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ABSTRACT

The integration of online reinforcement learning (RL) into diffusion and flow
models has recently emerged as a promising approach for aligning generative
models with human preferences. Stochastic sampling via Stochastic Differential
Equations (SDE) is employed during the denoising process to generate diverse de-
noising directions for RL exploration. While existing methods effectively explore
potential high-value samples, they suffer from sub-optimal preference alignment
due to sparse and narrow reward signals. To address these challenges, we propose
a novel Granular-GRPO (G?RPO ) framework that achieves precise and com-
prehensive reward assessments of sampling directions in reinforcement learning
of flow models. Specifically, a Singular Stochastic Sampling strategy is intro-
duced to support step-wise stochastic exploration while enforcing a high corre-
lation between the reward and the injected noise, thereby facilitating a faithful
reward for each SDE perturbation. Concurrently, to eliminate the bias inherent
in fixed-granularity denoising, we introduce a Multi-Granularity Advantage Inte-
gration module that aggregates advantages computed at multiple diffusion scales,
producing a more comprehensive and robust evaluation of the sampling directions.
Experiments conducted on various reward models, including both in-domain and
out-of-domain evaluations, demonstrate that our G*RPO significantly outperforms
existing flow-based GRPO baselines, highlighting its effectiveness and robustness.

1 INTRODUCTION

Recent advances in generative models, particularly diffusion models (Ho et al.| [2020; [Song et al.,
2020azb) and flow models (Lipman et al., 2022; |Liu et al., [2022} |Peebles & Xie, [2023)), have revolu-
tionized visual content creation, offering unprecedented capabilities in generating high-quality im-
ages (Rombach et al., 2022} |Podell et al., 2023} |[Esser et al.,[2024; |Labs| 2024) and videos (Blattmann
et al., 2023} |Chen et al., 2024; |Guo et al.| [2023} | Kong et al., [2024; [Wan et al., 2025). However, a
key challenge remains in aligning model outputs with the diverse and complex human preferences.
To tackle this challenge, reinforcement learning from human feedback (RLHF) (Fan et al., 2023
Black et al., 2023) has emerged as a promising solution, characterized by its adaptability and cost-
effectiveness. Paradigms such as Proximal Policy Optimization (PPO) (Schulman et al., |2017),
Direct Policy Optimization (DPO) (Rafailov et al., 2023)), and Group Relative Policy Optimization
(GRPO) (Shao et al., |2024)) have been introduced. Among these, GRPO stands out as an innova-
tive online reinforcement learning approach. By leveraging group comparisons to optimize policies,
GRPO eliminates the need for a separate value model, achieving greater flexibility and scalability.

To integrate GRPO into flow-based generative models, Flow-GRPO (Liu et al., |2025) and Dance-
GRPO (Xue et all 2025) substitute the deterministic ODE sampler with an SDE formulation,
wherein the injected stochasticity deliberately perturbs the denoising direction at each step. Al-
though the resulting samples enable exhaustive per-step exploration for reinforcement learning, they
simultaneously underscore the difficulty of attributing the final reward to any specific random per-
turbation, thereby constraining model trainability. Specifically, most existing flow-based GRPO
methods encounter two core issues in evaluating group denoising directions: 1) Sparse reward: As
shown in Fig. [I] (b), the final reward signal is uniformly assigned to each SDE sampling step, which
cannot be precisely aligned with the sampling direction at each step, leading to inaccuracies for the
optimization at individual steps. 2) Incomplete evaluation: As depicted in Fig. [I|(c), each denois-
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“A hungry fox was about to pounce on a rabbit that was eating grass, “A brightly painted temple with ornate structures and dramatic lighting
but it saw a wooden sign with the word Protect Animals.” inspired by Mayan and Islamic architecture.”

Figure 1: Comparison between our G>RPO and existing studies. (a) G?RPO significantly out-
performs DanceGRPO in reward scores (HPS-v2.1 in this figure). (b) Sampling strategy comparison.
G?RPO acquire a dense reward by confining stochasticity to individual sampling steps. (c) Sampling
grain comparison. G?RPO achieves a comprehensive evaluation of each sampling direction by in-
tegrating advantages from multi-granularity ODE denoising. (d) Visual Comparison. Compared to
the baseline method, the images generated by GZRPO are more aligned with human preferences.

ing direction is bound to a fixed number of denoising steps, resulting in a singular granularity of
denoised images, which impairs the reward model’s ability to conduct a comprehensive comparison
across the group.

