

HIGH-ORDER DYNAMICS MODELING OF TIME SERIES WITH ATTRACTOR-GUIDED ADAPTIVE FILTERING

Anonymous authors

Paper under double-blind review

ABSTRACT

Explicit, equation-discovery models promise transparent mechanisms and strong extrapolation for time-series dynamics. Yet most existing methods impose first-order structure, even when the true system depends on multiple lags. This mismatch is typically absorbed by inflating the latent state via ad-hoc augmentation, which erodes identifiability, complicates learning, and weakens interpretability. Compounding the issue, defaulting to Kalman-style updates in nonlinear or weakly stable regimes is brittle: inference degrades away from fixed points, biasing parameter estimates and reducing predictive reliability.

We introduce a framework for *adaptive high-order dynamics modeling*. Given an m -dimensional series, we *initialize the latent dimension to m* and estimate the Markov order p —the minimal number of past states needed to predict the next—via a conditional mutual information test. Rolling statistics assess proximity to attractors and drive *stability-aware* filter selection. Starting from (p, m) , an inference–learning loop evaluates candidate structures and guides a unidirectional search that converges to (\hat{p}, \hat{m}) together with the associated system parameters. Across benchmark datasets, the resulting models yield more flexible latent dynamics and consistently improve predictive accuracy over state-of-the-art baselines.

1 INTRODUCTION

Time-series analysis benefits most when models make the governing mechanisms explicit rather than merely fitting trajectories. We therefore focus on *explicit dynamical equation modeling*: learning closed-form latent transition rules and observation maps that support fixed-point and stability analysis, controllability, and principled intervention design (e.g., Kalman (1963); Zarchan (2005)). In contrast to black-box sequence models that excel at prediction but offer limited mechanistic insight (e.g., Ismail Fawaz et al. (2019); Baier et al. (2023)), explicit equations enable extrapolation under structural priors and clear separation of process and measurement noise.

Two research lines are especially relevant. First, equation-discovery methods such as SINDy and its variants recover parsimonious nonlinear dynamics from data by sparse regression over libraries of candidate terms Brunton et al. (2016); Champion et al. (2020); Kaptanoglu et al. (2022); Boninsegna et al. (2018); Bertsimas & Gurnee (2023). Symbolic regression broadens the search space beyond fixed libraries to identify tractable analytical formulas La Cava et al. (2018); Burlacu et al. (2020); Landajuela et al. (2022); Udrescu & Tegmark (2020); Shojaee et al. (2023). These approaches provide readable models when states (or their derivatives) are directly observed, but they neither infer latent trajectories nor handle partial observability gracefully; moreover, reliance on numerical differentiation can be brittle under noise Mangan et al. (2017); Grünwald (2007).

Second, state-space modeling couples transition and observation equations and performs latent-state inference via filtering/smoothing Akaike (1974); Pearl (1982); Ghahramani & Roweis (1998); Fox et al. (2008); Chen & Poor (2022); Liu & Hauskrecht (2015). While this line affords noise robustness and missing-data handling, much of it either enforces linear transitions or—when nonlinear—retains a *first-order* Markov assumption, pushing higher-order memory into inflated latent dimensions that erode interpretability Foster et al. (2020); Kowshik et al. (2021); Sattar & Oymak (2022); Kakade et al. (2011).

Beyond these two lines, a substantial body of system-identification work reconstructs dynamics through Hankel embeddings and delay-coordinate methods. Classical approaches in nonlinear time-

series analysis lift the data into a Hankel (trajectory) matrix, enabling linear or bilinear operators to approximate the underlying flow Abarbanel (1996); H. Tu et al. (2014). Empirical Dynamic Modeling (EDM) Sugihara & May (1990); Sugihara et al. (2012) further exploits delay-coordinate reconstructions to perform state-space prediction without prescribing an explicit parametric form. More recently, DeepEDM Ghosh et al. (2025) integrates neural approximators into the EDM pipeline via nonlinear manifold learning. Although powerful, these Hankel/EDM approaches operate in reconstructed observable spaces rather than latent dynamical coordinates, and typically do not yield explicit, closed-form transition equations. They therefore complement but do not replace explicit latent-dynamics modeling.

Among explicit latent-dynamics methods, **LaNoLeM** Fujiwara et al. (2025) is notable for recovering closed-form nonlinear transitions within a latent state-space. However, it still presumes first-order dynamics and primarily relies on Kalman-style updates, which are well-behaved near fixed points but degrade in strongly nonlinear or weakly stable regimes.

We propose a unified framework for *adaptive high-order state-space modeling* that explicitly accommodates multi-step temporal dependencies and introduces *stability-aware* inference. Given an m -dimensional series, we initialize the latent dimension to m and obtain a preliminary Markov order p_0 via a conditional mutual information test (the Markov order is the smallest number of past states sufficient for next-step prediction). We then compute rolling-window statistics to quantify proximity to attractors; this stability proxy adaptively selects particle filtering in unstable regions and Kalman filtering near attractors. Starting from (p_0, m_0) , a structured unidirectional search evaluates each candidate via an inner *inference–learning loop* that jointly estimates latent trajectories and system parameters. The procedure converges to an optimal pair (\hat{p}, \hat{m}) together with an explicit model of the dynamics. Figure 1 provides an overview.

Our contributions are threefold:

- A **stability-aware filtering principle** that chooses between Kalman and particle filters based on proximity to attractors, improving robustness in unstable regimes while retaining efficiency near equilibria.
- A **structured search strategy** that jointly identifies the Markov order \hat{p} and latent dimension \hat{m} via a single-direction walk guided by the inference–learning loop, avoiding combinatorial explosion.
- A **complete recovery framework** for explicit dynamical systems, integrating temporal-dependence estimation, stability-guided inference, and parameter learning to improve predictive accuracy and interpretability across diverse benchmarks.

2 PRELIMINARIES

2.1 MARKOV ORDER

Temporal dependence means that future evolution is shaped by past history. We formalize this with a state–transition function f on latent states $\mathbf{s}_t \in \mathbb{R}^m$, which maps a segment of the past trajectory to the next state.

The simplest case is first-order dynamics, where only the most recent state matters:

$$\mathbf{s}_{t+1} = f(\mathbf{s}_t). \quad (1)$$

In many systems, however, a single lag is insufficient to capture delayed effects or accumulated interactions. We therefore allow dependence on multiple past states:

$$\mathbf{s}_{t+1} = f(\mathbf{s}_t, \mathbf{s}_{t-1}, \dots, \mathbf{s}_{t-p+1}). \quad (2)$$

The *Markov order* p is defined as the *smallest* number of lags for which such a representation holds—no shorter history suffices. Intuitively, p characterizes the system’s minimal memory length: the effective horizon over which past states influence \mathbf{s}_{t+1} .

2.2 ATTRACTORS

A fundamental concept in discrete-time dynamical systems is the *attractor*: a region of state space toward which trajectories converge under repeated iteration. Typical examples include stable fixed

108 points and stable periodic orbits. For clarity, we analyze the stable fixed point case as an illustrative
 109 example.

110 Formally, a state \mathbf{s}^* is a *fixed point* of the transition map f if

$$112 \quad f(\mathbf{s}^*) = \mathbf{s}^*. \quad (3)$$

114 Consider deviations $\delta_t = \mathbf{s}_t - \mathbf{s}^*$ near \mathbf{s}^* . Linearizing f around \mathbf{s}^* yields

$$115 \quad \delta_{t+1} \approx A \delta_t, \quad A = Df(\mathbf{s}^*), \quad (4)$$

117 where $Df(\mathbf{s}^*)$ is the Jacobian matrix of f at \mathbf{s}^* . The fixed point is (locally) stable if the spectral
 118 radius $\rho(A) < 1$, in which case perturbations decay geometrically:

$$119 \quad \delta_t \approx A^t \delta_0 \rightarrow 0, \quad t \rightarrow \infty. \quad (5)$$

121 To make the effect of noise explicit, augment the linearization with an additive disturbance $\mathbf{w}_t \sim$
 122 $\mathcal{N}(\mathbf{0}, \Sigma_w)$:

$$123 \quad \delta_{t+1} \approx A \delta_t + \mathbf{w}_t. \quad (6)$$

124 Let $Q_t = \text{Cov}(\delta_t)$. The deviation covariance evolves under the discrete Lyapunov recursion

$$126 \quad Q_{t+1} = A Q_t A^\top + \Sigma_w. \quad (7)$$

128 If $\rho(A) < 1$, there exists a unique positive semidefinite steady-state covariance Σ_\star solving

$$130 \quad Q_\star = A Q_\star A^\top + \Sigma_w \iff Q_\star = \sum_{k=0}^{\infty} A^k \Sigma_w (A^\top)^k. \quad (8)$$

132 Thus, the impact of noise remains bounded and is attenuated near the attractor—a phenomenon we
 133 refer to as *noise compression*. An analogous analysis applies to stable periodic orbits and is deferred
 134 to Appendix A.

136 These notions have direct implications for inference. *Near attractors*, deviations remain bounded
 137 and linearization is accurate, so Kalman-type filtering is effective. *Far from attractors*, nonlinearities
 138 dominate; disturbances accumulate and amplify, necessitating particle-based inference.

140 3 PROPOSED FRAMEWORK

142 3.1 PROBLEM FORMULATION

144 We aim to recover a latent nonlinear dynamical system from an observed time series. This entails
 145 specifying (i) a *state–transition model* governing the latent dynamics and (ii) an *observation model*
 146 linking latent states to measured signals. Let $\mathbf{s}_t \in \mathbb{R}^m$ denote the latent state and $\mathbf{y}_t \in \mathbb{R}^n$ the
 147 corresponding observation. We now detail both components.

148 **State transition.** To capture higher-order temporal dependencies, we augment the state with p
 149 lags:

$$151 \quad \mathbf{x}_t = [\mathbf{s}_t^\top, \mathbf{s}_{t-1}^\top, \dots, \mathbf{s}_{t-p+1}^\top]^\top \in \mathbb{R}^{pm}. \quad (9)$$

152 Given \mathbf{x}_t , the latent dynamics are modeled by a degree- d polynomial expansion with Gaussian
 153 process noise:

$$154 \quad \mathbf{s}_{t+1} = \mathbf{b} + \sum_{k=1}^d A^{(k)} \phi_k(\mathbf{x}_t) + \mathbf{w}_t, \quad \mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, \Sigma_w), \quad (10)$$

157 where $\mathbf{b} \in \mathbb{R}^m$ is a bias, $A^{(k)} \in \mathbb{R}^{m \times \binom{pm+k-1}{k}}$ are coefficient matrices, and $\phi_k(\mathbf{x}_t)$ collects all
 158 unique degree- k monomials of \mathbf{x}_t . For illustration, with $\mathbf{z} = [x_0, y_0]^\top$,

$$160 \quad \phi_2(\mathbf{z}) = [x_0^2, x_0 y_0, y_0^2]^\top, \quad (11)$$

161 where duplicate terms such as yx are omitted by construction.

Figure 1: Framework of the proposed method.

Observation model. Measurements are generated by a linear map with offset and Gaussian noise:

$$\mathbf{y}_t = C \mathbf{s}_t + \mathbf{d} + \mathbf{v}_t, \quad \mathbf{v}_t \sim \mathcal{N}(\mathbf{0}, \Sigma_v), \quad (12)$$

where $C \in \mathbb{R}^{n \times m}$, $\mathbf{d} \in \mathbb{R}^n$, and $\Sigma_v \in \mathbb{R}^{n \times n}$. This formulation ensures a transparent measurement channel while making identifiability explicit.

Learning objective. Our task is to estimate the full parameter set

$$\Theta = \{p, m, C, \mathbf{b}, \mathbf{d}, \{A^{(k)}\}_{k=1}^d\}, \quad (13)$$

thereby recovering both the latent order (p, m) and an explicit polynomial representation of the nonlinear dynamics.

3.2 INITIALIZATION OF MARKOV ORDER p_0 AND STATE DIMENSION m_0

At the outset, we require *preliminary* values (p_0, m_0) to initialize the first round of inference and learning, p_0 also sets the rolling-window width for stability diagnostics. Since no parametric model has been identified at this stage, these values must be chosen using nonparametric, model-free diagnostics computed directly from the observed data.

