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The video depicts a woman walking down a street at night. She is wearing

and sunglasses, and she is carrying a black purse. The ,
suggesting that it has recently rained. There are , but
they are of the video. The woman appears fo be the main character, and she

is walking with purpose. The overall atmosphere of the yideo is
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(a) PLLaVA generates dense descriptions of the video contents including motions, and attires.
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(b) Peformance on various video understanding tasks. (c) Better model scaling performance.

Figure 1: Performance presentation of PLLaVA . (a) An example of captions generated with PLLaVA
34B. (b) Performance comparison of PLLaVA with recent strong baselines over different video
benchmarks and (c) the scaling curve of PLLaVA and recent SOTA methods.
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ABSTRACT

Vision-language pre-training has significantly elevated performance across a wide
range of image-language applications. Yet, the pre-training process for video-
related tasks demands exceptionally large computational and data resources, which
hinders the progress of video-language models. This paper investigates a straight-
forward, highly efficient, and resource-light approach to adapting an existing
image-language pre-trained model for dense video understanding. Our prelim-
inary experiments reveal that directly fine-tuning pre-trained image-language
models with multiple frames as inputs on video datasets leads to performance
saturation or even a drop. Our further investigation shows that it is largely at-
tributed to the bias of learned high-norm visual features. Motivated by this
finding, we propose a simple but effective pooling strategy to smooth the fea-
ture distribution along the temporal dimension and thus reduce the dominant
impacts from the extreme features. The new model is termed Pooling LLaVA, or
PLLaVA in short. PLLaVA achieves impressive performance on modern bench-
mark datasets for both video question-answer and captioning tasks. Notably,
on the recent popular Video ChatGPT benchmark, PLLaVA achieves a score
of 3.25 out of 5 on average of five evaluated dimensions. On the latest multi-
choice benchmark MVBench, PLLaVA achieves 58.1% accuracy on average across
20 sub-tasks, 14.5% higher than GPT4V (IG-VLM). Our code is available at
https://anonymous.4open.science/r/pllava_release—-2B41.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have demonstrated remarkable proficiency in image
comprehension when trained on large-scale image-text pairs (23; 75; 34; 32; 17). Analogous to
the image domain, the recent video understanding models also explore similar pipelines to fine-
tune LLMs on large-scale video-text data (4; 24; 25). However, this method suffers a high cost
of computing resources and video data annotations. A more pragmatic approach is to adapt the
pre-trained image-domain MLLMs to video data (40; 36; 20). In this paper, without crafting too
much data source and format, we investigate the model structures and training strategies to improve
the understanding abilities of video LLMs.

An intuitive method of adapting image MLLMs into video domain is to directly encode multiple video
frames to visual tokenks into MLLMs, as Large Language Models(LLMs) (51; 50) are native for
processing sequential features and shown to be capable of understanding temporal information (29;
37). However, we empirically found two technical challenges when extending image MLLMs to
the video domain in this way based on the existing public video-text data: i) Training the image
MLLM with video domain data does not always increase performance but introduces performance
vulnerability to the change of inquiry prompts. ii) Increasing the size of the language model component
does not improve the video understanding performance. Those two observations are counter-intuitive
since scaling up model sizes and exposing models to more downstream data are typically considered
beneficial for model performance.

We then conducted a series of studies to investigate the root cause of these two observations. For the
data scaling challenge, we found it is mainly due to the limited and imbalanced information
encoded by the visual encoder. When experimenting on LLaVA (34) with 4-frame inputs, we
found that, as shown in Figure 2(a), some learned visual tokens exhibit dominantly larger norms
compared to others, suggesting two issues of these visual features: a) The information representation
is uneven, which overemphasize on some types of information, e.g. the global video information,
while suppressing other tokens containing the local detail details; b) these visual tokens in a whole
contain less information according to the theory of information entropy (46). These tokens lead to
shorter text descriptions with lower quality. As demonstrated in Figure 2(b), the 4-frame models
tend to generate shorter texts with training on more samples. Even worse, if the prompt template
changes, the learned MLLMs would completely collapse, leading to rather short descriptions or even
no response. This worse performance with data scaling is due to the increasingly uneven visual
features caused by the softmax operation in the self-attention with more training.
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(a) Dominant norms. (b) Text length histograms.

Figure 2: (a) An example comparing the token embedding norm distributions and generated texts of
the 4-Frame method and PLLaVA . For the 4-Frame setting, from top to bottom, dominant tokens
(with high norms) are more prevalent and show larger norm values(wider distance between two
peaks), as more data samples are trained. This is accompanied by a decline in generation quality,
particularly with out-of-distribution prompts. In the right column, PLLaVA presents consistent norm
distributions and generated texts across various amounts of training data and prompts. (b) Histograms
of generated text lengths for the 4-Frame method and PLLaVA . The x-axis is text lengths, and the
y-axis is the frequency of each text length. The 4-Frame method generates shorter texts with more
training steps and under out-of-distribution prompts, whereas PLLaVA maintains consistent text
lengths in both situations.

This decline in performance with increasing data is attributed to the growing unevenness in visual
features, a result of the softmax operation in self-attention. We show the preliminary proof in Sec. 4.2.
Adding more video frames could be a potential solution to provide more information in the visual
tokens, but this would lead to significantly larger memory consumption.

Considering the trade-off between information richness and the computation cost, an intuitive way is
to downsample the video features. However, directly averaging the spatial and temporal dimensions
as has been done in VideoChatGPT(40) loses too much spatial information and also does not achieve
optimal performance during the scaling of the training dataset. Thus, our target is to find the minimum
spatial resolution of each frame that does not degrade the scaling curve. To achieve this, we adopt a
pooling (21) operation to explore the optimal settings such that it does not degrade the benefits of
increasing the temporal receptive field. The impact of the pooling operation is shown in Figure 5.

