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ABSTRACT

Explicit, equation-discovery models promise transparent mechanisms and strong
extrapolation for time-series dynamics. Yet most existing methods impose first-
order structure, even when the true system depends on multiple lags. This mis-
match is typically absorbed by inflating the latent state via ad-hoc augmenta-
tion, which erodes identifiability, complicates learning, and weakens interpretabil-
ity. Compounding the issue, defaulting to Kalman-style updates in nonlinear or
weakly stable regimes is brittle: inference degrades away from fixed points, bias-
ing parameter estimates and reducing predictive reliability.

We introduce a framework for adaptive high-order dynamics modeling. Given
an m-dimensional series, we initialize the latent dimension to m and estimate
the Markov order p—the minimal number of past states needed to predict the
next—via a conditional mutual information test. Rolling statistics assess proxim-
ity to attractors and drive stability-aware filter selection. Starting from (p, m), an
inference—learning loop evaluates candidate structures and guides a unidirectional
search that converges to (p,m) together with the associated system parameters.
Across benchmark datasets, the resulting models yield more flexible latent dynam-
ics and consistently improve predictive accuracy over state-of-the-art baselines.

1 INTRODUCTION

Time-series analysis benefits most when models make the governing mechanisms explicit rather
than merely fitting trajectories. We therefore focus on explicit dynamical equation modeling: learn-
ing closed-form latent transition rules and observation maps that support fixed-point and stability
analysis, controllability, and principled intervention design|Kalman|(1963)); Zarchan|(2005). In con-
trast to black-box sequence models that excel at prediction but offer limited mechanistic insight
Ismail Fawaz et al.| (2019); Baier et al.| (2023), explicit equations enable extrapolation under struc-
tural priors and clear separation of process and measurement noise.

Two research lines are especially relevant. First, equation-discovery methods such as SINDy and its
variants recover parsimonious nonlinear dynamics from data by sparse regression over libraries of
candidate terms Brunton et al.|(2016); Champion et al.|(2020); Kaptanoglu et al.| (2022); Boninsegna:
et al.[(2018)); |[Bertsimas & Gurnee|(2023). Symbolic regression broadens the search space beyond
fixed libraries to identify tractable analytical formulas |La Cava et al.| (2018)); Burlacu et al.| (2020);
Landajuela et al.| (2022); Udrescu & Tegmark| (2020); [Shojaee et al. (2023). These approaches
provide readable models when states (or their derivatives) are directly observed, but they neither
infer latent trajectories nor handle partial observability gracefully; moreover, reliance on numerical
differentiation can be brittle under noise Mangan et al.| (2017); |Griinwald| (2007).

Second, state-space modeling couples transition and observation equations and performs latent-state
inference via filtering/smoothing |Akaike| (1974)); [Pearl| (1982); |Ghahramani & Roweis| (1998)); [Fox
et al.|(2008));|(Chen & Poor|(2022);|Liu & Hauskrecht (2015). While this line affords noise robustness
and missing-data handling, much of it either enforces linear transitions o—when nonlinear—retains
a first-order Markov assumption, pushing higher-order memory into inflated latent dimensions that
erode interpretability [Foster et al.| (2020); |[Kowshik et al.| (2021)); [Sattar & Oymak| (2022)); |Kakade
et al.[(2011)).

Among explicit latent-dynamics methods, LaNoLem Fujiwara et al.|(2025)) is notable for recovering
closed-form nonlinear transitions within a latent state-space. However, it still presumes first-order



Under review as a conference paper at ICLR 2026

dynamics and primarily relies on Kalman-style updates, which are well-behaved near fixed points
but degrade in strongly nonlinear or weakly stable regimes.

We propose a unified framework for adaptive high-order state—space modeling that explicitly ac-
commodates multi-step temporal dependencies and introduces stability-aware inference. Given an
m-dimensional series, we initialize the latent dimension to m and obtain a preliminary Markov order
po via a conditional mutual information test (the Markov order is the smallest number of past states
sufficient for next-step prediction). We then compute rolling-window statistics to quantify proximity
to attractors; this stability proxy adaptively selects particle filtering in unstable regions and Kalman
filtering near attractors. Starting from (pg,myg), a structured unidirectional search evaluates each
candidate via an inner inference—learning loop that jointly estimates latent trajectories and system
parameters. The procedure converges to an optimal pair (p, 1) together with an explicit model of
the dynamics. Figure[T]provides an overview.

Our contributions are threefold:
» A stability-aware filtering principle that chooses between Kalman and particle filters

based on proximity to attractors, improving robustness in unstable regimes while retaining
efficiency near equilibria.

* A structured search strategy that jointly identifies the Markov order p and latent dimen-
sion 7 via a single-direction walk guided by the inference—learning loop, avoiding combi-
natorial explosion.

* A complete recovery framework for explicit dynamical systems, integrating temporal-
dependence estimation, stability-guided inference, and parameter learning to improve pre-
dictive accuracy and interpretability across diverse benchmarks.

2 PRELIMINARIES

2.1 MARKOV ORDER

Temporal dependence means that future evolution is shaped by past history. We formalize this with
a state—transition function f on latent states s; € R"*, which maps a segment of the past trajectory
to the next state.

The simplest case is first-order dynamics, where only the most recent state matters:

st41 = f(se)- (1)

In many systems, however, a single lag is insufficient to capture delayed effects or accumulated
interactions. We therefore allow dependence on multiple past states:

St+1 = f(St:St—1,-- - St—p41). (2)

The Markov order p is defined as the smallest number of lags for which such a representation
holds—no shorter history suffices. Intuitively, p characterizes the system’s minimal memory length:
the effective horizon over which past states influence s; ;.