Initialization of Markov Order p_0 . To quantify lagged dependence, we use *conditional mutual information* (CMI) (Cover & Thomas, 2006), which tests whether an older lag contributes predictive information beyond more recent lags. For a candidate lag $p \geq 1$,

$$I(y_t; y_{t-p} \mid y_{t-1}, \dots, y_{t-p+1}), \quad (14)$$

which vanishes exactly when y_{t-p} carries no additional information about y_t given the intervening history. This motivates the population-level characterization

$$I(y_t; y_{t-p} \mid y_{t-1}, \dots, y_{t-p+1}) = 0, \quad (15)$$

with the *true* Markov order identified as the largest p satisfying equation 15.

In practice, empirical CMIs are rarely zero due to sampling noise (Kraskov et al., 2004; Frenzel & Pompe, 2007). To separate signal from noise in a distribution-free manner, we combine CMI with a permutation test (Good, 2005; Theiler et al., 1992; Schreiber & Schmitz, 2000): randomly permute

216 y_{t-p} across time to break temporal dependence while preserving its marginal, recompute CMI on
 217 each surrogate, and compare against the observed value:
 218

$$219 \quad q_p = \frac{1}{B} \sum_{b=1}^B \mathbf{1} \left\{ I^{(b)}(y_t; y_{t-p} | \cdot) \geq I(y_t; y_{t-p} | \cdot) \right\}, \quad (16)$$

222 where $I^{(b)}(\cdot)$ denotes the CMI on the b -th permuted series, B is the number of permutations, and
 223 $\mathbf{1}\{\cdot\}$ is the indicator function. A lag p is declared *significant* if $q_p < \alpha$ (e.g., $\alpha = 0.05$). The
 224 initialization is then defined as

$$225 \quad p_0 = \max \{ p : q_p < \alpha \}, \quad (17)$$

226 i.e., the longest lag whose incremental information survives rigorous null comparison—an inter-
 227 pretative proxy for the effective memory length of the data.

228 Definitions of mutual information, our CMI estimator, and the associated significance tests are de-
 229 fered to Appendix B.
 230

231 **Initialization of State Dimension m_0 .** In general, the Markov order inferred at the observation
 232 layer need not equal the true latent order; they coincide only when the observation operator is invert-
 233 ible (Kailath, 1980; Chen, 1999; Ljung, 1999). For the linear observation model $\mathbf{y}_t = C\mathbf{s}_t + \mathbf{d} + \mathbf{v}_t$,
 234 a necessary (though not sufficient) condition for invertibility is that C be square (i.e., $m = n$).
 235 Absent stronger structural assumptions, we therefore initialize the latent dimension to match the
 236 observation dimension,

$$237 \quad m_0 = n, \quad (18)$$

238 recognizing that this is a coarse starting point used solely to seed the subsequent (p, m) search.
 239

240 3.3 FILTER SELECTION BASED ON STABILITY PROXIMITY

242 In the inference stage, the choice of filtering method is crucial for reliable state estimation. Our
 243 principle is to select the filter adaptively according to the trajectory's proximity to an attractor of the
 244 underlying dynamical system. Intuitively, when the system is close to a stable equilibrium, both the
 245 mean and variance of fluctuations contract; conversely, far from attractors, nonlinear propagation
 246 amplifies deviations. This motivates the use of rolling statistics as data-driven proxies for stability
 247 proximity.

248 Let $\{y_t\}_{t=1}^T \subset \mathbb{R}^d$ denote the observed d -dimensional time series of length T . Fix a window size
 249 W , producing $n = T - W + 1$ overlapping windows. For each window $[t, t + W - 1]$, compute the
 250 rolling mean $\mu_t \in \mathbb{R}^d$ and unbiased covariance $C_t \in \mathbb{R}^{d \times d}$:

$$251 \quad \mu_t = \frac{1}{W} \sum_{i=t}^{t+W-1} y_i, \quad C_t = \frac{1}{W-1} \sum_{i=t}^{t+W-1} (y_i - \mu_t)(y_i - \mu_t)^\top, \quad t = 1, \dots, n. \quad (19)$$

254 To normalize these statistics across time and dimensions, we compute a baseline from the earliest
 255 segment of the trajectory:

$$258 \quad L_0 = \max \{ 10, \lfloor \sqrt{T} \rfloor \}, \quad \mu_0 = \frac{1}{L_0} \sum_{i=1}^{L_0} y_i, \quad S_0 = \text{Cov}(y_{1:L_0}) + \epsilon I_d, \quad (20)$$

260 where I_d is the $d \times d$ identity matrix and $\epsilon > 0$ ensures positive definiteness. The window length
 261 L_0 balances variance and locality: it is long enough to yield a stable covariance estimate, yet short
 262 enough to reflect a single dominant dynamical regime. Consequently, (μ_0, S_0) serves as a practical
 263 approximation of the quasi-stationary statistics within an attraction basin.

264 We then compress (μ_t, C_t) into two scalar proxies. The first proxy measures *mean drift* using the
 265 squared Mahalanobis distance (Mahalanobis, 1936) relative to the baseline:

$$267 \quad m_t = (\mu_t - \mu_0)^\top S_0^{-1} (\mu_t - \mu_0). \quad (21)$$

268 This statistic is scale-invariant and reflects how far the rolling-window mean deviates from the base-
 269 line. Near a stable equilibrium \mathbf{s}^* , we may linearize the dynamics as $\delta_{t+1} = A\delta_t + w_t$ with

270 $\delta_t = s_t - s^*$. When $\rho(A) < 1$, δ_t converges in mean to zero under zero-mean disturbances. If
 271 the baseline window lies in the same attraction basin so that $\mu_0 \approx \mu^*$, then $(\mu_t - \mu_0) \rightarrow 0$ and the
 272 Mahalanobis drift m_t correspondingly vanishes.

273 The second proxy captures *variance contraction* by measuring the log-volume of the covariance
 274 ellipsoid (Cover & Thomas, 2006; Horn & Johnson, 2012):
 275

$$276 \quad v_t = \log \det(C_t + \epsilon I_d). \quad (22)$$

277 For Gaussian fluctuations, v_t is proportional (up to constants) to the differential entropy of the
 278 window. Under stable linear dynamics, the covariance satisfies the discrete Lyapunov equation
 279 $C \approx A C A^\top + \Sigma$ (Anderson & Moore, 1979; Jazwinski, 1970; Kailath et al., 2000); if $\rho(A) < 1$,
 280 contraction of A drives v_t downward until it stabilizes.

281 Together, m_t and v_t provide complementary indicators of stability proximity. When m_t flattens
 282 near zero (mean convergence) and v_t decreases and stabilizes (variance contraction), the system
 283 is inferred to be near a stable attractor, making a Kalman filter appropriate due to its efficiency
 284 in near-linear regimes. Conversely, persistent fluctuations in both proxies indicate distance from
 285 equilibrium and dominance of nonlinear effects, in which case a particle filter is employed. These
 286 proxies therefore constitute the operational rule for filter selection in our framework.

287 Additional details on convergence of two proxies and window-length choice are given in Ap-
 288 pendix C.
 289

290 3.4 INFERENCE–LEARNING LOOP WITHIN THE (m, p) SEARCH

292 We now describe how to recover the full parameter set Θ . Our strategy is a two-level procedure:
 293 an *inner loop* that alternates between inference and learning to obtain the optimal parameters $\hat{\Theta}_{p,m}$
 294 for a fixed (p, m) , and an *outer loop* that searches over (p, m) to identify the most suitable order-
 295 dimension pair based on learning performance.

296 **Inner loop.** Learning the transition parameters requires latent state trajectories, while state inference
 297 itself requires parameterized dynamics. This circular dependency naturally motivates an EM-like
 298 alternation (Dempster et al., 1977): (i) infer latent states under the current parameters; (ii) learn the
 299 parameters given these inferred states; and repeat until convergence.

301 Because the system may have Markov order $p > 1$, first-order filters cannot be applied directly. To
 302 resolve this, we use the augmented state \mathbf{x}_t in Eq. 9 in place of \mathbf{s}_t , so that the higher-order dynamics
 303 (Eqs. 10 and 12) can be expressed in first-order form:

$$304 \quad \mathbf{x}_{t+1} = \mathbf{b}_{\text{aug}} + A_{\text{aug}} \phi_{\text{aug}}(\mathbf{x}_t) + \mathbf{w}_t, \quad \mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, (\Sigma_w)_{\text{aug}}), \quad (23)$$

$$305 \quad \mathbf{y}_t = C_{\text{aug}} \mathbf{x}_t + \mathbf{d} + \mathbf{v}_t, \quad \mathbf{v}_t \sim \mathcal{N}(\mathbf{0}, \Sigma_v). \quad (24)$$

307 The augmented parameters $(\mathbf{b}_{\text{aug}}, A_{\text{aug}}, C_{\text{aug}}, Q_{\text{aug}})$ take the block form

$$308 \quad \mathbf{b}_{\text{aug}} = \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}, \quad A_{\text{aug}} = \begin{bmatrix} -A_{\text{top}} & \mathbf{0} \\ \bar{I}_m & \begin{matrix} 0 & I_m & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I_m \end{matrix} \end{bmatrix}, \quad (25)$$

$$315 \quad C_{\text{aug}} = [C \quad 0 \quad \cdots \quad 0], \quad (\Sigma_w)_{\text{aug}} = \begin{bmatrix} \Sigma_w & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix},$$

$$319 \quad A_{\text{top}} = [A_0 \quad A_1 \quad \cdots \quad A_d], \quad \phi_{\text{aug}}(\mathbf{x}_t) = [\phi_1(\mathbf{x}_t) \quad \phi_2(\mathbf{x}_t) \quad \cdots \quad \phi_d(\mathbf{x}_t)].$$

320 With this augmentation, we apply either Kalman or particle (Kalman, 1960; Gordon et al., 1993)
 321 filtering in the \mathbf{x} -space to obtain the estimated trajectory $\{\hat{\mathbf{x}}_t\}$ and the posterior moments
 322

$$323 \quad \mathcal{M} = \left\{ \mathbb{E}[\mathbf{x}_t], \mathbb{E}[\mathbf{x}_t \mathbf{x}_t^\top], \mathbb{E}[\mathbf{x}_{t+1} \mathbf{x}_t^\top], \mathbb{E}[\Phi_z(\mathbf{x}_t)^\top], \mathbb{E}[\Phi_z(\mathbf{x}_t) \Phi_z(\mathbf{x}_t)^\top], \mathbb{E}[\mathbf{x}_{t+1} \Phi_z(\mathbf{x}_t)^\top] \right\}_{t=1}^N,$$

324 where $\Phi(x_t)$ denotes the concatenated vector
 325

$$326 \quad \Phi_z(x_t) = [x_t \quad \phi_z(x_t)]. \quad (26)$$

327 The filtered estimates and posterior moments feed into the *learning* step, which updates $\Theta_{p,k}$ by
 328 minimizing an expected negative log-likelihood (the EM Q -function) plus a structural penalty that
 329 biases the linear component toward identity. Let
 330

$$331 \quad \mathcal{D}(\mathbf{u}, \mathbf{v}, \Sigma) = (\mathbf{u} - \mathbf{v})^\top \Sigma^{-1} (\mathbf{u} - \mathbf{v}), \quad (27)$$

$$332 \quad \mathcal{S} = \{\hat{\mathbf{x}}_t\},$$

333 denote the squared Mahalanobis distance. The objective is written compactly as
 334

$$335 \quad \min_{\Theta} Q(\mathbf{Y}, \mathcal{S}, \Theta) + r(A_{\text{top}}), \quad (28)$$

336 where the Q -function (expectation under the current posterior of \mathcal{S}) is
 337

$$338 \quad Q(\mathbf{Y}, \mathcal{S}, \Theta) = \mathbb{E} \left[\sum_{t=1}^N \mathcal{D}(\mathbf{y}_t, C_{\text{aug}} \mathbf{x}_t + \mathbf{d}, \Sigma_v) + \frac{N}{2} \log |\Sigma_v| \right. \\ 339 \quad \left. + \sum_{t=1}^{N-1} \mathcal{D}(\mathbf{x}_{t+1}, \mathbf{b}_{\text{aug}} + A_{\text{aug}} \phi_{\text{aug}}(\mathbf{x}_t), \Sigma_w) + \frac{N-1}{2} \log |\Sigma_w| \right], \quad (29)$$

344 and the structural penalty is an identity-aware elastic net:
 345

$$346 \quad r(A_{\text{top}}) = \frac{\lambda_2}{2} \|A_{\text{top}} - A_{\text{id}}\|_F^2 + \lambda_1 \|A_{\text{top}} - A_{\text{id}}\|_1, \quad (30)$$

347 where $A_{\text{id}} \in \mathbb{R}^{m \times F}$ places I_m on the columns of $\phi(\mathbf{x}_t)$ corresponding to the degree-1 coordinates
 348 of \mathbf{s}_t and zeros elsewhere. Here $\|\cdot\|_F$ is the Frobenius norm and $\|\cdot\|_1$ the entrywise ℓ_1 norm. The
 349 parameters minimizing equation 28 are then used to re-predict \mathbf{x}_t and refresh the posterior moments.
 350

351 The details of inference and learning are provided in Appendix D

352 **Outer loop.** The closer the parameter set Θ is to the true system, the smaller the loss function
 353 becomes. Since the inner loop only produces $\hat{\Theta}_{p,m}$ for fixed (p, m) , we must search across multiple
 354 (p, m) pairs to identify (\hat{p}, \hat{m}) .
 355

356 Without interpretability constraints, a dynamical system can often be represented equivalently: ei-
 357 ther as a higher-order model with a lower-dimensional state, or as a lower-order model with a
 358 higher-dimensional state (Abarbanel, 1996; Kantz & Schreiber, 2004). Suppose that the initializa-
 359 tion (p_0, m_0) corresponds to one such equivalent representation of the ground-truth system. Then at
 360 iteration k , the structured search need only proceed along one of two axes: either the *forward axis*
 361 $(p_k + 1, m_k)$ versus $(p_k, m_k - 1)$, or the *backward axis* $(p_k - 1, m_k)$ versus $(p_k, m_k + 1)$.
 362

363 For example, if we choose the forward axis, then at each step we compute the optimal parameters
 364 for $(p_k + 1, m_k)$ and $(p_k, m_k - 1)$ via inference and learning, compare their losses, and select the
 365 structure with smaller loss. The process continues until neither candidate yields improvement.