To address these limitations, we propose Granular-GRPO (GQRPO ), a novel online reinforcement
learning framework specifically designed for precise and comprehensive reward signals. First, mir-
roring the sparse-reward problem (Hare| 2019} [Liang et al [2024) that plagues RLHF, the reward
signal in the SDE sampling process is delivered only after an entire sequence of decisions. This
long delay undermines the credit-assignment chain, preventing the linking of the terminal reward
with any specific earlier action and thereby inducing sluggish, unstable learning. Therefore, we
propose a simple yet effective sampling strategy, termed Singular Stochastic Sampling. As illus-
trated in Fig[I] (b), this strategy applies the SDE formulation at a single time step to generate a
group of denoising directions, while employing deterministic ODE sampling for all other steps. By
concentrating stochasticity at one specific step, the proposed method establishes a strong correlation
between the reward signal and the injected noise, enabling stable model optimization. Secondly, we
propose a Multi-Granularity Advantage Integration (MGAI) module. As depicted in Fig. [T{c),
instead of binding each denoising direction to a fixed subsequent denoising granularity, the denois-
ing directions in the same group are assigned to a spectrum of denoising steps, producing images
with different granularities. The corresponding reward signals of these images are then fused into a
unified advantage estimate, yielding a comprehensive evaluation of the current state’s value.

With the support of the Singular Stochastic Sampling strategy and the Multi-Granularity Advantage
Integration module, GRPO can provide a more precise and comprehensive reward signal, thereby
enhancing the upper limit of the GRPO model training. As shown in Fig[T] (a), our reward curves
exhibit stable and significant improvements over the baseline during training. Additionally, Fig[T|(d)
illustrates the images generated by G*RPO , highlighting its advantages in text prompt adherence
and detail fidelity.

Our contributions can be summarized as follows: (1) Granular-GRPO: A novel flow-based GRPO
framework designed to provide a precise and comprehensive evaluation of the denoising directions
sampled by the SDE, thereby improving the precision of model optimization. (2) Singular Stochas-
tic Sampling: A sampling strategy confines stochasticity to individual sampling steps, addressing
the sparse reward issue associated with long-range stochasticity injection. (3) Multi-Granularity
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Advantage Integration: A module integrates the advantages of multi-granularity denoised images
and enables a comprehensive evaluation of each sampling direction. (4) Superior Performance:
Extensive experiments across various reward models demonstrate that our GZRPO significantly out-
performs existing baselines, demonstrating its effectiveness and robustness.

2 RELATED WORK

Alignment for Large Language Models. Recent years have witnessed a paradigm shift from super-
vised fine-tuning (Dong et al., 2023 Sun, 2024) to multi-turn online reinforcement learning (Shani
et al.l 2024; |Abdulhai et al.| 2023)) when aligning Large Language Models (LLMs) with human in-
tent, which is known as Reinforcement Learning from Human Feedback (RLHF) (Bai et al., 2025;
Ouyang et al.,[2022). Early RLHF pipelines typically involve training a reward model from pairwise
comparisons to predict human preferences and guide a policy model through reinforcement learning
algorithms like Proximal Policy Optimization (PPO) (Schulman et al.| [2017). Despite their effec-
tiveness, PPO introduces intensive computational overhead and is sensitive to reward model inaccu-
racies, motivating value-free alternatives such as Group Relative Policy Optimization (GRPO) (Shao
et al., [2024). Adopted by leading LLMs including OpenAl-ol (Jaech et al., [2024)) and DeepSeek-
R1 (Guo et al.l|2025), GRPO aims to optimize policies based on relative preferences within a group
of samples, providing a robust signal for policy improvement, particularly when absolute rewards
are difficult to define or noisy. These advancements in LLM alignment provide a strong foundation
for exploring similar human-centric optimization strategies in visual generation domains.

Alignment for Flow Models. Diffusion and Flow models (Ho et al.l 20205 Song et al., |2020azbj
Peebles & Xiel [2023; Rombach et al., [2022), which offer flexible visual creation through an itera-
tive denoising process, have revolutionized the field of visual synthesis and become a pivotal part
of generative models. Building on the success of aligning LLMs with human preferences, similar
techniques have recently been transplanted to diffusion and flow models (Podell et al.| 2023 |[Esser,
et al.,[2024; Labs| 2024)). Pioneer works like DDPO (Black et al., 2023)) and ReFL (Xu et al., 2023)
apply PPO to finetune diffusion models for improved aesthetic performance and human feedback
alignment. These methods face challenges inherent to RL, including high variance, low efficiency,
and sparse reward. Diffusion-DPO (Wallace et al.,|2024) adapts the Direct Preference Optimization
(DPO) (Rafailov et al., 2023) framework to directly optimize diffusion models from paired prefer-
ence data, bypassing the need for an explicit reward model but suffering from distribution shift since
no new samples are collected during training. Recent efforts such as DanceGRPO (Xue et al.| [2025))
and Flow-GRPO (Liu et al., [2025) enable GRPO-style policy updates by converting the ODE sam-
pling into an equivalent SDE to each timestep, thereby acquiring a group of denoising directions for
statistical sampling and RL exploration for flow models. More recently, Mix-GRPO (Li et al., 2025
has improved training efficiency through a hybrid ODE-SDE sampling approach while maintaining
comparable performance. However, these methods are generally constrained by sparse rewards due
to long-range stochasticity injection and the binding of each sampling direction to a fixed denois-
ing granularity. These paradigms restrict the ability to conduct a comprehensive evaluation of each
sampling direction, limiting the optimization ceiling of GRPO training.