For the model size scaling issue, we believe one primary reason is the poorer quality of the
applied video datasets compared to that of the image domain. Specifically, many video datasets
contain only simple video captions and are in question-answering format, often featuring brief answer
descriptions. As the model learns the temporal descriptions from the video dataset, the describing
ability of other metrics such as the objects and the spatial relations degrades. Additionally, our
findings reveal a correlation: the stronger an LLM is, the quicker its output quality deteriorates under
these circumstances.

Instead of building high-quality video datasets, we choose to explore architectural and optimization
algorithms to better preserve the learned vision understanding and text generation ability in image
datasets during the learning of the temporal information on video datasets. To achieve this, we utilize
the tricks of weight fusion. We set two groups of weights: one from the image pre-raining and one
with video dataset fine-tuning. After training, we searched to find the optimal combination of the
image-based model weights and the video-based model weights in the hope that the combined model
could gather benefits from both datasets. The process is termed post-training optimization in this
paper and its impacts are shown in Figure 3(c). In a summary,

* We performed a thorough initial investigation for directly applying image large multi-
modality models to video tasks and found several failure modes. We then introduce an
elegantly simple yet highly potent pooling strategy that systematically achieves the optimal
balance between training efficiency and understanding ability.

* We introduce a post-training model merging method that could effectively reduce the
forgetting phenomenon of the large language models during multi-modality fine-tuning.
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With this, we are able to get a large video multi-modality model with 34B LLMs without
the extra creation of high-quality datasets.

* We conduct extensive experiments to verify the superiority of the proposed model and
achieve some state-of-the-arts across various video understanding benchmarks, especially
for video captioning tasks with dense captions. With PLLaVA , we do the re-captioning of
1K samples from the Inter4K (48) with highly dense and accurate bilingual captions.

2 RELATED WORKS

The success of image LLMs has encouraged studies in video LLMs. Various techniques are investi-
gated to advance the video understanding abilities of LLMs.

Parameter-Efficient Video Understanding. One track of studies is dedicated to connecting video
inputs and text outputs through a small number of parameters or adapting directly from image
MLLMs to video understanding. Commonly, they incorporate a projection network (40; 30; 27; 16),
inter-modality attention (24; 25) or a modality perceiver (70; 47; 18) as learnable interfaces. These
interfaces are instrumental in melding the spatial-temporal dynamics of videos with large language
models’ (LLMs) processing capabilities (50; 45; 8), by transforming video content into a sequence of
tokens that LLMs can adeptly analyze. Similar to BLIP2 (23), VideoLLaMA (70), Vista-LLaMA (39),
VideoChat (24) and its advanced version VideoChat2 (25) employed cross-attention mechanisms to
encode the input video tokens, ensuring a fixed amount of input context length. These methods align
user queries with the dialogue context to enhance the model’s interpretative capabilities. VideoChat2
is exceptional with a multi-stage bootstrapping technique that honed in on modality alignment and
instruction tuning. Video-LLaVA (30) and CAT (64) resorted to ImageBind (13) to extract text-
compatible video features, benefiting from fusion multi-modality data. However, a more efficient
way to adapt image MLLMs for videos. Video-ChatGPT (40), on the other hand, directly extracted
compressed spatial and temporal features with image MLLMs and reused the LLM part for text
generation. IG-VLM (20) adapted the image MLLMs into the video domain by transforming videos
into grid view images and SF-LLaVA (61) adopts two granurity when dealing with video frames.
However, these methods could cause severe information loss due to improper feature compression and
reduced frame resolution. TC-LLaVA (10) introduce a new position encoding method to emphasize
the video frame locations. For additional related work on recent video multi-modal large language
models (MLLMs), please refer to Appendix A.

3 METHOD & ANALYSIS

Adapting image MLLMs to the video domain can be challenging and susceptible to the designs of
model structures, given the limited performance of existing methods.

3.1 FAILURE CASES ANALYSIS FOR APPLYING IMAGE MLLMS

We first explored a direct way to adapt image MLLMs into the video domain: concatenate visual
tokens from several video frames as the input to image MLLMs. This approach leverages the LLMs’
capability to interpret temporal information from the video frames. We termed this method as n-frame.
Formally, given a sequence of video frames X € RT*C*WxH e obtain the features for each
frame via the vision encoder pre-trained in CLIP-ViT (42) models. The encoded frame features are
represented as X, € RT>*wx"xd The MLLM then generates responses as follows:

r = MLLM(X,, X,), (1

where X, is the text input and r is the output. However, two issues prevented us from achieving
optimal performance in our attempts to train the MLLM with this method.

Vulnerability to prompts. The first observation is that the n-frame model is highly sensitive to
prompt patterns when handling generation tasks. Figure 2(a) illustrates this phenomenon. We divide
the prompts into two categories: in-distribution (IND) and Out-of-Distribution (OOD), the former is
the prompt used during training while the latter is modified in format but has the same meaning. In
the left part of the figure, when using IND, the model can generate decent video despite its tendency
of shorter generation length with more data samples trained. However, when applying OOD prompts,
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Figure 3: Validation curves for the 4-Frame method and PLLaVA are displayed. In (a), the curves
are shown for the in-distribution (IND) prompt, while (b) shows the curves for the out-of-distribution
(OOD) prompts. The 4-Frame method saturates quickly and even declines with prolonged training,
whereas PLLaVA continues to improve. In (c), it is demonstrated that Video MLLMs fail to improve
with increased model size, but Post Optimization effectively resolves the scaling degradation.

the quality of the generated responses drastically declines. The generation has content in normal
length under the model trained for 3750 steps. However, for the longer trained models, the generations
are shorter under 7500 steps, and no response under 11250 steps.