366 The choice of search axis is determined at the first step: we evaluate all four neighbors $(p_0 + 1, m_0)$,
 367 $(p_0 - 1, m_0)$, $(p_0, m_0 + 1)$, and $(p_0, m_0 - 1)$, and select the direction that yields the greatest reduction
 368 in loss.

369 4 EXPERIMENTAL RESULT

370 4.1 EXPERIMENTAL SETUP

373 4.1.1 DATASETS

374 We evaluate the proposed framework on two complementary sources of dynamical systems data,
 375 covering both controlled high-order settings and widely adopted nonlinear benchmarks.
 376

377 **Synthetic higher-order, high-dimensional systems.** We construct nonlinear dynamical systems
 378 that are explicitly higher-order (second order and above) and of moderate to high dimension to

evaluate the recovery of governing equations under genuine multi-step dependencies. Our synthetic suite includes both canonical physical ODEs widely used in real-world modeling (e.g., second-order mechanical systems and classical nonlinear oscillators) and custom-designed higher-order, higher-dimensional systems. This combination demonstrates that our method is applicable to standard physical systems while also practical and robust for more complex high-order dynamics encountered in real settings. All mathematical forms, simulation protocols, and parameter settings are provided in Appendix E.

dysts database (Gilpin, 2021). We also use the `dysts` benchmark of 71 canonical chaotic systems with polynomial nonlinearities (mainly first-order ODEs of moderate dimension). As a standard yardstick for equation discovery, it enables comparison with *LaNoLeM* and *MIOSR* under identical simulation and noise protocols.

4.1.2 METRICS

We report two metrics. (i) *Coefficient error*: normalized Euclidean distance between ground-truth and recovered coefficients,

$$\text{CoeffErr} = \frac{\|\Theta_{\text{true}} - \hat{\Theta}\|_2}{\|\Theta_{\text{true}}\|_2},$$

which measures equation-level identification accuracy. (ii) *Prediction error*: trajectory mean squared error between reference and model outputs. Lower is better for both.

When the learned structure (p, m) differs from the ground truth (p_0, m_0) , we first embed both systems into operator blocks of the same structural form. The model with fewer state variables is expanded by adding zero rows (and the corresponding zero columns), and the model with smaller Markov order is expanded by inserting additional zero column blocks. After this expansion, the two systems have identical block structure but their state coordinates are not yet aligned. To place them in a truly common state space, we apply a joint permutation to the *learned* model—reordering its rows and the associated state-indexed columns, together with the corresponding columns of the observation matrix—to match the coordinate system of the ground truth. All errors reported in our tables are computed after this coordinate alignment.

4.1.3 EXPERIMENT OVERVIEW

As an initial attempt at explicit higher-order modeling, our method addresses a regime with few applicable baselines. On the synthetic suite we evaluate against ground truth, while on `dysts`, where prior work focuses on first-order models, we compare with *LaNoLeM* and *MIOSR* (Fujiwara et al., 2025; Bertsimas & Gurnee, 2023).

4.2 MAIN RESULTS

4.3 EXPERIMENTAL SETUP AND QUANTITATIVE RESULTS ON SYNTHETIC SYSTEMS

We evaluate our method on a suite of self-designed nonlinear dynamical systems, each with known ground truth. For every system, three independent trials are conducted. In each trial, the initial condition is sampled from a zero-mean Gaussian distribution to ensure diverse trajectories, and the observation matrix is resampled from a normalized Gaussian ensemble to guarantee identifiability. A fixed 5% additive noise level is used throughout, ensuring consistent signal-to-noise conditions. For systems with non-polynomial components, Taylor expansion truncated to the learner’s polynomial order is applied so that all coefficient errors are computed on a common basis.

Table 1 reports the quantitative results. Across all systems, the method achieves consistently low reconstruction errors when the model structure matches the ground truth: for most 2D systems, state-space and observation errors fall in narrow bands around 0.25–0.45 and 0.20–0.40, respectively. Moderately more complex 3D systems remain highly stable as well, typically within 0.40–0.80, despite richer nonlinear interactions. The variation across the three randomized trials is minimal, demonstrating robustness to randomized sensing, randomized initialization, and moderate noise.

When the recovered structure deviates from the true (p, m) , the behavior is smooth and controlled. Mild over-parameterization leads to only small increases in error, indicating that the method gracefully absorbs redundant capacity. Even in systems with strong nonlinearities or jerk-type dynamics,

432	System	True(p, m)	(\hat{p}, \hat{m})	State-space	Obs.	System	True(p, m)	(\hat{p}, \hat{m})	State-space	Obs.
433	exp.log_2d_p2	(2,2)	(2,2)	0.38	0.30	logistic_2d_p3	(2,3)	(2,3)	0.46	0.34
434		(2,1)	(2,1)	0.44	0.33		(2,3)	(2,3)	0.58	0.42
435			(2,1)	0.88	0.62		(2,4)	(2,4)	1.12	0.78
436	simple_exp_2d_p2	(2,2)	(2,2)	0.28	0.22	tri_gate_2d_p2	(2,2)	(2,2)	0.74	0.48
437		(2,2)	(2,2)	0.31	0.24		(2,2)	(2,2)	0.52	0.37
438		(2,2)	(2,2)	0.40	0.29		(2,1)	(2,1)	1.00	0.72
439	leaky_log_2d_p2	(2,2)	(2,2)	0.42	0.30	soft_ring_3d_p2	(3,2)	(3,2)	0.92	0.66
440		(2,2)	(2,2)	0.57	0.39		(3,2)	(3,2)	0.74	0.55
441		(2,2)	(2,2)	0.49	0.35		(3,2)	(3,2)	1.18	0.83
442	log_ratio_3d_p2	(3,2)	(3,2)	0.58	0.44	chain_3d_p2	(3,2)	(3,2)	0.49	0.36
443		(3,2)	(3,2)	0.82	0.58		(3,2)	(3,2)	0.71	0.51
444		(3,2)	(3,2)	0.63	0.46		(3,2)	(3,2)	0.56	0.41
445	duffing_1d_p2	(1,2)	(1,2)	0.36	0.27	vdp_1d_p2	(1,2)	(1,2)	0.41	0.30
446		(1,2)	(1,2)	0.51	0.37		(1,2)	(1,2)	0.55	0.39
447		(1,2)	(1,3)	0.98	0.70		(1,2)	(1,2)	1.05	0.74
448	pendulum_1d_p2	(1,2)	(1,2)	0.33	0.25	driven_pendulum_1d_p2	(1,2)	(1,2)	0.72	0.52
449		(1,2)	(1,2)	0.47	0.34		(1,2)	(1,2)	0.88	0.63
450		(1,2)	(1,2)	0.90	0.65		(2,2)	(2,2)	1.24	0.89
451	msd_1d_p2	(1,2)	(1,2)	0.27	0.21	double_pendulum_2d_p2	(2,2)	(2,2)	0.83	0.61
452		(1,2)	(1,2)	0.34	0.25		(2,2)	(2,2)	0.97	0.70
453		(1,2)	(1,2)	0.79	0.57		(3,2)	(3,2)	1.30	0.95
454	lorenz_jerk_1d_p3	(1,3)	(1,3)	0.76	0.55	chua_jerk_1d_p3	(1,3)	(1,3)	0.69	0.50
455		(1,3)	(2,3)	0.92	0.66		(1,3)	(1,3)	0.85	0.61
456		(2,3)	(2,3)	1.22	0.88		(1,4)	(1,4)	1.18	0.84
457	multidof_chain_d_p2	(2,3)	(2,3)	0.88	0.64					
458		(2,3)	(1,3)	1.03	0.74					
459		(1,3)	(1,3)	1.27	0.91					

Table 1: Performance of the proposed method on all synthetic systems. Each row block corresponds to one dynamical system, with three trials reported per system. *True* (p, m) denotes the ground-truth Markov order p and latent dimension m of the system; *Estimated* (\hat{p}, \hat{m}) is the model order and latent dimension recovered by our algorithm. *State-space* and *Observation* columns report the coefficient errors in the reconstructed state-transition matrices and observation matrices, respectively. For the *multidof_chain_d_p2* system, we intentionally set the Markov order used for estimation to $p = 3$ to test robustness under deliberate over-specification.

reconstruction errors remain well behaved under polynomial truncation and do not exhibit numerical instability.

4.3.1 EXPERIMENT ON `DYSTS` DATABASE

We further compare our approach with state-of-the-art first-order explicit dynamics learners (Fujiwara et al., 2025; Bertsimas & Gurnee, 2023). Due to space limitations, Table 2 reports a representative subset of results on `dysts`. Because MIOSR can only perform direct modeling in the time domain, we align the task by fixing the observation matrix to the identity and setting the offset term in the observation equation to zero. All remaining experimental conditions match those in the previous experiment.

Across the subset, our method achieves the lowest *Coefficient error* and *Prediction error* on roughly 60–70% of the systems. For the remaining cases, the performance differences relative to LaNoLeM are generally small and fall within a narrow numerical band, indicating comparable accuracy rather than systematic degradation. A closer look shows that these residual differences are largely explained by filter choice: although both methods use EM-like alternating updates, LaNoLeM relies exclusively on EKF, whose linearization becomes unreliable on highly nonstationary or multi-modal trajectories. Our stability-driven switching to particle filtering avoids such failures and yields more consistent robustness on these challenging systems.

Compared to MIOSR, the performance gap stems from operating directly in the state space rather than in the raw time domain. MIOSR tends to accumulate bias under noisy or weakly observable settings, and empirically this manifests as consistently larger coefficient errors—often 1.5–2× higher than ours—across the benchmark subset. By contrast, our explicit state-space formulation maintains accuracy even under moderate noise.

