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ABSTRACT

Multi-objective learning (MOL) is a popular paradigm for learning problems under
multiple criteria, where various dynamic weighting algorithms (e.g., MGDA and
MODO) have been formulated to find an updated direction for avoiding conflicts
among objectives. Recently, increasing endeavors have struggled to tackle the
black-box MOL when the gradient information of objectives is unavailable or
difficult to attain. Albeit the impressive success of zeroth-order method for single-
objective black-box learning, the corresponding MOL algorithm and theoretical
understanding are largely absent. Unlike single-objective problems, the errors
of MOL introduced by zeroth-order gradients can simultaneously affect both
the gradient estimation and the gradient coefficients λ, leading to further error
amplification. To address this issue, we propose a Stochastic Zeroth-order Multiple
Objective Descent algorithm (SZMOD), which leverages function evaluations to
approximate gradients and develops a new decomposition strategy to handle the
complicated black-box multi-objective optimization. Theoretically, we provide
convergence and generalization guarantees for SZMOD in both general non-convex
and strongly convex settings. Our results demonstrate that the proposed SZMOD
enjoys a promising generalization bound of O(n− 1

2 ), which is comparable to the
existing results of first-order methods requiring additional gradient information.
Experimental results validate our theoretical analysis.

1 INTRODUCTION

Multi-objective learning (MOL) aims to learn a single model that can optimize multiple potentially
conflicting objectives simultaneously. An unconstrained multi-objective optimization problem can be
defined as

min
x∈Rd

FS(x) := [fS,1(x), . . . , fS,M (x)] , (1)

where S = {zi}ni=1 is the training dataset, fS,m(x) is the m-th empirical objective for m ∈ [M ] =:
{1, 2, ...M}. Usually, we can set fS,m(x) =

∑n
i=1 fzi,m(x) as the empirical risk on the entire

training dataset S, where fz,m : Rd 7→ R measures the performance of a model x ∈ Rd on a datum z
for the m-th objective.

Multi-objective learning has gained increasing attention, due to the complex decision-making pro-
cesses involved in many challenging tasks, e.g., managing traffic systems (Felten et al., 2024),
electricity grids (Lu et al., 2022), and taxation policy design (Zheng et al., 2022). These burgeoning
fields in practice, which require trading off multiple conflict objectives, underscore the significance
of research in MOL. Specifically, balancing bias and variance (Neal et al., 2018), or accuracy and
calibration (Guo et al., 2017), are well-known common objectives in machine learning that need to be
optimized. To tackle these problems, this paper pays particular attention to multi-objective gradient
methods that aim to find a common descent direction for all objectives. Désidéri (2012) initially
introduced the concept of a Pareto stationary and the multi-gradient descent (MGDA) algorithm.
Since then, stochastic variants such as MOCO (Fernando et al., 2023) and MODO (Chen et al., 2024)
have been proposed. Those first-order multi-objective alpgrithms have have great performed in the
white-box problem.

However, when we consider the black box problem, where obtaining explicit gradients is either
unattainable or too expensive, these algorithms are no longer applicable. For instance, in the field

1
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Figure 1: An example from (Liu et al., 2021) involves two objectives in Figure 1(a) and 1(b) to
demonstrate the conflict between objectives. Figures 1(c)-1(e) show the optimization trajectories,
where the black dots indicate the initialization points of the trajectories, with the colors transitioning
from red (start) to yellow (end). The background solid/dotted contours represent the landscape
of the average empirical and population objectives, respectively. The gray/green bars mark the
empirical/population Pareto fronts, while the black ⋆ green ⋆ marks the solution to the average
objectives.

of multiple-objective reinforcement learning (Hu et al., 2023; Felten et al., 2024; Terry et al., 2021;
Gupta et al., 2017), agents often can only learn strategies through interaction and external reward
signals, without access to the internal state or dynamics of the environment. Similarly, in most
attack scenarios (Akhtar & Mian, 2018; Liu et al., 2022; Papernot et al., 2017; 2016), the attacker’s
knowledge of the classifier is very limited, which causes the attacker only to execute a black-box
attack. Liang et al. (2022) state that the black-box attacks can manipulate model outputs by adjusting
the trade-offs between true and false positives without direct access to the model’s internals. Williams
& Li (2023) consider a novel multi-objective sparse attack that can simultaneously reduce the number
and the individual size of modified pixels during the attack process.

