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ABSTRACT

Recent advances in computer vision indicate that increasing dataset size and
model parameters substantially enhance model performance. Scaling laws derived
from these observations provide valuable guidance for the design and optimization
of large vision models. However, the impact of scaling on fairness within these
models has yet to be systematically investigated. Here we empirically show that
scaling model parameters and dataset size can improve fairness for certain pro-
tected attributes in downstream tasks. Our results demonstrate that, when using a
loss function that jointly optimizes for utility and fairness, there exists a critical
threshold in scaling beyond which fairness gains plateau. While scaling enhances
fairness for some attributes, it does not eliminate disparities. These results empha-
size that fairness in vision models requires more than scaling. Fairness techniques
must be incorporated early in model development to address structural dispari-
ties and improve outcomes for all groups. This is especially crucial in sensitive
domains such as medical imaging, where achieving equal representation and un-
biased performance across diverse populations is essential for ethical and effective
deployment.

1 INTRODUCTION

Self-supervised learning enables the utilization of large unlabeled datasets, thereby reducing reliance
on costly and time-consuming manual annotation, particularly in domains such as medical imaging
where expert-labeled data are scarce Azizi et al. (2023); Dippel et al. (2024); Zhou et al. (2023);
Tu et al. (2023). By employing pre-training tasks, models acquire meaningful representations that
can be efficiently adapted to a variety of downstream applications Chen et al. (2020); He et al.
(2021); Darcet et al. (2025); Siméoni et al. (2025); Garrido et al. (2024). Although self-supervised
approaches generally learn more robust and equitable model performance across imbalanced data
then supervised learning Goyal et al. (2022), persistent biases in representation may still perpetuate
discrimination, necessitating ongoing attention to fairness and generalizability Glocker et al. (2023);
Queiroz et al. (2025b).

Despite advances in large-scale datasets and modern neural architectures, model bias remains per-
vasive, primarily because models learn and amplify underlying biases intrinsic to their training data
Liu & He (2024); Zeng et al. (2024); Meister et al. (2023). In high-stakes domains such as med-
ical imaging, these biases can systematically privilege certain groups while disadvantaging others,
exacerbating health disparities and undermining equitable care Yang et al. (2024); Zhao & Gordon
(2022). Consequently, developing rigorous fairness-aware models and representational techniques is
essential for fostering a more equitable and democratic artificial intelligence landscape Bommasani
et al. (2022); Queiroz et al. (2025b); Longpre et al. (2024).

Scaling laws establish power-law relationships between model performance and key design factors,
notably data volume and model architecture, across domains such as vision and text Hernandez et al.
(2021); Hestness et al. (2017); Kaplan et al. (2020); Zhai et al. (2022). Recent research investigates
the link between bias and scaling laws in text domain, revealing that model scale and pretraining data
influence social biases: larger models trained on internet data exhibit increased toxicity, whereas
those trained on curated sources display stronger stereotypes, although downstream biases typically
decrease with scale the model parameters Ali et al. (2024). In downstream tasks, finetuning dataset
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size distribution alignment between the pretraining and downstream data significantly influence the
scaling behavior Isik et al. (2025).

Fairness is critical in medical imaging, as model biases can exacerbate disparities across protected
groups defined by age and gender Chen et al. (2023); Ricci Lara et al. (2022). This study systemat-
ically investigates how scaling both dataset size and model parameters in downstream tasks affects
the loss and disparity in AUROC among protected and non protected attributes, revealing that nei-
ther increased data nor model parameters alone is sufficient to mitigate bias. Notably, the impact
of scaling is contingent on the specific protected attributes and the domain of the dataset. Incorpo-
rating a fairness-targeted loss function exposes a threshold beyond which further increases in data
or parameters yield negligible gains in bias mitigation. Consequently, these findings emphasize the
necessity of learning fair representations during pre-training, which is important for equitable model
development in medical imaging applications.

The contributions are summarized as follows:

• This study systematically investigates scaling laws in vision medical and natural imaging
downstream tasks from a fairness perspective, showing that performance disparities vary
according to demographic attributes and dataset.

• We demonstrate that incorporating a fairness loss in the binary cross-entropy loss we
achieve a critical point where the loss is constant when scaling model and dataset size.

• We colaborate the idea that scaling alone is insuficient to mitigate bias, highlighting the
importance of learning fair representations during pre-training.