486	487	Case	Proposed		LaNoLeM		MIOSR		Case	Proposed		LaNoLeM		MIOSR	
			Coef.	Pred.	Coef.	Pred.	Coef.	Pred.		Coef.	Pred.	Coef.	Pred.	Coef.	Pred.
488	Aizawa	0.78 0.006	0.90	0.007	1.35	0.028			HyperYan	0.75 0.008	0.86	0.009	1.33	0.030	
489	Arneodo	0.62 0.004	0.71	0.005	1.10	0.022			HyperYangChen	0.80	0.009	0.78	0.010	1.29	0.029
490	Bouali2	0.58 0.005	0.67	0.006	1.05	0.021			KawczynskiStrizhak	0.47 0.004	0.55	0.005	0.99	0.019	
491	BurkeShaw	0.73	0.006 0.70	0.007	1.12	0.023			Laser	0.52 0.004	0.60	0.005	1.05	0.020	
492	Chen	0.36 0.004	0.44	0.005	0.88	0.019			Lorenz	0.42 0.003	0.49	0.004	0.93	0.017	
493	ChenLee	0.48 0.005	0.57	0.006	0.96	0.020			LorenzBounded	0.50 0.004	0.58	0.005	0.98	0.018	
494	Dadras	0.64 0.007	0.75	0.008	1.22	0.027			LorenzStenflo	0.63	0.005 0.61	0.006	1.06	0.021	
495	DequanLi	0.92 0.010	1.06	0.012	1.58	0.033			LuChenCheng	0.56 0.005	0.65	0.006	1.07	0.020	
496	Finance	0.95 0.010	1.07	0.012	1.63	0.036			MooreSpiegel	0.71 0.007	0.82	0.008	1.28	0.028	
497	GenesioTesi	0.57 0.005	0.65	0.006	1.06	0.021			NewtonLeipnik	0.60 0.005	0.70	0.006	1.12	0.022	
498	GuckenheimerHolmes	0.66	0.006 0.64	0.007	1.04	0.020			NoseHoover	0.66 0.006	0.76	0.007	1.19	0.024	
499	Hadley	0.41 0.004	0.49	0.004	0.92	0.017			Qi	0.58 0.005	0.67	0.006	1.09	0.021	
500	Halvorsen	0.69 0.006	0.80	0.007	1.26	0.025			QiChen	0.62 0.005	0.71	0.006	1.15	0.023	
501	HenonHeiles	0.72 0.007	0.83	0.008	1.31	0.028			RabinovichFabrikant	0.69 0.006	0.79	0.007	1.25	0.026	
502	HyperBao	0.73 0.008	0.86	0.009	1.32	0.029			RayleighBenard	0.77 0.008	0.89	0.009	1.38	0.030	
503	HyperCai	0.68 0.006	0.79	0.007	1.24	0.026			RikitakeDynamo	0.84	0.010	0.82 0.009	1.41	0.031	
504	HyperChen	0.61 0.006	0.71	0.007	1.18	0.024			Sakarya	0.63 0.005	0.72	0.006	1.11	0.022	
505	HyperQi	0.83 0.009	0.95	0.010	1.44	0.031			SprottA	0.49 0.004	0.57	0.005	1.00	0.019	
506	HyperRossler	0.55 0.005	0.64	0.006	1.08	0.020			SprottB	0.53 0.004	0.61	0.005	1.03	0.020	
507	HyperWang	0.59 0.005	0.68	0.006	1.10	0.021			SprottC	0.55 0.004	0.64	0.005	1.07	0.021	

Table 2: Comparison of the proposed method, LaNoLeM, and MIOSR on the `dysts` benchmark. Each case corresponds to a canonical nonlinear or chaotic system. “Coef.” denotes the sum of the state-space coefficient error and the observation-space coefficient error, while “Pred.” denotes the one-step prediction error. For each system, the smallest Coef. and Pred. among the three methods are highlighted in bold to indicate the best performance.

5 ADDITIONAL EXPERIMENTS

We conduct several additional studies to evaluate basis generality, filtering behavior, computational cost, and robustness (full results in Appendix F). **(1) Trigonometric-basis reconstruction.** Replacing the Taylor (monomial) basis with a Fourier (trigonometric) dictionary on all self-designed systems yields total coefficient errors comparable in magnitude and relative ordering to those under the polynomial basis, indicating that our order-selection and coefficient-recovery mechanisms generalize across feature families. This also suggests that the framework captures structural properties of the dynamics rather than overfitting to a particular functional parameterization. **(2) Kalman vs. particle filtering.** Across three trials per system, each latent trajectory is labeled as *Near* or *Far* from the fixed point. In *Near* regimes, Kalman filtering consistently achieves lower total error, while in *Far* regimes particle filtering performs better, reflecting the complementary strengths of linearized and sampling-based inference. These results validate the effectiveness of the distance-aware switching strategy and show that no single filter is uniformly optimal across regimes. **(3) Efficiency and initialization robustness.** Varying the initialization (p_0, m_0) across a broad range shows that the algorithm reliably returns (p^*, m^*) or a close configuration, demonstrating insensitivity to starting conditions. Parallelization reduces the effective runtime to roughly $1.3\text{--}3.7\times$ that of LaNoLeM, typically around $2\times$, indicating that structural adaptivity introduces only moderate overhead. **(4) Noise robustness.** Under additive noise levels of 10%, 15%, and 20%, the recovered (\hat{p}, \hat{m}) remain stable for most systems, and coefficient errors grow smoothly with noise rather than degrading abruptly. This behavior highlights the algorithm’s ability to maintain reliable order recovery under moderate corruption.

6 DISCUSSION AND FUTURE WORK

Our framework provides an interpretable approach for higher-order state-space modeling and shows consistent improvements over strong baselines. Several limitations nevertheless remain. Although results indicate basis independence, the choice of dictionary still relies on domain expertise; fully automatic basis discovery is a natural direction for future work. The joint (p, m) search adds computational overhead and cannot guarantee global optimality, motivating more efficient initialization or search strategies to improve scalability. The method also assumes stable or near-stable dynamics, and extending it to non-stationary or unstable regimes will require additional mechanisms to ensure numerical soundness. Future work will explore scalable search procedures, lighter-weight estimators, and principled approaches to basis and model adaptation to broaden applicability.

540 REFERENCES
541

542 Henry D. I. Abarbanel. *Analysis of Observed Chaotic Data*. Springer, 1996.

543 Hirotugu Akaike. A new look at the statistical model identification. *IEEE Transactions on Automatic*
544 *Control*, 19(6):716–723, 1974.

545 Brian D. O. Anderson and John B. Moore. *Optimal Filtering*. Prentice Hall, 1979.

546 A. Baier, D. Aspandi, and S. Staab. Relinet: Stable and explainable multistep prediction with
547 recurrent linear parameter varying networks. In *Proceedings of the Thirty-Second International*
548 *Joint Conference on Artificial Intelligence*, pp. 3461–3469, 2023.

549 Dimitris Bertsimas and William Gurnee. Learning sparse nonlinear dynamics via mixed-integer
550 optimization. *Nonlinear Dynamics*, 111(7):6585–6604, 2023.

551 Lorenzo Boninsegna, Feliks Nüske, and Cecilia Clementi. Sparse learning of stochastic dynamical
552 equations. *The Journal of Chemical Physics*, 148(24):241723, 2018.

553 Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
554 from data by sparse identification of nonlinear dynamical systems. *Proceedings of the National*
555 *Academy of Sciences*, 113(15):3932–3937, 2016.

556 Bogdan Burlacu, Gabriel Kronberger, and Michael Kommenda. Operon c++: An efficient genetic
557 programming framework for symbolic regression. In *Proceedings of the 2020 Genetic and Evo-*
558 *lutionary Computation Conference Companion*, pp. 1562–1570, 2020.

559 Kathleen Champion, Peng Zheng, Aleksandr Y. Aravkin, Steven L. Brunton, and J. Nathan Kutz. A
560 unified sparse optimization framework to learn parsimonious physics-informed models from data.
561 *IEEE Access*, 8:169259–169271, 2020.

562 Chi-Tsong Chen. *Linear System Theory and Design*. Oxford University Press, New York, NY, 3
563 edition, 1999.

564 Y. Chen and H. Vincent Poor. Learning mixtures of linear dynamical systems. In *International*
565 *Conference on Machine Learning*, pp. 3507–3557, 2022.

566 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. Wiley-Interscience, Hobo-
567 ken, NJ, 2 edition, 2006.

568 A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
569 em algorithm. *Journal of the Royal Statistical Society: Series B*, 39(1):1–22, 1977.

570 Dylan Foster, Thibaut Sarkar, and Alexander Rakhlin. Learning nonlinear dynamical systems from
571 a single trajectory. In *Proceedings of the 2nd Conference on Learning for Dynamics and Control*,
572 volume 120, pp. 851–861, 2020.

573 Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky. Nonparametric bayesian
574 learning of switching linear dynamical systems. In *Advances in Neural Information Processing*
575 *Systems 21*, pp. 457–464, 2008.

576 Stephan Frenzel and Bernd Pompe. Partial mutual information for coupling analysis of multivariate
577 time series. *Physical Review Letters*, 99(20):204101, 2007.

578 Ren Fujiwara, Yasuko Matsubara, and Yasushi Sakurai. Modeling latent non-linear dynamical
579 system over time series. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39
580 (11):11663–11671, April 2025. ISSN 2159-5399. doi: 10.1609/aaai.v39i11.33269. URL
581 <http://dx.doi.org/10.1609/aaai.v39i11.33269>.

582 Zoubin Ghahramani and Sam Roweis. Learning nonlinear dynamical systems using an em algo-
583 rithm. In *Advances in Neural Information Processing Systems*, volume 11, 1998.

584 Ayana Ghosh, Maxim Ziatdinov, and Sergei V. Kalinin. Active deep kernel learning of molecular
585 properties: Realizing dynamic structural embeddings, 2025. URL <https://arxiv.org/abs/2403.01234>.

594 William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling. In
 595 *Proceedings of the NeurIPS Track on Datasets and Benchmarks*, 2021.
 596

597 Philip Good. *Permutation, Parametric, and Bootstrap Tests of Hypotheses*. Springer, New York,
 598 NY, 3 edition, 2005.

599 N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-gaussian
 600 bayesian state estimation. *IEE Proceedings F (Radar and Signal Processing)*, 140(2):107–113,
 601 1993.

602

603 Peter D. Grünwald. *The Minimum Description Length Principle*. MIT Press, 2007.

604

605 Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and J. Nathan Kutz.
 606 On dynamic mode decomposition: Theory and applications. *Journal of Computational Dynamics*,
 607 1(2):391–421, 2014. ISSN 2158-2505. doi: 10.3934/jcd.2014.1.391. URL <http://dx.doi.org/10.3934/jcd.2014.1.391>.

608

609 Roger A. Horn and Charles R. Johnson. *Matrix Analysis*. Cambridge University Press, 2 edition,
 610 2012.

611

612 Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
 613 Muller. Deep learning for time series classification: a review. *Data Mining and Knowledge
 614 Discovery*, 33(4):917–963, 2019.

615

616 Andrew H. Jazwinski. *Stochastic Processes and Filtering Theory*. Academic Press, 1970.

617

618 Thomas Kailath. *Linear Systems*. Prentice Hall, Englewood Cliffs, NJ, 1980.

619

620 Thomas Kailath, Ali H. Sayed, and Babak Hassibi. *Linear Estimation*. Prentice Hall, 2000.

621

622 Sham M. Kakade, Varun Kanade, Ohad Shamir, and Adam Kalai. Efficient learning of general-
 623 ized linear and single index models with isotonic regression. In *Advances in Neural Information
 624 Processing Systems*, volume 24, 2011.

625

626 R. E. Kalman. A new approach to linear filtering and prediction problems. *Journal of Basic Engi-
 627 neering*, 82(1):35–45, 1960.

628

629 Rudolph Emil Kalman. Mathematical description of linear dynamical systems. *Journal of the
 630 Society for Industrial and Applied Mathematics, Series A: Control*, 1(2):152–192, 1963.

631

632 Holger Kantz and Thomas Schreiber. *Nonlinear Time Series Analysis*. Cambridge University Press,
 633 2004.

634

635 Alan A. Kaptanoglu, Brian de Silva, Ulrich Fasel, K. Kaheman, A. Goldschmidt, Jared L. Callahan,
 636 Charles B. Delahunt, Zachary Nicolaou, Kathleen P. Champion, Jean Loiseau, J. Nathan Kutz,
 637 and Steven L. Brunton. Pysindy: A comprehensive python package for robust sparse system
 638 identification. *Journal of Open Source Software*, 7(69):3994, 2022.

639

640 Sanjay Kowshik, Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. Near-optimal offline and
 641 streaming algorithms for learning non-linear dynamical systems. In *Advances in Neural Informa-
 642 tion Processing Systems*, volume 34, pp. 8518–8531, 2021.

643

644 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. *Phys-
 645 ical Review E*, 69(6):066138, 2004.

646

647 William La Cava, T. R. Singh, J. Taggart, S. Suri, and Jason H. Moore. Learning concise repre-
 648 sentations for regression by evolving networks of trees. In *International Conference on Learning
 649 Representations*, 2018.

650

651 M. Landajuela, C. S. Lee, J. Yang, R. Glatt, C. P. Santiago, I. Aravena, T. Mundhenk, G. Mulcahy,
 652 and B. K. Petersen. A unified framework for deep symbolic regression. In *Advances in Neural
 653 Information Processing Systems*, volume 35, pp. 33985–33998, 2022.

648 Zhen Liu and Milos Hauskrecht. A regularized linear dynamical system framework for multivariate
 649 time series analysis. In *Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-*
 650 *gence*, pp. 1798–1804, 2015.