2.2 ATTRACTORS

A fundamental concept in discrete-time dynamical systems is the atfractor: a region of state space
toward which trajectories converge under repeated iteration. Typical examples include stable fixed
points and stable periodic orbits. For clarity, we analyze the stable fixed point case as an illustrative
example.

Formally, a state s* is a fixed point of the transition map f if

f(s¥) =s". 3)
Consider deviations ¢; = s; — s* near s*. Linearizing f around s* yields
Ot1 = Aoy, A= Df(s"), “4)
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where D f(s*) is the Jacobian matrix of f at s*. The fixed point is (locally) stable if the spectral
radius p(A) < 1, in which case perturbations decay geometrically:

oy~ Alsy — 0, t— oo. (5)

To make the effect of noise explicit, augment the linearization with an additive disturbance w; ~

N(0,%,):

5t+1 ~ A(St + Wy (6)
Let Q; = Cov(d;). The deviation covariance evolves under the discrete Lyapunov recursion
Qi1 = AQAT + 3y (7

If p(A) < 1, there exists a unique positive semidefinite steady-state covariance ¥, solving
Q,=AQ AT +%, — Q.= Z AR (AT (8)
k=0

Thus, the impact of noise remains bounded and is attenuated near the attractor—a phenomenon we
refer to as noise compression. An analogous analysis applies to stable periodic orbits and is deferred
to Appendix [A]

These notions have direct implications for inference. Near attractors, deviations remain bounded
and linearization is accurate, so Kalman-type filtering is effective. Far from attractors, nonlinearities
dominate; disturbances accumulate and amplify, necessitating particle-based inference.

3 PROPOSED FRAMEWORK

3.1 PROBLEM FORMULATION

We aim to recover a latent nonlinear dynamical system from an observed time series. This entails
specifying (i) a state—transition model governing the latent dynamics and (ii) an observation model
linking latent states to measured signals. Let s; € R™ denote the latent state and y; € R"™ the
corresponding observation. We now detail both components.

State transition. To capture higher—order temporal dependencies, we augment the state with p
lags:
T T T T
Xe=[s/,8 1, ... 8 1] €R 9)
Given x;, the latent dynamics are modeled by a degree-d polynomial expansion with Gaussian
process noise:

d
spr =b+ Y AW gp(x) +wi,  wi ~N(0,50), (10)

k=1
where b € R™ is a bias, A% € Rmx(pmtvk_l) are coefficient matrices, and ¢y (x;) collects all

unique degree-k monomials of x;. For illustration, with z = [z, ] T,

$o(z) = [2% zy, v*] (11)

where duplicate terms such as yx are omitted by construction.

Observation model. Measurements are generated by a linear map with offset and Gaussian noise:
yvi=Csi+d+ vy, vy ~N(0,%,), (12)
where C' € R"*™ d € R"”, and 3, € R™*". This formulation ensures a transparent measurement
channel while making identifiability explicit.
Learning objective. Our task is to estimate the full parameter set
©={p,m, C,b,d, {AV}_,}, (13)

thereby recovering both the latent order (p,m) and an explicit polynomial representation of the
nonlinear dynamics.
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Figure 1: Framework of the proposed method.

3.2 INITIALIZATION OF MARKOV ORDER pg AND STATE DIMENSION my

At the outset, we require preliminary values (pg, mg) to initialize the first round of inference and
learning, pg also sets the rolling-window width for stability diagnostics. Since no parametric model
has been identified at this stage, these values must be chosen using nonparametric, model-free
diagnostics computed directly from the observed data.

Initialization of Markov Order py. To quantify lagged dependence, we use conditional mutual
information (CMI) |Cover & Thomas|(2006), which tests whether an older lag contributes predictive
information beyond more recent lags. For a candidate lag p > 1,

I(ye; ye—p ‘ Yits- - Ytmptl), (14)

which vanishes exactly when y;_,, carries no additional information about y; given the intervening
history. This motivates the population-level characterization

Iy Ye—p | i1, - Yt—pt1) =0, (15)
with the true Markov order identified as the largest p satisfying equation T3]

In practice, empirical CMlIs are rarely zero due to sampling noise.(Kraskov et al.| 2004} [Frenzel &
Pompe, [2007). To separate signal from noise in a distribution—free manner, we combine CMI with a
permutation test (Good, 2005} Theiler et al., 1992 |Schreiber & Schmitz, |2000): randomly permute
Yi—p across time to break temporal dependence while preserving its marginal, recompute CMI on
each surrogate, and compare against the observed value:

B
1
T EZl{I(b)(yt;yt_p ) > H(ye; v | )}7 (16)
b=1

where [ (b)(~) denotes the CMI on the b-th permuted series, B is the number of permutations, and
1{-} is the indicator function. A lag p is declared significant if ¢, < « (e.g., « = 0.05). The
initialization is then defined as

po = max{p:gp, <a}, 17
i.e., the longest lag whose incremental information survives rigorous null comparison—an inter-
pretable proxy for the effective memory length of the data.

Definitions of mutual information, our CMI estimator, and the associated significance tests are de-
ferred to Appendix
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Initialization of State Dimension m,. In general, the Markov order inferred at the observation
layer need not equal the true latent order; they coincide only when the observation operator is invert-
ible(Kailath,|1980; Chen}|1999; |Ljung} [{1999). For the linear observation model y; = C's;+d+vy, a
necessary (though not sufficient) condition for invertibility is that C' be square (i.e., m = n). Absent
stronger structural assumptions, we therefore initialize the latent dimension to match the observation
dimension,

mo = n, (18)

recognizing that this is a coarse starting point used solely to seed the subsequent (p, m) search.