2 RELATED WORK

Self-supervised learning. Scaling laws consistently improve performance across domains as
model size, dataset scale, and compute increase Hernandez et al. (2021); Hestness et al. (2017);
Kaplan et al. (2020); Zhai et al. (2022); Bahri et al. (2024). Self-supervised learning leverages pre-
training tasks to learn relevant representations for diverse downstream tasks without labels, which
is essential for scaling datasets and model parameters. The patch-based in the Vision Transformer
(ViT) Dosovitskiy et al. (2021) enables Masked Image Modeling (MIM), analogous to BERT De-
vlin et al. (2019) in text, where masked patches are reconstructed, as in Masked Auto-Encoders
(MAE) He et al. (2021). Recent work shows learning representations rather than reconstructing
masked patches yields superior outcomes Assran et al. (2023); Garrido et al. (2024). Combining
MIM with clustering methods has gained attention due to the complementary aggregation benefits
Gidaris et al. (2024); Darcet et al. (2025), while other approaches integrate discriminative losses
with MIM objectives to enhance performance Zhou et al. (2022).

Downstream. Self-supervised learning models demonstrate exceptional generalization across di-
verse downstream tasks and domains Azizi et al. (2023); Ali et al. (2024); Siméoni et al. (2025);
Venkataramanan et al. (2025). Features learned from pretext tasks facilitate efficient knowledge
transfer to target tasks with minimal labeled data, significantly benefiting domains requiring expert
annotations Azizi et al. (2023). Most self-supervised learning methods focus on learning local im-
age descriptors, such as pixel reconstruction in MAE He et al. (2021), reflecting the requirements of
vision tasks like object detection and segmentation. In contrast, vision-language models emphasize
semantic features aligned with text descriptions that capture the overall image content Radford et al.
(2021).

Bias. Recent investigations into dataset classification problems reveal persistent bias challenges in
contemporary machine learning architectures and large datasets Liu & He (2024); Torralba & Efros
(2011). This finding proves particularly significant given that bias persistence occurs even when
balanced datasets are employed Cui et al. (2024). Furthermore, models exhibit susceptibility to
diverse bias sources, including computational complexity, learning sequence, positional encoding,
and complexity Lampinen et al. (2024). Complexity features, including semantic content, structural
boundaries, and color properties, exhibit strong correlations with object structures and semantic
meaning Zeng et al. (2024). Gender bias and other fairness related biases correlate with these iden-
tical complexity features Meister et al. (2023).
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3 METHODS

Figure 1: Overview. The study systematically evaluated how downscaling dataset size and backbone
parameters influence utility and fairness losses. For each task, we sampled a subset of data and
trained models using a linear probing protocol. Model performance and fairness metrics were then
assessed, with particular attention to disparities across groups defined by metadata attributes such as
age and gender. In addition, we examined the effect of incorporating an explicit fairness loss.

This study investigates whether algorithmic fairness can be systematically characterized by scaling
laws. Our central research question is to determine if, similar to model performance and binary
cross entropy loss, fairness metrics and loss consistently improve as model parameters and dataset
sizes increase. To understand how this relationship is affected by domain shift, our evaluation is
conducted across distinct image domains: an in-distribution domain, which is closely aligned with
the model’s pre-training data and two out-of-distribution domain, which is less aligned, allowing us
to assess the impact of distributional shifts on fairness outcomes under scaling. An overview of our
experimental setup is presented in Figure 1.

Models. We employed Hierarchical Vision Transformers (Hiera) Ryali et al. (2023) as our model
architecture. The Hiera family encompasses multiple scale variants: tiny (27.1M parameters), small
(34.2M parameters), base (50.8M parameters), large (213M parameters) and huge (671M param-
eters), enabling comprehensive analysis across different model capacities. All models underwent
pre-training on ImageNet-1k using MAE as the pretext task without labels or exposure to medical
imagery.

We evaluate the model using a linear probing evaluation protocol, whereby the pre-trained model
weights remain frozen while training only a linear classifier head using supervised learning with
task-specific labels from our target dataset. To investigate inherent bias properties, we deliber-
ately selected models trained exclusively on object-centric datasets, hypothesizing that such training
would minimize domain-specific biases; however, our evaluation aimed to determine whether bias
manifestations persist even under these controlled pre-training conditions.

