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Abstract

As large language models (LLMs) become more ubiquitous, security concerns
regarding sensitive queries grow. Due to the complexities of deploying these
models, LLM evaluation is often outsourced to a third-party cloud, which leaks
the clients’ queries to this external provider. These queries could contain sensitive
information such as intellectual property, medical information, and proprietary data.
Protecting this data while maintaining the LLM’s functionality is a major privacy
challenge. Fully homomorphic encryption (FHE) presents a natural solution to
this problem: simply encrypt the query and evaluate the LLM homomorphically
on the cloud machine. The result remains encrypted and can only be learned by
the client who holds the secret key. There are two barriers to this solution: (1)
FHE operations do not easily support the LLM activation functions and (2) FHE
implementations remain too slow to evaluate an LLM in a reasonable time.
In this work, we address both of these barriers to present a fully encrypted version
of GPT-2 with forward pass times over 150× faster than the CPU baseline. This
result builds on two main technical contributions. First, we present the first open-
sourced implementation of GPU-accelerated FHE as an extension to the popular
OpenFHE library, achieving roughly 200× performance improvement for many
critical functions including bootstrapping. Second, we present novel and extensive
experimental analysis of approximations of LLM activation functions to maintain
accuracy while achieving this performance. We run extensive benchmarks using
the HellaSwag, LAMBADA and ARC datasets, and our results show that the
accuracy/perplexity degradation with respect to “out-of-the-box” GPT-2 is minimal.

1 Introduction

Large language models (LLMs) have proven to be groundbreaking artificial intelligence tools that are
set to change the way humans interact with software. By training on massive amounts of data and
using an incredibly large amount of trainable parameters, LLMs are able to provide unprecedented
inference results. The tasks that LLMs excel at include natural language generation, question-
answering, summarization, translation, code generation, among several others. Models like GPT-3
(https://openai.com/index/gpt-3-apps/) or Claude (https://www.anthropic.co
m/news/claude-2) can produce coherent and contextually appropriate text on a wide range
of topics. However, these models require massive amounts of resources to be trained, and are
often not publicly available as this constitutes the provider’s intellectual property. This leads to a
“inference-as-a-service” scenario, where clients send their queries to external providers who locally
run an LLM to return a result to the client. Furthermore, even open source LLMs such as Llama 2
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(https://llama.meta.com/llama2/) are very expensive to run in commodity hardware and still
require in most cases delegating inference to a third party provider.

Unfortunately, delegating inference is undesirable in many settings where the client wants to preserve
the privacy of their input. Furthermore, as mentioned above, there are multiple contexts in which the
model owner also wants to retain privacy of the model itself, for example when the model involves
massive monetary resources to be trained, or when it incorporates sensitive data (e.g. a bank servicing
a credit score model trained on internal data). This is particularly relevant as LLMs become more
pervasive and find more use-cases that permeate all areas of society. This tension between privacy
and utility heavily limits the applicability of LLMs, rendering them useless in contexts where data
cannot be outsourced due to privacy constraints.

Towards resolving this tension, fully homomorphic encryption (FHE) is a promising tool that enables
computing on data without revealing it, only outputting the final result (cf [Mar+22] for a survey).
Using FHE, a client can encrypt their query to the server, who can locally apply their model to this
encrypted data, making use of the homomorphic properties of the scheme to obtain an encrypted
result, which is sent back to the client for decryption. See Fig. 1a for a pictorial representation of
this interaction pattern. Advances in the last decade on all fronts including algorithms, software and
hardware, have made FHE practical for several tasks that were not within reach before. However,
LLMs are in an entirely different regime: their computation is already very expensive in the clear, up
to the point in which specialized software such as high-end GPUs, coupled with several architectural
optimizations, are needed in order to provide a reasonable inference latency. Any computation that is
ran under FHE becomes much slower, which is going to be a major blocker when porting LLMs to
FHE. However, the question remains:

How practical is FHE-based privacy-preserving LLM evaluation?

To address this question, a good starting point is the CKKS scheme by Cheon et al. [Che+17],
which enables approximate additions and multiplications over real (in fact, complex) numbers. We
provide detail background on FHE and CKKS in Sections 2.2 and C.1, respectively. The literature in
improving the efficiency of this scheme is vast and fruitful [Bos+21; HK20; Jun+21], and this has
enabled several applications in contexts such as logistic regression [Che+18a] and secure password
search [Che+18b].

Only the recent work of Zhang et al. [Zha+24] has explored large language model inference via
CKKS, reporting an implementation of the transformer architecture in C++, using the SEAL library
for FHE (https://github.com/Microsoft/SEAL). Their experiments report minor accuracy
degradation due to polynomial approximations needed in FHE, and performance in Intel CPUs seems
promising, as it is accelerated via HEXL [Boe+21]. We discuss this work further in section 1.2.
Although promising given the massive overheads involved in both LLMs and FHE, this is still far
from practical for real-world usage, even for applications that are not latency sensitive such as text
summarization or content generation (in contrast to chatbots or Q/A tasks, which are more demanding
in terms of responsiveness).

1.1 Our contributions

We approach the problem of improving the efficiency of FHE-based privacy-preserving LLM infer-
ence, by providing a GPU-based implementation of the transformer architecture using CKKS. Prior
work [Jun+21] has shown GPUs to help in improving the efficiency of CKKS. However, to the best of
our knowledge, there is currently no available implementation of such works to deploy and test these
ideas. In contrast, there are popular open-source CPU-based frameworks that aim at making FHE
techniques more accessible by providing high level programming interfaces, and access to multiple
FHE schemes, like CKKS. One such framework is OpenFHE [AB+22], which has gained traction
as one of the most comprehensive and widely used FHE implementations available. Unfortunately,
OpenFHE is limited to CPUs, and hence its performance in tasks such as LLM inference would be
rather poor.

