requiring any supervision from human-annotated data.
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A APPENDIX

A.1 FORMAL DEFINITION OF KENDALL’S TAU CORRELATION

The Kendall-like Tau correlation with human judgments can be formally defined as,

_|Concordant| — | Discordant|

= 12
|Concordant| 4+ |Discordant| 12)

where Concordant is the set of all translation pairs where the metric agrees with the human anno-

tators on which translation is better and Dicordant is set of all translation pairs where it disagrees.

A.2 SYNTHETIC DATASET CREATION

Here we discuss the details of synthetic dataset creation for our third stage of training.

A.2.1 BERTSCORE

We used BERTScore (Zhang et al.l 2020)) to generate some of the synthetic data. For the To-English
language pairs we use microsoft/deberta-xlarge-mnli variant of BERTScore as suggested in the of-
ficial repository of BERTScore. For the From-English language pairs we use xlm-roberta-large
version as it achieved the best performance on our development set.

A.2.2 SUBSAMPLING THE MT-PRISM DATASET

We take at most 25000 samples per language pair from the MT-PRISM dataset. We only consider
the language pairs covered in WMT17 to WMT20 Shared Metrics task. In total we have about 4
million samples in this dataset.

A.2.3 WORD DROP

We used the XLMRoberta (Conneau et al., 2020) tokenizer to tokenize the translation and randomly
drop 15% of the tokens from the translation. Here we give an example of sample generated by this
approach.

Source: Doch die Reduktion von CO?2 ist eine besonders unwirksame Methode, um den Armen und
Hungernden dieser Welt zu helfen.
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Original Translation: But cutting back on CO2 is a particularly ineffective way to help the world’s
poor and hungry.

Purturbed Translation: But back on CO2 is a particularlyive way to help the world’s poor and
hungry.

A.2.4 WORD REPLACEMENT USING MASKED LANGUAGE MODEL

Similar to Word Drop we use the XLMRoberta (Conneau et al. [2020) tokenizer to tokenize the
translation. Then we randomly replace 15% of the tokens using the XLMRoberta model.

Here we give an example of sample generated by this approach.
Source: Er hasst es, wenn fremde Menschen in seine Welt eintreten.
Original Translation: He doesn’t seem to like it when other characters intrude on his territory.

Purturbed Translation: He doesn’t seem to like it when other animals intrude on his territory.

A.2.5 BACK TRANSLATION

We take a small subset of 50000 translations from our subsampled MT-PRISM dataset. The transla-
tions are then translated to french using the M2M 100 (Fan et al., [2021)) machine translation model.
Then the french translations are back-translated to original language using the same model. We use
greedy decoding to generate the translations.

Here we give an example of sample generated by this approach.

Source: Und trotzdem hat die Ungleichheit zwischen dem ldndlichen und dem urbanen Raum
zZugenommen.

Original Translation: And yet, inequality between rural and urban areas has increased.

Purturbed Translation: Inequalities between rural and urban areas have increased.

A.2.6 WORD REPLACEMENT AFTER BACK TRANSLATION

We again used the XLMRoberta model to perform word replacement. Word replacement was per-
formed on all of 50000 back translated sentences.

Here we give an example of sample generated by this approach.

Source: Deshalb will die Tiirkei um jeden Preis die Zeitspanne fiir mogliche diplomatische Losungen
verldngern.

Original Translation: As a result, Turkey wants to extend, at all costs, the time available for diplo-
macy.

Purturbed Translation: As a result, Turkey has to use, at all costs, the time available for diplomacy.

A.3 IMPLEMENTATION DETAILS
A.3.1 DEVELOPMENT SET

To tune hyperparameters we construct a development set from DA17,DA18 and DA19 datasets. We
randomly take 50 source sentences per language pair from these datasets. We use the relative ranking
samples corresponding to these source sentences as development set. The Kendall’s Tau correlation
on this development set is used as the validation metric.

A.3.2 HYPERPARAMETERS
In Table [6| we show the hyperparameters used for training our models. Learning rate and batch size

was tuned based on the validation metric. We use early stopping by evaluating the models every
1000 steps of and choose the checkpoint with the highest validation metric.

15



Published as a conference paper at ICLR 2024

Table 6: Hyperparameters used for training our models.

Batch Size Learning Rate #Training Steps (Stage 1) #Training Steps

MT-Ranker-Base 128 5-107° 100k 20k
MT-Ranker-Large 64 5-107° 100k 20k
MT-Ranker-XXL 32 1-107° 20k 20k

A.3.3 TRAINING SETUP

The models were trained A100 GPUs. Each model was trained on a single GPU. We used gradient
accumulation for training MT-Ranker-XXL with a batch size of 32. Training MT-Ranker-Base,
MT-Ranker-Large, and MT-Ranker-XXL takes about 6, 12, and 52 hours respectively.

A.4 BASELINE MODELS FOR THE MQM BENCHMARK

Since our evaluation method differs from the standard for the MQM benchmarks we need to repro-
duce the results of baselines for the MQM datasets. We evaluate against publicly available baselines.
Here we give the details of the baseline models.

A.4.1 UNITE

We chose the [Unite-MUP, (Wan et al., |2022)) model available from the COMET library (Rei et al.,
2020al). We use the model in reference-free scenario.