3  PRELIMINARY

For the flow-based GRPO methods (Xue et al., [2025; [Liu et al.l 2025 [L1 et al., 2025)), the
denoising process is first modeled as a multi-step Markov decision process (MDP). Given a
prompt ¢, the agent with a flow model py produce a reverse-time trajectories defined as I' =
(sr,ar,sr—1,ar_1,...,80,a0), where s; = (c,t,x¢) is the state at timestep ¢ and x; is the cor-
responding noisy sample. Specifically, xr ~ N (0, ) and x is the denoised image. The action a;
represents the single step denoising process with the policy 7y, indicating a sampling direction %
from @; to @;_1, i.e. T_1 ~ wo(XT1—1|Ts, C).

SDE Sampling. As an online RL algorithm, GRPO needs grouped outputs and relative advantages
to optimize policies. However, the flow matching model utilizes a deterministic ODE to sample the
denoising direction:

dxy = vg(xy, t)dt, (D

where, vg(x¢,t) is the model output, given the noisy sample x; and timestep ¢.
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To match GRPO’s stochastic sampling requirements, Flow-GRPO (Liu et al., [2025) converts the
ODE into an equivalent SDE sampling with the same marginal distribution:

2
g
dx; = (’Ug (xe,t) + 2—; (e + (1 —t)vy (wt,t))) dt + ordwy, ()
where dw; denotes Wiener process increments, and o controls the stochasticity injected into the
sampling direction. Furthermore, it can be discretized via the Euler—Maruyama scheme:

2

Tiinr = Ty + (’Ug (xe,t) + ;—’; (e + (1 —t)vy (wt,t))> At + oV Ate, e~ N(0,I). (3)

As defined in Flow-GRPO, oy =7 ﬁ where the noise level is controlled by hyperparameter 7).

GRPO Training. With SDE sampling, flow-based GRPO methods introduce stochasticity at each
timestep to generate a group of G images {x{}$ . Then the reward model assigns a score R(z}, c)
to (), and the advantage is computed as:

R(}, ) — mean({R(a}, c)}5.,)
sd({Rh e}L)

J=1

A = 4)

Note that the advantages A} obtained from the final step image are uniformly broadcast to each step
A} to evaluate the SDE sampling directions. Finally, the policy model is optimized by maximizing
the following objective:

jFlow-GRPO (0) = ECNC,{mi}iGZINﬂ—SUId (.|c)f(ra A7 07 g, 5)7 (5)
where
1 G 1 It _ _
flr,A,0,¢e,8) = el Z T (min (r;(G)A;, clip (ri(@), 1—¢,1+ 6) A;) — BDxi, (71'0H7Tref)) ,
i=1 " t=0
(6)

g P (@ | 7o)
Tt( ) - i i .

Poaa (wt—l | wtvc)
Notably, 3 is the hyperparameter that controls the proportion of KL loss. Following the practices of
DanceGRPO and MixGRPO, we set 8 = 0 to achieve a more stable training process.

(7

4 GRANULAR-GRPO

As an online RL algorithm, flow-based GRPO methods utilize SDE to sample a group of denoising
directions for optimization. A core issue underlying this paradigm is to obtain precise and compre-
hensive assessments of each sampling direction. To this end, we introduce the G?RPO framework to
(1) confine stochasticity to individual steps (Singular Stochastic Sampling) for more precise reward
signals, and (ii) integrate the advantages derived from multi-granularity denoising results (Multi-
Granularity Advantage Integration) to acquire a more comprehensive evaluation, as shown in Fig.[2]

4.1 SINGULAR STOCHASTIC SAMPLING

Traditional flow-based GRPO methods introduce SDE sampling at every step to inject stochasticity
and uniformly assign the final image reward to each step’s sampling direction. According to Eq.[4]
the advantage A? of each sampling direction at step ¢ is equally assigned with Aj. However, the
reward signal available only after multiple decision steps impedes the model’s capability to link the
final reward to each decision, thereby resulting in imprecise and sparse rewards.