In this work we extend the capabilities of OpenFHE by enabling a GPU-based workflow, which leads
to direct efficiency improvements across many FHE applications that build on this framework—not
only LLMs. This requires a deep understanding of the internal CKKS operations to replicate them on
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(a) Interaction pattern in outsourced privacy-
preserving LLM evaluation. Here, a client
(right side) encrypts (say) financial reports
to the server (left side), who receives an un-
intelligible ciphertext. The server evaluates
the adapted model—incorporating approx-
imations and working with ciphertexts in-
stead of cleartext values—and sends back an
encryption to the client. Finally, the client,
who is the only party who knows the secret-
key, can decrypt this message and learn the
result.
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(b) Overview of the GPT-2 inference flow. The diagram only shows
the blocks that are expensive to run in FHE, ignoring simpler
operations such as linear or affine layers. The input is the sentence
“hello how are”, and the completion is “you”. To get the next
token, only the path associated to the lastest token “you” needs
to be computed, which in this example leads to the token “today”.
The vertical lines between the leftmost softmax boxes illustrates
that each new softmax is somehow dependent on the inputs of
previous ones. Every block is labeled with the dimension of the
input it takes. For softmax, the number in parentheses represents
how many such calls are made.

Figure 1: On the left: communication pattern between the two parties. On the right: GPT-2
architecture, which corresponds to the local computation by the server.

the GPU. We provide benchmarks for our GPU-accelerated CKKS bootstrapping in appendix E. We
have open-sourced the code of our OpenFHE+GPU extension2.

With our GPU-based implementation in place, we set out to benchmark the performance of large
language models under FHE. We focus specifically on the GPT-2 architecture by OpenAI, which is
fully open-source and shares common features with many of the more powerful industry-grade models.
One first obstacle we face is that FHE techniques do not support all operations available to a common
CPU/GPU and instead only supports additions and multiplications. As usual in the FHE literature,
we use off-the-shelf polynomial approximations to replicate as faithfully as possible the transformer
architecture, while adapting for FHE use. Our approximations are discussed in Appendix D. Note that
these modifications have the potential of negatively affecting the accuracy of the model, which is far
from ideal. To address this, we modify the GPT-2 implementation from HuggingFace’s transformers
library (https://github.com/huggingface/transformers) so that it includes these FHE-
friendly modifications, and thoroughly benchmark the resulting accuracy using the LM evaluation
harness library (https://github.com/EleutherAI/lm-evaluation-harness) on a selection
of tasks. This allows us to select optimal parameters for the approximations that strike the right
balance between efficient FHE runtimes and model accuracy. Furthermore, for reproducibility we
also open source our modified HuggingFace GPT-2 implementation.

Our results given in section 3 show that a GPU-accelerated FHE implementation provides a roughly
200× speedup in the GPT-2 forward pass, reducing the time from several hours to just a few minutes.
This brings the forward pass time down to a range where non-real-time applications become more
practical, such as document summarization and fine-tuning models on private data.

1.2 Related Work

There is a long line of works studying secure inference for protecting the privacy of both a client
owning a query, and a server holding a trained model. At a high level, we can divide these techniques
into two groups: highly interactive approaches based on MPC, and less communication-demanding
but more computationally-heavy paradigms based on FHE. We focus this section on FHE-based
approaches, leaving the discussion on MPC-based techniques to Appendix A.

2https://github.com/leodec/openfhe-gpu-public
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FHE-based LLM inference. FHE-based secure inference has the notable advantage that it preserves
the same communication pattern of non-private inference: the client sends the query to the server,
who performs certain (presumably heavy) computation and sends back the result. This is applicable to
real-world settings where client and servers may not be well connected, and the server is considerably
more powerful than the client. In this context, the most relevant work in secure LLM inference with
FHE is [Zha+24]. This work makes use of several polynomial approximations from the literature,
some of which we borrow as well (see Appendix D). Importantly, their implementation is limited to
CPU, which caps their performance substantially. Rather than comparing to this work, we instead
compare directly to the out-of-the-box OpenFHE CPU implementations of the FHE functions. This
allows us to account for variations in the approximations and the placement of the bootstrapping
functions.

The work of [Zim+23] studies HE-friendly approximation of the transformer architecture, but it is
not applicable to our case since this require re-training. Primer [ZLJ23] and THE-X [Che+22] also
employ FHE for LLM evaluation (Primer in fact mixes FHE and MPC), but these works also make
substantial modifications to the underlying model. THE-X even reveals intermediate values of the
computation.

Privacy-preserving ML for other models. Finally, we mention that there are several other works
that have studied FHE-based inference of other machine learning models, such as convolutional
neural networks (cf. [AB24; Boe+19; GB+16; JVC18]). These are not applicable to transformers
directly as they do not support all of the operations involved in this architecture, and additionally the
scale of the models they consider is much more reduced.

1.3 Setting and Threat Model

We consider a client who holds as input a text sequence, and a server who holds a large language
model. The goal is for the client to learn the evaluation of their query on the model without leaking
the input to the server, and while protecting the privacy of the model towards the client. See Fig. 1a
for a pictorial representation of the task and the communication flow. The server does not learn
any information about the client’s input, but we provide no correctness guarantees regarding the
result the server returns to the client—a corrupt server can return an incorrect answer, or no answer
at all. This is consistent with prior works, and it is strictly better than the guarantees provided by
MPC-based solutions, which may leak information towards a corrupt server that deviates from the
protocol specification.

We assume the client has access to the tokenizer of the model (see Section B.1), so that the client can
locally transform their text into a sequence of real-valued vectors, which are then encrypted towards
the server. We do not provide any guarantees on the plaintexts underlying the ciphertexts that the
client sends. In particular, a corrupt client may send a sequence of vectors that does not correspond to
valid token embeddings, and will be able to learn the LLM evaluation on this input. This is in par
with previous privacy-preserving ML works based on FHE.

2 Preliminaries

In what follows we provide background on large language models and fully homomorphic encryption.

Some general notation we will use throghout the paper is the following. Vectors are denoted by bold
letters, like x, and indexing the i-th entry is denoted by x[i]. Given a positive integer n, we let [n]
denote the set {1, . . . , n}.