651

652 Lennart Ljung. *System Identification: Theory for the User*. Prentice Hall, Upper Saddle River, NJ,
 653 2 edition, 1999.

654

655 P. C. Mahalanobis. On the generalised distance in statistics. *Proceedings of the National Institute of*
 656 *Sciences of India*, 2:49–55, 1936.

657

658 N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor. Model selection for dynamical systems
 659 via sparse regression and information criteria. *Proceedings of the Royal Society A: Mathematical,*
Physical and Engineering Sciences, 473(2204):20170009, 2017.

660

661 Judea Pearl. Reverend bayes on inference engines: a distributed hierarchical approach. In *Proceed-*
662 ings of the Second AAAI Conference on Artificial Intelligence, pp. 133–136, 1982.

663

664 Yasir Sattar and Samet Oymak. Non-asymptotic and accurate learning of nonlinear dynamical sys-
 665 tems. *Journal of Machine Learning Research*, 23(140):1–49, 2022.

666

667 Thomas Schreiber and Andreas Schmitz. Surrogate time series. *Physica D: Nonlinear Phenomena*,
 668 142(3–4):346–382, 2000.

669

670 Parham Shojaee, Kaveh Meidani, Amir Barati Farimani, and Chandan Reddy. Transformer-based
 671 planning for symbolic regression. In *Advances in Neural Information Processing Systems*, vol-
 672 ume 36, pp. 45907–45919, 2023.

673

674 George Sugihara and Robert M May. Nonlinear forecasting as a way of distinguishing chaos from
 675 measurement error. *Nature*, 344(6268):734–741, 1990.

676

677 George Sugihara, Robert May, Hao Ye, Chih-Hao Hsieh, Ethan Deyle, Michael Fogarty, and Stephan
 678 Munch. Detecting causality in complex ecosystems. *Science*, 338(6106):496–500, 2012.

679

680 James Theiler, Stephen Eubank, André Longtin, Bryan Galdrikian, and J. Doyne Farmer. Testing
 681 for nonlinearity in time series: the method of surrogate data. *Physica D: Nonlinear Phenomena*,
 682 58(1–4):77–94, 1992.

683

684 Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
 685 regression. *Science Advances*, 6(16):eaay2631, 2020.

686

687 Paul Zarchan. *Fundamentals of Kalman Filtering: A Practical Approach*, volume 208 of *Progress*
 688 *in Astronautics and Aeronautics*. AIAA, 2005.

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX: NOISE NEAR STABLE PERIODIC ORBITS**
703704 We begin by examining how small random disturbances propagate when the system operates close
705 to a stable periodic orbit. Let $f : \mathbb{R}^m \rightarrow \mathbb{R}^m$ be the state–transition map on an m -dimensional state
706 space. Suppose $\{\mathbf{s}^{(0)}, \dots, \mathbf{s}^{(p-1)}\}$ is a p -periodic orbit, meaning the trajectory returns to its starting
707 point after exactly p steps:
708

709
$$f(\mathbf{s}^{(k)}) = \mathbf{s}^{(k+1 \bmod p)}, \quad k = 0, \dots, p-1. \quad (31)$$

710

711 This periodic sequence serves as the deterministic backbone around which noisy deviations will
712 occur.
713714 **Linearization and monodromy.** To characterize stability, we linearize the dynamics at each cycle
715 point. Let $Df(\mathbf{s}^{(k)})$ be the Jacobian of f at $\mathbf{s}^{(k)}$, and define
716

717
$$A_k := Df(\mathbf{s}^{(k)}), \quad M := A_{p-1} \cdots A_1 A_0, \quad (32)$$

718

719 where M is the *monodromy matrix*, i.e., the linearized return map over one lap. This matrix captures
720 how an infinitesimal perturbation transforms after completing the entire cycle.
721722 **Dynamics with noise.** Now introduce noise. If $\delta_{t+k} \in \mathbb{R}^m$ is the deviation from the cycle point
723 at time $t+k$, then under a small-noise approximation,
724

725
$$\delta_{t+k+1} \approx A_k \delta_{t+k} + \mathbf{w}_{t+k}, \quad k = 0, \dots, p-1, \quad (33)$$

726

727 where \mathbf{w}_{t+k} is an additive zero-mean disturbance with covariance $\Sigma_k = \text{Cov}(\mathbf{w}_{t+k})$. Aggregating
728 one lap gives
729

730
$$\delta_{t+p} \approx M \delta_t + \bar{\mathbf{w}}_t, \quad (34)$$

731

732 where the effective disturbance is the weighted sum
733

734
$$\bar{\mathbf{w}}_t = \sum_{k=0}^{p-1} (A_{p-1} \cdots A_{k+1}) \mathbf{w}_{t+k}, \quad (35)$$

735

736 with covariance
737

738
$$\bar{\Sigma} = \sum_{k=0}^{p-1} (A_{p-1} \cdots A_{k+1}) \Sigma_k (A_{p-1} \cdots A_{k+1})^\top. \quad (36)$$

739

740 **Long-run covariance.** Define $Q_n := \text{Cov}(\delta_{t+pn})$, the deviation covariance sampled once per lap.
741 It obeys the Lyapunov recursion
742

743
$$Q_{n+1} = M Q_n M^\top + \bar{\Sigma}. \quad (37)$$

744

745 If the spectral radius $\rho(M) < 1$ (all eigenvalues inside the unit disk), this recursion converges to the
746 unique positive semidefinite fixed point
747

748
$$Q_\star = \sum_{j=0}^{\infty} M^j \bar{\Sigma} (M^\top)^j. \quad (38)$$

749

750 Hence near a stable periodic orbit, noise is continually damped by the cycle, and the system fluctuates
751 with finite variance around the orbit.
752753 **B APPENDIX: DETAILS ON CONDITIONAL MUTUAL INFORMATION FOR
754 MARKOV ORDER**755 This appendix provides a detailed account of how conditional mutual information (CMI) is used to
756 initialize the Markov order p_0 .

756 B.1 DEFINITION
757758 Mutual information (MI) between two random variables X and Y measures their statistical depen-
759 dence:

760
$$I(X; Y) = \int p(x, y) \log \frac{p(x, y)}{p(x)p(y)} dx dy.$$

761

762 It vanishes if and only if X and Y are independent.763 The *conditional* mutual information generalizes this notion: for random variables (X, Y, Z) ,
764

765
$$I(X; Y | Z) = \int p(x, y, z) \log \frac{p(x, y | z)}{p(x | z)p(y | z)} dx dy dz.$$

766

767 Here $I(X; Y | Z) = 0$ means that once Z is known, X provides no further information about Y .
768769 B.2 APPLICATION TO MARKOV ORDER
770771 Given a univariate time series $\{y_t\}$, we test whether lag p contributes predictive information beyond
772 more recent lags. This is formalized by

773
$$I(y_t; y_{t-p} | y_{t-1}, \dots, y_{t-p+1}).$$

774

775 If this conditional mutual information vanishes, then y_{t-p} is redundant given the last $p - 1$ observa-
776 tions. The true Markov order is the largest lag p for which the above quantity is nonzero.
777778 B.3 ESTIMATION
779780 In practice, CMI must be estimated from finite samples. We employ nonparametric, near-
781 est-neighbor-based estimators such as the k -nearest-neighbor method of Kraskov et al. (2004) and
782 its conditional extension (Frenzel & Pompe, 2007). These estimators approximate local densities by
783 distances to neighboring points in the joint space, avoiding explicit kernel bandwidth selection and
784 adapting naturally to different scales.

785 Formally, one computes

786
$$\widehat{I}(X; Y | Z) = \psi(k) + \frac{1}{N} \sum_{i=1}^N [\psi(n_z^{(i)}) - \psi(n_{xz}^{(i)}) - \psi(n_{yz}^{(i)})],$$

787

788 where ψ is the digamma function, $n_z^{(i)}$ counts neighbors of sample i in the Z -space, and $n_{xz}^{(i)}, n_{yz}^{(i)}$
789 count neighbors in the joint spaces (X, Z) and (Y, Z) . Intuitively, larger CMI values correspond to
790 stronger predictive influence of the lagged variable.
791792 B.4 SIGNIFICANCE TESTING
793794 Because sampling noise ensures $\widehat{I} > 0$ even for irrelevant lags, we use surrogate testing to separate
795 signal from noise. Specifically:
796797 1. Fix lag p and compute the observed statistic \widehat{I}_{obs} . 2. Generate B surrogate series by randomly
798 permuting y_{t-p} across time, which destroys temporal dependence but preserves the marginal distri-
799 bution. 3. Recompute $\widehat{I}^{(b)}$ on each surrogate, forming a null distribution. 4. Compute the p -value
800

801
$$q_p = \frac{1}{B} \sum_{b=1}^B \mathbf{1}\{\widehat{I}^{(b)} \geq \widehat{I}_{\text{obs}}\}.$$

802

803 5. Declare lag p significant if $q_p < \alpha$ (typically $\alpha = 0.05$).
804805 The initialization is then defined as
806

807
$$p_0 = \max\{p : q_p < \alpha\},$$

808

809 the longest lag whose incremental information passes significance testing. This provides a robust,
810 interpretable proxy for the effective memory length of the observed process.

810 C APPENDIX: STABILITY PROXIMITY METRICS AND FILTER SELECTION
811812 This appendix expands on the stability–proximity assessment used to guide filter selection.
813814 **Rolling mean and covariance.** Given observations $\{y_t\}_{t=1}^T \subset \mathbb{R}^d$ and a window size W , we form
815 overlapping segments $[t, t+W-1]$ with rolling mean μ_t and covariance C_t as in equation 19. These
816 provide local estimates of central tendency and dispersion.
817818 **Baseline normalization.** To make quantities comparable across windows, we anchor statistics to
819 a baseline taken from the first $L_0 = \max\{10, \lfloor \sqrt{T} \rfloor\}$ samples:
820

821
$$\mu_0 = \frac{1}{L_0} \sum_{i=1}^{L_0} y_i, \quad S_0 = \text{Cov}(y_{1:L_0}) + \epsilon I_d.$$

822

823 Here S_0 is used as a reference covariance to normalize subsequent deviations.
824825 **Scalar proxies.** We reduce the rolling statistics to two univariate time series:
826

827
$$m_t = (\mu_t - \mu_0)^\top S_0^{-1} (\mu_t - \mu_0), \quad (39)$$

828
$$v_t = \log \det(C_t + \epsilon I_d). \quad (40)$$

829 The first measures the Mahalanobis distance of the local mean from baseline; the second measures
830 the log–volume of the covariance ellipsoid. Together they reflect mean drift and variance contrac-
831 tion.
832833 **Tail metrics.** Since transient fluctuations are expected, we examine only the last fraction of
834 each proxy sequence (the “tail”), which better reflects steady–state behavior. For a scalar series
835 z_1, \dots, z_n , let the final $L = \lceil \alpha n \rceil$ values form the tail (typically $\alpha = 0.4$). Two robust statistics are
836 then computed: - *Drift index* D via the Theil–Sen slope estimator ?:
837

838
$$D = \frac{|\text{median}_{i < j} (z_j - z_i) / (j - i)| \cdot L}{\text{IQR}(\text{tail}) + \epsilon},$$

839

840 which measures normalized monotonic trend in the tail. - *Reduction index* R given by the ratio of
841 dispersion in the tail relative to the full sequence:
842

843
$$R = \frac{\text{IQR}(\text{tail})}{\text{IQR}(\text{full}) + \epsilon}.$$

844

845 Here IQR denotes the interquartile range. Intuitively, D quantifies whether the proxy is still trend-
846 ing, and R whether variability has shrunk.
847848 **Multivariate combination.** The two proxies m_t and v_t each yield (D, R) pairs. To combine them,
849 we take

850
$$D_{\max} = \max(D_m, D_v), \quad R_{\max} = \max(R_m, R_v), \quad S = D_{\max} + \alpha R_{\max},$$

851

852 with α a weight (default $\alpha = 1$). This ensures conservativeness: instability in either channel marks
853 the system as far from equilibrium.
854855 **Classification and filter choice.** Thresholds on (D_{\max}, R_{\max}) determine stability classes:
856857 Near: $D_{\max} \leq \tau_{\text{near}}^D, R_{\max} \leq \tau_{\text{near}}^R$; Transition: $D_{\max} \leq \tau_{\text{trans}}^D, R_{\max} \leq \tau_{\text{trans}}^R$; otherwise: Far.
858859 - *Near*: statistics have converged, indicating proximity to an attractor. The system is effectively
860 linearized, so an EKF suffices. - *Transition*: contraction is partial, suggesting intermittent nonlinear
861 excursions. Both EKF and PF are viable; we allow either. - *Far*: proxies fluctuate strongly, signaling
862 nonlinearity and poor contraction. PF is chosen for robustness.
863864 **Window selection.** Choosing W is critical: too small leads to noise, too large washes out local dy-
865 namics. We suggest candidates using \sqrt{T} , fixed grids, FFT–detected dominant periods, or external
866 hints (e.g. Markov order). The final window is selected by minimizing the score S .
867

864 **D APPENDIX: DETAILED PROCEDURE FOR INFERENCE AND LEARNING**
865866 This appendix expands the inner loop for a fixed structure (p, m) , where p is the Markov order
867 and m the observation dimension. We work with the augmented first-order model in Eqs. equation
868 23–equation 24. At each iteration we alternate between:
869870

- 871 • **Inference (E-step):** estimate the latent augmented trajectory $\{\mathbf{x}_t\}_{t=1}^N$ and its posterior
872 moments under the current parameters Θ ;
- 873 • **Learning (M-step):** update Θ by minimizing the expected negative log-likelihood (the EM
874 Q -function) plus a structural regularizer.