Most of the black-box MOL scenarios discussed above are traditionally optimized using the hypervol-
ume indicator (Felten et al., 2024) as the standard performance metric and are typically solved using
methods such as evolutionary algorithms (Zhou et al., 2024; Mathai et al., 2020; Liu et al., 2024).
Unfortunately, these methods impose strict constraints on problem dimensionality. In contrast, zeroth-
order (ZO) optimization algorithms demonstrate greater versatility in handling higher-dimensional
problems and can achieve excellent performance, often comparable to or even surpassing that of
white-box models where gradients are explicitly available. (Sun et al., 2022; Papernot et al., 2017).
Unfortunately, there has been no endeavor to apply the zeroth-order optimization to multi-objective
optimization.

To fill this gap, we present the Stochastic Zeroth-order Multiple Objective Descent algorithm (SZ-
MOD), which integrates coordinate-based zeroth-order gradient estimations and employs a consistent
directional selection strategy during the λ iteration process. Specifically, by using the same direction
for gradient approximation throughout the iterations, SZMOD ensures that the update direction of the
dynamic weigh λt is updated in alignment with the chosen direction, thereby maintaining stability
and reducing variance in the optimization process. Combining coordinate zeroth-order techniques
and unified directional updates enhances the algorithm’s ability to effectively address black-box
multi-objective learning problems.

• Gradient Direction Conflict: In first-order multi-objective optimization algorithms, the
gradients of multiple objective functions are computed to determine a suitable direction for
optimization. However, in zeroth-order multi-objective problems, we rely on zeroth-order
gradient estimates, where the direction estimation depends entirely on a random vector u
(determined by the zeroth-order estimation process). This dependence makes it challenging
to identify an appropriate CA direction (the proper direction to update λ, will defined in
section 2.4), complicating the optimization process.

• Excessive Error Risk: Zeroth-order gradient estimation inherently introduces errors, which
also propagate into the iterative updates of λ. These compounded errors affect the term of
the CA direction, increasing the risk of divergence during the iteration of x. Therefore, it is
crucial to control these errors effectively to ensure convergence and maintain the stability of
the optimization process.

2
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2 PRELIMINARIES

In this section, we first introduce MOL’s problem formulation, the analysis target, and the metric to
measure its optimization, generalization, and CA direction.

2.1 NOTATION

Denote the vector-valued objective function on datum z as Fz(x) = [fz,1(x), . . . , fz,M (x)]. The
training and testing performance of x can then be measured by the empirical objective FS(x) and
the population objective F (x) which are, respectively, defined as FS(x) := 1

n

∑n
i=1 Fzi(x) and

F (x) := Ez∼D [Fz(x)]. Their corresponding gradients are denoted as ∇FS(x) and ∇F (x) ∈ Rd×M .

2.2 METHOD OF MOL

Analogous to the stationary solution and optimal solution in single-objective learning, we define the
Pareto stationary point and Pareto optimal solution for MOL problem minx∈Rd F (x) as follows.
Definition 1 (Pareto stationary and Pareto optimal). If there exists a convex combination of the
gradient vectors that equals to zero, i.e., there exists λ ∈ ∆M such that ∇F (x)λ = 0, then x ∈ Rd

is Pareto stationary. If there is no x ∈ Rd and x ̸= x∗ such that, for all m ∈ [M ]fm(x) ≤ fm (x∗),
with fm′(x) < fm′ (x∗) for at least one m′ ∈ [M ], then x∗ is Pareto optimal. If there is no x ∈ Rd

such that for all m ∈ [M ], fm(x) < fm (x∗), then x∗ is weakly Pareto optimal.