2.1 Large Language Models

A large language model (LLM) is a type of machine learning (ML) model that is characterized
by its ability to predict language, with the “large” term emphasizing their comparatively gigantic
sizes and computational demands. Vaswani et al. [Vas+17] introduced the transformer architecture,
which is the basis for several LLMs that came right after. Among LLMs, an interesting and relevant
family are generative pretrained transformers (GPTs), which are used in natural language processing
contexts. This family, developed by OpenAI, has been widely influential and has spawned a series of
follow-ups. In this work we focus specifically on the GPT-2 model, which is trained on WebText:
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40 GB of text, 8 million documents, from 45 million webpages upvoted on Reddit. We chose this
model as (1) it is fully open source, (2) it follows the transformer architecture shared by other more
powerful LLMs, and (3) this is already challenging in terms of efficiency for current FHE approaches.
We note however that our findings carry out to several other LLMs that follow this paradigm, such as
the larger models like GPT-3 or GPT-4 or other transformer-based LLMs like Llama and Llama 2. In
what follows, we describe the GPT-2 architecture in detail. There are four variants of GPT-2 which
vary in size and performance: S, M, L and XL, and we discuss below the points where these differ.

LLMs use deep learning to analyze and generate human-like text. The transformer architecture
by Vaswani et al. [Vas+17] receives as input a piece of text, which is split into numerical representa-
tions referred to as tokens. Transformers are comprised of an enconder and a decoder section, which
are very similar in structure. However, generative LLMs such as GPT are decoder-only, and so for the
sake of this work we will focus on the decoder component of the transformer architecture; we note
that encoders follow a similar structure and our findings apply to encoder-decoder or encoder-only
architectures as well.

The model is trained to predict the best next word given a sequence of words. For example, it
may receive as an input “Today is a good”, and then predict “day” as the next word. The resulting
concatenated sentence “today is a good day” can be fed into the model again to obtain as the next
word, perhaps, “for”. This way a sequence like “today is a good day for running outside” can be
generated.

An overview of the GPT-2 architecture, highlighting the blocks that are most relevant for FHE, is
given in fig. 1b; see appendix B for additional details. Throughout this work, we use the “small”
variant of GPT-2 with embedding dimension d = 768.

2.2 Fully Homomorphic Encryption

A fully homomorphic encryption (FHE) scheme [RAD+78], [Gen09] is an encryption scheme that
allows computations to be performed over the data while the data remains encrypted. More formally,
an FHE scheme is defined by the following tuple of algorithms.

• (sk, pk, evk)← KeyGen(1λ). This is the key generation algorithm. The input is the security
parameter λ and the output is three keys. The secret key sk is used for decryption, the
public key pk is used for encryption, and the evaluation key evk is used to homomorphically
compute over encrypted data.

• ct ← Encrypt(pk,m). This is the encryption algorithm. It takes in a message m and a
public key pk and outputs a ciphertext ct.

• m′ ← Decrypt(sk, ct′). This is the decryption algorithm. It takes in a ciphertext ct′ and a
secret key sk and outputs a message m′.

• ctf ← Eval(evk, ct, f). This is the homomorphic evaluation algorithm. It takes in as input
an evaluation key evk, a ciphertext ct, and a function f . Let m be the message encrypted by
ct (i.e. m← Decrypt(sk, ct)). The output of Eval is the ciphertext ctf that encrypts f(m).

FHE must satisfy the same security level as a regular encryption scheme, which dictates that a party
without access to the secret key cannot distinguish between encryptions of any two messages, even if
the messages are adversarially chosen.

3 Experimental Results

In this section, we present the full LLM runtimes under FHE. These evaluations are run entirely
on the server, and at no point can the server view the underlying query or any intermediate value.
Furthermore, the output of the LLM forward pass can be fed directly back into the model to compute
the next token without any interaction with the client. This powerful technique allows an arbitrary
number of forward passes to be executed on the client’s encrypted query. This method extends to
other operations that require the forward-pass as a subroutine, such as fine-tuning on private data.

As we mentioned in the introduction, we focus on GPT-2 (small) due to its accessibility as well as the
similarity in the architecture of larger GPT models. Our performance benchmarks can be extended to
models with many more parameters by linearly scaling the transformer architecture.
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Benchmark Lambada HellaSwag ARC (Easy)

Perplexity Accuracy Accuracy Accuracy

Baseline 40.0554 0.3256 0.2892 0.4381
Approximate 41.8580 0.3013 0.2918 0.4327

Table 1: Performance of GPT-2 (small) with our different approximations vs. the unaltered baseline.
We use polynomials of degree 4—each composed twice—for the comparison approximations, (see
Section D.1). We use 16 Newton iterations for the inverse square root (see Section D.3). We use 7
iterations of Goldschmidt algorithm for the Softmax division, and we use r = 7 for the approximation
of exp in Softmax (see Section D.4).

Function SoftMax LayerNorm GeLU Argmax

depth 133 13 17 272
number of ciphertexts 0.25 1.5 6 1

Table 2: Depths of our approximate activation functions. The approximations (described in ap-
pendix D) have the same parameters as the plaintext circuits benchmarked in table 1. The softmax
input size is 128× 128 values, which requires a in a depth-7 comparison tree to compute the max
of all sets of 128 values in parallel. The number of slots in each ciphertext is n = 216. Non-integer
ciphertexts indicate that not all slots are filled and batched evaluation is available in this layer.

3.1 Accuracy of the Approximate Model

In order to make our LLM compatible with FHE, we replace each non-linear function with the
corresponding approximation described in section 2. We evaluate this variant of GPT-2 on standard
accuracy benchmarks to ensure that these approximations do not compromise the model’s perfor-
mance. We achieve this by forking the GPT-2 implementation in the HuggingFace transformers
library (https://github.com/huggingface/transformers), and making the following
modifications in order to reflect the changes that FHE imposes:

• The GeLU activation is replaced by the approximation from Section D.2. We use degree 2
for the f and g polynomials in the comparison from Section D.1, and we compose them 2
times each.

• LayerNorm is approximated as in Section D.3. We use 16 Newton iterations

• SoftMax is approximated as in Section D.4. For the approximation of exp we use r = 7,
and for Goldschmidt algorithm—used for the division—we use 7 iterations.