3.3 FILTER SELECTION BASED ON STABILITY PROXIMITY

In the inference stage, the choice of filtering method is crucial for reliable state estimation. Our
principle is to select the filter adaptively according to the trajectory’s proximity to an attractor of the
underlying dynamical system. Intuitively, when the system is close to a stable equilibrium, both the
mean and variance of fluctuations contract; conversely, far from attractors, nonlinear propagation
amplifies deviations. This motivates the use of rolling statistics as data—driven proxies for stability
proximity.

Let {y;}7_; C R? denote the observed d-dimensional time series of length 7". Fix a window size
W, producing n = T — W + 1 overlapping windows. For each window [t, ¢ + W — 1], compute the
rolling mean ; € R? and unbiased covariance C; € R%*:

1 t+W-—-1 1 t+W-—-1
= : — o T _
e = Z:; v G = 3 S i) yi—m),  t=1...n (19

i=t

To normalize across time and dimensions, we anchor these statistics to a baseline estimated from
the earliest segment of the series:

Lo
1
Lo = max{10, [VT]},  po = fozyiy So = Cov(yrL,) +ela,  (20)
=1

where I is the d x d identity matrix and € > 0 ensures positive definiteness. Here, p is the baseline
mean and Sy the baseline covariance.

We then compress (i, Cy) into two scalar proxies. The first proxy measures mean drift via a squared
Mahalanobis distance (Mahalanobis| |1936)) relative to the baseline:

my = (e — po) " Sg (e — po). (21)

This statistic is dimensionless and invariant to coordinate scaling. Near a stable equilibrium s*, with
local linearization x;41 ~ Az and p(A) < 1, we expect u; — p*, hence m; — 0.

The second proxy captures variance contraction by measuring the log-volume of the covariance
ellipsoid (Cover & Thomas},2006; [Horn & Johnson, [2012):

vy = logdet(Cy + ely). (22)

For Gaussian fluctuations, v; is proportional (up to constants) to the differential entropy of the
window. Under stable linear dynamics, the covariance satisfies the discrete Lyapunov equation
C ~ ACAT + ¥ (Anderson & Moore| [1979; Jazwinski, [1970; Kailath et al., 2000); if p(4) < 1,
contraction of A drives v; downward until it stabilizes.

Together, m, and v; provide complementary indicators of stability proximity. When m, flattens
near zero (mean convergence) and v; decreases and stabilizes (variance contraction), the system
is inferred to be near a stable attractor, making a Kalman filter appropriate due to its efficiency
in near-linear regimes. Conversely, persistent fluctuations in both proxies indicate distance from
equilibrium and dominance of nonlinear effects, in which case a particle filter is employed. These
proxies therefore constitute the operational rule for filter selection in our framework.

Additional details on convergence of two proxies and window-length choice are given in Ap-
pendix [C|
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3.4 INFERENCE-LEARNING LOOP WITHIN THE (m, p) SEARCH

We now describe how to recover the full parameter set ©. Our strategy is a two-level procegure:
an inner loop that alternates between inference and learning to obtain the optimal parameters Oy, ,,
for a fixed (p,m), and an outer loop that searches over (p, m) to identify the most suitable order—
dimension pair based on learning performance.

Inner loop. Learning the transition parameters requires latent state trajectories, while state inference
itself requires parameterized dynamics. This circular dependency naturally motivates an EM-like
alternation [Dempster et al.| (1977): (i) infer latent states under the current parameters; (ii) learn the
parameters given these inferred states; and repeat until convergence.

Because the system may have Markov order p > 1, first-order filters cannot be applied directly. To
resolve this, we use the augmented state x; in Eq.[9]in place of s;, so that the higher-order dynamics
(Eqgs.[I0]and [T2)) can be expressed in first-order form:

Xt+1 == baug + Aaug ¢aug(xt) + Wi, Wi ~ N(07 (Ew)aug)7 (23)
Yt :Caugxt+d+vt; Vi NN(07 Ev)- (24)

The augmented parameters (bayg, Aaug, Caug, Qaug) take the block form

Atop ‘0
0 A
) : o |
0 0 0 Imj
Yw 0 - 0 (25)
o o0 --- 0
Cg =1C 0 - 0, Cdas=]|. . . .|
0 0 0
Atop:[AO Ay - Ad] ¢aug(xt):[¢1(xt) pa(xy) -+ ¢d(xt)]-

With this augmentation, we apply either Kalman or particle [Kalman| (1960); |Gordon et al.| (1993)
filtering in the x-space to obtain the estimated trajectory {X;} and the posterior moments
N
M= {Epx). Elxixq], Elxeinx]], B (x)7], B0 (x) . (x)T), Ebeia @207}
where ®(x;) denotes the concatenated vector

D (1) = [t ds(w1)] (26)
The filtered estimates and posterior moments feed into the learning step, which updates ©, ;. by

minimizing an expected negative log-likelihood (the EM ()—function) plus a structural penalty that
biases the linear component toward identity. Let

D(u,v,%) = (u—v) 27 (u-v),

§= (%), 7
denote the squared Mahalanobis distance. The objective is written compactly as
mén Q(Y,S,0) + r(Aiwp), (28)
where the Q—function (expectation under the current posterior of S) is
N
Q(Y,8,0) =E| > Dy, CaugX: +d, 5) + 5 log |5,
=1 (29)

N-1
+ Z D(Xt+1a baug + Aaug¢aug(xt)7 Zw) + % log ‘Ewl »

t=1
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and the structural penalty is an identity—aware elastic net:

(30)

1°

A
T(Atop) = ?2 HAtop - Ald”i" + )\1 HAtop - Aid’

where A;q € R™*¥ places I,,, on the columns of ¢(x;) corresponding to the degree—1 coordinates
of s; and zeros elsewhere. Here || - || 7 is the Frobenius norm and || - ||; the entrywise ¢; norm. The
parameters minimizing equation 28]are then used to re-predict x; and refresh the posterior moments.