Datasets. We selected the CelebA Liu et al. (2015) as our natural imaging dataset, wich con-
tains celebrity face images. In the medical imaging we choose two datasets to evaluate disparities
manifestations across distinct domains: CheXpert Irvin et al. (2019) and HAM10000 Codella et al.
(2019). These datasets were chosen to represent varying degrees of alignment with the pre-trained
model’s feature representations. CheXpert comprises chest X-ray images presented in grayscale for-
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mat, capturing radiological findings across multiple pathological conditions through medical imag-
ing modalities fundamentally different from natural photography, like ImageNet-1k.

HAM10000 contains RGB dermoscopic images of skin lesions, maintaining color information and
visual characteristics more closely resembling natural imagery. Although the pre-trained models
encountered neither dataset during training, the architectural exposure to RGB images and potential
skin representations in ImageNet-1k suggests HAM10000 exhibits greater feature alignment with
learned representations compared to CheXpert’s grayscale radiological domain. This differential
alignment enables investigation of how domain similarity influences bias expression in downstream
medical tasks.

Downstream task. We implemented binary classification tasks for all datasets to evaluate model
performance and disparities manifestations. For CelebA we classified the presence of a smile or
not in the images. For CheXpert, we formulated the task as detecting the presence of Edema ver-
sus normal findings, creating a clinically relevant diagnostic challenge within chest radiography.
In HAM10000, we constructed a malignant versus benign classification framework, where benign
cases comprised Melanocytic nevi, Benign keratosis-like lesions, Dermatofibroma, and Vascular le-
sions, while malignant cases included Melanoma, Basal cell carcinoma, and Actinic keratoses with
intraepithelial carcinoma.

Groups. We utilize demographic metadata, specifically age and gender, from all datasets to eval-
uate disparities manifestations across different population groups. For CelebA, we use additional
attributes such as mustache, big nose, eyeglasses, and black hair. To assess fairness, we adopt
the concept of group fairness, measuring disparities between groups defined by these metadata at-
tributes. For gender classification, we employ the binary categories of male and female, acknowl-
edging the inherent limitations of this approach and its potential exclusion of transgender and non-
binary individuals. However, all datasets provide only these two gender categories. Regarding age
stratification, we segment the population into three uniform groups spanning the minimum to max-
imum ages present in each dataset. While this age grouping lacks clinical optimization, it provides
sufficient granularity to evaluate performance disparities between demographic classes within our
analytical framework.

Fairness Evaluation. We employ the Area Under the Receiver Operating Characteristic curve
(AUROC) as our primary utility metric to evaluate overall model performance across both tasks,
consistent with established benchmarking protocols for these challenges. To quantify fairness dis-
parities between demographic groups, we define AUROCmax

a as the group a achieving maximum
AUROC performance and AUROCmin

b as the group b with minimum AUROC performance. We
calculate the fairness disparity ratio α as:

α =
AUROCmin

b

AUROCmax
a

, (1)

Where values closer to 1 indicate equitable performance across groups, while lower ratios signify
greater disparities manifestation. We denote αGroup

AUROC as the α value calculated for the group using
the AUROC metric.

Scaling laws. To investigate scaling laws, we employ cross entropy loss for model training. Con-
sistent with established literature, this loss scales according to the pretraining dataset size, model
parameters, for pre-training tasks Kaplan et al. (2020) and downstream tasks Isik et al. (2025), as
shown in equation 2, where A and β represent coefficients optimized empirically, and D denotes the
downstream dataset size. This formulation extends to model parameters by substituting D with P ,
where P is the number of parameters in the model, thereby maintaining identical scaling dynamics

L(D) =
A

Dβ
+ E (2)

Hyperparameters. For all experiments, a consistent set of hyperparameters was maintained to
ensure comparability across trials. The batch size was set to 256, and training proceeded for 30
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(a) CelebA–Model Scaling (b) HAM10000–Model Scaling (c) CheXpert–Model Scaling

(d) CelebA–Data Scaling (e) HAM10000–Data Scaling (f) CheXpert–Data Scaling

Figure 2: Fairness metrics across datasets. We evaluate the αGroup
AUROC for the groups in the datasets,

where the metric exhibits different scaling behaviors depending on the dataset and attribute. Results
are averaged over three independent seeds, and the error bars represent the 95% confidence interval.

epochs, a duration found sufficient for model convergence. We employed the AdamW optimizer
with a learning rate of 0.0008, incorporating a cosine warmup schedule. To fit the scaling law
coefficients, we utilized the same methodology as prior work Isik et al. (2025); Hoffmann et al.
(2022), employing the Huber loss Huber (1964) and optimizing with the L-BFGS algorithm Nocedal
(1980), further methodological details are provided in the appendix B and C.