Performing these modifications is intricate as the transformers library is not intended to support
changes such as replacing the SoftMax, for instance, which is rather uncommon in machine learning
contexts. Once our modified model is loaded in HuggingFace’s “format”, we are able to leverage the
Language Model Evaluation Harness library (https://github.com/EleutherAI/lm-evaluat
ion-harness), which includes multiple benchmarks to evaluate LLM performance. Our accuracy
benchmarks appear in table 1, where we measure the performance of our modifications with respect
to the baseline GPT-2 (small) on three datasets: Lambada, HellaSwag and ARC. The Lambada
dataset is a collection of passages and sentences used for evaluating the ability of language models
to understand context and perform coherent text continuation or next word prediction. HellaSwag
tests LLM’s ability to capture commonsense reasoning about situations described in natural language.
ARC (AI2 Reasoning Challenge) is a dataset created by the Allen Institute for Artificial Intelligence
(AI2) to evaluate question answering systems’ ability to perform multi-step reasoning. We refer the
reader to the evaluation harness library for details on these tasks.

Overall, we observe that our modifications incur in little accuracy degradation with respect to the
baseline model. This reflects the robustness of large language model to slight deviations, highly
exploited in the quantization literature (cf [Zhu+23]), and is crucial for enabling privacy-preserving
inference. Note that these approximations are also useful for MPC-based approaches.
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3.2 Runtimes of LLM Inference in FHE

We now present the end-to-end runtime of a GPT-2 forward pass using our GPU-accelerated FHE.
Note that, as illustrated in Fig. 1b, the complexity of a GPT forward pass is dependent on the position
of the token being generated in the output, given that the dimension for the softmax in each decoder
block depends on the token position. Furthermore, as we discuss in Remark 2, all tokens of the input
sequence have to be processed once by the decoder blocks before any new token can be generated.
Throughout this section, we benchmark generating a token at position 128, assuming that the previous
input tokens have been processed. The cost of processing the input is amortized away as more tokens
are produced, which is also consistent with prior works.

We note a few important optimizations that are incorporated into this benchmark:

Input & Output Sizes. We give the depth of each approximation in table 2. Recall from the high-level
GPT architecture that SoftMax and GeLU are run once per block and LayerNorm is run twice per
block. The GPT-2 model consists of 12 blocks, and the final ArgMax function is run at the end of
the forward pass. The dimension of one token embedding is 768, and the inputs and outputs of
both LayerNorm operations is 128 × 768. The GeLU input consists of 24 channels of the typical
128× 768, resulting in a total input of 3072× 768. By contrast, the SoftMax input is the result of
many inner-product operations with the context embeddings, resulting in an input and output size of
128× 128. With 216 slots in each ciphertext, this gives the values in the second row of Table 2.

Batched Evaluation. When a function is evaluated over an input that does not use all available slots
in a ciphertext, additional performance can be gained by evaluating another input to that function and
using the additional unused slots. This batched evaluation maximizes the available parallelism in the
CKKS scheme. For example, the LayerNorm function only requires 1.5 ciphertexts to store the input
and output. If only one LayerNorm function is being evaluated, then we must perform the operation
over two ciphertexts even though the second is half empty. However, if we have the option of running
a second LayerNorm function over an independent input, we can evaluate both LayerNorm functions
using only three ciphertexts, which doubles our throughput with only a 50% increase in latency. This
is an important optimization for tasks such as training or fine-tuning, where the model is evaluated on
batches of samples from the training set. We also present the “unbatched" single-input evaluation for
comparison.

Benchmarks. We present our benchmarks in Figure 2 and Figure 3. Both figures display the
forward pass time of our encrypted GPT-2 at position 128. All individual layer benchmarks include
the internal bootstrapping time, which is interleaved within the function as needed. All benchmarks
were run on the same machine as the bootstrapping benchmarks in appendix E. This machine has an
Intel Xeon chip running at 2.4 GHz and 2 TB of RAM as well as an NVIDIA A100 80GB PCIe.

In Figure 2, we demonstrate the speedup of our GPU-accelerated FHE library when applied to the task
of a GPT-2 forward pass. This figure measures our GPU implementation against the out-of-the-box
OpenFHE functions running on a CPU.

In the unbatched forward pass, the SoftMax function is one of the most expensive operations primarily
due to the low utilization of the ciphertext. When switching to batched evaluation, the overhead of
the SoftMax drops significantly (4×) as well as the LayerNorm function discussed above. The GeLU
function has full utilization of the ciphertexts, so the overhead with batching remains the same. The
batching speedups translate into the benchmarks for the full model. Recall that the full forward pass
consists of 12 blocks and an ArgMax. We do not batch the ArgMax evaluation since only a small
portion of the ciphertext is left unused.

We provide benchmarks at two different security levels depending on the application requirements.
Setting the security parameter λ = 128 is standard for encryption schemes, although many applica-
tions allow a slightly weaker λ = 80. Concretely, setting λ = 128 gives us a bootstrapping routine
that refreshes 20 ciphertext levels in roughly 550 milliseconds, while relaxing to λ = 80 allows a
bootstrapping routine that refreshes 45 levels in under 1 second. This increase in the bootstrapping
throughput is the main source of speedup.
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Figure 2: This figure presents benchmarks of our GPT-2 forward pass running under FHE. The
polynomial approximations for the activation functions as well as the high-level bootstrapping
algorithm are identical in both benchmarks. The CPU bar uses the out-of-the-box OpenFHE functions,
while the GPU bar uses our GPU-accelerated implementation. Both benchmarks are for a single
(unbatched) evaluation. The speedup when switching to the GPU is about 150×.

Figure 3: This figure presents the GPU-accelerated encrypted GPT-2 forward pass runtimes for
generating a token at position 128. The hatched bars indicate the batched evaluation times, where
unused ciphertext slots are filled with independent evaluations (also, see description in paragraph
“batched evaluation”, p.7). The savings are maximized with four independent evaluations, allowing
the SoftMax to be fully utilized. The full forward pass consists of 12 blocks followed by an ArgMax.