Dominant tokens. Given the previously mentioned vulnerability of n-frame models, we proceeded
to analyze the variance between models at both their initial and fully-trained stages. By visualizing
the norm of vision tokens across models at various training stages, we observed a trend towards the
emergence of dominant tokens (characterized by high norms) as the number of training samples
increased, as illustrated by the histograms in Figure 2(a). Additionally, the distribution of token
norms became more pronounced with additional training data, indicating an increase in the norm
of high-norm tokens. Consequently, we speculate that there is a plausible correlation between these
dominant tokens and the degradation in generation quality with more data training. Comparisons of
the distributions between the n-frame model and the proposed PLLaVA further support this conjecture,
as detailed in Sec. 4.4.

Difficulty to improve with more data. Data

scaling has been a widely accepted means to ~ Method Video-ChatGPT

improve the LLMs’ capability. However, The reported  reproduce scaled
above phenomena indicate that employing im-  Dataset 100K 100K 100K+249K
age MMLMs in the video domain and seeking ~ VCG Score 2.38 241 1.94

to benefit from the scaling of video data sam-
ples raises a challenging issue. We present n- Table 1: Video-ChatGPT (40) fails in data scaling.
frame’s performance(the blue curve) under dif-

ferent training samples in Figure 3. This figure illustrates that n-frame keeps stagnant under IND
prompt, and degrades a lot under OOD prompts after the training sample exceeds 0.48M. Simi-
lar patterns are observed in the experimental findings of Video-ChatGPT (40), as detailed in Ta-
ble 1. Video-ChatGPT (40) introduces a unique pooling strategy that involves averaging visual
features across the temporal dimension as well as the spatial dimension, resulting in a visual feature
Xoeg € R(THwxh)xd gfter concatenating both dimensions. This feature is then fed into LLMs
to generate a corresponding response. The first two columns of Table 1 demonstrate our repli-
cation of Video-ChatGPT using their 100K video-text dataset, while the third column illustrates
a significant deterioration in model performance upon introducing additional training video data
samples from VideoChat2 (25). Consequently, identifying effective model strategies to exploit the
ever-increasing amount of data to reach the data scaling law remains a critical issue.

3.2 MODEL SCALING DEGRADATION

Our investigation of current video models reveals that it is also not straightforward to benefit models
from scaled parameter sizes. We draw the performance of a recent work IG-VLM (20) and our
attempts in Figure 3(c). IG-VLM achieves almost no difference when applying 7B, 13B, and 34B
models of LLaVA-Next (33). In our initial attempts with pooled video features (the first column of
Figure 3(c)), the experimental results on LLaVA-Next 34B are even worse than the 13B model. For
IG-VLM, the input video frames are combined into a grid view image, confined by the resolution,
leading to the unsatisfactory model size scaling ability. As for our initial attempts, we found a
tendency of shorter generations with larger MLLMs, we thus owe the degradation to the quality of
video-text data, which undermines the generation ability of LLMs in MLLM models.
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Figure 4: The framework of PLLaVA begins with processing a video from the user through ViT-L
and MM projector, yielding visual features with shape (T, w, h, d). These features undergo average
pooling, which effectively reduces both temporal and spatial dimensions. The pooled features are
then flattened and concatenated with question embeddings, serving as input to the image Large
Language Model to generate a response to the user. The weights of the image LLMs are fused with
LoRA weight learned under video samples.

Motivation. Our study of n-frame and VideoChatGPT (40) highlights the challenges of adapting
image-based MLLM to the video domain. Notably, these two methods employ fundamentally
different strategies for processing video inputs. The former utilizes a limited number of video frames,
whereas the latter compresses over 100 frames using an averaging technique. Given the importance
of temporal information and the high computational cost of MLLM inputs, pooling emerges as an
intuitive and efficient solution to balance these needs. The challenges may arise from insufficient
frame information and suboptimal processing of frame features. Motivated by these insights, we
investigate the video feature pooling strategies employed in MLLM.

the camera stumbly.
Later a kitty running in,
who seems be attracted
by something interesting.

Definition. We formalize the pooling process for video features as follows: As shown in Figure 4,
after feeding video frames X € RT*¢*WxH into the CLIP-ViT model and the multimodal projector,
we obtain an encoded vision feature X, € RTXwxhxd for 3 video input, where T is the frame
numbers, C,W H are the channel number, width and height of a frame, and w,h,d are the dimensions
of features. This feature is then passed through a parameter-free Adaptive Average Structure Pooling
module' and reduced to a smaller dimensions 7”7 x w’ x k', formulated as:

Xop = AdaptStructPooling(X,|T" x w’ x h'). )

These features are fed into LLMs with text input embeddings to generate responses. We also
include a LoRA (15) module to adapt the LLM to video-related generation tasks. In conclusion,
the trainable weights include Multimodal Projector and LLM LoRA. Within this framework, we
investigated the impact of pooling through grid search analysis. Our findings suggest that pooling on
the spatial dimension yields favorable outcomes, whereas temporal dimension pooling is associated
with decreased performance. For a thorough exploration of our search process and the rationale
behind this conclusion, please refer to Sec. 4.2.