875 **A. AUGMENTED FORMULATION AND FEATURES**
876877 Let k be the intrinsic latent dimension; the augmented state stacks p consecutive latent vectors, so
878 $\mathbf{x}_t \in \mathbb{R}^{k_{\text{aug}}}$ with $k_{\text{aug}} = kp$. The top k coordinates evolve nonlinearly via a polynomial feature map
879 of degrees $1:o$; the lower blocks implement the $(p - 1)$ -step shift. Writing $\phi_{\text{aug}}(\mathbf{x}_t) \in \mathbb{R}^F$ for the
880 monomial dictionary (including degree 1 terms), the dynamics and observations are:
881

882
$$\mathbf{x}_{t+1} = \mathbf{b}_{\text{aug}} + A_{\text{aug}} \phi_{\text{aug}}(\mathbf{x}_t) + \mathbf{w}_t, \quad \mathbf{y}_t = C_{\text{aug}} \mathbf{x}_t + \mathbf{d} + \mathbf{v}_t,$$

883 with Gaussian noises $\mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, (\Sigma_w)_{\text{aug}})$, $\mathbf{v}_t \sim \mathcal{N}(\mathbf{0}, \Sigma_v)$. The block structure of
884 $(\mathbf{b}_{\text{aug}}, A_{\text{aug}}, C_{\text{aug}})$ encodes “nonlinear top block + shift,” so that higher-order (in p) dynamics are
885 handled by first-order filtering in the augmented space.
886887 **Posterior objects we need.** The learning step only requires a small set of sufficient statistics,
888 collectively denoted
889

890
$$\mathcal{M} = \left\{ \mathbb{E}[\mathbf{x}_t], \mathbb{E}[\mathbf{x}_t \mathbf{x}_t^\top], \mathbb{E}[\mathbf{x}_{t+1} \mathbf{x}_t^\top], \mathbb{E}[\Phi(\mathbf{x}_t)], \mathbb{E}[\Phi(\mathbf{x}_t) \Phi(\mathbf{x}_t)^\top], \mathbb{E}[\mathbf{x}_{t+1} \Phi(\mathbf{x}_t)^\top] \right\}_{t=1}^N,$$

892 where $\Phi(\mathbf{x}_t)$ concatenates the degree-1 coordinates and the higher-order polynomial features used
893 by the transition map. The E-step (filtering) produces numerical approximations of these moments.
894895 **B. INFERENCE: TWO COMPLEMENTARY FILTERS**
896897 We adopt a data-driven stability classifier (rolling window) that labels local regimes as
898 *near/transition* or *far*. Intuitively, when the local linearization is accurate and innovations are close
899 to Gaussian, an EKF is effective; otherwise we resort to a particle filter (PF). Both operate in the
900 augmented state.
901902 **B.1 Extended Kalman Filter (EKF) Kalman (1960).** The EKF linearizes the nonlinear transition
903 at the current mean. Let $\hat{\mathbf{x}}_{t|t}$ be the filtered mean and $P_{t|t}$ its covariance at time t . The prediction
904 step forms
905

906
$$\hat{\mathbf{x}}_{t+1|t} = \mathbf{b}_{\text{aug}} + A_{\text{aug}} \phi_{\text{aug}}(\hat{\mathbf{x}}_{t|t}), \quad P_{t+1|t} = J_t P_{t|t} J_t^\top + (\Sigma_w)_{\text{aug}},$$

907 where J_t is the Jacobian of the transition map evaluated at $\hat{\mathbf{x}}_{t|t}$ (its top $k \times k_{\text{aug}}$ block comes from
908 the polynomial map’s analytic Jacobian; the lower blocks are shift identities). The update step uses
909 the innovation
910

911
$$\mathbf{r}_t = \mathbf{y}_t - (C_{\text{aug}} \hat{\mathbf{x}}_{t|t-1} + \mathbf{d}), \quad S_t = C_{\text{aug}} P_{t|t-1} C_{\text{aug}}^\top + \Sigma_v,$$

912 and the Kalman gain $K_t = P_{t|t-1} C_{\text{aug}}^\top S_t^{-1}$ to obtain
913

914
$$\hat{\mathbf{x}}_{t|t} = \hat{\mathbf{x}}_{t|t-1} + K_t \mathbf{r}_t, \quad P_{t|t} = (I - K_t C_{\text{aug}}) P_{t|t-1} (I - K_t C_{\text{aug}})^\top + K_t \Sigma_v K_t^\top.$$

915 *Intuition.* EKF replaces the nonlinear dynamics by their best local linear approximation around the
916 current estimate. It is accurate when the state stays in a region where the linearization error is small
917 (near equilibria or along gently curved manifolds).
918

918 **B.2 Bootstrap Particle Filter (PF) Gordon et al. (1993).** When the system is far from equilibrium
 919 or the noise departs from Gaussianity, we approximate the posterior by a set of weighted particles.
 920 Using the transition prior as proposal, the recursion is:
 921

- 922 1. *Propagation*: for each particle i , sample $\mathbf{x}_t^{(i)} \sim p(\mathbf{x}_t \mid \mathbf{x}_{t-1}^{(i)})$ using the nonlinear transition.
- 923 2. *Weighting*: update $w_t^{(i)} \propto w_{t-1}^{(i)} p(\mathbf{y}_t \mid \mathbf{x}_t^{(i)})$, where $p(\mathbf{y}_t \mid \mathbf{x}_t^{(i)})$ is Gaussian under the
 924 linear observation model.
- 925 3. *Normalization and resampling*: normalize $\{w_t^{(i)}\}$; if the effective sample size $\text{ESS}_t =$
 926 $1/\sum_i (w_t^{(i)})^2$ falls below a threshold, resample (e.g., systematic resampling) to prevent
 927 weight degeneracy.

928 Posterior means/covariances are approximated by weighted averages over particles (e.g., $\mathbb{E}[\mathbf{x}_t] \approx$
 929 $\sum_i w_t^{(i)} \mathbf{x}_t^{(i)}$). Cross-moments such as $\mathbb{E}[\mathbf{x}_{t+1} \mathbf{x}_t^\top]$ are formed by tracking particle ancestry (pair each
 930 $\mathbf{x}_{t+1}^{(i)}$ with its parent $\mathbf{x}_t^{(a(i))}$ and average with weights). *Intuition.* PF keeps the nonlinear geometry
 931 intact: particles follow the true dynamics, so highly non-Gaussian or multimodal posteriors can be
 932 represented.

933 **B.3 Log-likelihood and moments.** Both filters provide an estimate of the marginal log-likelihood
 934 $\log p(\mathbf{Y} \mid \Theta)$ (EKF via Gaussian innovations; PF via log-mean-exp of weights) and the posterior set
 935 \mathcal{M} . The latter supplies all expectations needed by the learning step.

936 C. LEARNING VIA THE EM Q -FUNCTION

937 Let $\mathcal{S} = \{\mathbf{x}_t\}$ denote the latent trajectory. The EM auxiliary function is the posterior expectation of
 938 the complete-data negative log-likelihood (plus regularization):

$$939 \min_{\Theta} Q(\mathbf{Y}, \mathcal{S}, \Theta) + r(A_{\text{top}}), \quad Q = \mathbb{E} \left[\sum_{t=1}^N \mathcal{D}(\mathbf{y}_t, C_{\text{aug}} \mathbf{x}_t + \mathbf{d}, \Sigma_v) + \sum_{t=1}^{N-1} \mathcal{D}(\mathbf{x}_{t+1}, \mathbf{b}_{\text{aug}} + A_{\text{aug}} \phi_{\text{aug}}(\mathbf{x}_t), \Sigma_w) \right],$$

940 where $\mathcal{D}(\mathbf{u}, \mathbf{v}, \Sigma) = (\mathbf{u} - \mathbf{v})^\top \Sigma^{-1} (\mathbf{u} - \mathbf{v})$ is the squared Mahalanobis distance.

941 **C.1 Transition update (top block).** Because the augmented transition has the “nonlinear top +
 942 shift” structure, the parameters to learn are the top-block bias \mathbf{b} and matrix A_{top} in

$$943 \mathbf{x}_{t+1}^{\text{top}} \approx \mathbf{b} + A_{\text{top}} \Phi(\mathbf{x}_t).$$

944 Taking expectations under the posterior, the transition part of Q reduces to a *regularized multivariate*
 945 *regression* with design matrix built from $\mathbb{E}[\Phi(\mathbf{x}_t)]$ and Gram/cross-moments $\mathbb{E}[\Phi(\mathbf{x}_t) \Phi(\mathbf{x}_t)^\top]$,
 946 $\mathbb{E}[\mathbf{x}_{t+1}^{\text{top}} \Phi(\mathbf{x}_t)^\top]$. Writing $Z_t = \Phi(\mathbf{x}_t)$ and $Y_t = \mathbf{x}_{t+1}^{\text{top}}$, the normal-equation form is

$$947 \min_{\mathbf{b}, A_{\text{top}}} \sum_t \|Y_t - \mathbf{b} - A_{\text{top}} Z_t\|_{\Sigma_w^{-1}}^2 + r(A_{\text{top}}),$$

948 where $\|\mathbf{u}\|_{\Sigma^{-1}}^2 = \mathbf{u}^\top \Sigma^{-1} \mathbf{u}$. The regularizer

$$949 r(A_{\text{top}}) = \frac{\lambda_2}{2} \|A_{\text{top}} - A_{\text{id}}\|_F^2 + \lambda_1 \|A_{\text{top}} - A_{\text{id}}\|_1$$

950 biases degree-1 coefficients toward identity (stability/interpretability) while encouraging sparsity in
 951 higher-order terms. With $\lambda_1 = 0$ this yields a closed-form ridge update using the sufficient statistics
 952 of Z_t ; \mathbf{b} is updated by the mean residual.

953 **C.2 Observation update.** If C_{aug} is to be estimated, the observation term in Q similarly becomes
 954 a weighted least-squares problem in C_{aug} (and \mathbf{d}) based on $\{\mathbb{E}[\mathbf{x}_t], \mathbb{E}[\mathbf{x}_t \mathbf{x}_t^\top]\}$. In our main experiments we either hold C_{aug} fixed or update it conservatively to avoid overfitting.

955 **C.3 Noise covariances.** The Gaussian covariances $(\Sigma_w)_{\text{aug}}, \Sigma_v$ can be held fixed for robustness,
 956 or re-estimated in closed form by matching posterior quadratic forms (standard in linear-Gaussian
 957 EM). Re-estimation is optional and not critical to the structural conclusions.

972 D. EM ALTERNATION AND STOPPING
973974 One inner-loop cycle is:
975

- 976 1. **E-step:** run EKF or PF on the augmented model to obtain \mathcal{M} and the marginal log-
977 likelihood $\log p(\mathbf{Y} \mid \Theta)$;
- 978 2. **M-step:** update $\{\mathbf{b}, A_{\text{top}}\}$ (and optionally C_{aug}) by minimizing $Q + r$ using the posterior
979 moments.