3.3 Limitations

We briefly discuss the limitations of our results. Our benchmarks are based on the accuracy of the
GPT-2 model with the activation functions replaced with polynomial approximations. The degree
of these polynomials has a major impact on the performance of the encrypted forward pass, since
a higher degree directly translates into deeper circuits that require more bootstrapping operations.
While many LLM models seems to remain accurate with low precision, many other AI models such
as image recognition models require higher precision during evaluation to maintain accuracy. If a
model requires a higher precision than GPT-2, the polynomial approximations would need to be
increased. When the required precision increases beyond roughly 16 bits, the complexity of the
bootstrapping itself must be increased, since internal to the bootstrapping is an approximation of a
modular reduction function. The relatively low precision required by these transformer models is
crucial to our results.
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Supplementary Material
A Related Works on MPC-based LLM inference

A paradigm that has received more attention in the literature is secure inference based on MPC, where
the client and the server interact in a communication-heavy protocol in order to privately compute
the prediction. The computation for both server and client is proportional to the computation that
would happen in cleartext, which is orders of magnitude more lightweight than FHE, but places
computational overheads on the client that do not appear with FHE. Furthermore, this benefit in
computation is only relevant if communication is not a bottleneck, which only occurs in contexts
where the client and the server share a very fast connection. This is not the case for realistic scenarios,
which makes of MPC a less useful solution for this use-case.

Iron [Hao+22] is one of the first works in exploring secure transformer inference using secret-
sharing-based two-party computation. Sigma [Gup+23] is another two-party protocol based on the
preprocessing model, where the two parties are assumed to have correlated randomness which is
independent of their inputs, for free. In this setting, the authors show that it is possible to evaluate GPT-
2 within 2 seconds. However, this does not include the cost of generating the preprocessing (which is
by far the main bottleneck for two-party protocols based on secret-sharing), and moreover these results
are for a very strong network with 9.4 Gbps bandwidth and 0.05 ms ping. CipherGPT [Hou+23]
provides full benchmarks that also include the preprocessing time, and we see from [Hou+23, Table
5] that it takes up to 25 mins to generate on token in their framework—even assuming fast networking
conditions with bandwidth 377 MBps and RTT of 0.8ms. MPCFormer [Li+22] uses knowledge
distillation to better approximate the transformer architecture using MPC-friendly building blocks,
which is a promising direction; however, our focus was on evaluating out-of-the-box architectures
such as GPT-2. Bumblebee [Lu+23] improves over Iron, but again it has very strong networking
requirements (1 gigabit per second (1 Gbps), and a ping time of 0.5ms). BOLT [Pan+24] also improves
over Iron and presents similar communication bottlenecks. Finally, the work of Puma [Don+23]
approaches larger models (Llama-7B), but it does so in the three-party setting with honest majority,
which is substantially simpler and arguably less realistic than two parties.

B LLM Architecture Background

B.1 Tokenization and Embedding.

First, the input sentence is split into the so-called tokens, which roughly correspond to words, using a
technique known as Byte-Pair Encoding (BPE) [Gag94]. GPT-2 recognizes 50257 different tokens,
which is its so-called vocabulary size. The window size determines the maximum amount of tokens
that can be handled, and it is set to 1024 in GPT-2. Finally, each token is mapped—via some
pre-trained mapping—to an embedding vector of some dimension d which depends on the model
version: 768 for S, 1024 for M, 1280 for L and 1600 for XL. The result is a sequence of vectors
(u1,u2, . . . ,uN ), for some N ≤ 1024.

Remark 1 As in all previous works on privacy-preserving LLM inference, we assume the tokenizer
is known by the client, so that the client can compute on their own the embedding (u1,u2, . . . ,uN ).
This is the actual client’s input to the computation.

Positional Embedding. Each of the embedding vectors ui ∈ Rd is added to a pre-trained positional
encoding vector ti ∈ Rd that depends on the position i that the associated token has in the sequence.
This is intended to model the different positional relationships between words. The result xi =
ui + ti ∈ Rd is the “final embedding” of the i-th token.

B.2 Decoder

The input sequence is fed into a decoder stack, which produces as a result what it believes to be the
best next token given the current input. This stack is obtained by iterating several decoder blocks,
with the number of iterations depending on the GPT-2 model version: 12 for S, 24 for M, 36 for L
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and 48 for XL. The decoder block takes as input a sequence (x1, . . . ,xN ) ∈ (Rd)N , and performs
the steps detailed below.

Multi-head masked self-attention. Each decoder block has a query matrix Q ∈ Rd×d, a key
matrix K ∈ Rd×d and a value matrix V ∈ Rd×d. For each embedding xi with i ∈ [N ], we derive
the following:

• A query vector qi = xᵀ
i Q ∈ Rd; this is split into d/64 vectors q(1)

i , . . . , q
(d/64)
i ∈ R64

• A key vector ki = xᵀ
i K ∈ Rd; this is split into d/64 vectors k(1)

i , . . . ,k
(d/64)
i ∈ R64.

• A value vector vi = xᵀ
i V ∈ Rd. this is split into d/64 vectors v(1)

i , . . . ,v
(d/64)
i ∈ R64.

Now, for every ` ∈ [d/64], the i-th embedding is scored against the j-th embedding for every j ≤ i.3

This is done by taking the dot product 〈q(`)
i ,k

(`)
j 〉, turning these into weights via softmax (and

normalizing by
√
64 = 8) as

∀i ∈ [N ],∀` ∈ [d/64] : (λ
(`)
i1 , . . . , λ

(`)
ii )← SoftMax(〈q(`)

i ,k
(`)
1 〉/8, . . . , 〈q

(`)
i ,k

(`)
i 〉/8︸ ︷︷ ︸

length i

).

The resulting “weighted value” associated to the i-th token is then z
(`)
i =

∑
j≤i λ

(`)
ij · v

(`)
j ∈ R64.

The final output for the i-th token of the multihead self-attention section is the projected concatenated
vector zi := (z

(1)
i ‖ · · · ‖z

(d/64)
i ) ·M ∈ Rd, where M ∈ Rd×d is a pre-trained projection matrix.

Residuals and layer normalization. For i ∈ [N ], the output zi ∈ Rd is added to the original input
xi ∈ Rd to the decoder, and then the result wi = zi +xi is fed into a layer normalization step which
consists of

LayerNorm(wi) := γ · wi − µ√
σ2 + ε

+ β.

Here γ, β ∈ R are learnable parameters, and µ and σ2 are the mean and variance, which are defined
as µ = 1

d ·
∑d

j=1 wi[j] and σ2 = 1
d ·

∑d
j=1(wi[j] − µ)2. The value ε is a fixed small constant to

avoid division by zero. Let us denote the resulting vector LayerNorm(wi) by z′
i ∈ Rd.