To acquire a dense reward for each SDE sampling direction, a simple yet effective strategy is to
confine the stochasticity to the single step selected for optimization. Firstly, we designate a set of
candidate SDE timesteps M C {1,...,T} with [M| = K < T. As shown in Fig. |2} given a
prompt ¢ and initial noise 7, each timestep denoted by k& € M will be optimized in the training
phase. Then, a common starting point &, for the group is acquired using ODE sampling from Eq.
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Figure 2: Overview of GZRPO . Given a text prompt and an initial noise, our Singular Stochastic
Sampling strategy employs SDE sampling solely at a single step and samples a group of distinct
denoising directions. Then, the Multi-Granularity Advantage Integration module executes multi-
granularity ODE denoising for each direction and integrates the advantages to produce a compre-
hensive evaluation for each sampling direction. For simplicity, the figure shows one coarse-grained
path (denoted as c¢) and one fine-grained path (denoted as f).

Notably, the Singular Stochastic Sampling strategy employs SDE samphng only at x and samples
G distinct denoising directions to get the next noisy state {x} 1}&.,. Then each z} %_1 undergoes
k — 1 steps of ODE sampling to generate a deterministic denoised image iL‘O - Based on our
sampling strategy, the variance of the group reward {R(z{, ,,c)}$ ; is entirely determined by the
distinct denoising directions introduced by the SDE sampling at step k. And a step-aware, precise
advantage can be acquired:

Al — R(xf, 4. €) — mea_n({R(wf)ek’c)}iG:I)'
* std({R(@fp €)}L1)

Consequently, the f(r, A, 0, e, 8) in Eq can be formulated as:

®)

flr,A,0,¢e,8) = GZ Z min rk A%, clip (7’2(9),1 —5,1+€) Az)) 9)

i=1 keM

After the sampling phase is completed, the training of GRPO requires the computation of
po (x}_, | @i, c) to obtain r}(6) refer to eq(7} In practice, each distinct sampling starting point
x! needs to be fed into the flow model to compute the corresponding ODE denoising direction v?.
However, our sampling strategy shares a common starting point , allowing a group of G samples
to reuse the same vy, which in turn improves training efficiency.

4.2 MULTI-GRANULARITY ADVANTAGE INTEGRATION

Singular Stochastic Sampling accurately constrains stochasticity into the single SDE step, ensuring
a strong correlation between the reward and the injected noise. Nevertheless, how to acquire a com-
prehensive reward for the denoising direction of the current step still requires further investigation.

As shown in Fig. 3] we observe that under identical x;, and prompt ¢ conditions, the denoising
trajectory generated by singular stochastic sampling is not robust when assessing the corresponding
SDE denoising direction. Images generated from denoising trajectories with different granularities
show similar overall content but exhibit discrepancies in detail due to the varying denoising intervals.
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Figure 3: Visual Comparison of Images Denoised at Different Granularities. Images denoised
at different granularities exhibit variations in fine details and textures, leading to inconsistent scoring
by the Reward Model (HPS-v2.1). This observation reveals the insufficiency of a single-granularity
evaluation of group advantage.

Such differences are evident in the scores assigned by the Reward Model, further influencing the
numerical values of the advantage within the group, and even the optimization direction.

To this end, we propose a Multi-Granularity Advantage Integration module to perform multi-
granularity denoising on the sampled denoising directions within a group. The advantages of the
images denoised at different granularities are then integrated to form the final evaluation. Specifi-
cally, as shown in Fig. 2] step k is the SDE samphng step, and G distinct denoising directions are
sampled to acquire next noisy state {zi_,}$ ;. Under the conventional granularity condition, each
xj,_, undergoes k — 1 steps to obtain the final denoised image. The sequence of denoising timesteps
can be represented as: S = {1,2,...,k — 1}. For our Multi-Granularity denoising module, a set
of integer scaling factors A = {A1, A2,..., A\;},|A| = J is defined to represent different denoising
granularities. Each \; implements interval sampling for different denoising granularity, that means
sample every A;-th step from the total k£ — 1 steps. The denoising timestep sequence S; can be
formally represented as:

1
S;={1,14X,142);,..., F‘CAW At (10)
J

Our interval sampling approach ensures that the denoising process is performed at regular intervals
defined by A;. As )\; increases, the granularity becomes coarser, allowing for a more flexible and
adaptive denoising process. For ease of illustration, J = 2 in the Fig.