4 RESULTS AND DISCUSSION

4.1 UTILITY LOOK

The first set of analyses evaluated fairness metrics using a binary cross-entropy utility loss in the
downstream binary classification tasks on the CelebA, HAM10000, and CheXpert datasets. As
shown in Figure 2, the datasets exhibited divergent patterns. Specifically, the CheXpert dataset
demonstrated an improvement in αage

AUROC when both the dataset and model were scaled, whereas
for HAM10000 the αage

AUROC remained largely constant across evaluations. The CelebA dataset
includes attributes, such as mustache, that reduce fairness metrics, while other attributes show no
clear improvement. These results indicate that the impact of scaling on fairness is dependent on the
dataset.

Protected attributes. An important observation is that the scaling behavior differed across pro-
tected attributes. The αgender

AUROC achieved consistently high values, approaching 1, in all datasets.
By contrast, the αage

AUROC yielded a mean value of 0.96 for CelebA, 0.7 for CheXpert, and 0.5 for
HAM10000. These results highlight that fairness performance varies substantially across protected
attributes.

This finding is consistent with previous research showing that in medical image embeddings, gender
attributes tend to have a more global representation, whereas age is represented in a more localized
manner Queiroz et al. (2025a); Graf et al. (2024), a similar pattern is observed in medical benchmark
for others datasets in supervised and self-supervised models Zong et al. (2023); Jin et al. (2024).
These results suggest that gender captures broader structural signals across the datasets, while age
distinctions may emerge only within specific subgroups, such as males aged 20 and females aged
20. In CelebA, the age attribute was divided into young and non-young, providing a more general
representation than in CheXpert and HAM10000, where it was split into three groups.
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Table 1: Utility results. We evalute the datasets focusing on accuracy (ACC), AUROC, and binary
cross-entropy loss are presented for CelebA, HAM10000, and CheXpert datasets. The reported
values correspond to the mean performance over three independent seeds.

Config CelebA HAM10000 CheXpert
AUROC ↑ ACC ↑ Loss ↓ AUROC ↑ ACC ↑ Loss ↓ AUROC ↑ ACC ↑ Loss ↓

Data Scale - ViT-Base
10 0.7109 0.6219 0.6550 0.843 0.810 0.542 0.611 0.660 0.629
15 0.7124 0.6271 0.6512 0.872 0.821 0.524 0.642 0.721 0.604
20 0.7637 0.6547 0.6413 0.873 0.834 0.509 0.667 0.711 0.613
25 0.7681 0.6602 0.6373 0.880 0.840 0.511 0.671 0.745 0.599
Model Scale - 15 examples per class
ViT-Tiny 0.6655 0.6090 0.6682 0.875 0.823 0.561 0.665 0.752 0.619
ViT-Small 0.7101 0.6301 0.6585 0.846 0.800 0.569 0.610 0.728 0.626
ViT-Base 0.7120 0.6234 0.6524 0.870 0.821 0.527 0.647 0.725 0.600
ViT-Large 0.6994 0.6223 0.6525 0.900 0.869 0.464 0.651 0.729 0.581
ViT-Huge 0.6856 0.6262 0.6555 0.910 0.867 0.421 0.646 0.699 0.591

(a) CelebA–Model Scaling (b) HAM10000–Model Scaling (c) CheXpert–Model Scaling

(d) CelebA–Data Scaling (e) HAM10000–Data Scaling (f) CheXpert–Data Scaling

Figure 3: Group AUROC metrics. We evaluate the AUROC for each selected group in the datasets.
When scaling model parameters, we use only 15 examples per class, whereas when scaling the
dataset size, the ViT-Base model is employed. Results are averaged over three independent seeds,
with error bars representing the 95% confidence interval.

Unfairness and Local Representations. Our findings suggest that unfairness primarily arises
from local representations. Subgroup distinctions are particularly relevant for unfairness outcomes
Alloula et al. (2025); Bissoto et al. (2025); Queiroz et al. (2025a). Scaling both the dataset and
model parameters was more effective in mitigating unfairness linked to local representations in
less alignment datasets, as global representations already exhibited fair outcomes (Figure 2). Simi-
larly, in adversarial learning, models suppress unwanted features associated with protected variables,
thereby promoting a more global representation Wang et al. (2019).