Feed-forward Neural Network and Decoder Block Output. The normalized vector z′
i ∈ Rd

from before is passed to a neural network made of two layers. The first is a product with a d× 4d,
followed by GeLU, and the second layer projects back to the initial dimension by multiplying with a
4d× d matrix. The result yi ∈ Rd is then added to z′

i, and the final output of the decoder block is
taken to be (x′

1, . . . ,x
′
N ) ∈ (Rd)N , where x′

i = LayerNorm(z′
i + yi). This is the sequence that gets

passed through a new decoder block, iterating the process a number of times dependent on the GPT-2
version.

B.3 Final layer

Suppose that (t1, . . . , tN ) ∈ (Rd)N is the output of the final decoder. The vector tN ∈ Rd is fed
into a linear layer tN ·L, where L ∈ Rd×vocab_size is a pre-trained matrix.4 Followed by this there
is a Softmax layer, which outputs a vector of logits

bN ← Softmax( wN ·L︸ ︷︷ ︸
length vocab_size

) ∈ Rvocab_size.

Here, vocab_size is the vocabulary size, which as we have mentioned equals 50257 for the case of
GPT-2.

3This is where the “masked” name comes from: in standard self-attention—used by the encoders in the
transformer architecture—a given token is scored against all other tokens. In the decoding self-attention each
token is only scored against the previous tokens to it, effectively “masking” the future ones.

4The vectors t1, . . . , tN−1 for the final decoder block iteration are not needed and do not need to be computed
in a first place.
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Multiple decoding methods. The output bN ∈ Rvocab_size is interpreted as a mapping
[vocab_size] → [0, 1] indicating, for each possible token index, how likely it is for this token
to be the next in the sequence. There are multiple decoding methods to map this vector to an
actual token. The simplest one—which is the approach we take in our work—consists of selecting
i∗ ∈ [vocab_size] as the ArgMax of bN . Other approaches such as beam search or top-k sampling
exist, but their implementation in FHE becomes substantially more complex (with the ArgMax
already presenting noticeable challenges; see Section 3 for details).

Remark 2 (On computing subsequent tokens) Once the next token index i∗ has been determined,
the embedding vector corresponding to index i∗ can be fetched from the same pre-trained index-to-
embedding table used initially when mapping the client’s input. Then, this vector can be used as the
N + 1’th embedding xN+1, and the updated sequence (x1, . . . ,xN ,xN+1) can be processed in the
same way as before to produce the next token.

Crucially, note that many of the intermediate values produced during the generation of the N + 1-th
token can be reused for producing the N + 2-th token. For the self-attention layers, the iteration
i ∈ [N + 1] only needs to be done for i = N + 1, since for i ∈ [N ] all the values involved only
depend on tokens in positions j with j ≤ i, which have already been processed. In particular, only
d/64 SoftMax calls are needed, instead of N × d/64. This is crucial for our FHE solution, since this
means that the cost of generating the first (additional) token is not the same as for subsequent ones,
which are about a factor of N cheaper to compute.

C CKKS Background

C.1 The CKKS FHE Scheme

In this work, we use the CKKS FHE scheme [Che+17] to evaluate the LLM. The plaintext space
of the CKKS scheme is Cn, where n is typically a power of two. Throughout this work, we use
n = 216. The CKKS scheme supports the following basic operations that are used to construct all of
the evaluation circuits.

• ct′ ← EvalAdd(ct1, ct2). This is the encrypted addition operation. If the input ciphertexts
encrypt messages m1,m2 ∈ Cn, then the output ciphertext ct′ encrypts m′ ∈ Cn where
m′[i] = m1[i] +m2[i].

• ct′ ← EvalMult(evk, ct1, ct2). This is the encrypted addition operation. If the input
ciphertexts encrypt messages m1,m2 ∈ Cn, then the output ciphertext encrypts m′ ∈ Cn

such that m′[i] = m1[i] ·m2[i].
• ct′ ← EvalRotate(evkπ, ct, π). This is the encrypted rotation operation where π : [n]→ [n]

is a permutation. If the input ciphertext encrypts the message m ∈ Cn, then the output
ciphertext ct′ encrypts m′ ∈ Cn such that m′[i] = m[π(i)].

Observe that the EvalMult and EvalRotate both require evaluation keys. In addition, the evaluation
key for EvalRotate is constructed with knowledge of the permutation π, and a different key is required
for a different rotation. For algorithms with many different rotations, such as the bootstrapping
operation described below, the size of these evaluation keys can become significant.

Compute Levels & Bootstrapping. A fundamental concept to understand in FHE performance
is the notion of a compute level. An FHE ciphertext supports a finite number of compute levels
before it must be refreshed to continue the computation. A ciphertext’s compute levels are consumed
primarily in the EvalMult operation, where each EvalMult consumes one level. If the two inputs
to EvalMult have levels `1 and `2, then the output ciphertext will have level `′ = min (`1, `2)− 1.
Once a ciphertext’s levels have been consumed, further computation would result in a decryption
failure. Instead, the ciphertext’s levels must be refreshed in an operation called bootstrapping [Gen09].
Bootstrapping is an expensive operation that has been heavily studied [Bos+21; Cas+21; Jun+21].

The high-level paradigm for designing an FHE evaluation circuit is to first represent the desired
function as an arithmetic circuit over Cn, comprising of only Add, Mult, and Rotate gates. This
circuit is then mapped to the encrypted domain, where each gate is replaced by its Eval counterpart.
Finally, bootstrapping operations are placed in the circuit to ensure that no EvalMult operation is
performed on a ciphertext that has no remaining compute levels.
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Polynomial approximations. Natively, FHE only supports additions and multiplications on en-
crypted data. Other operations such as exponentiations, inverses, square roots and others, all needed
for LLM evaluation, must be approximated using polynomial methods. We present in detail the
approximations we make use of in Appendix D.