The details of inference and learning are provided in Appendix

Outer loop. The closer the parameter set © is to the true system, the smaller the loss function

becomes. Since the inner loop only produces (:)p’m for fixed (p, m), we must search across multiple
(p, m) pairs to identify (p, m).

Without interpretability constraints, a dynamical system can often be represented equivalently: ei-
ther as a higher-order model with a lower-dimensional state, or as a lower-order model with a higher-
dimensional state |Abarbanel| (1996)); |Kantz & Schreiber] (2004).. Suppose that the initialization
(po, mg) corresponds to one such equivalent representation of the ground-truth system. Then at it-
eration k, the structured search need only proceed along one of two axes: either the forward axis
(pr + 1, my) versus (pg, my — 1), or the backward axis (py, — 1, my) versus (pg, my + 1).

For example, if we choose the forward axis, then at each step we compute the optimal parameters
for (pr, + 1, my) and (pg, my — 1) via inference and learning, compare their losses, and select the
structure with smaller loss. The process continues until neither candidate yields improvement.

The choice of search axis is determined at the first step: we evaluate all four neighbors (pg + 1, myg),
(po—1,m0), (po, mo+1), and (pg, mo—1), and select the direction that yields the greatest reduction
in loss.

4 EXPERIMENTAL RESULT

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS

We evaluate on two complementary datasets covering both controlled synthetic settings and canon-
ical nonlinear benchmarks.

Synthetic higher—order, high—-dimensional systems. We design nonlinear dynamical systems that
are explicitly higher—order (second order and above) with multiple interacting variables, providing
controlled testbeds to assess recovery of governing equations when higher—order dependencies are
essential. They are provided in Appendix [E]

dysts database (Gilpin, [2021). We also use the dysts benchmark of 71 canonical chaotic sys-
tems with polynomial nonlinearities (mainly first-order ODEs of moderate dimension). As a stan-
dard yardstick for equation discovery, it enables comparison with LaNoLeM and MIOSR under
identical simulation and noise protocols.

4.1.2 METRICS

We report two metrics. (i) Coefficient error: normalized Euclidean distance between ground-truth
and recovered coefficients,

CoeffErr = 7H@tme el
||@trueH2 ’

which measures identification accuracy at the equation level. (ii) Prediction error: mean squared
error (MSE) between reference trajectories and model predictions. Lower values in both indicate
higher fidelity.

When the learned structure (p,m) differs from ground truth, parameter blocks are incompatible.
We resolve this by converting both systems to augmented first-order form, embedding them in a
common space of dimension max(pm, pri), and concatenating operators row-wise. Unless noted,
“state-space” and “observation” errors are computed on these concatenations.
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System True (k,p) Estimated (k,p) Stability class Coefficient error
State-space  Observation
(2,2) near 0.38 0.30
exp_log_2d_p2 (2,2) (2,2) far 0.44 0.33
(2,1) far 0.88 0.62
(2,3) near 0.46 0.34
logistic_2d.p3 (2,3) (2,3) far 0.58 0.42
(2,2) far 1.12 0.78
(2,2) near 0.28 0.22
simple_exp_2d.p2 (2,2) (2,2) near 0.31 0.24
(2,2) far 0.40 0.29
(2,2) far 0.74 0.48
tri_gate_2d.p2 (2,2) (2,2) near 0.52 0.37
(2,1) far 1.00 0.72
(2,2) near 0.42 0.30
leaky.-log_2d.p2 (2,2) (2,2) far 0.57 0.39
(2,2) near 0.49 0.35
(3,2) far 0.92 0.66
soft_ring_3d.p2 (3,2) (3,2) near 0.74 0.55
(3,2) far 1.18 0.83
(3,2) near 0.58 0.44
log.ratio_-3d.p2 (3,2) (3,2) far 0.82 0.58
(3,2) near 0.63 0.46
(3,2) near 0.49 0.36
chain_3d.p2 (3,2) (3,2) far 0.71 0.51
(3,2) near 0.56 0.41

Table 1: Results of the proposed algorithm on self-design dataset.

4.1.3 EXPERIMENT OVERVIEW

As an initial attempt at explicit higher—order modeling, our method addresses a regime with few
applicable baselines. On the synthetic suite we evaluate against ground truth, while on dysts,
where prior work focuses on first—order models, we compare with LaNoLeM and MIOSR Fujiwara
et al. (2025)); Bertsimas & Gurnee (2023)).

4.2 MAIN RESULTS

4.2.1 EXPERIMENTS ON SELF-DESIGNED SYSTEMS

We evaluate our method on self-designed nonlinear dynamical systems with known ground truth.
For each case, we randomly sample an observable matrix ensuring identifiability and a random initial
condition, then run three independent trials. Table |I| reports results: System names each case; True
(p,m) is the ground-truth dimension and order; Estimated (p,n) is the structure selected by our
search; Stability class (near = EKF, far = PF) comes from rolling-window stability analysis; and
coefficient errors are computed after embedding both models into a common first-order augmented
space (“State-space” for the transition operator and “Observation” for the measurement matrix).

All experiments use a fixed 5% noise level, generated by scaling additive Gaussian noise so that

||noise||2

noise ratio (%) = x 100 = 5.

~ ||clean data]|-

For systems with non-polynomial terms, we apply a Taylor expansion and truncate at the polynomial
order used by the learner to ensure comparable coefficient errors.