Pooling Effects. Our experiments show that pooling to introduce more video frames can relieve
dominant tokens. We provide preliminary theoretical proof to explain the underlying reasons.
Generally, our conclusion is that dominant tokens, characterized by high token embedding norms,
arise from sharply distributed inputs and are further amplified by the softmax operation. The pooling
over more video frames promotes more balanced numerical input distributions, thereby mitigating
the presence of dominant tokens.

The softmax function, converts a vector of values into a probability distribution. The softmax function
softmax : R™ — [0, 1]™ for a vector z € R" is defined as:

23

softmax(z); = <, fori = 1,2,...,n 3)

Z?:l e

We also define different input distributions: 1) Balanced Distribution B: A vector where ele-
ments b; are fairly close to each other, not necessarily uniform but without extreme deviations.
2) Sharp Distribution S: A vector with a significant outlier, s;, much larger than the other com-
ponents s; for j # k. We can look at the derivatives of the softmax function components with

"https://pytorch.org/docs/stable/generated/torch.nn. Adaptive AvgPool3d.html
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respect to its inputs: %softmax(z)i = softmax(z);(1 — softmax(z);) and %softmax(z)i =
3 J

—softmax(z),softmax(z); (¢ # j). Note that these derivatives typically show that that softmax
outputs are more sensitive to changes at indices where softmax(z); is larger.

When applying the softmax function to: 1) Sharp Distribution S: If s, > s; for j # k, then
softmax(S);, can be approximated to 1, and softmax(S); for j # k to 0. Any small perturbation
in sy, or s, will significantly alter the non-dominating probabilities softmax(S);. 2) Balanced
Distribution B: Variations in b; cause smoother and smaller proportional changes in softmax(B);
since no single component overly dominates the exponential sum in the denominator. The probability
distribution remains more uniform, and changes in one component slightly tweak the probabilities
without extreme jumps.

Consequently, for a sharp distribution, due to the extreme values making one of the exponents
dominantly larger, a tiny change in input can cause substantial shifts in some of the output probabilities.
Larger outputs (due to significant input features) cause substantial gradients. The optimizer adjusts
these weights more prominently compared to others. Eventually, these enlarged weight cause part
the of learned feature larger, thus leading to dominant token embeddings. Conversely, in a balanced
distribution, changes in inputs lead to proportional and smoother adjustments in probabilities, ensuring
more stable outputs.

3.4 PoST OPTIMIZATION

Regarding the difficulty model size scaling, which may stem from diminished language proficiency
due to training on low-quality video-text data samples as stated in Sec. 3.2. To retain the language
ability, we propose a post-training optimization(stated as Post Optimization from here) approach for
video MLLMs. It blends the trained LLM weights on video data with the original LLM of the base
image MLLM. Specifically, for a pretrained MLLM with LLM parameters W, and the input vision
feature X,,,, the output hidden states after Post Optimization is defined as:

h=WoXyp+ AW Xy, )
T

where AW are low-rank learnable parameters for W, and % is used to scale the learned low-rank
weight. In Post Optimization, we tune the mix ratio between the original LLMs and the trained LLMs
(incorporating LoRA weights) by varying the value of « during inference. Our experiments indicate
that lower « yields significantly better generative performance. The larger « used accelerates the
training phase while smaller o ensures better language ability during inference.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Data and Evaluation. We leverage instructional video-to-text datasets to adapt image MLLMs
to video inputs. The training data are sourced from VideoChat2 (25), which embraces data for
various video understanding tasks, including 27k conversation videos from VideoChat (24) and
Video-ChatGPT (40), 80k data of classification tasks from Kinetics (19) and SthSthV2 (11), 450k
captioned data from Webvid (2), YouCook2 (74), TextVR (58) and VideoChat, 117 reasoning data
from NextQA (59) and CLEVRER (65) and 109K annotated questioning answering data samples
from Webvid, TGIF (28) and Ego4D (12). In total, we use 783k instructional tuning data.

We evaluate video LLMs with the following video-to-text benchmarks. First, the open-ended Video
Question Answer (VideoQA) includes MSVD-QA (60), MSRVTT-QA (60), ActivityQA (67), and
TGIF QA (28). Responses in these question-answering benchmarks are typically single word. GPT-
3.5 (41) is used to evaluate the accuracy (Accuracy, with answers true/false) and quality (Score,
ranging from O to 5) of the models’ responses. Additionally, we adopt the Video-based Generative
Performance benchmark (referred to as VCG Score) to measure generation performance, introduced
by VideoChatGPT (40). This benchmark involves longer answers, encompassing five aspects of video
understanding: CI (Correctness of Information), DO (Detail Orientation), CU (Context Understand-
ing), TU (Temporal Understanding), and CO (Consistency). The benchmark also relies on GPT-3.5
model for assessments. Furthermore, we include the multi-choice Question Answering benchmark,
MVBench (25), comprising 20 tasks that demand nuanced temporal comprehension of videos. This
benchmark does not necessitate evaluation from the GPT-3.5 model.
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Models and Implementation Details. We leverage pre-trained image MLLM weights from the
Huggingface library and incorporate average pooling to reduce feature dimensions before feeding the
input visual features into the LLM generation component. For the pooling layer, we uniformly sample
16 frames as input and define the target pooling shape as 16 x 12 x 12 x d, where d represents the input
dimension of the LLMs. During training, we use a batch size of 128, a learning rate of 2e-5, a cosine
scheduler, and a warmup ratio of 0.03. All reported results are based on models trained for 6250 steps.
For evaluation, we utilize the GPT-3.5-turbo-0125 model for evaluation across all benchmarks. Our
experiments were conducted on a maximum of 16 A100 GPUs, requiring approximately 72 hours to
complete training the 34B model for a single epoch.