D Approximate Activation Functions

Since the CKKS scheme is designed to handle arithmetic operations, polynomial evaluation is easily
supported. In contrast, functions like exp(·) or tanh(·) cannot be supported in a straightforward way.
Following prior work on integer-only evaluation of deep learning models [Don+23; Zha+24], we
approximate all functions required in the LLM evaluation with low-degree polynomials. Keeping
the degree low is important as this minimizes the levels consumed in the polynomial evaluation,
resulting in fewer bootstrapping calls. However, if the degree is too low then the approximation
may not provide good accuracy. Below we discuss the approximations of different functions we use
all throughout our work. These approximations are typically parameterized by different values that
determine the degree and hence the respective accuracy. We discuss in Section 3 how we instantiate
these parameters concretely.

Below we point out the depth of the resulting computation, which is what dictates the bottleneck
when instantiated with FHE. Note that a degree-D polynomial can be evaluated with depth log2(D).

D.1 Approximation of Comparison

We approximate the output of the sign function

sign(x) =


−1 x < 0

0 x = 0

1 x > 0

.

Arbitrary comparisons between x and y can be constructed by computing sign(x− y).

We use the techniques from [CKK20]. There, the approximation is given by h(x) = f
(df )
n ◦ g(dg)

n (x),
where fn(x) and gm(x) are carefully chosen polynomials of degree 2n+ 1 and 2m+ 1 respectively.
In [CKK20], fn(x) is given by

fn(x) =

n∑
i=0

1

4i
·
(
2i

i

)
x(1− x2)i.

gm(x) on the other hand is not given in closed form. An algorithm for finding a suitable gm is given
in [CKK20, Section 3.5], together with explicit examples for degree 3, 5, 7 and 9. These are the
following: 

g1(x) = − 1359
210 · x

3 + 2126
210 · x

g2(x) =
3796
210 · x

5 − 6108
210 · x

3 + 3334
210 · x

g3(x) = − 12860
210 · x

7 + 25614
210 · x

5 − 16577
210 · x

3 + 4589
210 · x

g4(x) =
46623
210 · x

9 − 113492
210 · x7 + 97015

210 · x
5 − 34974

210 · x
3 + 5850

210 · x.

Note that the composition requires depth df log(2n+ 1) + dg log(2m+ 1). We will make use of the
f and g polynomials with degree 9 (so n = m = 4), and we will typically set df = dg = 2. Each of
the f and g polynomials can be evaluated in

D.2 Approximation of GeLU

We use the GeLU function [HG16] defined as

GeLU(x) = 0.5x
(
1 + tanh

(√
2/π

(
x+ 0.044715x3

)))
.
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As in [Zha+24], we make use of the GeLU approximation from [Don+23], which consists of the
following:

GeLU(x) =


0, x < −4
F0(x), −4 ≤ x < −1.95
F1(x), −1.95 ≤ x ≤ 3

x, x > 3

(1)

This can be alternatively written as

(x
?
< −4) · (−F0(x)) + (x

?
< −1.95) · (F0(x)− F1(x)) + (x

?
≤ 3) · F1(x) + (3

?
< x) · x

where we use the sign(x) approximation from above to perform the comparison. Here, the functions
F0, F1 are:

F0(x) =− 0.011034134030615728 · x3 − 0.11807612951181953 · x2

− 0.42226581151983866 · x− 0.5054031199708174

F1(x) = 0.0018067462606141187 · x6 − 0.037688200365904236 · x4

+ 0.3603292692789629 · x2 + 0.5 · x+ 0.008526321541038084.

From this, we see that the depth of the GeLU approximation is the depth required for approximating
the comparison (since this is larger than the depth of F0 or F1), plus 1.

D.3 Approximation of Layer Normalization

Recall that the LayerNorm operation, for x ∈ Rd, is defined as

LayerNorm(y) := γ · x− µ√
σ2 + ε

+ β.

Here γ, β, ε ∈ R are constants, µ = 1
d ·

∑d
j=1 x[j] and σ2 = 1

d ·
∑d

j=1(x[j] − µ)2. The
value ε is a fixed small constant to avoid division by zero. where µ = 1

n

∑n−1
i=0 ai and σ =√

1
n

∑n−1
i=0 (ai − µ)2 + ε, where γ and β are learned parameters and ε is a small constant. The core

non-polynomial operation is given by z 7→ 1/
√
z, for which we can use the inverse square root uses

the techniques from [QX23]. We discuss these velow.

Division by Square Root. The authors make use of Newton’s iterative method. Once a starting
approximation y0 of 1/

√
z is chosen, iterate the following for i = 1, . . . , n:

yi =
yi−1(3− zy2i−1)

2
,

with the final approximation being yn. This has depth 3n.

For choosing the initial point y0, the authors first run a less accurate yet more efficient method. For
this they propose two options: Taylor expansion, which is suitable for x > 1, and using Remez
rational approximation, which is better for values that are close to 0. The work of [Zim+23] has
found empirically that the variance (which is essentially the input to the square root) is large, so we
use the Taylor expansion for the initial value.

For an approximation in the interval [a, b], we choose an odd order Taylor expansion around z0 =
(a+ b)/2 + 1 as the approximate initial value of 1/

√
z. As suggested in [QX23, Section 5], we take

degree 3 (which requires depth 2), so concretely this Taylor approximation looks like:

z 7→ 1
√
z0
− z − z0

2
√

z30
+

3(z − z0)
2

8
√

z50
− 5(z − z0)

3

16
√

z70

D.4 Approximation of SoftMax

For x ∈ Rd, SoftMax is defined as

y =
exp(x[i]− xmax)∑m−1

j=0 exp(x[j]− xmax)
,
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where xmax = max(x). The division by exmax is done in order to avoid large numerators and
denominators.

Exponentiation. The approximation of exp is done via Taylor series, as in [Lu+23]:

exp(x) ≈ (1 +
x

2r
)2

r

, x ≤ 0,

where r, which corresponds to the resulting depth, is a parameter of choice.

Max. To compute xmax, we first observe as in [CKK20] that

max(a, b) =
a+ b

2
+

(a− b) · sign(a− b)

2
.

For the sign function we can use the approximation from Section D.1. Once the max function of two
values has been instantiated, obtaining the max of an array such as x can be done by using a binary
tree of depth log2(d), where d is the dimension of x. The resulting depth is log2(d) · (D+ 1), where
D is the depth required by the sign approximation.