By definition, at a Pareto stationary solution, there is no common descent direction for all objectives.
A necessary and sufficient condition for x being Pareto stationary for smooth objectives is that
minλ∈∆M ∥∇F (x)λ∥ = 0. Therefore, minλ∈∆M ∥∇F (x)λ∥ can be used as a measure of Pareto
stationarity (PS). We will refer to the aforementioned quantity as the PS population risk henceforth
and its empirical version as PS empirical risk or PS optimization error. We next introduce the target
of our analysis based on the above definitions.

2.3 ZEROTH-ORDER GRADIENT ESTIMZATION

Coordinate-wise Gradient Estimation. When only function evaluations are available, here, we
employ the deterministic coordinate-wise direction to derive the decent direction. Specifically, for
the smoothing constant v and vector ui(ui represents the unit vector where the i-th element is 1 and
the remaining elements are 0), the directional derivative of fz,m in the direction u for the smooth
function fi, i ∈ [n], can be estimated as:

∇̂fz,m(x, u, v) =

d∑
j=1

fz,m(x+ vuj)− fz,m(x)

v
uj . (2)

as the approximation of the full directional gradient. Since the smoothing constant v is fixed, for
simplicity, we leave out v in these gradient estimations and set

∇̂fz,m(x, u) := ∇̂fz,m(x, u, v). (3)

Denote the vector-valued objective function on datum z as Fz(x) = [fz,1(x), . . . , fz,M (x)]. The
training and testing performance of x can then be measured by the empirical objective FS(x)
and the population objective F (x) which are, respectively, defined as FS(x) := 1

n

∑n
i=1 Fzi(x)

and F (x) := Ez∼D [Fz(x)]. Their corresponding estimate gradients are denoted as ∇̂FS(x) and
∇̂F (x) ∈ Rd×M . Thus the zeroth-order estimate for all objectives on datum z should be written as
∇̂Fz(x) =

[
∇̂fz,1(x), . . . , ∇̂fz,M (x)

]
.

2.4 PROBLEM SETUP

Proposition 1 ((Tanabe et al., 2019) Lemma 2.2). . If fm(x) are convex or strongly convex for all
m ∈ [M ], and x ∈ Rd is a Pareto stationary point of F (x), then x is weakly Pareto optimal or Pareto
optimal.

3
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Next, we proceed to decompose the PS population risk.

Error Decomposition. Given a model x, the PS population risk can be decomposed into

min
λ∈∆M

∥∇F (x)λ∥︸ ︷︷ ︸
PS population risk Rpop(x)

= min
λ∈∆M

∥∇F (x)λ∥ − min
λ∈∆M

∥∇FS(x)λ∥︸ ︷︷ ︸
PS generalization error Rgen (x)

+ min
λ∈∆M

∥∇FS(x)λ∥︸ ︷︷ ︸
PS optimization error Ropt(x)

, (4)

where the optimization error quantifies the training performance, i.e., how well does model x perform
on the training data; and the generalization error (gap) quantifies the difference between the testing
performance on new data sampled from D and the training performance, i.e., how well the model x
performs on unseen testing data compared to the training data.

The zeroth-order optimization is a gradient-based black-box optimization that utilizes the difference in-
formation of function values to approximate the true gradient. Furthermore, this method does not alter
the optimization objective, only the optimization process differs from the first-order one. As for MOL
black-box problems, the optimization objective of the SZMOD remains minλ∈∆M ∥∇F (x)λ∥ = 0.