4.2 IMPACT OF POOLING OPERATION DESIGN

Considering the unsatisfying performance of the complete pooling on temporal and spatial dimensions
adopted by Video-ChatGPT, and the limitation information used in the n-frame method, we explore
the influence of pooling strategies here.
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Figure 5: Pooling shape influence.

Pooling Layer Design Pooling can be done both temporally and spatially for video features. We
want to answer two questions: 1) which dimension is more suitable to be pooled? and 2) what is the
largest compression ratio along that dimension? We plot a model curve based on the LLaVA-1.5 7B
model with different temporal and spatial dimensions.

For the spatial dimension, we picked an input video feature with shape (4,24,24,d), where 4 is the
frame numbers (temporal dimension), 24 x24 is the original spatial dimension of frame features,
and d is the embedding dimension of each visual token. The target spatial shapes are chosen
at evenly spaced intervals between 1 and 24, resulting in a set of spatial shapes S ={n x n —
n € [1,2,4,6,8,12,16,20,24]}. The MVBench and VCG Score performance of these spatial
pooling shapes are shown in Figure 5(a) and 5(b). It is observed that downsampling the spatial
dimension by 50% does not degrade the model performance. Further reducing the spatial dimension
would lead to a significant performance drop. Considering the tradeoff between computational
overhead and performance, 12x12 is chosen.

For the temporal dimension, several target pooling shapes were chosen with spatial dimensions fixed
as 12, including (4,12,12), (8,12,12), and (16,12,12). We study the temporal pooling effects by altering
the number of input video frames. For example, pooling from (64,24,24) to (4,12,12) indicates every
16 frames are fused, then the downsampling rate should be 6.25%. All of the resulting model curves
are shown in Figure 5(c) and 5(d). Different from spatial pooling, the model performance is sensitive
to temporal pooling. As illustrated in these two figures, all lines achieve better performance with
lower downsampling rates. In other words, pooling along temporal dimension always downgrades
the model performance.

Pooling Impact. We found that pooling over more video frames not only improves the model
efficiency but also makes the model more robust to user inquiries. During our experiments, we
evaluated models under different training iterations with two sets of prompts. For example, we vary
the role tag from ‘USER’ to ‘Human’ during evaluation and the results are as shown in Figure 2(a).
The figure shows that the visual feature norms learned with the pooling operation present consistent
distributions under different training iterations compared to the 4-frame method that shows dominant
tokens. This is also reflected in the model responses where the pooling method gives consistent good
text responses while the 4-frames method gives shorter and shorter text responses as the training
goes longer, or even no response when out-of-distribution prompts are used. This conclusion can be
further validated by Figure 2(b). With pooling introduced, no matter what prompt is used or how
much training sampled is learned, the text generation lengths with the pooling method are consistent.
We owe the stability in the generation to the smoothing ability of pooling, which eliminates the
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influence of dominant high norm tokens. However, we haven’t done a more rigorous analysis from
the perspective of mathematical proofs, we leave it for future work.

4.3 QUANTITATIVE RESULTS

Method Vision LLM MSVD-QA MSRVITQA ActivityNet-QA _TGIF-QA Video-ChatGPT
Encoder  Size "y "Tge, "Ace. Sco.  Ace. Sco.  Ace. Sco. CI DO CU TU CO Avg
FrozenBILM(62) ViLL  13B 338 - 167 - %59 - 419 -
Video-LLaMA(70) CLIPLG 7B 516 25 296 18 124 L1 - - 196 218 216 182 179 198
LLaMA-Adapter(71) ViLB 7B 549 31 438 27 342 27 - o203 232 230 198 215 216
Video-ChatGPT(20) VILL 7B 649 33 493 28 352 27 514 30 250 257 269 216 220 242
Video-LLaVA(30) ViILL 7B 707 39 592 35 453 33 700 40
Chat-UniVi(18) VILL 7B 650 36 546 3.1 458 32 603 34 280 291 346 289 281 299
MovicChat(47) CLI.G 7B 752 38 527 26 4571 34 - T 276 293 301 224 242 267
VideoChat(24) CLIP.G 7B 563 28 450 2.5 265 22 344 23 223 250 253 194 224 229
VideoChat2(25) UMLL 7B 700 39 sS4l 33 491 33 - 7302 288 351 266 281 298
Vista-LLaMA(39) CLIP.G 7B 653 36 60.5 33 483 33 - o 244 264 318 226 231 257
LLaMA-VID(27) CLIP-G 13B 700 37 589 33 475 33 - o296 300 353 246 251 289
LITA (17) CLIPL 7B - o - - . ) - 204 298 343 268 319 304
ST-LLM (37) BLIP2 7B 746 39 632 34 509 33 - o323 305 374 293 281 315

IG-VLM CogAgent(14) CLIP-E 7B 76.7 4.1 62.7 3.6 57.3 3.6 76.7 40 326 276 357 234 328 3.04
IG-VLM LLaVA 7B (33) ViT-L 7B 78.8 4.1 63.7 35 543 34 73.0 40 311 278 351 244 329 3.03