After N; subsequent steps denoising for {x% 1%, a group of noise- -free images {xO’J 1& | are
generated. Subsequently, different groups images gets the reward {R(ar:0 b ,c)}$ | from a reward

model and then compute the intra-group advantages {A”] & | with Eq. Similar to the joint
training with multiple reward models (e.g., HPS-v2.1 and CLIP Score) in DanceGRPO, where the

advantages from different reward models are directly summed, we combines the advantages from

different granularities to get {Ai’mix SR

J
A=Ay (11)
J
Finally, f(r, A, 0, ¢, 8) is updated to:

f(r,A0,e,8) = el Z Z (mm (rk 0) Ay omix cclip (r},(0),1 —e,1+¢) Ai’mix)) , (12)

i=1 keM

and using Eq.[3]to optimize the policy 7g. A detailed algorithm is illustrated in Algorithm|[T]
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Algorithm 1 G*RPO Training Process
1: Require: Prompt dataset C, policy model 7y, reward model R, total sampling steps T’
2: Require: SDE sampling timestep set M/, Denoising granularities set A (JA| = J)
3: for training iteration ¢ = 1 to F do

4:  Update old policy model: mg , < mg
5:  Sample batch prompts C, ~ C
6:  for prompt c € C; do
7: Init same noise z7 ~ N (0, 1)
8: for k € M do
9: fort =T to0do
10: if t > k then
11: ODE Sampling: x;_1
12: else if { == k then
13: SDE Sampling a group samples: @i _, //i-th direction in the group
14: else if ¢ > k then
15: for \; € Ado
16: ODE Sampling with granularity \;: «;”7,
17: end for
18: end if
19: end for o
20: Get a group of reward: R(x;? ;)
21: 4]« Heiegmr
22: APX S A
23: end for
24: Compute GRPO loss J(0)
25:  end for
26:  Update policy: gradient ascent on J(6)
27: end for

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Datasets and Backbone. Following DanceGRPO (Xue et al., 2025) and MixGRPO (Li et al.,
2025)), we evaluate our G’RPO using the HPSv2 (Wu et al., 2023)) dataset. It contains 103,700 text
prompts for training and 400 diverse prompts for testing. The text-to-image model employed for
reinforcement learning is Flux.1-dev (Labs| 2024)), a leading flow model in the community.

Evaluation Metrics. To evaluate the effectiveness and robustness of our GZRPO , multiple reward
models are applied as evaluation metrics. These reward models assess the alignment between gen-
erated images and human preferences from multiple dimensions. Specifically, HPS-v2.1 (Wu et al.,
2023)), CLIP Score (Radford et al.,|2021), and Pick Score (Kirstain et al., 2023)) collectively assess
semantic alignment and visual coherence. Image Reward (Xu et al.l 2023) focuses on visual quality
and aesthetic appeal, while Unified Reward (Wang et al.l 2025) is the SOTA unified reward model
that comprehensively evaluates both alignment with the caption and overall image quality.

Evaluation Setting. Similar to DanceGRPO and MixGRPO, two experimental settings are em-
ployed. Firstly, a single HPS-v2.1 reward model is utilized for training to verify the upper limit of
improvement for in-domain performance. However, as demonstrated by DanceGRPO, HPS-v2.1 is
prone to model hacking due to biases in the training set, leading to degradation in other evaluation
metrics. Therefore, our primary experiment also involves joint training with both HPS-v2.1 and
CLIP Score as reward models to acquire stable and robust results.

Sampling Phase. Following DanceGRPO, a shared initialization noise is used to generate a group
of 12 images from the same text prompt. The total sampling step 7" = 16 to enhance computational
efficiency and the advantage clip ¢ = 5 in Eq. [f] Note that, the parameter 1 in Eq. [3] directly
determines the noise level, which in turn defines the size of the stochastic exploration space in the
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SDE. Leveraging the Singular Stochastic Sampling strategy, our precise reward can tolerate a larger
n = 0.7. The set of candidate SDE timesteps M consists of the first 8 timesteps to improve training
efficiency. For the Multi-Granularity Advantage Integration strategy, the set of distinct granularities
A={1,2,3}.

Training Phase. All experiments are conducted using 16 x NVIDIA H200 GPUs, with a batch size
of 1. The AdamW optimizer is used, configured with a learning rate of 2 x 1075 and a weight decay
of 1 x 10~*. Mixed precision training is implemented using bfloat16 (bf16) format. The training
iteration is 300. More detailed parameters refer to the Appendix Section