Let A : Zn 7→ Rd denote a randomized MOL algorithm. Given training data S, we are interested in
the expected performance of the output model x = A(S), which is measured by EA,S [Rpop(A(S))].
From equation 4 and linearity of expectation, it holds that

EA,S [Rpop(A(S))] = EA,S [Rgen(A(S))] + EA,S [Ropt(A(S))] . (5)

Distance to CA direction. Consider an update direction d = −∇FS(x)λ, where λ is the dynamic
weights from a simplex λ ∈ ∆M := {λ ∈ RM | 1⊤λ = 1, λ ≥ 0

}
. To obtain such a steepest CA

direction in unconstrained learning that maximizes the minimum descent of all objectives, we can
solve the following problem (Fliege et al., 2019)

CA direction d(x) = argmin
d∈Rd

max
m∈[M ]

{
⟨∇fS,m(x), d⟩+ 1

2
∥d∥2

}
(6)

equivalent to⇐⇒ d(x) = −∇FS(x)λ
∗(x) s.t. λ∗(x) ∈ argmin

λ∈∆M

∥∇FS(x)λ∥2 . (7)

Defining dλ(x) = −∇FS(x)λ given x ∈ Rd and λ ∈ ∆M , we measure the distance to d(x) via
(Fernando et al., 2023)

CA direction error Eca(x, λ) := ∥dλ(x)− d(x)∥2 . (8)

With the above definitions of measures that quantify the performance of algorithms in different
aspects, we then introduce a stochastic gradient algorithm for MOL that is analyzed in this work.

3 A STOCHASTIC ALGORITHM FOR BLACK-BOX MOL

In this section, we first introduce our main algorithm, Stochastic Zeroth-order Multiple Objective
Descent (SZMOD).

At each iteration t, αt, γt are step sizes, and Π∆M (·) denotes Euclidean projection to the simplex
∆M . Denoting zt,s as an independent sample from S with s ∈ [3], and ∇̂Fzt,s (xt) as the gradient
estimate of ∇Fzt,s (xt).
Remark 1. In the iteration process of λt, gradient direction conflicts prevent us from achieving
convergence. To ensure the algorithm converges, SZMOD requires that ∇̂fz,1(x) and ∇̂fz,2(x) use
the same stochastic direction. By this method, we have

Ezt,1,zt,2

[
∇̂Fzt,1 (xt)

⊤ ∇̂Fzt,2 (xt)λt

]
= ∇FS (xt)

⊤ ∇FS (xt)λt +O(v),

which means that we can stabilize the updates and control the error through v.

4
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Algorithm 1 Stochastic Zeroth-order Multiple Objective Descent (SZMOD)
Input: Training data S, initial model x0, weighting co- efficient λ0, and their learning rates

{αt}Tt=0 , {γt}
T
t=0.

Output: xT

1: for t = 0, . . . , T − 1 do
2: for m = 1, . . . ,M do
3: Compute zeroth-order gradients ∇̂fm,zt,s (xt) using same u, s ∈ [2]

4: Compute zeroth-order gradients ∇̂fm,zt,3 (xt) with coordinate
5: end for
6: Compute dynamic weight λt+1 following
7: Compute λt+1 = Π∆M

(
λt − γt∇̂Fzt,1 (xt)

⊤ ∇̂Fzt,2 (xt)λt

)
8: Compute xt+1 = xt − αt∇̂Fzt,3 (xt)λt+1

9: end for

In the iteration process of xt, the zeroth-order method will also lead to excessive error risk, which
is caused by the error of λt+1 and ∇̂Fz,3. The error of λt+1 can be control by remark 1. Here, we
choose to use the coordinate zeroth-order estimate to minimize the error of ∇̂Fz,3.

4 OPTIMIZATION OF SZMOD

In this section, we bound the multi-objective PS optimization error minλ∈∆M ∥∇FS(x)λ∥ (Fernando
et al., 2023; Fliege et al., 2019; Désidéri, 2012). As discussed in Section 2.2, this measure being zero
implies the model x achieves a Pareto stationarity for the empirical problem.

Below, we list the standard assumptions used to derive the optimization error, which has been widely
used for theoretical analysis for (Chen et al., 2024; Lei, 2023; Fliege et al., 2019).
Assumption 1 (Lipschitz continuity of Fz(x) ). For all m ∈ [M ], fz,m(x) are ℓf -Lipschitz continu-
ous for all z. Then Fz(x) are ℓF -Lipschitz continuous in Frobenius norm for all z with ℓF =

√
Mℓf .