Division. Division uses Goldschmidt algorithm, which works as follows. To divide A/B, start
with an approximation F0 of 1/B, and set N0 = A and D0 = B. Then iterate Fi ← 2 − Di−1,
Ni ← Ni−1 · Fi and Di ← Di−1 · Fi, for i = 1, . . . , d. The output of the division is Nd ≈ A/B.
The depth of this approximation is d, since each iteration consumes one level.

In [ESF05], it is shown that, if 0 < F0 < 2/B, then the algorithm converges. We set F0 = 10 as the
initial estimate, which works well in our experiments.

D.5 Handling Token Selection

As mentioned in Section B.3, one pass of the decoder architecture leads to a vector b ∈ Rvocab_size,
and the goal is to compute (homomorphically) the vector ei∗ , where e1, . . . , evocab_size corresponds
to the pre-trained embedding table, and i∗ ∈ [vocab_size] is the ArgMax of b, To this end, we use
the approximation of ArgMax from [Zha+24], which works as follows. Let u ∈ Rvocab_size be the
indicator vector which is 0 in all entries, except for the index of the max bmax in b, where it equals 1.
Then, we can compute u as

u = (sign(b− bmax) + 1)/2.

We can approximate bmax using the techniques from Section D.4, and the sign calls using the approach
from Section D.1. The depth corresponds to the sum of the depths of these approximations. Finally,
fetching ei∗ is done by taking the linear combination

∑vocab_size
i=1 u[i] · ei.
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E GPU Implementation of the CKKS FHE Scheme

In this section, we present our implementation of the CKKS FHE scheme. This implementation
extends the popular and feature-rich OpenFHE library [AB+22] to use a GPU to accelerate the
homomorphic operations. While we use this library to implement an LLM forward pass, this is
the first open-sourced implementation of a GPU-accelerated CKKS scheme, which is of significant
independent interest. The audience for this section is someone more familiar with the CKKS FHE
scheme; this section can be safely skipped by those who are only interested in the LLM benchmarks.
However, as a brief motivation for the focus on this function, the bootstrapping operation is at least
50% of the runtime in all layers and typically closer to 80-90% of the total time.

Our starting point for this implementation is the work of Jung et al. [Jun+21], which focuses on
accelerating the bootstrapping implementation. The public portion of this code5 is limited to the
individual operations accelerated in their work, including the expensive number-theoretic transform
(NTT) and RNS basis-change operations, rather than an end-to-end bootstrapping implementation.
We incorporate these kernels into the OpenFHE CKKS bootstrapping code and implement further
operations to connect these core functions and avoid any data movement off of the GPU. Our code
includes an end-to-end bootstrapping implementation integrated into the OpenFHE API as well as all
functions required to implement the LLM layers described above. This implementation inherits the
improved accuracy from the careful tracking of the CKKS scaling factor in OpenFHE.

As prior works demonstrate [Cas+21], the bottleneck of CKKS bootstrapping quickly becomes the
memory transfer if the compute accelerates faster than the local storage capacity. This is due to the
size of the evaluation keys, which for bootstrapping can reach tens of gigabytes. For our benchmarks,
we use a GPU with 80 GB of RAM, which allows us to cache all of the evaluation keys needed for
bootstrapping and the subsequent LLM layers.

We present the benchmarks of our bootstrapping implementation in fig. 4. The CPU benchmarks
were run on a machine with an Intel Xeon chip running at 2.4 GHz and 2 TB of RAM. The GPU
benchmarks were run on the same machine and used an NVIDIA A100 80GB PCIeAll benchmarks
were run within OpenFHE, which runs a depth 13 approximation of the CKKS modular reduction
function. All bootstrapping hyperparameters were the same in all benchmarks. The level budget for
the homomorphic encoding and decoding was set to 4 resulting in a total bootstrapping depth of 21.
The number of decomposition digits was set to 3. The security level is at least 128 bits for the 10
and 20 output levels and 80 bits for 30 and 40 output levels. This is to accommodate the maximum
modulus without growing the ring dimension.

Figure 4: This figure presents a comparison between a CPU implementation of bootstrapping and a
GPU implementation of bootstrapping for n = 216 slots with various output levels. Observe the log
scale on the y-axis. The CPU implementation requires roughly 4-6 seconds per output level while the
GPU implementation only requires 22-27 ms per output level, representing a speedup of 180-220×.
These benchmarks are highly consistent with less than 5% change over 10 iterations.

5https://github.com/scale-snu/ckks-gpu-core
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F Future Work

While real-time chatbots under FHE remains out of reach, these benchmarks suggest that many
applications are now practical to run in a secure way. This includes tasks that do not require real-time
results, such as document summarizing or drafting (e.g. "Please write a speech for our CEO."). In
addition, this performance improvement can translate to tasks that require the forward pass as a
subroutine, such as fine-tuning a public model on private data. This training task is computationally
expensive and often requires outsourcing, which can be safely enabled by this library. More concretely,
a company may wish to train a more specialized LLM for a narrow task, such as an assistant for a
technical role. The additional training data for this specialized task could easily be proprietary, and
The resulting model can then be decrypted by the data owner or remain encrypted on the cloud for
evaluation. These applications present numerous directions for future work.

F.1 Simplifying the Activation Functions

These exciting applications motivate the study of models that are more optimized for the encrypted
domain. In particular, the activation functions could likely be replaced with variants that are simpler
to accurately approximate with a low-degree polynomial. A major candidate is the SoftMax function,
which currently requires an expensive tree of comparisons to evaluate. However, this maximum value
is only used to scale down an exponentiation input (i.e. to ensure that this input is negative). It seems
very plausible that a trainable parameter could be included in the model to approximate an upper
bound for this maximum value, removing the need for the comparison tree entirely. This would nearly
eliminate the cost of the SoftMax function, requiring less than 1 bootstrapping operation.

The LayerNorm function could also potentially be replaced with the significantly cheaper BatchNorm
function, which uses a pretrained mean and standard deviation for each window rather than computing
these values on the fly. This would completely eliminate the cost of the LayerNorm function. Even if
completely replacing this function is too ambitious, many approximation algorithms are significantly
improved when provided a sufficiently accurate initial hint, and there is likely a middle-ground where
a pretrained hint is used to reduce the complexity of LayerNorm approximation.
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