5.2 MAIN RESULTS

Quantitative Evaluation. As shown in Tab. [I] DanceGRPO and MixGRPO serve as the base-
lines for comparison with our GRPO . Additionally, the performance of employing the Singular
Stochastic Sampling strategy without multi-granularity denoising (G°’RPO w/o MGAI) is also pro-
posed. It can be observed that when HPS-v2.1 is used solely as the training reward model, our
Singular Stochastic Sampling achieves a relative improvement of 6.52% compared to DanceGRPO.
This indicates that constraining the stochasticity to a single step yields a precise reward signal,
which in turn provides a more faithful optimization signal and enables GRPO to enhance the opti-
mization ceiling. However, as demonstrated by DanceGRPO, optimizing solely with HPS-v2.1 can
induce model hacking, which in turn compromises other out-of-domain evaluation metrics. Sec-
ondly, for the setting of multi-reward (HPS-v2.1 and CLIP Score) optimization, the results indicate
that G?RPO attains superior performance across both in-domain and out-of-domain rewards. Under
the multi-granularity denoising condition, groups of images at different granularities provide a more
comprehensive evaluation for the SDE sampling direction. This multi-granularity paradigm also
allows for more flexible adaptation to the preferences of various reward models, thereby achieving
significant improvements in various out-of-domain dimensions. Additional experiment settings and
results refer to the Appendix (Section [C).

Table 1: Quantitative Results. Comparison of results on in-domain and out-of-domain rewards.

Reward Model Method In-Domain Out-of-Domain
HPS-v2.1 CLIP Score Pick Score ImageReward Unified Reward
/ Flux.1-dev 0.305 0.388 0.226 1.040 3.621
DanceGRPO 0.353 0.375 0.228 1.233 3.548
HPS-v2.1 MixGRPO 0.378 0.358 0.225 1.266 3421
’ G?RPO w/o MGAI 0.376 0.351 0.228 1.286 3.469
G’RPO 0.385 0.355 0.229 1.313 3.487
DanceGRPO 0.331 0.389 0.227 1.128 3.569
MixGRPO 0.363 0.399 0.230 1.436 3.661
HPS-v2.1 & CLIP

v G?RPO w/o MGAI 0.372 0.395 0.234 1.421 3.688
G*RPO 0.376 0.406 0.235 1.483 3.783

Qualitative Comparison. Fig. ] presents the qualitative comparison among the original Flux.1-
dev, DanceGRPO, MixGRPO, and our proposed G?RPO . It can be observed that GZRPO provides
enhanced detail fidelity and improves the consistency with the text prompt, achieving superior align-
ment with human preferences. For instance, in the second column, our G’RPO faithfully captures
the specified expressions and even the nuances of the chess pieces as described in the prompt, de-
livering finer details and higher visual quality. Moreover, in the “poster” case depicted in the last
column, G?RPO not only adheres to the spatial requirement of a clear left-right demarcation but
also renders the reflections of the trees with remarkable clarity. Additionally, the overall style of the
image generated by GZRPO is more consistent with the aesthetic demands of poster design.

5.3 ABLATION STUDY

As described in Section ] the Multi-Granularity Advantage Integration module integrates multi-
granularity ODE sampling results to evaluate the SDE sampling direction comprehensively. Differ-
ent granularities represent diverse sampling intervals during denoising, controlled by the parameter
set A. To validate the effectiveness of multi-granularity fusion, we perform ablation studies on var-
ious A set shown in Tab.[2] It can be found that as the number of selected granularities increases,
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“On the chessboard, the

“In the dust of the
abandoned attic, there is
asilver locket box in an

open music box. The swan
embossed on it is exactly
the same as the carved
pattern on the lid of the

music box. Film texture.”

black king chess piece
was smiling proudly, and
beside it was a sad white
king chess piece. The
game was decided.”

“In the ruined city, a little
boy looked up in surprise
at the huge, still robot in
front of him, with a
cinematic lens and a
realistic style.”

“The texture of the movie.
An elderly historian
wearing white cotton

gloves carefully examined
a yellowed sheepskin

scroll map with a

magnifying glass, with a

solemn expression.”

“In the Wolong Nature
Reserve, there are two
giant pandas. One adult
giant panda is leisurely
eating bamboo, and the
other cub is lying on its
back curiously.”

“A public welfare poster
has a clear dividing line
in the middle of the
picture. On the left is the
dry and cracked land and
withered trees, and on the
right is the vibrant oasis
and clear lake water.”

Figure 4: Qualitative Results.Comparison with existing flow-based GRPO methods, in which our
G?RPO demonstrates superior performance in human preference alignment.

the evaluation of each sampling direction becomes more comprehensive, facilitating a robust assess-
ment through multi-granularity advantage fusion, which significantly improves performance across
both in-domain and out-of-domain reward models.

Table 2: Ablation Study. Comparison for different denoising granularities.