Assumption 2 (Lipschitz continuity of ∇Fz(x)). For all m ∈ [M ],∇fz,m(x) is ℓf,1-Lipschitz
continuous for all z. And ∇Fz(x) is ℓF,1-Lipschitz continuous in Frobenius norm for all z.
Assumption 3. For all m ∈ [M ], z ∈ Z, fz,m(x) is µ-strongly convex w.r.t. x with µ > 0.

Note that in the strongly convex case, the gradient norm ∥∇Fz(x)∥F can be unbounded in Rd.
Therefore, one cannot assume Lipschitz continuity of fz,m(x) w.r.t. x ∈ Rd. We address this
challenge by showing that {xt} generated by the SZMOD algorithm is bounded as stated in Lemma
1. Notably, combined with Assumption 1, we can derive that the gradient norm ∥∇Fz (xt)∥F is also
bounded.
Lemma 1 (Boundedness of xt for strongly convex and smooth objectives). Suppose Assumptions 2,
3 hold. For {xt} , t ∈ [T ] generated by SZMOD algorithm or other dynamic weighting algorithm
with weight λ ∈ ∆M , step size αt = α, and 0 ≤ α ≤ ℓ−1

f,1, there exists a finite positive constant cx
such that ∥xt∥ ≤ cx. And there exists finite positive constants ℓf , ℓF =

√
Mℓf , such that for all

λ ∈ ∆M , we have ∥∇F (xt)λ∥ ≤ ℓf , ∥∇F (xt)∥F ≤ ℓF .

4.1 DISTANCE TO CA DIRECTION

Theorem 1 (Distance to CA direction). Suppose either: 1) Assumptions 1, 3 hold; or 2) Assumptions
1, 2 hold, with ℓf and ℓF defined in Lemma 1. Consider {xt} , {λt} generated by the SZMOD
algorithm. For all λ ∈ ∆M , it holds that:

1

T

T−1∑
t=0

EA

[
∥dλt

(xt)− d (xt)∥2
]
≤ 4

γT
+ 6

√
Mℓf,1ℓ2f

α

γ
+ γMℓ4f + e (9)

Here e =
l2f,1v

2d

4 EA∥λt − λ∥1 +
lf,1v
2 EA(∥λt − λ∥1∥∇FSλ∥1 + d∥∇FS(λt − λ)∥1) caused by

zeroth-order error. We should mention that e can be seen as O(v). Analyzing convergence to

5
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the CA direction using the measure introduced in Section 2.4. By, e.g., choosing α = Θ
(
T− 3

4

)
,

γ = Θ
(
T− 1

4

)
and v = γ/10, the RHS of equation 9 converges in a rate of O

(
T− 1

4

)
.

4.2 PS OPTIMIZATION ERROR

Theorem 2. (PS optimization error of SZMOD). Suppose either 1) Assumptions 1, 3 hold or
2) Assumptions 1, 2 hold, with ℓf defined in Lemma 1. Define cF such that EA [FS (x0)λ0]−
minx∈Rd EA [FS(x)λ0] ≤ cF . Considering {xt} generated by SZMOD (Algorithm 1), with αt =
α ≤ 1/ (2ℓf,1) , γt = γ, then under either condition 1) or 2), it holds that

1

T

T−1∑
t=0

EA

[
min

λ∈∆M
∥∇FS (xt)λ∥

]
≤

√
cF
αT

+

√
3

2
γMℓ4f +

√
1

2
αℓf,1ℓ2f,d + e. (10)

The choice of step sizes α = Θ(T− 3
4 ), γ = Θ(T− 1

4 ), and smoothing constant v = γ/10 to ensure
convergence to CA direction is suboptimal for the convergence to Pareto stationarity. Then the RHS
of equation 10 converges in a rate of O

(
T− 1

8

)
.