Differences Between Datasets. Consistent with prior findings, greater distributional alignment
within a dataset corresponds to improved scaling of utility metrics and loss Isik et al. (2025). As
shown in Table 1, both accuracy and AUROC increased across datasets. However, for the dataset
with less alignment, CheXpert, the ViT-Tiny model achieved the highest accuracy and AUROC.
These results underscore the influence of dataset characteristics on model performance.
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(a) CelebA–Model Scaling (b) HAM10000–Model Scaling (c) CheXpert–Model Scaling

(d) CelebA–Data Scaling (e) HAM10000–Data Scaling (f) CheXpert–Data Scaling

Figure 4: Scaling Laws for utility loss and fairness loss. These plots illustrate how the cross-
entropy loss, combined with a fairness loss, varies as additional fairness constraints are incorporated
into the overall loss, highlighting the critical point at which the loss stabilizes. Data points represent
the mean values over three independent seeds.

Subgroup Performance. Fairness metrics exhibited divergent patterns across datasets. For the
less aligned CheXpert dataset, scaling both the data and model parameters led to improved fairness
metrics. Conversely, for CelebA and HAM10000, scaling the data had little effect, while scaling the
model parameters yielded modest improvements (Figure 2). A detailed analysis of age groups (Fig-
ure 3) reveals that the improvement in CheXpert was accompanied by a decrease in the group with
the highest AUROC. In contrast, CelebA and HAM10000 showed uniform improvements across all
groups. These findings highlight the complex interaction between dataset alignment, scaling, and
subgroup fairness.

Notably, the most underrepresented group, age group 0 in HAM10000, shows the lowest AUROC
performance. In contrast, the same age group 0 in CheXpert, also the most underrepresented,
achieves the highest AUROC. For detailed dataset distributions, see Appendix A.

Algorithmic bias. A possible explanation is that the features achieves better dataset alignment
representation, as reflected in the higher metrics shown in Table 1. However, improved overall
metrics often coincide with increased unfairness Zhao & Gordon (2022); Wei & Niethammer (2021),
particularly for underrepresented groups; for example, while the most represented group attains an
AUROC of 0.85, the underrepresented group reaches only 0.5 (Figure 3). Previous studies have
demonstrated that supervised models tend to learn features biased toward demographic attributes to
optimize utility metrics Stanley et al. (2025). Moreover, self-supervised models appear to capture
associations with other attributes despite not explicitly relying on labels or attributes Wang et al.
(2024). These findings highlight the complex trade-off between utility and fairness in model training.

An implication of this finding is that in datasets with less aligned distributions, models may not
learn specific biases related to frequency, color, shape, or other dataset characteristics Lampinen
et al. (2024); Zeng et al. (2024); Meister et al. (2023). Consequently, scaling the dataset and model
parameters has a more pronounced impact on fairness in these scenarios. Models that learn more
generalizable features demonstrate improved fairness and scale more effectively with increasing
parameters and dataset size (Figure 2). However, in terms of utility, adopting a generalist approach
does not necessarily lead to improved performance metrics (Table 1).
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4.2 WHEN WE COMBINED A FAIRNESS LOSS

The previous experiment employed a cross-entropy loss, a utility-focused objective function op-
timized without accounting for protected attributes. In this analysis, we introduce a fairness loss
component normalized by age and eyeglasses to improve the αAge

AUROC for CheXpert, HAM10000,
and αEyeglasses

AUROC for CelebA. The combined loss function is defined as follows:

Ltotal = Lce + λ · Lfair, (3)

where Lce denotes the cross-entropy loss, Lfair represents the fairness loss penalizing the p-norm of
the violation vector Buyl et al. (2024), and λ ∈ [0, 1] regulates the relative importance of the fairness
term.

Scaling Laws. The effects of incorporating the fairness loss are presented in Figure 4. The binary
cross-entropy loss exhibits the same behavior described in Equation 2, consistent with previous
studies Isik et al. (2025); Hoffmann et al. (2022). The key finding is that as the weight of the fairness
component λ increases, the total loss reaches a critical point after which it plateaus, indicating a
convergence to a stable fairness-utility trade-off in the loss even with the scale of the dataset and
model parameters.

We need a fair loss in the pre-training phase. Consistent with previous findings, unfairness pri-
marily stems from local representations such as age. In this context, we target these representations
by penalizing the p-norm of the violation vector in the fairness loss Buyl et al. (2024). The re-
sults demonstrate that these local subgroups pose a significant challenge in both datasets. These
observations underscore the critical importance of incorporating a fairness loss during pre-training
to address disparities effectively.