Reward Model A In-Domain Out-of-Domain
HPS-v2.1 CLIP Score Pick Score ImageReward Unified Reward
{1} 0.372 0.395 0.234 1.421 3.688
) {1,2} 0.375 0.404 0.234 1.468 3.759
HPS-V2.L&CLIP )75y 378 0.404 0.234 1.465 3.760
{1,2,3} 0.376 0.406 0.235 1.483 3.783

6 CONCLUSION

This paper addresses the critical limitations of precisely evaluating the quality of denoising direc-
tions sampled by Flow-based GRPO for human preference alignment. We introduce G*RPO , a
novel online RL framework that precisely localizes stochasticity to a single step within the denois-
ing process and provides a comprehensive evaluation of SDE denoising directions by integrating
the advantages derived from images at different denoising granularities. This innovative design en-
ables the provision of dense, precise reward signals, thereby fundamentally improving optimization
accuracy and leading to a more robust and higher-quality alignment. Our extensive experiments con-
sistently demonstrate that GRPO achieves superior performance across diverse reward conditions,
marking a significant advancement in aligning generative models with human preferences.



Under review as a conference paper at ICLR 2026

REFERENCES

Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu,
and Sergey Levine. Lmrl gym: Benchmarks for multi-turn reinforcement learning with language
models. arXiv preprint arXiv:2311.18232, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7310-7320, 2024.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei
Wang, Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are
affected by supervised fine-tuning data composition. arXiv preprint arXiv:2310.05492, 2023.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,

2024.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. Advances in Neural Information Processing Systems,
36:79858-79885, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
sion models without specific tuning. arXiv preprint arXiv:2307.04725, 2023.

Joshua Hare. Dealing with sparse rewards in reinforcement learning. arXiv preprint
arXiv:1910.09281, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
a-pic: An open dataset of user preferences for text-to-image generation. Advances in neural
information processing systems, 36:36652-36663, 2023.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Black Forest Labs. Flux. https://github.com/black—-forest—-labs/flux, 2024.

10


https://github.com/black-forest-labs/flux

Under review as a conference paper at ICLR 2026

Junzhe Li, Yutao Cui, Tao Huang, Yinping Ma, Chun Fan, Miles Yang, and Zhao Zhong. Mixgrpo:
Unlocking flow-based grpo efficiency with mixed ode-sde. arXiv preprint arXiv:2507.21802,
2025.

Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tiankai Hang, Ji Li, and Liang Zheng.
Step-aware preference optimization: Aligning preference with denoising performance at each
step. arXiv preprint arXiv:2406.04314, 2(5):7, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. arXiv
preprint arXiv:2505.05470, 2025.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
2773027744, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195-4205, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728-53741, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang, Daniele Calandriello, Avital Zipori, Hila
Noga, Orgad Keller, Bilal Piot, Idan Szpektor, et al. Multi-turn reinforcement learning with
preference human feedback. Advances in Neural Information Processing Systems, 37:118953—
118993, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Hao Sun. Supervised fine-tuning as inverse reinforcement learning. arXiv preprint
arXiv:2403.12017, 2024.

11



Under review as a conference paper at ICLR 2026

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8228-8238, 2024.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
models. arXiv preprint arXiv:2503.20314, 2025.

Yibin Wang, Yuhang Zang, Hao Li, Cheng Jin, and Jiaqi Wang. Unified reward model for multi-
modal understanding and generation. arXiv preprint arXiv:2503.05236, 2025.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
image synthesis. arXiv preprint arXiv:2306.09341, 2023.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
Advances in Neural Information Processing Systems, 36:15903-15935, 2023.

Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei
Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. arXiv
preprint arXiv:2505.07818, 2025.

12



Under review as a conference paper at ICLR 2026

A APPENDIX

In the appendix, we present detailed hyperparameter settings (Section [B]), further exploration of
varying inference steps (Section[C), the limitations of our method (Section [E), the ethical statement
(Section[F), the declaration on LLM Usage (Section[G)), as well as more qualitative evaluation results

(Section D).

B HYPERPARAMETER SETTINGS

Tab. [3]shows the detailed hyperparameter configuration used in our experiments.

Table 3: Hyperparameter settings used in all experiments.

Parameter Value Parameter Value
Training:

Random seed 42 Learning rate 2 x 1076
Train batch size 1 Weight decay 1x1074
Warmup steps 0 Mixed precision  bfloatl6
Dataloader workers 4 Max grad norm 1.0
Resolution 720 x 720 Sampling steps 16

Eta 0.7 Sampler seed 1223627
Group size 12 Scheduler shift 3

Clip range 1x107% Adyv. clip max 5.0

Init same noise Yes SDE steps M 161514131211109
Denoising granularity A~ {1,2,3}

Inference:

Resolution 1024 x 1024  Sampling steps 50

C FURTHER EXPLORATION OF VARYING INFERENCE STEPS

In the main experiment Tab. [I] we maintained the same inference settings as DanceGRPO and
MixGRPO, generating images with a resolution of 1024 x 1024 in 50 steps. Notably, our MGAI
module, which evaluates denoising samples of different granularities in a mixed manner, provides
a more comprehensive assessment. With the assistance of this module, GZRPO exhibits stronger
robustness to varying denoising step configurations. As shown in Tab. ] all flow-based GRPO
methods are jointly trained with HPS-v2.1 and CLIP. When the total inference timesteps are reduced
to 20 or even 10 steps, G°RPO still achieved significant performance improvements across various
in-domain and out-of-domain evaluation reward models.