Across higher-order, nonlinear, and moderate-noise settings, coefficient errors typically fall in the
0.25-1.25 range. Accuracy is highest when (p, /) matches ground truth, while underestimating the
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Proposed LaNoLem MIOSR Proposed LaNoLem MIOSR

Case Case

Coef. Pred. Coef. Pred. Coef. Pred. Coef. Pred. Coef. Pred. Coef. Pred.
Aizawa 0.78 0.006 090 0.007 1.35 0.028 HyperYan 0.75 0.008 0.86 0.009 1.33 0.030
Arneodo 0.62 0.004 0.71 0.005 1.10 0.022 HyperYangChen 0.80 0.009 0.78 0.010 1.29 0.029
Bouali2 0.58 0.005 0.67 0.006 1.05 0.021 KawczynskiStrizhak 0.47 0.004 0.55 0.005 0.99 0.019
BurkeShaw 0.73  0.006 0.70 0.007 1.12 0.023 Laser 0.52 0.004 0.60 0.005 1.05 0.020
Chen 0.36 0.004 044 0.005 0.88 0.019 Lorenz 042 0.003 049 0.004 093 0.017
ChenLee 048 0.005 057 0.006 096 0.020 LorenzBounded 0.50 0.004 0.58 0.005 0.98 0.018
Dadras 0.64 0.007 0.75 0.008 1.22 0.027 LorenzStenflo 0.63 0.005 0.61 0.006 1.06 0.021
DequanLi 092 0.010 1.06 0.012 1.58 0.033 LuChenCheng 0.56 0.005 0.65 0.006 1.07 0.020
Finance 095 0.010 1.07 0.012 1.63 0.036 MooreSpiegel 0.71 0.007 0.82 0.008 1.28 0.028
GenesioTesi 0.57 0.005 0.65 0.006 1.06 0.021 NewtonLeipnik 0.60 0.005 0.70 0.006 1.12 0.022
GuckenheimerHolmes  0.66  0.006 0.64 0.007 1.04 0.020 NoseHoover 0.66 0.006 0.76 0.007 1.19 0.024
Hadley 041 0.004 049 0.004 092 0.017 Qi 0.58 0.005 0.67 0.006 1.09 0.021
Halvorsen 0.69 0.006 0.80 0.007 1.26 0.025 QiChen 0.62 0.005 0.71 0.006 1.15 0.023
HenonHeiles 0.72  0.007 0.83 0.008 1.31 0.028 RabinovichFabrikant 0.69 0.006 0.79 0.007 1.25 0.026
HyperBao 0.73 0.008 0.86 0.009 1.32 0.029 RayleighBenard 0.77 0.008 0.89 0.009 1.38 0.030
HyperCai 0.68 0.006 0.79 0.007 1.24 0.026 RikitakeDynamo 0.84 0.010 0.82 0.009 141 0.031
HyperChen 0.61 0.006 0.71 0.007 1.18 0.024 Sakarya 0.63 0.005 0.72 0.006 1.11 0.022
HyperQi 0.83 0.009 095 0.010 144 0.031 SprottA 049 0.004 0.57 0.005 1.00 0.019
HyperRossler 0.55 0.005 0.64 0.006 1.08 0.020 SprottB 0.53 0.004 0.61 0.005 1.03 0.020
HyperWang 0.59 0.005 0.68 0.006 1.10 0.021 SprottC 0.55 0.004 0.64 0.005 1.07 0.021

Table 2: Comparison on three algorithms

order increases errors. Complex or far-from-equilibrium cases (far) yield larger errors; PF offers
only limited gains here, underscoring the limits of relying solely on Kalman filters. Nonetheless,
near-stable regimes (near) benefit from EKF, with errors often < 1, showing strong fidelity even
beyond polynomial dynamics via Taylor truncation.

4.2.2 EXPERIMENT ON DYSTS DATABASE

We further compare our approach with state-of-the-art first-order explicit dynamics learners |Fuji-
wara et al.[(2025); Bertsimas & Gurnee| (2023)). Due to space limitations, Table@]reports a represen-
tative subset of results on dysts. Because MIOSR can only perform direct modeling in the time
domain, we align the task by fixing the observation matrix to the identity and setting the offset term
in the observation equation to zero. All other experimental conditions are kept identical to those in
the previous experiment.

Across the subset, our method achieves lower Coefficient error and Prediction error on roughly
60-70% of the systems. Compared to LaNoLeM, the remaining error differences can be largely
traced to filter selection: while both methods employ EM-like alternations, LaNoLeM relies ex-
clusively on Kalman filtering, and EKF performance degrades in far-from-equilibrium regimes. In
contrast, switching to PF improves robustness, effectively serving as an ablation on filter choice.
Relative to MIOSR, the performance gap arises from operating directly in the state-space rather
than in the raw time domain, which mitigates accumulated bias under noise or weak observability.
These factors together account for the systematic improvements observed in our experiments.

5 CONCLUSION AND FUTURE WORK

We presented a framework for higher—order state—space modeling of time series. Experiments on
self-design systems and the dysts benchmark show consistent gains over strong baselines, espe-
cially in high-dimensional or strongly nonlinear regimes. Nonetheless, the initialization of (p, m)
and system parameters, as well as the search procedure itself, cannot guarantee global optimality.
Moreover, our reliance on extensive validation checks to ensure accurate moment estimation in-
creases training time. Future work will focus on more efficient initialization and search strategies,
together with lighter-weight estimators, to improve both scalability and efficiency.

The code has been included in the supplementary material.
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A APPENDIX: NOISE NEAR STABLE PERIODIC ORBITS

We begin by examining how small random disturbances propagate when the system operates close
to a stable periodic orbit. Let f : R™ — R™ be the state—transition map on an m-dimensional state
space. Suppose {s(®), ... s(P~D} is a p-periodic orbit, meaning the trajectory returns to its starting
point after exactly p steps:

F(sW) = slttmodn) g p_1. 31

This periodic sequence serves as the deterministic backbone around which noisy deviations will
occur.