5 GENERALIZATION OF SZMOD

In the following, we provide uniform stability for the black-box MOL algorithm, whose expected PS
generalization error can be further bounded under several convexity scenarios.
Proposition 2 ((Chen et al., 2024), Proposition 2). With ∥ · ∥F denoting the Frobenious norm,
Rgen(A(S)) in (2.2) can be bounded by

EA,S [Rgen (A(S))] ≤ EA,S [∥∇F (A(S))−∇FS(A(S))∥F] . (11)

With Proposition 2, we introduce the concept of MOL uniform stability tailored for MOL problems.
Then, we analyze their bounds in the general nonconvex and strongly convex cases, respectively.
Definition 2 (MOL uniform stability). A randomized algorithm A : Zn 7→ Rd, is MOL-uniformly
stable with ϵF iffor all neighboring datasets S, S′ that differ in at most one sample, we have

sup
z

EA

[
∥∇Fz(A(S))−∇Fz (A (S′))∥2F

]
≤ ϵ2F.

Next, we show the relation between the upper bound of PS generalization error in 4 and MOL uniform
stability in Proposition 3.
Proposition 3 ((Chen et al., 2024), proposition 3). Assume for any z, the function Fz(x) is differen-
tiable. If a randomized algorithm A : Zn 7→ Rd is MOL-uniformly stable with ϵF, then

EA,S [∥∇F (A(S))−∇FS(A(S))∥F] ≤ 4ϵF +
√

n−1ES [Vz∼D (∇Fz(A(S)))]. (12)

where Vz∼D (∇Fz(A(S))) = Ez∼D

[
∥∇Fz(A(S))− Ez∼D [∇Fz(A(S))]∥2F

]
is the variacne.

Proposition 3 establishes a connection between the upper bound of the PS generalization error and
the MOL uniform stability.

Theorem 3 (PS generalization error of SZMOD in nonconvex case). If supz EA

[
∥∇Fz(A(S))∥2F

]
≤

G2 for any S, then the MOL uniform stability, i.e., ϵ2F in Definition 2 is bounded by ϵ2F ≤ 4G2T/n.

And the PS generalization error EA,S [Rgen (A(S))] = O
(
T

1
2n− 1

2

)
.

Remark 2. The proof process of non-convex generalization does not involve parameter updates.
Therefore, zeroth-order gradient approximation does not affect the generalization results. At this
point, the generalization results of the first-order and zeroth-order methods are naturally the same.
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With Lemma 1 and Lemma ??, the stability bound and PS generalization is provided below.
Theorem 4 (PS generalization error of in strongly convex case). Suppose Assumptions 2 and
3 hold. Let A be the SZMOD algorithm (Algorithm 1). For the MOL uniform stability ϵF of
algorithm A in Definition 2, if the step sizes satisfy 0 < αt ≤ α ≤ 1/ (2ℓf,1), 0 < γt ≤ γ ≤

min

{
µ2

484ℓ2f,dℓg,1
, 1

8(3ℓ2f,d+2ℓg,1)

}
/T , and smooth constant v ≤ min

{
1
nd ,

1

nd(2ℓg,1+ℓ2g,1)

}
then it

holds that

ϵ2F ≤ 48

µn
ℓ2f,dℓ

2
F,1

(
α+

12 + 4Mℓ2f,d
µn

+
10Mℓ4fγ

µ

)
+

4

µn
ℓ2F,1

(
10αMℓ2f,dγ + µγ

µα
+ αℓf,1 +

2αℓ2f,1
n

)
.

(13)

and EA,S [Rgen(A(S))] = O
(
n− 1

2

)
.

Remark 3. Theorem 3, 4 implies setting proper step sizes for different convexity helps to improve the
generalization. Under strong convexity conditions, the proof process involving parameter updates
will inevitably introduce the cumulative error brought by zeroth-order estimation. We must constrain
the smoothness parameter v to achieve the same generalization convergence rate as the first-order
method.