IG-VLM LLaVA 13B (33)  ViT-L 13B 774 4.1 62.6 34 57.1 3.5 78.0 40 317 279 352 251 325 3.05
IG-VLM LLaVA 34B (33)  ViT-L 34B 79.6 4.1 62.4 35 584 35 79.1 42 321 287 354 251 334 309
VILA 1.540B (31) InternViT ~ 40B 80.1 - 63 - 58 - 58.2 - - - - - - -
TC-LLaVA 7B (10) ViT-L 7B 78.8 4.1 63.2 3.6 56.8 35 78.2 42 325 29 375 291 3.09 3.19
IG-VLM GPT-4V(1) Unk GPT-4 763 40 638 35 57.0 35 65.3 37 340 280 361 289 3.3 317
PLLaVA 7B ViT-L 7B 76.6 4.1 62.0 35 56.3 35 71.5 4.1 321 286 362 233 293 312
PLLaVA 13B ViT-L 13B 75.7 4.1 63.2 3.6 56.3 3.6 77.8 42 327 299 366 247 3.09 327
PLLaVA 34B ViT-L 34B 799" 427 68.7 3.8 60.9 3.7 80.6 43 3607 3200 3907 2677 325 325t
Improve over GPT-4V (20) - - 3.6 02 49 0.3 39 0.2 15.3 06 02 0.4 0.3 -0.32 0.12 031

Table 2: Results of video question-answering. T indicates our PLLaVA 34B significantly outperforms
IG-VLM LLaVA 34B under the t-test and Wilcoxon test, with p-values close to 0.0. Values without t
are because of our lower performance or the missing results from IG-VLM.

Vision LLM

Method o " AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg
Encoder  Size
Video-LLaMA (70) CLIP-G 7B 275 255 51.0 29.0 390 480 405 380 225 225 43.0 340 225 325 455 325 400 30.0 21.0 370 34.1
LLaMA-Adapter (71) ViT-B 7B 230 280 51.0 300 330 535 325 335 255 215 305 290 225 415 395 250 315 225 28.0 320 317
Video-ChatGPT (40) ViT-L 7B 235 260 620 225 265 540 28.0 400 230 200 31.0 305 255 395 485 290 330 295 260 355 327
VideoChat (24) CLIP-G 7B 335 265 560 335 405 530 405 300 255 270 485 350 205 425 460 265 41.0 235 235 360 355
VideoChat2 (25) UMT-L 7B 66.0 475 835 495 600 580 715 425 230 230 885 390 420 585 440 490 365 350 405 655 5.1
ST-LLM (37) BLIP2 7B 66.0 535 84.0 440 585 805 735 385 425 310 865 365 565 785 430 445 465 345 415 585 549
GPT-4V Unk GPT-4 555 635 720 465 735 185 59.0 295 120 405 835 390 120 225 450 475 520 31.0 590 110 435
PLLaVA 7B ViT-L 7B 580 49.0 555 410 610 560 61.0 360 235 260 820 395 420 520 450 420 535 305 480 310 46.6
PLLaVA 13B ViT-L 3B 660 530 655 450 650 580 645 355 235 300 850 395 455 57.0 475 495 490 330 53.0 370 50.1
PLLaVA 34B ViT-L 34B 675 530 820 470 79.0 685 675 365 375 495 910 405 430 700 515 500 665 395 635 59.0 58.1
Improve over GPT-4V - - 120 -10.5 100 1.5 5.5 50 85 70 255 9.0 7.5 1.5 310 575 55 25 145 85 45 480 145

Table 3: Results on MVBench multi-choice question answering.

Table 2 demonstrates the results on VideoQA. PLLaVA 34B significantly outperforms all the existing
methods on the Accuracy and Score metrics of MSVD, MSRVTT, ActivityNet, and TGIF. Compared
to GPT-4V, PLLaVA 34B achieves improvement margins of 3.6, 4.9, 3.9, and 15.3 on these four
benchmarks. The performance of PLLaVA with 7B and 13B model sizes also exceeds all the baselines
on the Score metric. These results not only prove the capability of our model in conducting video
question answering but also highlight the superiority of our pooling strategy in scaling model size.

PLLaVA also outperforms baselines in the average VCG score. The 7B, 13B, and 34B versions
have all outperformed their best counterparts of the same LLM size, with margins of 2.9%, 7.1%,
and 12.6%, respectively. Notably, PLLaVA achieves superior performance on Cl(correctness of
information), DO(Detail Orientation), and CU(Context Understanding) compared to the previous
SOTA, with 34B exceeding them by 5.8%, 6.7%, 9.2%. These results indicate that PLLaVA will
be of great potential to do detailed video captioning. As for TU(temporal understanding), PLLaVA
34B exceeds its fair opponent IG-VLM LLaVA 34B by 6%. Compared with models that utilize the
specialized video encoder, VideoChat2, or a more complicated frame combination method, Chat-Univ,
PLLaVA still has some room for improvement by fingering the pooling strategy or incorporating a
better vision encoder. CO(Consistency) measures generation consistency when the model encounters
different questions that lead to similar answers. Compared to baselines except for IG-VLM, our
model achieves much better consistency.

MVBench is a comprehensive video understanding benchmark, focusing on questions that require
overall comprehension of multiple frames. As shown in Table 3, PLLaVA surpasses the previous
SOTA VideoChat2 with a margin of 13.7% on average across 20 tasks. If we look into each aspect of
MVBench, our method performs very well, concerning 17 out of 20 tasks of MVBench, which shows
that our model has the superiority to understand many fine-grained details about videos accurately.
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However, we also noticed some aspects of our model still need to improve, such as CI(CounterFactual
Inference) and OS(object shuffle). CI is used to predict what might happen if an event occurs, and
OS is used to locate the final position of an object in an occlusion game. These two require strong
reasoning ability and imagination to answer. VideoChat?2 is pretrained with a large amount of video
data with a specialized video encoder and fine-tuned with both video and image reasoning data, thus
presenting better performance in these aspects.