Focusing solely on local image descriptors techniques, such as MAE He et al. (2021) and pixel
matching in videos Jabri et al. (2020) using a utility loss, does not enhance fairness when scaling.
While incorporating fairness into pretraining remains challenging due to the scarcity of demographic
attribute at scale. Recent studies show that data curation through feature-based clustering and bal-
anced sampling improves model performanceVo et al. (2024); Queiroz et al. (2025a); Siméoni et al.
(2025); these scalable methods do not explicitly address sensitive attributes. Moreover, predicting
clustered local patches in pretraining tasks, as demonstrated by CAPI Darcet et al. (2025), enhances
dense representation quality. Combining this with clustering at the image level may improve both
fairness and utility outcomes.

4.3 THE TRADE-OFF BETWEEN FAIRNESS AND UTILITY

As previously discussed, models exhibit a trade-off between fairness and utility. The preceding
section examined how increasing the fairness loss weight influences the overall loss. In this section,
we investigate the effect of the loss function defined in Equation 3 on αEyeglasses

AUROC for CelebA and
αAge
AUROC for CheXpert and HAM10000.

Pareto Front. The pareto front highlights distinct scaling behaviors across domains (Figure 5).
In alignment datasets, scaling dataset size produces consistent improvements in both fairness and
utility up to approximately 15 examples per class. Conversely, scaling model parameters reveals
domain-specific trends: in CelebA, a pronounced trade-off emerges between utility and fairness,
where improvements in one dimension reduce performance in the other; whereas in HAM10000,
enlarging model capacity yields concurrent gains in both fairness and utility up to the ViT-L.

In comparison with the less aligned dataset, scaling the dataset size benefits both fairness and utility
(Figure 2). The results suggest that, for less aligned datasets, increasing dataset size has the potential
to enhance fairness while also improving utility. However, when scaling model parameters, a trade-
off emerges, indicating that gains in one dimension may come at the expense of the other.

Considering age and eyeglasses as groups that are more localized in the representation space, the
evaluation of αAge

AUROC and αEyeglasses
AUROC reflects the extent to which disparities between groups are

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) CelebA–Model Scaling (b) HAM10000–Model Scaling (c) CheXpert–Model Scaling

(d) CelebA–Data Scaling (e) HAM10000–Data Scaling (f) CheXpert–Data Scaling

Figure 5: Pareto Fronts for Fairness-Utility Trade-off. The Pareto front illustrates the optimal
balance between fairness and utility when scaling model size and data size, respectively. The points
represents the mean values over three independent seeds. Each point in the plot correspond a differ-
ent value of λ ∈ [0, 0.1, 0.2, 1].

mitigated. When examining the overall representation, we use AUROC as a global measure of per-
formance. Our results show that in more aligned datasets, improvements in AUROC often coincide
with increased disparities between groups. However, there are cases where both reduced disparities
and higher AUROC can be achieved, highlighting the distinction between global and local represen-
tations.

Improve features for all subgroups. The results underscore the critical importance of learning
more effective local and global representations. Local representations are more difficult to improve,
and from this perspective, we encourage methods that prioritize enhancing local representations
rather than merely equalizing local and global ones. Improving local representations to mitigate
disparities could be a more beneficial way to advance fairness Sabuncu et al. (2025). This aligns
with the notion that strategies aimed at strengthening the entire representation space are essential.
Consistent with this perspective, recent research on knowledge agglomeration, exemplified by RA-
DIO Heinrich et al. (2025); Ranzinger et al. (2024), which integrates features from diverse models
such as CLIP Radford et al. (2021), DINOv2 Oquab et al. (2023), and SAM Kirillov et al. (2023),
offers promising avenues for enhancing representation quality across the entire space.

5 CONCLUSION

This study systematically investigated the prevailing assumption that scaling laws, which consis-
tently improve model performance, would similarly mitigate fairness disparities across protected
groups. Our findings reveal a complex and dataset-dependent relationship, challenging the notion
that simply increasing model and data size is not a sufficient strategy for achieving fairness. No-
tably, while scaling enhances fairness for certain protected groups, particularly when employing a
fairness-targeted loss, it reaches a critical threshold beyond which gains plateau, underscoring the
insufficiency of scale alone in mitigating bias. These findings emphasize the imperative of integrat-
ing fairness considerations during pre-training to address local representation disparities effectively.
Future work should explore advanced methods for learning equitable representations in diverse do-
mains to realize truly fair and generalizable AI models.
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APPENDIX

A DATASET DETAILS

This appendix provides descriptive statistics of the datasets employed in our experiments. We report
demographic distributions (age, gender), diagnostic labels, and age-related summary measures for
both the full datasets and subsampled fractions.