6 CONNECTION BETWEEN OPTIMIZATION, CONFLICT AVOIDANCE AND
GENERALIZATION

In this section, we combine the proof process and theoretical results on optimization error, generaliza-
tion bounds, and the distance to the CA direction to discuss the impact of introducing zeroth-order
gradient approximations on multi-objective algorithms. Summarizing the findings from Sections 4
and 5, we derive the PS population risk. With At(S) = xt denoting the output of algorithm A at the
t-th iteration, we can decompose the PS population risk Rpop (At(S)) as (cf. equation 4,equation 11)

EA,S [Rpop (At(S))] ≤ EA,S

[
min

λ∈∆M
∥∇FS (At(S))λ∥

]
+EA,S [∥∇F (At(S))−∇FS (At(S))∥F]

Theorem 5 (The general nonconvex case). Suppose Assumptions 1, 2 hold. By the optimization error
in Theorem 2 and the generalization error bound in Theorem 3, the PS population risk of the output
of SZMOD can be bounded by

1

T

T−1∑
t=0

EA,S [Rpop (At(S))] = O
(
α− 1

2T− 1
2 + α

1
2 + γ

1
2 + T

1
2n− 1

2

)
+O (v) .

Remark 4. By selecting step sizes of α = Θ
(
T− 1

2

)
and γ = Θ

(
T− 1

2

)
, with the number of steps

T = Θ
(
n

2
3

)
, we can choose a smoothing parameter of v = Θ

(
n− 1

6

)
, which effectively limits the

impact of the zeroth-order approximation on optimization convergence. Under these conditions, the
expected PS population risk is O

(
n− 1

6

)
.

Theorem 6 (The strongly convex case). Suppose Assumptions 2, 3 hold. By the optimization error
and the generalization error given in Theorems 2 and 4, SZMOD’s PS population risk can be bounded
by

1

T

T−1∑
t=0

EA,S [Rpop (At(S))] = O
(
α− 1

2T− 1
2 + α

1
2 + γ

1
2 + n− 1

2

)
+O (v) .

Remark 5. Choosing step sizes α = Θ
(
T− 1

2

)
, γ = o

(
T−1

)
. Under strongly convex and smooth

conditions, generalization analysis requires smoothing parameter size of v = Θ
(
(nd)−1

)
. And
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number of steps T = Θ
(
n2

)
. We have the expected PS population risk in gradients is O

(
n− 1

2

)
,

aligning with the upper bound for the PS population risk in general nonconvex first-order methods as
shown in Chen et al. (2024).

Zeroth-order method demonstrates the connection between optimization, conflict avoidance,
and generalization.

The core of the SZMOD algorithm lies in its dynamic weighting mechanism, which uses approximate
gradient information to update λ. A high-quality λ is essential for balancing conflicts among
multiple objectives. The distance to the CA direction is a critical metric for assessing the quality
of these updates and plays a pivotal role in ensuring algorithmic convergence. In SZMOD, the
deviation from the CA direction arises from the data and limited iterations and the cumulative error
e introduced by the zeroth-order method. This CA direction error transfers the cumulative error e
into an optimization error. Theoretical results indicate that in corresponding first-order algorithms,
the relationship between CA direction error and optimization error is not as inherently inheritable
and may exhibit a degree of antagonism (Chen et al., 2024). Thus, zeroth-order optimization opens
a window into understanding the interaction between CA direction and optimization. Due to the
propagation of cumulative error, optimization error imposes constraints on the smooth parameter
v to ensure convergence. Furthermore, under strongly convex and smooth conditions, achieving
generalization depends on controlling the size of v. Therefore, determining the appropriate value of v
requires balancing the demands of both generalization and optimization.

7 EMPIRICAL VALIDATION

In this section, we systematically evaluate the performance of our proposed SZMOD algorithm on toy
examples and CIFAR-10 datasets. The experiments are designed to mimic a variety of multi-objective
landscapes with adjustable complexity levels. We employ synthetic datasets and realistic image
data that encapsulate the essential characteristics of multi-objective problems for evaluating the
optimization accuracy, generalization capability, conflict avoidance, and convergence performance of
our proposal SZMOD algorithm.