We also present the results of

Method VideoMME LongVideoBench VideoQA
PLLaVA on two recent benchmarks: g Q

. . VILA 40B 63.2 - 64.8

C
deeOMM_Eh ), a CO.‘gpre};enSlﬁe Gemini 1.5 Pro 75.0 52.7(16frame) .
ataset. wit V.arylng Vi ep engt s LLaVA-Next-Video 34b 52.0 50.5 -
and high-quality annotations, and PLLaVA 34b 54.0 532 725

LongVideoBench (57), designed ) )
specifically for long video under- Table 4 Results on YldeoMME, LongVideoBench and aver-
standing. We compare PLLaVA with 8¢ VideoQA score in Table 2.

its most similar counterpart, LLaVA-Next-Video, which utilizes the same backbone models and
applies a pooling strategy during training. The results demonstrate that PLLaVA outperforms
LLaVA-Next-Video in both standard and long-video comprehension tasks. Additionally, we compare
PLLaVA to the recent proprietary model Gemini 1.5 Pro and the VILA model (31), which employs
a well-trained video encoder and is fully trained on extensive image and video datasets. When
using the same number of frames, PLLaVA achieves results comparable to Gemini 1.5 Pro. In the
VideoMME, PLLaVA produces decent results, despite not undergoing full LLM training or utilizing
a specialized video encoder. For VideoQA, PLLaVA outperforms VILA.

4.4 ANALYSIS

Our PLLaVA is a simple and parameter-efficient method to adapt image MLLMs into the video
domain. We also provide a feasible way to scale the models to larger sizes, which we found is hard
to achieve in other methods such as ChatUniv (18) and IG-VLM (20). In the following, we further
provide some analysis related to the explanations on pooling shapes and the influence of LoRA
weight on different tasks.

Image? Video? or Both? Post-training op- 60
timization is defined as the combination of . [-" ~ R
the LLMs’ parameters of image MLLMs and §°°| -+ rrava1ss 85, - PLLaVA 13
N . . E PLLaVA 34B o PLLaVA 34B
learned LLMs’ LoRA weights from video sam- g5, S
ples. A suitable fusion ratio could be highly R | R E R S

efficient in boosting model performance trained 0 2 4 8§ 12 16 20 32 6 2 i 8 16 32
under low-quality video-text samples. Here, we #loRae #LoRA a

discuss the influence of different choices of fu- Figure 6: Post Optimization Effects with LoRA a.
sion ratio on the understanding performance. As shown in Figure 6, the x-axis represents the alpha
value of LoRA. 0 indicates no LoRA weights added, and 32 means the LoRA weights are fully
applied to LLMs. We observed distinct trends between MVBench and VCG Score. The former
exhibits a peak around alpha 20, while the latter performs best near alpha 4. This variance can be
attributed to the nature of these two benchmarks: VCG typically involves longer length generations,
whereas MVBench focuses on multiple-choice question answering, placing less emphasis on language
generation ability. Consequently, weights learned from video-text data samples are more tailored
for MVBench tasks. In this way, a larger portion of video weights are beneficial for MVBench.
Moreover, from these two figures, it’s evident that combining video and image weights leads to better
performance than at the extremes of 0 and 32.

5 CONCLUSION

In this paper, we conduct an initial investigation for extending image-language models to videos with
a simple yet extremely effective method, termed PLLaVA . With the new model, it is easier to scale
the training with more data and larger large language models with a more controllable strategy for
over-training and performance saturation. PLLaVA ’s ability to give detailed captions also contributes
to the community development of multimodal understanding and generation.

10
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A MORE RELATED WORKS

Pipeline-based Video Understanding. By encompassing various video foundation models and
prompting techniques on LLMs, pipeline-based video understanding has extensively explored for
video captioning and question-answering (68; 53; 5; 69; 3; 24; 40). Typically, this approach involves
converting videos into textual elements with models such as event localization, objection detection,
and image captioning, which are then integrated with an LLM in the final phase. By representing
videos as text tokens, it harnesses the LLMs’ proficiency in processing textual data, thereby permitting
the interpretation of temporal sequences via these crafted descriptions.

Video-Text Pretraining. Another track of work focuses on pretraining foundation models on
large-scale video-text datasets (72; 63; 6; 66; 56; 55), which could be used in downstream video
understanding tasks. LaVilLa (72) employs smaller LLMs, e.g. T5 (44) and GPT-2 (43), to deal
with visual features. Vid2Seq further enhances the video pretraining on TS5 with fine-grained video
captions and the time token technique to focus on event boundaries. VAST (6) advances video-text
retrieval with multiple modality inputs. Merlin (66) follows the training pipelines of image domain
MLLMs (34; 23) and introduces the foresight training technique specialized for video on much larger
LLMs like Vicuna 7b (73). However, these methods highly demand computing resources and are
usually not designed for general-purpose video understanding tasks.

Video Input Compression. To deal with long video input, MovieChat (47) implemented a novel
memory-based mechanism within transformers, combining similar frames to reduce both computa-
tional load and memory footprint. Chat-UniVi (18) debuted a harmonized approach for processing
images and videos, condensing spatial and temporal tokens through dynamic token merging. LLaMA-
VID (27) innovates with a dual-token approach, allowing for more efficient compression.

Full-trained Video LLMs. Another avenue of research (25; 52; 31; 7; 22; 35; 38) requires substan-
tially more computational resources and training data. These studies typically utilize image or video
foundation encoders (26; 54; 55) with Large language models and engage in both pre-training and
instructional tuning to develop video-aware large language models (LLMs). While these approaches
generally demonstrate significantly stronger video comprehension capabilities, they also incur higher
costs. Our work mainly focuses on problems of parameter-efficient adaptation form image MLLMs
to video domain.