980 Under exact E/M steps the EM objective decreases monotonically Dempster et al. (1977); with
981 EKF/PF approximations we monitor the composite loss $\mathcal{L}(\Theta) = -\log p(\mathbf{Y} \mid \Theta) + r(A_{\text{top}})$ and stop
982 when its relative decrease falls below a tolerance or a maximum number of iterations is reached.
983

984
985 E APPENDIX: SELF-DESIGNED DYNAMICAL SYSTEMS
986

987 To complement canonical benchmarks, we designed a suite of nonlinear dynamical systems that
988 exhibit higher-order dependencies, non-polynomial nonlinearities, and diverse coupling structures.
989 For clarity, each system is assigned a concise short name (e.g., ExpLog-2D) used in the main text.
990 Unless otherwise noted, $\{s_t\}$ denotes the latent state, and (x_t, y_t, z_t) its components.

991 1. **ExpLog-2D (Exponential-logarithmic 2D system, $p = 2$).** This model mixes exponential
992 suppression, logarithmic growth, and bounded bilinear coupling:
993

$$994 x_{t+1} = ax_t + bx_{t-1} + c(e^{-y_t^2} - e^{-x_t^2}) + d \log(1 + y_t^2) - e \frac{x_t y_t}{1 + x_t^2 + y_t^2}, \\ 995 y_{t+1} = ay_t + by_{t-1} + c(e^{-x_t^2} - e^{-y_t^2}) + d \log(1 + x_t^2) - e \frac{x_t y_t}{1 + x_t^2 + y_t^2}.$$

996 2. **Logistic-2D (Logistic 2D system, $p = 3$).** Centered logistic couplings with nonlinear damping:
997

$$1000 x_{t+1} = a_1 x_t + a_2 x_{t-1} + a_3 x_{t-2} + \beta \sigma(y_t) - g \frac{x_t^3}{1 + x_t^2}, \\ 1001 y_{t+1} = a_1 y_t + a_2 y_{t-1} + a_3 y_{t-2} + \beta \sigma(x_t) - g \frac{y_t^3}{1 + y_t^2},$$

1002 where $\sigma(z) = \frac{1}{1+e^{-z}} - \frac{1}{2}$ is a centered logistic map.
1003

1004 3. **SoftRing-3D (Soft ring system, $p = 2$).** Variables interact cyclically via a smooth contrast
1005 function ϕ_{soft} :

$$1006 x_{t+1} = ax_t + bx_{t-1} + e \phi_{\text{soft}}(y_t, z_t), \\ 1007 y_{t+1} = ay_t + by_{t-1} + e \phi_{\text{soft}}(z_t, x_t), \\ 1008 z_{t+1} = az_t + bz_{t-1} + e \phi_{\text{soft}}(x_t, y_t).$$

1009 4. **SimpleExp-2D (Simple exponential system, $p = 2$).** A minimal system with cross-exponential
1010 suppression:
1011

$$1012 x_{t+1} = ax_t + bx_{t-1} + ce^{-y_t^2}, \quad y_{t+1} = ay_t + by_{t-1} + ce^{-x_t^2}.$$

1013 5. **LogRatio-3D (Log-ratio system, $p = 2$).** Three-way cyclic interactions through log-difference
1014 nonlinearities:
1015

$$1016 x_{t+1} = ax_t + bx_{t-1} + c \log(1 + y_t^2) - d \log(1 + z_t^2), \\ 1017 y_{t+1} = ay_t + by_{t-1} + c \log(1 + z_t^2) - d \log(1 + x_t^2), \\ 1018 z_{t+1} = az_t + bz_{t-1} + c \log(1 + x_t^2) - d \log(1 + y_t^2).$$

1019 6. **TriGate-2D (Tri-gate system, $p = 2$).** Asymmetric gating: x is self-damped while y is gated
1020 by x :

$$1021 x_{t+1} = a_x x_t + b_x x_{t-1} - c_x x_t^3, \\ 1022 y_{t+1} = a_y y_t + b_y y_{t-1} + g_y e^{-x_t^2}.$$

1026 **7. LeakyLog-2D (Leaky-log system, $p = 2$).** y ignores its own past but responds logarithmically
 1027 to x :

$$1028 \quad x_{t+1} = a_x x_t + b_x x_{t-1}, \quad y_{t+1} = r_y y_t + g_y \log(1 + x_t^2).$$

1030 **8. Chain-3D (3D chain system, $p = 2$).** A one-way cascade $x \rightarrow y \rightarrow z$:

$$1031 \quad x_{t+1} = a_x x_t + b_x x_{t-1} - d_x x_t^3,$$

$$1033 \quad y_{t+1} = a_y y_t + b_y y_{t-1} + e_1 e^{-x_t^2},$$

$$1034 \quad z_{t+1} = a_z z_t + b_z z_{t-1} + e_2 \log(1 + y_t^2).$$

1036 9. Duffing (Duffing oscillator, 2nd order).

$$1038 \quad \ddot{x} + \delta \dot{x} + \alpha x + \beta x^3 = \gamma \cos(\omega t).$$

1040 **10. VDP (Van der Pol oscillator, 2nd order).**

$$1041 \quad \ddot{x} - \mu(1 - x^2)\dot{x} + x = 0.$$

1043 **11. Pendulum (Simple pendulum, 2nd order).**

$$1045 \quad \ddot{\theta} + \frac{g}{\ell} \sin \theta = 0.$$

1047 **12. DrivenPendulum (Damped driven pendulum, 2nd order, chaotic).**

$$1049 \quad \ddot{\theta} + \delta \dot{\theta} + \frac{g}{\ell} \sin \theta = A \cos(\omega t).$$

1051 **13. MSD (Mass–spring–damper system, 2nd order).**

$$1053 \quad m\ddot{x} + c\dot{x} + kx = F(t).$$

1054 **14. DoublePendulum (4th-order effective mechanical system).** We consider a standard point-
 1055 mass double pendulum with unit masses and unit-length massless rods, evolving under gravity $g >$
 1056 0. Let θ_1, θ_2 denote the angles of the two links measured from the vertical. The dynamics are
 1057

$$1058 \quad \ddot{\theta}_1 = \frac{-3g \sin \theta_1 - g \sin(\theta_1 - 2\theta_2) - 2 \sin(\theta_1 - \theta_2)(\dot{\theta}_2^2 + \dot{\theta}_1^2 \cos(\theta_1 - \theta_2))}{3 - \cos(2(\theta_1 - \theta_2))},$$

$$1061 \quad \ddot{\theta}_2 = \frac{2 \sin(\theta_1 - \theta_2)(2\dot{\theta}_1^2 + 2g \cos \theta_1 + \dot{\theta}_2^2 \cos(\theta_1 - \theta_2))}{3 - \cos(2(\theta_1 - \theta_2))}.$$

1064 This yields an effective 4th-order mechanical system when written in first-order form with state
 1065 $(\theta_1, \theta_2, \dot{\theta}_1, \dot{\theta}_2)$.

1066 **15. LorenzJerk (Lorenz system in jerk form, 3rd order).**

$$1069 \quad x''' = ax'' + bx' + cx + dx^2.$$

1070 **16. ChuaJerk (Chua circuit in jerk form, 3rd order).**

$$1072 \quad x''' = \alpha x'' + \beta x' + \gamma f(x),$$

1073 where $f(x)$ is a piecewise-linear nonlinearity.

1075 **17. MultiDOF-Chain (Multi-degree-of-freedom mechanical chain, 2nd order, d -dim).**

$$1077 \quad m_i \ddot{x}_i = k_{i-1} (x_{i-1} - x_i)^3 - k_i (x_i - x_{i+1})^3 - c_i \dot{x}_i.$$

1079 **F APPENDIX: ADDITIONAL EXPERIMENTS**

1080	System	True(p, m)	(\hat{p}, \hat{m})	Taylor	Fourier	System	True(p, m)	(\hat{p}, \hat{m})	Taylor	Fourier
1081	exp_log_2d_p2	(2,2)	(2,2)	0.68	0.61	logistic_2d_p3	(2,3)	(2,3)	0.80	0.82
1082			(2,2)	0.77	0.73			(2,3)	1.00	1.05
1083			(2,1)	1.50	1.33			(2,4)	1.90	2.11
1084	simple_exp_2d_p2	(2,2)	(2,2)	0.50	0.43	tri_gate_2d_p2	(2,2)	(2,2)	1.22	1.26
1085			(2,2)	0.55	0.51			(2,2)	0.89	0.91
1086			(2,2)	0.69	0.66			(2,1)	1.72	1.87
1087	leaky_log_2d_p2	(2,2)	(2,2)	0.72	0.70	soft_ring_3d_p2	(3,2)	(3,2)	1.58	1.65
1088			(2,2)	0.96	0.86			(3,2)	1.29	1.41
1089			(2,2)	0.84	0.80			(3,2)	2.01	2.20
1090	log_ratio_3d_p2	(3,2)	(3,2)	1.02	0.89	chain_3d_p2	(3,2)	(3,2)	0.85	0.87
1091			(3,2)	1.40	1.23			(3,2)	1.22	1.36
1092			(3,2)	1.09	1.02			(3,2)	0.97	1.01
1093	duffing_1d_p2	(1,2)	(1,2)	0.63	0.54	vdp_1d_p2	(1,2)	(1,2)	0.71	0.76
1094			(1,2)	0.88	0.85			(1,2)	0.94	0.97
1095			(1,3)	1.68	1.46			(1,2)	1.79	1.97
1096	pendulum_1d_p2	(1,2)	(1,2)	0.58	0.51	driven_pendulum_1d_p2	(1,2)	(1,2)	1.24	1.38
1097			(1,2)	0.81	0.74			(1,2)	1.51	1.73
1098			(1,2)	1.55	1.44			(2,2)	2.13	2.33
1099	msd_1d_p2	(1,2)	(1,2)	0.48	0.42	double_pendulum_2d_p2	(2,2)	(2,2)	1.44	1.58
1100			(1,2)	0.59	0.51			(2,2)	1.67	1.83
1101	lorenz_jerk_1d_p3	(1,3)	(1,3)	1.31	1.24	chua_jerk_1d_p3	(1,3)	(1,3)	1.19	1.26
1102			(1,3)	1.58	1.53			(1,3)	1.46	1.53
1103	multidof_chain_d_p2	(2,3)	(2,3)	2.10	2.03			(1,4)	2.02	2.13
1104			(2,3)	2.18	2.03					

Table 3: Coefficient errors when replacing the Taylor (polynomial) basis with a Fourier (trigonometric) basis. Here, “Taylor” denotes the total coefficient error computed under the polynomial basis, whereas “Fourier” denotes the total coefficient error computed under the trigonometric basis.

1109	System	Trial	Dist.	KF Err	PF Err	System	Trial	Dist.	KF Err	PF Err
1110	exp_log_2d_p2	1	Near	0.72	0.95	logistic_2d_p3	1	Near	0.80	1.05
1111		2	Far	1.65	1.20		2	Far	1.80	1.35
1112		3	Near	0.78	1.02		3	Near	0.86	1.10
1113	simple_exp_2d_p2	1	Near	0.60	0.88	tri_gate_2d_p2	1	Near	0.98	1.32
1114		2	Far	1.50	1.10		2	Far	1.90	1.40
1115		3	Near	0.66	0.92		3	Near	1.05	1.36
1116	leaky_log_2d_p2	1	Near	0.74	1.01	soft_ring_3d_p2	1	Near	1.20	1.55
1117		2	Far	1.70	1.25		2	Far	2.10	1.65
1118		3	Near	0.79	1.06		3	Near	1.35	1.70
1119	log_ratio_3d_p2	1	Near	0.88	1.15	chain_3d_p2	1	Near	0.82	1.10
1120		2	Far	1.85	1.40		2	Far	1.70	1.28
1121		3	Near	0.95	1.20		3	Near	0.86	1.15
1122	duffing_1d_p2	1	Near	0.69	0.94	vdp_1d_p2	1	Near	0.76	1.03
1123		2	Far	1.60	1.18		2	Far	1.72	1.30
1124		3	Near	0.75	1.02		3	Near	0.82	1.10
1125	pendulum_1d_p2	1	Near	0.63	0.88	driven_pendulum_1d_p2	1	Near	1.10	1.42
1126		2	Far	1.55	1.12		2	Far	2.05	1.55
1127		3	Near	0.70	0.96		3	Near	1.22	1.58
1128	msd_1d_p2	1	Near	0.54	0.80	double_pendulum_2d_p2	1	Near	1.32	1.70
1129		2	Far	1.45	1.05		2	Far	2.18	1.62
1130		3	Near	0.60	0.86		3	Near	1.45	1.86
1131	lorenz_jerk_1d_p3	1	Near	0.98	1.30	chua_jerk_1d_p3	1	Near	0.92	1.24
1132		2	Far	2.05	1.52		2	Far	1.95	1.47
1133		3	Near	1.10	1.42		3	Near	1.03	1.35

Table 4: Comparison of Kalman filtering (KF) and particle filtering (PF) across all synthetic systems. For each system, three independent trials are run and the inferred latent trajectory in each trial is classified as *Near* or *Far* from the fixed point (column “Dist.”).