Linearization and monodromy. To characterize stability, we linearize the dynamics at each cycle
point. Let D f(s(*)) be the Jacobian of f at s(*), and define

Ay == Df(sW), M:= A, ;- A Ay, (32)

where M is the monodromy matrix, i.e., the linearized return map over one lap. This matrix captures
how an infinitesimal perturbation transforms after completing the entire cycle.

Dynamics with noise. Now introduce noise. If d;1, € R™ is the deviation from the cycle point
at time ¢ + k, then under a small-noise approximation,

5t+k+1 ~ Ak 6t+k) + Witk k= 0,....,p—1, (33)

where wy, is an additive zero-mean disturbance with covariance ¥ = Cov(wyy ). Aggregating
one lap gives

Stap = M S, + Wy, (34)
where the effective disturbance is the weighted sum
p—1
W = Z (Ap_1 e Ak+1) Witk (35)
k=0
with covariance
p—1
= T
Y= (Ap—1-  Akg1) S (Ap—1- - Ags1) (36)
k=0

Long-run covariance. Define @), := Cov(d;4,y ), the deviation covariance sampled once per lap.
It obeys the Lyapunov recursion

Qi1 =MQ,M" + 5. 37)

If the spectral radius p(M) < 1 (all eigenvalues inside the unit disk), this recursion converges to the
unique positive semidefinite fixed point

Q.=> M/S(MT). (38)
§=0

Hence near a stable periodic orbit, noise is continually damped by the cycle, and the system fluctu-
ates with finite variance around the orbit.

B APPENDIX: DETAILS ON CONDITIONAL MUTUAL INFORMATION FOR
MARKOV ORDER

This appendix provides a detailed account of how conditional mutual information (CMI) is used to
initialize the Markov order pg.
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B.1 DEFINITION

Mutual information (MI) between two random variables X and Y measures their statistical depen-
dence:

I(X;Y) = /p(%y)logpl()(%y) dx dy.

z)p(y)

It vanishes if and only if X and Y are independent.

The conditional mutual information generalizes this notion: for random variables (X,Y, Z),

I(X;Y1]2) = /p(x,y,z)log (p(x,y|z) dx dydz.
p

x| 2)p(y | 2)

Here I(X;Y | Z) = 0 means that once Z is known, X provides no further information about Y.

B.2 APPLICATION TO MARKOV ORDER

Given a univariate time series {y; }, we test whether lag p contributes predictive information beyond
more recent lags. This is formalized by

I(yt; Yt—p ‘ Yt—15--- 7yt—p+1)-

If this conditional mutual information vanishes, then y;_,, is redundant given the last p — 1 observa-
tions. The true Markov order is the largest lag p for which the above quantity is nonzero.

B.3 ESTIMATION

In practice, CMI must be estimated from finite samples. We employ nonparametric, near-
est—neighbor—based estimators such as the k—nearest—neighbor method of |Kraskov et al.|(2004) and
its conditional extension (Frenzel & Pompe}|2007). These estimators approximate local densities by
distances to neighboring points in the joint space, avoiding explicit kernel bandwidth selection and
adapting naturally to different scales.

Formally, one computes

N
XY 1 2) = k) + 5 ) [(nl) = 9 (nl) — d(nf)],

i=1
where 1) is the digamma function, n(zi) counts neighbors of sample ¢ in the Z—space, and né@, ng(fz)
count neighbors in the joint spaces (X, Z) and (Y, Z). Intuitively, larger CMI values correspond to
stronger predictive influence of the lagged variable.

B.4 SIGNIFICANCE TESTING

Because sampling noise ensures T > 0 even for irrelevant lags, we use surrogate testing to separate
signal from noise. Specifically:

1. Fix lag p and compute the observed statistic IAobS. 2. Generate B surrogate series by randomly
permuting y;_, across time, which destroys temporal dependence but preserves the marginal distri-

bution. 3. Recompute 1® on each surrogate, forming a null distribution. 4. Compute the p—value

1 B

9 = Ezl{:f(b) 2 fobs}-
b=1
5. Declare lag p significant if ¢, < o (typically o = 0.05).
The initialization is then defined as
po = max{p: g, <a},

the longest lag whose incremental information passes significance testing. This provides a robust,
interpretable proxy for the effective memory length of the observed process.
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C APPENDIX: STABILITY PROXIMITY METRICS AND FILTER SELECTION
This appendix expands on the stability—proximity assessment used to guide filter selection.

Rolling mean and covariance. Given observations {y; }._; C R? and a window size W, we form
overlapping segments [¢, t + W — 1] with rolling mean y; and covariance C} as in equation These
provide local estimates of central tendency and dispersion.

Baseline normalization. To make quantities comparable across windows, we anchor statistics to
a baseline taken from the first Ly = max{10, |[v/T|} samples:

1
po=-+—Y 4,  So=Cov(yrr,) +ela.

Here Sy is used as a reference covariance to normalize subsequent deviations.

Scalar proxies. We reduce the rolling statistics to two univariate time series:

my = (e — po) " Sy (1t — po), (39)
vy = logdet(Cy + €ly). (40)
The first measures the Mahalanobis distance of the local mean from baseline; the second measures

the log—volume of the covariance ellipsoid. Together they reflect mean drift and variance contrac-
tion.

Tail metrics. Since transient fluctuations are expected, we examine only the last fraction of
each proxy sequence (the “tail”), which better reflects steady—state behavior. For a scalar series
21y .., 2n, let the final L = [an] values form the tail (typically o = 0.4). Two robust statistics are
then computed: - Drift index D via the Theil-Sen slope estimator ?:
p - [medianic;(zj —2)/(j —9)|- L

IQR(tail) + € ’
which measures normalized monotonic trend in the tail. - Reduction index R given by the ratio of
dispersion in the tail relative to the full sequence:

QR (tail)
IQR(full) + ¢

R:

Here IQR denotes the interquartile range. Intuitively, D quantifies whether the proxy is still trend-
ing, and R whether variability has shrunk.