A.4.2 COMET-QE

We chose the Comet-QE-DA-20 (Rei1 et al., 2020b) model for evaluation on MQM?20 dataset. We
chose WMT21-Comet-QE-MQM]| (Rei et al., [2021) for evaluation on MQM21 and MQM?22 dataset.
Both of these models are available from the COMET library (Rei et al., [2020a)).

A.4.3 COMETKIWI

We chose the WMT22-CometKiwi-DA (Wan et al., 2022) model available from the COMET li-
brary (Rei et al., 2020a)).

A.5 SYSTEM LEVEL EVALUATION

Given the source sentence and a pair of translations our systems predict which translation is better.
Thus our systems perform evaluations at the segment level. Here we discuss a straightforward
approach to perform system level evaluation from the segment level evaluations.

In system level evaluation we are given the machine translations of a set of source sentences from
multiple systems. Since our model predicts a probability of which translation is better we can
aggregate these probabilities across all the MT pairs to give a probability score for which MT system
is better for each pair of MT systems. Then for each MT system we can average these probability
scores to get a score for the system. These scores indicate how likely a MT system is to beat another
MT system.

For example, suppose we have three MT systems A, B and C under consideration. We apply our
system to each pair and get the scores shown at Table[/| Each cell indicates the probability that the
system on the row beats the system on the column. Thus, system A beats system B with a probability
of 0.7. We take the average across rows to get the score for each system. Based on the scores we
can conclude the ordering C > A > B.

We apply this approach to system-level evaluation on the DA20 dataset and achieve competitive
results with baseline models. In the Table [§] we report the system-level Pearson correlation of the
baseline models and our systems. The Pearson correlation is calculated against the system level gold
human evaluation scores.
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Table 7: System level evaluation for a hypothetical scenario.

| A B C Average

A 0.7 0.3 0.5
B|0.3 0.4 0.35
C|0.7 0.6 0.65

Table 8: System-level Pearson correlations on language pairs from the WMT20 Shared Metrics Task
dataset. Avg. denotes the average score across all language pairs.

cs-en de-en ja-en pl-en ru-en ta-en zh-en Avg

SUPERVISED BASELINES

5§ COMET-QE 75.5 939 892 447 883 795 84.7 794
&  OPENKIWI-XLMR  76.0 99.5 931 442 859 792 90.5 81.2
< T5SCORE-XLsyp 73.0 99.5 959 513 940 92.0 87.9 84.8
OUR SYSTEMS
MT-Ranker-Base 80.0 100.0 940 52.0 91.0 92.0 88.0 853
MT-Ranker-Large 80.0 99.0 940 60.0 920 93.0 89.0 86.7
MT-Ranker-XXL 80.0 99.0 940 58.0 90.0 92.0 88.0 85.9
en-cs en-de en-ja en-pl en-ru en-ta en-zh Avg
SUPERVISED BASELINES
>5< COMET-QE 98.9 90.3 953 969 80.7 887 37.5 84.0
< OPENKIWI-XLMR  97.2 96.8 992 957 875 91.0 -1.0  80.9
% T5SCORE-XLgyp 98.5 96.3 964 96.8 88.7 952 96.0 954

OUR SYSTEMS

MT-Ranker-Base 99.0 940 980 97.0 630 930 470 844
MT-Ranker-Large 99.0 95.0 99.0 98.0 76.0 94.0 55.0 88.0
MT-Ranker-XXL 99.0 950 990 98.0 750 94.0 57.0 88.1
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A.6 INCONSISTENCIES IN PAIRWISE RANKING DECISIONS

We have discussed above how to get system level scores with our systems by averaging across the
row of pairwise comparison probabilities. With the system-level scores, there are no contradictions.
However, there is a chance of contradiction among the better-worse judgments of systems if we
do not provide this system level score and rely on each pairwise comparison probabilities to make
decisions. To that end, we have checked if there is any inconsistency among the pairwise system
ranking generated by our system.

Table 9: Percentage of triples from DA20 where MT-Ranke r-Large makes inconsistent predictions.

zh-en en-de ru-en ta-en en-zh pl-en en-pl

0.54% 0.14% 0.91% 0.27% 0.91% 0.41% 0.27%

Among the 14 language pairs on the DA20 datasets we have only found inconsistency on 7 of them.
On the following table we show the percentage of triples that show inconsistency. We note the
inconsistency level is less than one percent for all the 7 language pairs.

A.7 RESULTS FOR FURTHER LANGUAGE PAIRS ON WMT20 SHARED METRICS TASK

On our main table for the WMT20 Shared Metrics Task we did not report results for the language
pairs km-en, ps-en, iu-en, en-iu for brevity of presentation. In Table [I0] we report results for these
language pairs.

Table 10: Segment-level Kendall’s Tau correlations on further language pairs from the WMT20
Shared Metrics Task dataset.

km-en ps-en iu-en en-iu

SUPERVISED BASELINES

COMET-QE 14.9 9.2 3.2 -6.3
OPENKIWI-XLMR 24.4 10.6 5.6 6.0
T5SCORE-XLsye 22.5 10.6 2.6 -2.6
OUR SYSTEMS

MT-Ranker-Base 30.3 19.0 1.6 203
MT-Ranker-Large 334 201 52 147
MT-Ranker-XXL 33.1 19.7 6.6 18.0

Our systems strongly beat the baseline systems on these languages even though our systems were
not trained on human annotations. For the iu-en and en-iu language pairs we noticed that we filtered
out these language pairs also from our training. The strong performance on these two pairs also
show the generalization of our system to unseen language pairs during training.
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