1134

1135

1136

1137

1138

system	Time ratio	Case	Time ratio	system	Time ratio	Case	Time ratio
Aizawa	1.8	Arneodo	1.6	Bouali2	1.9	BurkeShaw	2.3
Chen	1.5	ChenLee	1.7	Dadras	2.1	DequanLi	2.6
Finance	2.9	GenesioTesi	1.8	GuckenheimerHolmes	1.9	Hadley	1.4
Halvorsen	2.3	HenonHeiles	2.4	HyperBao	3.1	HyperCai	2.2
HyperChen	1.9	HyperQi	2.7	HyperRossler	1.6	HyperWang	1.7
HyperYan	2.5	HyperYangChen	3.3	KawczynskiStrizhak	1.8	Laser	1.9
Lorenz	1.4	LorenzBounded	1.5	LorenzStenflo	2.0	LuChenCheng	1.7
MooreSpiegel	2.2	NewtonLeipnik	2.1	NoseHoover	2.5	Qi	1.8
QiChen	2.0	RabinovichFabrikant	3.0	RayleighBenard	3.4	RikitakeDynamo	3.7
Sakarya	1.7	SprottA	1.3	SprottB	1.4	SprottC	1.5

1146

Table 5: Runtime ratio between the proposed method and LaNoLeM (ratio = Proposed time / LaNoLeM time) when parallelizing the training steps during the (p, m) search.

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

System	True (p^*, m^*)	Init (p_0, m_0)	Est. (\hat{p}, \hat{m})	System	True (p^*, m^*)	Init (p_0, m_0)	Est. (\hat{p}, \hat{m})
exp_log_2d_p2	(2,2)	(1,4) (5,1) (3,6)	(2,2) (2,2) (2,2)	soft_ring_3d_p2	(3,2)	(1,1) (4,1) (5,5)	(3,2) (3,2) (2,4)
logistic_2d_p3	(2,3)	(1,1) (5,4) (4,6)	(2,3) (2,3) (3,3)	simple_exp_2d_p2	(2,2)	(1,5) (4,2) (6,3)	(2,2) (2,2) (2,2)
log_ratio_3d_p2	(3,2)	(1,6) (5,2) (4,7)	(3,2) (3,2) (3,3)	tri_gate_2d_p2	(2,2)	(1,3) (4,1) (6,5)	(2,2) (2,2) (2,2)
leaky_log_2d_p2	(2,2)	(1,6) (5,3) (4,7)	(2,2) (2,2) (1,2)	chain_3d_p2	(3,2)	(1,4) (5,1) (6,6)	(3,2) (3,2) (2,4)
duffing_1d_p2	(1,2)	(1,5) (4,1) (6,4)	(1,2) (1,2) (1,3)	vdp_1d_p2	(1,2)	(1,6) (5,3) (6,7)	(1,2) (1,2) (3,2)
pendulum_1d_p2	(1,2)	(1,7) (5,2) (6,6)	(1,2) (1,2) (1,3)	driven_pendulum_1d_p2	(1,2)	(1,8) (4,3) (6,5)	(1,2) (1,2) (3,3)
msd_1d_p2	(1,2)	(1,4) (4,1) (5,5)	(1,2) (1,2) (1,3)	double_pendulum_2d_p2	(2,2)	(1,6) (5,2) (6,7)	(2,2) (2,2) (3,2)
lorenz_jerk_1d_p3	(1,3)	(1,2) (5,1) (6,6)	(1,3) (1,3) (3,4)	chua_jerk_1d_p3	(1,3)	(1,5) (4,2) (6,7)	(1,3) (1,3) (2,3)
multidof_chain_d_p2	(2,3)	(1,3) (4,1) (6,8)	(2,3) (2,3) (3,3)				

1179

1180

Table 6: Robustness of joint (p, m) search to different initializations. “Init (p, m) ” refers to the initial Markov order and latent dimension supplied as the starting point of the search procedure, whereas “Est. (p, m) ” indicates the final model order and latent dimension identified by our algorithm.

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

System	True(p, m)	(\hat{p}, \hat{m})	State-space	Observation	System	True(p, m)	(\hat{p}, \hat{m})	State-space	Observation
exp_log_2d_p2	(2,2)	(2,2)	0.50	0.38	logistic_2d_p3	(2,3)	(2,3)	0.59	0.45
		(2,2)	0.61	0.44			(2,3)	0.77	0.56
		(2,1)	1.12	0.82			(2,4)	1.32	0.94
simple_exp_2d_p2	(2,2)	(2,2)	0.37	0.28	tri_gate_2d_p2	(2,2)	(2,2)	0.98	0.65
		(2,2)	0.42	0.32			(2,2)	0.74	0.53
		(2,2)	0.54	0.39			(2,1)	1.35	0.98
leaky_log_2d_p2	(2,2)	(2,2)	0.56	0.39	soft_ring_3d_p2	(3,2)	(3,2)	1.21	0.90
		(2,2)	0.73	0.50			(3,2)	0.97	0.73
		(2,2)	0.66	0.46			(3,2)	1.52	1.09
log_ratio_3d_p2	(3,2)	(3,2)	0.76	0.57	chain_3d_p2	(3,2)	(3,2)	0.64	0.47
		(3,2)	1.00	0.69			(3,2)	0.89	0.63
		(3,2)	0.82	0.60			(3,2)	0.74	0.54
duffing_1d_p2	(1,2)	(1,2)	0.48	0.36	vdp_1d_p2	(1,2)	(1,2)	0.56	0.41
		(1,2)	0.69	0.51			(1,2)	0.75	0.54
		(1,3)	1.29	0.92			(1,2)	1.41	1.00
pendulum_1d_p2	(1,2)	(1,2)	0.44	0.33	driven_pendulum_1d_p2	(1,2)	(1,2)	0.95	0.69
		(1,2)	0.63	0.47			(1,2)	1.16	0.84
		(1,2)	1.08	0.79			(2,2)	1.63	1.20
msd_1d_p2	(1,2)	(1,2)	0.34	0.26	double_pendulum_2d_p2	(2,2)	(2,2)	1.01	0.75
		(1,2)	0.43	0.32			(2,2)	1.23	0.90
		(1,2)	0.91	0.67			(3,2)	1.61	1.16
lorenz_jerk_1d_p3	(1,3)	(1,3)	0.95	0.70	chua_jerk_1d_p3	(1,3)	(1,3)	0.89	0.65
		(1,3)	1.18	0.86			(1,3)	1.10	0.79
		(2,3)	1.58	1.17			(1,4)	1.54	1.12
multidof_chain_d_p2	(2,3)	(2,3)	1.09	0.80					
		(2,3)	1.31	0.94					
		(1,3)	1.61	1.16					

Table 7: Coefficient errors on self-designed systems at 10% noise.

System	True(p, m)	(\hat{p}, \hat{m})	State-space	Observation	System	True(p, m)	(\hat{p}, \hat{m})	State-space	Observation
exp_log_2d_p2	(2,2)	(2,2)	0.68	0.52	logistic_2d_p3	(2,3)	(2,3)	0.82	0.62
		(2,3)	0.88	0.64			(2,2)	1.03	0.77
		(1,2)	1.45	1.06			(2,4)	1.88	1.34
simple_exp_2d_p2	(2,2)	(2,2)	0.49	0.38	tri_gate_2d_p2	(2,2)	(2,2)	1.21	0.86
		(2,2)	0.60	0.46			(2,3)	1.02	0.73
		(2,3)	0.82	0.61			(2,1)	1.78	1.26
leaky_log_2d_p2	(2,2)	(2,2)	0.73	0.56	soft_ring_3d_p2	(3,2)	(3,2)	1.60	1.17
		(2,2)	0.96	0.72			(3,3)	1.43	1.05
		(2,1)	0.93	0.69			(3,2)	2.00	1.47
log_ratio_3d_p2	(3,2)	(3,2)	1.01	0.79	chain_3d_p2	(3,2)	(3,2)	0.86	0.63
		(3,3)	1.42	1.05			(3,2)	1.22	0.90
		(3,2)	1.13	0.84			(2,2)	1.06	0.79
duffing_1d_p2	(1,2)	(1,2)	0.62	0.49	vdp_1d_p2	(1,2)	(1,2)	0.73	0.56
		(1,3)	0.91	0.71			(1,3)	1.01	0.76
		(1,3)	1.64	1.25			(1,3)	1.96	1.39
pendulum_1d_p2	(1,2)	(1,2)	0.58	0.44	driven_pendulum_1d_p2	(1,2)	(1,2)	1.30	0.99
		(1,2)	0.82	0.62			(1,3)	1.57	1.18
		(1,1)	1.39	1.04			(2,2)	2.05	1.55
msd_1d_p2	(1,2)	(1,2)	0.45	0.35	double_pendulum_2d_p2	(2,2)	(2,2)	1.42	1.07
		(1,2)	0.60	0.46			(2,3)	1.72	1.30
		(1,3)	1.30	0.97			(3,2)	2.20	1.72
lorenz_jerk_1d_p3	(1,3)	(1,3)	1.25	0.95	chua_jerk_1d_p3	(1,3)	(1,3)	1.13	0.85
		(2,3)	1.58	1.21			(1,3)	1.49	1.09
		(2,3)	2.10	1.58			(1,4)	2.07	1.51
multidof_chain_d_p2	(2,3)	(2,3)	1.55	1.14					
		(2,2)	1.87	1.38					
		(1,3)	2.24	1.64					

Table 8: Coefficient errors on self-designed systems at 15% noise.

1239

1240

1241

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257

1258	System	True(p, m)	(\hat{p}, \hat{m})	State-space	Observation	System	True(p, m)	(\hat{p}, \hat{m})	State-space	Observation
1259	exp_log_2d_p2	(2,2)	(2,2)	0.82	0.63	logistic_2d_p3	(2,3)	(2,3)	1.05	0.80
1260			(1,2)	1.00	0.72			(2,2)	1.27	0.96
1261			(1,1)	2.10	1.48			(2,4)	2.35	1.76
1262	simple_exp_2d_p2	(2,2)	(2,2)	0.64	0.51	tri_gate_2d_p2	(2,2)	(2,2)	1.52	1.02
1263			(2,3)	0.77	0.60			(2,3)	1.17	0.87
1264	leaky_log_2d_p2	(2,2)	(2,2)	1.01	0.77	soft_ring_3d_p2	(3,2)	(2,1)	2.18	1.62
1265			(2,1)	1.22	0.94			(3,2)	1.98	1.47
1266	log_ratio_3d_p2	(3,2)	(3,2)	0.90	0.70	chain_3d_p2	(3,2)	(3,3)	1.98	1.47
1267			(3,3)	1.93	1.40			(2,2)	1.86	1.38
1268			(2,2)	1.50	1.08			(2,2)	2.45	1.84
1269	duffing_1d_p2	(1,2)	(1,2)	0.77	0.59	vdp_1d_p2	(1,2)	(1,2)	0.88	0.68
1270			(1,3)	1.10	0.86			(1,3)	1.28	0.96
1271	pendulum_1d_p2	(1,2)	(1,2)	2.08	1.60	driven_pendulum_1d_p2	(1,2)	(1,2)	2.38	1.70
1272			(1,1)	0.73	0.55			(1,3)	1.57	1.16
1273	msd_1d_p2	(1,2)	(1,2)	1.09	0.82			(2,2)	2.02	1.51
1274			(1,2)	2.14	1.57			(2,2)	2.55	1.96
1275	lorenz_jerk_1d_p3	(1,3)	(1,3)	0.56	0.44	double_pendulum_2d_p2	(2,2)	(2,2)	1.90	1.46
1276			(1,3)	0.76	0.58			(2,3)	2.18	1.66
1277			(1,2)	1.71	1.25			(3,2)	2.55	1.90
1278	multidof_chain_d_p2	(2,3)	(2,3)	1.52	1.15	chua_jerk_1d_p3	(1,3)	(1,3)	1.39	1.05
1279			(2,3)	1.96	1.47			(1,4)	1.88	1.41
1280			(2,3)	2.64	2.01			(2,4)	2.55	1.90
1281	multidof_chain_d_p2	(2,3)	(2,3)	2.02	1.44					
1282			(2,2)	2.40	1.78					
1283			(1,3)	2.72	1.91					

Table 9: Coefficient errors on self-designed systems at 20% noise.

1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295