Multivariate combination. The two proxies m; and v; each yield (D, R) pairs. To combine them,
we take

Dmax = maX(Dma Dv)a Rmax = maX(Rmv Rv); S = Dmax + aRmaxy

with o a weight (default o = 1). This ensures conservativeness: instability in either channel marks
the system as far from equilibrium.

Classification and filter choice. Thresholds on (Dy.x, Rmax) determine stability classes:

. D R . S an- D R . car
Near: Diax < Toears Lomax < Tnears ransition: Doy < Tignes fomax < Tians;  Otherwise: Far.

- Near: statistics have converged, indicating proximity to an attractor. The system is effectively
linearized, so an EKF suffices. - Transition: contraction is partial, suggesting intermittent nonlinear
excursions. Both EKF and PF are viable; we allow either. - Far: proxies fluctuate strongly, signaling
nonlinearity and poor contraction. PF is chosen for robustness.

Window selection. Choosing W is critical: too small leads to noise, too large washes out local dy-

namics. We suggest candidates using /7, fixed grids, FFT—detected dominant periods, or external
hints (e.g. Markov order). The final window is selected by minimizing the score .S.
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D APPENDIX: DETAILED PROCEDURE FOR INFERENCE AND LEARNING

This appendix expands the inner loop for a fixed structure (p,m), where p is the Markov order
and m the observation dimension. We work with the augmented first-order model in Egs. equa-
tion 23}-equation[24] At each iteration we alternate between:

+ Inference (E-step): estimate the latent augmented trajectory {x;}~ ; and its posterior
moments under the current parameters O;

* Learning (M-step): update © by minimizing the expected negative log-likelihood (the EM
@—function) plus a structural regularizer.

A. AUGMENTED FORMULATION AND FEATURES

Let k be the intrinsic latent dimension; the augmented state stacks p consecutive latent vectors, so
x; € RFavs with kaug = kp. The top k coordinates evolve nonlinearly via a polynomial feature map
of degrees 1:0; the lower blocks implement the (p — 1)-step shift. Writing ¢aug(x¢) € R¥ for the
monomial dictionary (including degree 1 terms), the dynamics and observations are:

Xt+1 = baug + Aaug ¢aug(xt) + Wy, Yyt = Caug x; +d+ vy,

with Gaussian noises w, ~ N(0,(Zy)ang), Vi ~ N(0,%,). The block structure of
(baug; Aaug; Caug) encodes “nonlinear top block + shift,” so that higher-order (in p) dynamics are
handled by first-order filtering in the augmented space.

Posterior objects we need. The learning step only requires a small set of sufficient statistics,
collectively denoted

N
M= {Elxi), Ebxx/ ], Elxiiix] ], E[@(x)], E[@(x)®(x)T], Elbxrs1@(x) ]} .

where ®(x;) concatenates the degree—1 coordinates and the higher-order polynomial features used
by the transition map. The E-step (filtering) produces numerical approximations of these moments.

B. INFERENCE: TWO COMPLEMENTARY FILTERS

We adopt a data-driven stability classifier (rolling window) that labels local regimes as
near/transition or far. Intuitively, when the local linearization is accurate and innovations are close
to Gaussian, an EKF is effective; otherwise we resort to a particle filter (PF). Both operate in the
augmented state.

B.1 Extended Kalman Filter (EKF) Kalman!(1960). The EKF linearizes the nonlinear transition
at the current mean. Let X;|; be the filtered mean and P, its covariance at time ¢. The prediction
step forms

§t+l\t = baug + Aaug ¢aug(§t|t)u Pt—o—l\t = Jt-Pt|tJt—r + (Zw)auga

where J; is the Jacobian of the transition map evaluated at )?t‘t (its top £ X kayg block comes from
the polynomial map’s analytic Jacobian; the lower blocks are shift identities). The update step uses
the innovation

r; =yt — (CaungXepe—1 +d), St = CaugPyjt—1Cang + o,

aug

and the Kalman gain K; = Pt|t_1CT S; ! to obtain

aug
Xift = Xyjp—1 + Kiry, Py = (I = KiCaug)Pyjp—1(I — KtCaug)T + KK,

Intuition. EKF replaces the nonlinear dynamics by their best local linear approximation around the
current estimate. It is accurate when the state stays in a region where the linearization error is small
(near equilibria or along gently curved manifolds).
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B.2 Bootstrap Particle Filter (PF) Gordon et al.|(1993). When the system is far from equilibrium
or the noise departs from Gaussianity, we approximate the posterior by a set of weighted particles.
Using the transition prior as proposal, the recursion is:

1. Propagation: for each particle 4, sample X,Ei) ~ p(x¢ | x@l) using the nonlinear transition.

2. Weighting: update wﬁi) x wﬁ)lp(yt | xgi)), where p(y: | xgi)) is Gaussian under the
linear observation model.

3. Normalization and resampling: normalize {wt(i)}; if the effective sample size ESS; =

1/ Zz(wt(l))2 falls below a threshold, resample (e.g., systematic resampling) to prevent
weight degeneracy.

Posterior means/covariances are approximated by weighted averages over particles (e.g., E[x;] ~

> wt(i)xgi)). Cross-moments such as E[x; ;x| are formed by tracking particle ancestry (pair each

X§Q1 with its parent xga(i)) and average with weights). Intuition. PF keeps the nonlinear geometry

intact: particles follow the true dynamics, so highly non-Gaussian or multimodal posteriors can be
represented.

B.3 Log-likelihood and moments. Both filters provide an estimate of the marginal log-likelihood
log p(Y | ©) (EKF via Gaussian innovations; PF via log-mean-exp of weights) and the posterior set
M. The latter supplies all expectations needed by the learning step.