Table 2: Summary statistics of CheXpert dataset across sampled fractions

Fraction Age (%) Gender (%) Edema (%) Age (years)
Group 0 Group 1 Group 2 Male Female Negative Positive Mean Std Min Max

all dataset 9.49 51.12 39.39 59.37 40.63 70.80 29.20 60.43 17.82 18 90
10 5.00 50.00 45.00 35.00 65.00 50.00 50.00 63.80 15.34 29 86
15 6.67 50.00 43.33 43.33 56.67 50.00 50.00 63.10 16.23 18 86
20 5.00 52.50 42.50 47.50 52.50 50.00 50.00 63.25 15.88 18 87
25 4.00 56.00 40.00 44.00 56.00 50.00 50.00 62.24 15.92 18 87

Table 3: Summary statistics of HAM10000 dataset across sampled fractions

Fraction Age (%) Gender (%) Malignant (%) Age (years)
Group 0 Group 1 Group 2 Male Female Benign Malignant Mean Std Min Max

all dataset 12.07 66.05 21.87 54.51 45.49 78.51 21.49 52.01 17.41 1 85
10 15.00 55.00 30.00 55.00 45.00 50.00 50.00 53.00 19.49 25 85
15 10.00 53.33 36.67 50.00 50.00 50.00 50.00 56.50 18.06 25 85
20 10.00 52.50 37.50 47.50 52.50 50.00 50.00 55.75 19.53 5 85
25 8.00 56.00 36.00 54.00 46.00 50.00 50.00 57.00 18.46 5 85

Table 4: Summary statistics of CelebA dataset across sampled fractions

Fraction Age (%) Gender (%) Eyeglasses (%) Mustache (%) Big Nose (%) Black Hair (%) Task (Smiling) (%)
Non young Young Female Male 0 1 0 1 0 1 0 1 0 1

all dataset 22.11 77.89 58.06 41.94 93.54 6.46 95.92 4.08 76.44 23.56 76.10 23.90 52.03 47.97
10 25.00 75.00 65.00 35.00 90.00 10.00 100.00 0.00 65.00 35.00 85.00 15.00 50.00 50.00
15 23.33 76.67 60.00 40.00 93.33 6.67 100.00 0.00 70.00 30.00 86.67 13.33 50.00 50.00
20 22.50 77.50 60.00 40.00 92.50 7.50 97.50 2.50 75.00 25.00 85.00 15.00 50.00 50.00
25 22.00 78.00 58.00 42.00 94.00 6.00 98.00 2.00 80.00 20.00 84.00 16.00 50.00 50.00

In addition to the distributional statistics, we report the overall size and partitioning protocol for
each dataset.

The CheXpert dataset contains 224,316 chest radiographs from 65,240 patients. Following prior
work, we utilized the official split provided by the dataset authors: 223,410 images for training (we
sample the examples here), 234 validation, and 234 images for test that are in the official dataset.
Even thought the test set is small, it is the only one with the high confidenty label on the annotations.

The HAM10000 dataset comprises 10,015 dermatoscopic images from different populations and
acquisition modalities. We randomly divided the dataset into 8,307 training, 557 validation, and
1084 testing.

The CelebA dataset consists of 202,599 celebrity face images annotated with 40 binary attributes.
We adopted the standard partition provided by the dataset creators: 162,770 training images, 994
validation images, and 18,873 test images.

B IMPLEMENTATION DETAILS

Linear probing. The parameters used in the linear probing experiments are reported in Table 5.
Identical settings were applied across all datasets and models. To account for variability, we con-
ducted experiments with three random seeds, each defining a different training subset. Details of the
computational setup and code implementation will be provided after the review.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

config value
optimizer AdamW
learning rate 8e-4
weight decay 0
optimizer momentum β1, β2 = 0.9, 0.999
learning rate scheduler cosine decay
warmup epochs 5
loss cross entropy
label smoothing 0.1
accumulate grad batches 1
training epochs 30
batch size 256
augment train RandomResizedCrop
freeze backbone true
seed 42, 44, 52

Table 5: Linear probing setting.