B EXTRA QUATITATIVE EXPERIMENTS

We introduce results on some newly proposed benchmarks, including VideoMME and
LongVideoBench. PLLaVA shows better results than LLaVA-Next-Video and competitive results
with Gemini 1.5 Pro if using the same number of frames.

Method VideoMME LongVideoBench
VideoChat2 Mistral 7b 39.5 43.5
LLaVA-Next-Video 34b 52.0 50.5
Gemini 1.5 Pro 75.0 52.7(16frame)
PLLaVA 7b 428 40.2
PLLaVA 13b 472 45.6
PLLaVA 34b 54.0 53.2

Table 5: Results on VideoMME and LongVideoBench.

C HuMmAN EVALUATION

We have also presented preliminary human evaluation results in Table 6. We randomly selected 20
samples that were doing detailed caption tasks and asked three individuals to evaluate each sample.
The results were compared across three aspects: correctness, completeness, and detail. The results
demonstrate that our PLLaVA significantly outperforms IGVLM in all three aspects from the human
evaluators’ perspective when doing dense captioning for videos.
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Metrics Win Tie Lose

Correctness 45 525 25
Completeness 45 55 0
Detail 575 30 125

Table 6: Human evaluation result by comparing PLLaVA 34b vs. IG-VLM 34b.

D ANALYSIS
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Figure 7: Vision token embedding similarities between spatial token neighbors and temporal token
neighbors.

Temporal or spatial pooling? In Sec.4.2, we have illustrated the impact of temporal and spatial
poolings, concluding that pooling along the temporal dimension consistently results in decreased
performance compared to retaining the original frame numbers. We attribute this phenomenon to the
interference with token features. In image MLLMs, features are derived from images/video frames
using CLiP-ViT models, which produce embedded patches for each image/video frame, resulting in a
video feature with shape (7, H, W). Pooling changes the dimensions of 7" (time), H (height), and W
(weight). In contrast to pooling along the spatial dimension (local pooling on single images/frames,
changing H and W), pooling along the temporal dimension (changing T") risks altering the original
frame features. To validate the guess, we visualize token similarities among spatial and temporal
token neighbors for a video feature in Figure 7. The two subfigures reveal significantly higher
similarities within spatial neighbors than temporal neighbors. This observation supports the potential
distortion of original token features caused by temporal pooling. LLMs are designed for sequence
understanding. Even without preprocessing on temporal information aggregation, they can model
temporal relations.

E CASE STUDIES

Apart from these quantitative results, we also qualitatively investigate the video understanding abilities
of PLLaVA models. We have shown several caption examples in Figure 8. According to the video
clips, compared to IG-VLM, PLLaVA 34B recognizes more details about videos, including the
clothes worn by the main characters, the environment, and even some of the words in this video.
Besides, PLLaVA can better understand the video content, in which people are playing badminton
rather than volleyball. These mistakes made by IG-VLM could be caused by the lowered resolution
when concatenating frames into the grid view in the method design. Pooling reduces dimension after
frames are encoded, thus leading to less information loss.

F DENSE RECAPTION

In view of the caption ability of PLLaVA , we further tested its recaption task and contributed 1K
video Inter4K (49) caption dataset. An example is shown in Figure 9. Compared to Open-Sora
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1G-VLM 34b: a man is playing a saxophone in various [i@l001 settings, likely a SHoppingimallior a public
space, with different lighting and background elements.

PLAVA 34b: In the video, there is a man playing a saxophone in what appears to be a public space, possibly a
mall or a street. He is , which suggests that he might be a professional musician
performing for an audience. d, indicating that this is a public area with
some foot traffic. The setting looks like it could be a Shopping eenterior a similar venue where live music is
sometimes performed to entertain visitors.

(a) Street Saxophone.

‘What happens in the video?

IGVLM: a group of people are playing a game of JolleyBall in an indoor gymnasium. The keyframes show
various stages of the game, including players serving, hitting, and defending the ball. The gym is equipped with
and the game.

PLAVA: The video shows an indoor gymnasium where a group of people are playing/badminton. There are
set up, and players are engaged in matches. The gymnasium has a high ceiling with
fluorescent lighting, and there are banners and signs on the walls, including

The players are wearing afhletie/attitelsuitable for badminton, and they are [iSing badminton rackets tohit|

back and forth across the net

(b) Badminton match.

Figure 8: Case Studies.

GPT-4 pipeline, our model captures better caption details and also highlights motion information in
the video, demonstrate PLLaVA ’s potential to contribute to the video generation community.
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The video shows a large, traditional Dutch windmill situated on a
grassy area next to a body of water, possibly a river or a canal. The
windmill has a prominent presence in the scene,

. In the background, there is a
small building, which could be a storage shed or a house, and a
fence. The sky is partly cloudy, suggesting a changeable weather
condition. There are no characters or actions visible in the video,
as it is a static scene with no people or animals present. The focus
of the video is on the windmill and its surroundings, providing a
glimpse into the traditional landscape of the Netherlands. /

PLLaVA 34B

The video showcases a traditional Dutch windmill set against a

Open-Sora GPT-4 partially cloudy sky, with a gently flowing waterway in the
Caption Pipeline foreground. Surrounding the windmill is a lush green field dotted

with yellow wildflowers. A small outbuilding is adjacent to the

windmill, separated by a quaint wooden fence. The peaceful rural
landscape suggests the tranquil pace of life in the count side, with
the windmill standing as an iconic symbol of Dutch heritage. [[ig

o/

OPEN SORA

Figure 9: Recaption comparison between PLLaVA 34B and Open-Sora.
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