Table 4: Comprehensive evaluation of total denoising steps.

Reward Model Method In-Domain Out-of-Domain
HPS-v2.1 CLIP Score Pick Score ImageReward Unified Reward

Flux.1-dev 0.289 0.388 0.225 0.939 3.504

10 Step Inference Da}nceGRPO 0.325 0.390 0.227 1.129 3.576
MixGRPO 0.358 0.401 0.230 1.431 3.641
G’RPO 0.378 0.408 0.235 1.519 3.805
Flux.1-dev 0.300 0.389 0.226 1.034 3.575

20 Step Inference DgnceGRPO 0.329 0.388 0.228 1.136 3.586
MixGRPO 0.363 0.401 0.230 1.430 3.651
G’RPO 0.376 0.407 0.235 1.511 3.806
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D ADDITIONAL QUALITATIVE EVALUATION

We provide additional qualitative evaluation results shown in Fig. [5]and Fig. [6]

E LIMITATION AND FUTURE WORKS

Despite the advancements of our G*RPO in human preference alignment with flow-based GRPO
training, it faces certain constraints. Specifically, GRPO incurs additional sampling time due to
multi-granularity sampling, particularly when a larger number of granularities are selected. How-
ever, it is important to note that, as illustrated in Fig. E](a), with the aid of precise and comprehensive
rewards, our G*RPO achieves the upper limit of DanceGRPO within only one-fourth of the iteration
rounds. In future work, we will apply additional reward models (such as PickScore and Unified Re-
ward) for GRPO training to explore the preferences of different reward models. Meanwhile, we will
also explore the application of G?RPO to more generation tasks, such as text-to-video generation
and image-to-video generation, etc.

F ETHICAL STATEMENT

In this research, we reaffirm our dedication to maintaining the highest ethical standards and fostering
responsible innovation. We are aware that the outputs generated by GRPO may be influenced by
the biases inherent in the reward models used. However, upon thorough examination, we have not
identified any content that violates ethical norms or guidelines. Our study does not involve any
data, methodologies, or applications that pose ethical concerns. All experiments and analyses were
conducted in strict adherence to established ethical protocols, ensuring the integrity and transparency
of our research.

G DECLARATION ON LLM USAGE

In this work, LLLM is utilized only for minor language refinement.

H REPRODUCIBILITY STATEMENT

In an effort to ensure the full reproducibility of our research and to contribute to the broader academic
community, we will publicly release the model checkpoint and the complete source code for both
training and inference. We anticipate that these resources will serve as a valuable reference for
future flow-based GRPO research, thereby fostering innovation and accelerating progress within the
community.
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Flux.1-dev DanceGRPO MixGRPO G2RPO (Ours)
2 ‘ = -

“Please generate a picture: an astronaut as huge as a mountain, landing on earth,
curiously touching the spire of the Eiffel Tower in Paris.”

N

“Next to a huge rough concrete square, there is a small and exquisite glass bird. The
picture adopts a minimalist style with clear light and shadow.”

“A crystal wall clock in the shape of an ancient Roman Colosseum, inside the clock is a
miniature city.”

)\ e 7l (\:'
) R\

“Albert Einstein used his hands to create a brain-shaped nebula, whose lines resembled a
complex electrical diagram.”

Figure 5: Qualitative comparison with existing GRPO methods. Best viewed zoomed in.
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Flux.1-dev DanceGRPO MixGRPO G?RPO (Ours)

e & AN e Y.

“Please create a sculpture. The main body is a robot that imitates Rodin's "The Thinker".
The whole body is made of transparent glass and has complex golden gears running
inside, in a steampunk style..”

“A golden Labrador retriever is leaping excitedly on the green grass, chasing a soap
bubble that glows with a rainbow in the sun, National Geographic photography style.’

b

B -

“A biochemically modified fox faced a complex electronic lock. Instead of forcibly
destroying it, it observed the wires and unplugged one of the key wires.”

S . . -

e > - 5 - -

“Please generate a picture: On the Great Wall, a cheetah with a body burning like a
flame is standing side by side with a turtle carrying a huge heavy bronze bell, in sharp
contrast.”

Figure 6: Qualitative comparison with existing GRPO methods. Best viewed zoomed in.
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