C SCALING LAWS.

The scaling laws were calculated using a Huber loss function for robustness against outliers. The
optimization process involved multiple random initializations to find the best fit for the scaling law
parameters. The specific configuration used for fitting the scaling laws is detailed in Table 6.

config value
Loss function Huber Loss
Huber loss delta (δ) 1e-3
Optimization method L-BFGS-B
Number of initializations 50
Training data ratio 1.0
Parameter bounds (A, β, E) A, E ∈ (10−6,∞), β ∈ (10−6, 2.0)
Optimizer max iterations 1000
Optimizer function tolerance (ftol) 1e-9
Optimizer gradient tolerance (gtol) 1e-5

Table 6: Configuration settings for fitting the scaling laws.

Dataset λ A β E Huber loss
CheXpert 0.0 3.5792 2.0000 0.5933 7.226e-06
CheXpert 0.1 1.1632 2.0000 0.6285 4.977e-06
CheXpert 0.2 0.0844 0.4509 0.6302 1.188e-06
CheXpert 1.0 0.0081 0.5917 0.6944 1.898e-06
HAM10000 0.0 3.6481 2.0000 0.5021 3.156e-06
HAM10000 0.1 0.2761 0.8742 0.5477 1.102e-06
HAM10000 0.2 1.8309 2.0000 0.5958 2.488e-06
HAM10000 1.0 0.0192 0.3431 0.6792 1.067e-06
CelebA 0.0 0.2078 0.1369 0.5038 3.625e-06
CelebA 0.1 0.4438 0.0285 0.2522 3.610e-06
CelebA 0.2 0.6761 0.0157 0.0266 4.018e-06
CelebA 1.0 0.0845 0.1802 0.6512 3.770e-06

Table 7: Values of the parameters obtained by fitting the scaling law equation for dataset size scaling.

D UTILITY LOOK

Here we report more examples of the utility look as showed in the Figure 3 in the Figure 6 for
HAM10000 and CheXpert datasets and in the Figure 7 for CelebA dataset.
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Dataset λ A β E Huber loss
CheXpert 0.0 37101.73 0.79996 0.57540 3.43e-05
CheXpert 0.1 1124.54 0.62273 0.61603 2.23e-05
CheXpert 0.2 30.05744 0.37527 0.61657 2.04e-05
CheXpert 1.0 0.37189 2.00000 0.69830 1.34e-05
HAM10000 0.0 18.23617 0.24796 0.30258 1.88e-05
HAM10000 0.1 3.81551 0.14630 0.28802 2.11e-05
HAM10000 0.2 2.27826 0.12145 0.33730 1.29e-05
HAM10000 1.0 0.71316 0.00504 0.03450 9.37e-07
CelebA 0.0 92.02169 0.53387 0.65002 1.56e-05
CelebA 0.1 34.01101 0.47099 0.66169 8.42e-06
CelebA 0.2 5.66999 0.34080 0.66590 2.08e-06
CelebA 1.0 0.20644 0.08815 0.65530 2.19e-05

Table 8: Values of the parameters obtained by fitting the scaling law equation for model parameter
scaling.

(a) HAM10000–Model Scaling (b) CheXpert–Model Scaling

(c) HAM10000–Data Scaling (d) CheXpert–Data Scaling

Figure 6: Group AUROC metrics. Evaluation of the AUROC for the gender groups in the CheXpert
and HAM10000. When scaling model parameters, we use only 15 examples per class, whereas
when scaling the dataset size, the ViT-Base model is employed. Results are averaged over three
independent seeds, with error bars representing the 95% confidence interval.

E LARGE LANGUAGE MODELS (LLMS) IN PAPER WRITING

We utilize LLMs to correct grammar and improve the text fluency.
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(a) CelebA–Model Scaling (b) CelebA–Model Scaling

(c) CelebA–Data Scaling (d) CelebA–Data Scaling

(e) CelebA–Data Scaling (f) CelebA–Model Scaling

Figure 7: Gender AUROC metrics. Evaluation of the AUROC for the gender, age and mustache
groups in the CelebA dataset. When scaling model parameters, we use only 15 examples per class,
whereas when scaling the dataset size, the ViT-Base model is employed. Results are averaged over
three independent seeds, with error bars representing the 95% confidence interval.
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