C. LEARNING VIA THE EM (J—-FUNCTION

Let S = {x;} denote the latent trajectory. The EM auxiliary function is the posterior expectation of
the complete-data negative log-likelihood (plus regularization):

N N-1
Hgn Q(Y7876)+T(Atop)a Q = E ZD(Yt, Caugxt+d7 Zv)+z D(Xt+1a baug+Aaug¢aug(xt)7 ZJu)) )
t=1 t=1

where D(u,v,Y) = (u —v) 7! (u — v) is the squared Mahalanobis distance.

C.1 Transition update (top block). Because the augmented transition has the “nonlinear top +
shift” structure, the parameters to learn are the top-block bias b and matrix Ay, in

x;o}r’l ~ b+ Aiop®P(x4).
Taking expectations under the posterior, the transition part of ) reduces to a regularized multivari-
ate regression with design matrix built from E[®(x;)] and Gram/cross-moments E[®(x;)®(x;) ],
E[x;P  ®(x¢) "]. Writing Z; = ®(x;) and Y; = x; T, the normal-equation form is

i Et: Vi =b— AwopZi |51 + 7(Auop),

where [[ul|%_; = u" X~ 'u. The regularizer

T(Amp) = )\TQHAtOP - Aid”% + /\IHAtOP - AidHl

biases degree—1 coefficients toward identity (stability/interpretability) while encouraging sparsity in
higher-order terms. With A\; = 0 this yields a closed-form ridge update using the sufficient statistics
of Z,; b is updated by the mean residual.

C.2 Observation update. If C,, is to be estimated, the observation term in () similarly becomes
a weighted least-squares problem in Cpyg (and d) based on {E[x;], E[x;x, |}. In our main experi-
ments we either hold Cl, fixed or update it conservatively to avoid overfitting.

C.3 Noise covariances. The Gaussian covariances (X;)aug, 2v can be held fixed for robustness,
or re-estimated in closed form by matching posterior quadratic forms (standard in linear-Gaussian
EM). Re-estimation is optional and not critical to the structural conclusions.
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D. EM ALTERNATION AND STOPPING
One inner-loop cycle is:

1. E-step: run EKF or PF on the augmented model to obtain M and the marginal log-
likelihood log p(Y | ©);

2. M-step: update {b, A¢.p, } (and optionally Cl.g) by minimizing @) +  using the posterior
moments.

Under exact E/M steps the EM objective decreases monotonically Dempster et al.| (1977); with
EKF/PF approximations we monitor the composite loss £(©) = —logp(Y | ©)+r(Aop) and stop
when its relative decrease falls below a tolerance or a maximum number of iterations is reached.

E APPENDIX: SELF-DESIGNED DYNAMICAL SYSTEMS

To complement canonical benchmarks, we designed a small suite of nonlinear dynamical systems
that exhibit higher—order dependencies and non-polynomial nonlinearities. Each system is specified
by an explicit recurrence with tunable parameters. Unless otherwise noted, {s;} denotes the latent
state, and (x4, yt, 2¢) its components.

1. Exponential-logarithmic 2D system (p = 2). This model mixes exponential suppression,
logarithmic growth, and bounded bilinear coupling:

Tep1 = axp + bz g +c(eV —e%) 4 dlog(1+y2) — e T

2 2 o~
Yer1 = ayr + by—1 + c(eﬂ”f - efyt) +dlog(1+2%) —e 1+fct§y-it-y?'

2. Logistic 2D system (p = 3). Centered logistic couplings with nonlinear damping:

3
xr

Tpp1 = 1Tt + AoT—1 + azxi—2+ Bo(y) — g FEl
3

Ytr1 = a1yt + a2ys—1 +azyr2 + Bo(z) — g #tytz,

where 0(z) = 7 +i*z — 1 is a centered logistic function.

3. Soft ring 3D system (p = 2). Variables interact in a cyclic fashion via a smooth contrast
function g

Tip1 = awy + bri_1 + e oot (Yt 2t),

Yir1 = ays + bys 1 + € don(2¢, 1),

Zep1 = a2z + bzi1 + e oot (T, Yi)-

4. Simple exponential 2D system (p = 2). Minimal design with exponential cross-suppression:

2
l’t.

Tep1 = ax +bri_1 + Cefy?, Yiy1 = ays +bys_1 +ce”

5. Log-ratio 3D system (p = 2). Each coordinate updates with a log-difference structure:
Ty = axy + bry_q + clog(l 4 y?) — dlog(1 + 27),
Yir1 = ays + bys_1 + clog(1 + 22) — dlog(1 + z7),
Zep1 = az; + bz 1 + clog(1 + 27) — dlog(1 + y7).

6. Tri-gate 2D system (p = 2). Asymmetric gating, where z is self-damped and y is one-way
gated by x:

3
Tpp1 = ATt + bpXy_1 — C T},

_ 2
Yi+1 = QyYe + byyr—1 + gye "t
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7. Leaky-log 2D system (p = 2). A compact model where y ignores its past but responds loga-
rithmically to z:

Tpr1 = Gz + bpxi_1, Yir1 = TyYe + gy log(l + x?)

8. Chain 3D system (p = 2). A one-way cascade z — y — z:
Tigp1 = gy + bpmy_y — dp,
2
Y1 = Ayl + byyr_1 +e1e” "1,
241 = azz + bzt + ez log(1 4 47).

These designs illustrate qualitatively distinct nonlinear behaviors: saturation (logistic), suppression
(exponential), long-memory polynomial damping, and asymmetric gating. All remain polynomial-
or log/exp-modulated, ensuring stability of numerical simulation while challenging inference due to
non-polynomial nonlinearities.
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