7.1 SYNTHETIC EXPERIMENT

In the following content, we explore the subtleties of the SZMOD algorithm’s efficacy across a
spectrum of hyperparameters, particularly emphasizing the trade-offs between optimization, general-
ization capabilities, and the mitigation of conflicting objectives. The synthetic experiments have been
meticulously crafted to emulate a multi-objective optimization context, which successfully evaluates
the influence exerted by diverse hyperparameters.

Strongly Convex Scenario: Inspired by (Chen et al., 2024), the following formulation is exploited
to generate the MOL examples, whose m-th objective function is

fz,m(x) =
1

2
b1,mx⊤Ax− b2,mz⊤x,

where b1,m > 0 for all m ∈ [M ], and b2,m is another scalar. We set M = 3, b1 = [b1,1; b1,2; b1,3] =
[1; 2; 1], and b2 = [b2,1; b2,2; b2,3] = [1; 3; 2]. Each experimental setting has been repeated ten times,
where the average results with standard deviation information are recorded in Figure 7.1. The detailed
experimental settings for nonconvex cases are left in Appendix A.

The number of iterations, T , plays a pivotal role in the convergence properties of the SZMOD
algorithm. As depicted in Figure 2a, we maintain α = 0.05 and γ = 0.001 while varying T . The
results indicate that an increase in T brings a decrease in both the optimization error and the distance
to the conflict-avoidant (CA) direction, aligning with our theoretical predictions in Theorem 1, 2. This
observation underscores the importance of sufficient training duration to achieve optimal solutions in
multi-objective landscapes.

The step size for model parameters, α, is another critical hyperparameter that influences the algo-
rithm’s ability to navigate the multi-objective space. In Figure 2b, we fix T = 500 and γ = 0.001
while adjusting α. The findings reveal an initial decrease in the optimization error as α increases,
while further enlarging α does not yield significant improvements. This non-linear relationship

8
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Figure 2: Optimization, generalization, and CA direction errors of SZMOD in the strongly convex
case under different T, α, γ. The default parameters are T = 500, α = 0.05, γ = 0.001, v = 0.0001.
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Figure 3: Optimization, generalization, and CA direction errors of SZMOD in the nonconvex case
for MNIST image classification under different T, α, γ. The default parameters are T = 500, α =
0.05, γ = 0.001, v = 0.0001.

between α and the optimization error highlights the need to carefully tune this hyperparameter to
balance rapid convergence and potential overshooting of optimal solutions.

The weight step size, γ, is a unique aspect of SZMOD, controlling the update pace of the weighting
parameters. In Figure 2c, with T = 500 and α = 0.05, one can observe that the increasing γ leads to
a decrease in the distance to the CA direction, suggesting that a more aggressive update of weights
can be beneficial for navigating conflicting objectives. However, too large γ might lead to instability
in convergence, indicating a delicate balance is required to harness the full potential of dynamic
weighting.

The synthetic experiments provide valuable insights into the role of hyperparameters in shaping the
trade-offs between optimization, generalization, and conflict avoidance in multi-objective learning.
By systematically varying T , α, and γ, we have demonstrated the nuanced interplay between these
parameters and their impact on the algorithm’s performance. These findings serve as a foundation for
developing more sophisticated hyperparameter tuning strategies and provide empirical evidence to
support theoretical analyses presented in prior sections. It is worth noting that, unlike the first-order
MODO algorithm, the trends of Ropt(γ) and are not always opposite. This is due to the error caused
by εca(γ), which is related to γ. When the trends are aligned, the graph of Ropt(γ) always shows
similar changes after changes occur in the graph of εca(γ). This is precisely due to error propagation,
which nicely validates our theory.

7.2 ATTACK EMPERIMENT ON CIFAR-10

Adversarial attacks trick machine learning models by adding carefully designed subtle perturbations
to inputs, leading to mispredictions. Black-box adversarial attacks occur when attackers can’t access a
model’s internals and must deduce its behavior from inputs and outputs. The Black-box attack method
is closer to real-world attack scenarios. Therefore, we consider a multi-objection adversarial attack.

9
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Table 1: Results for muti-objection black-box adverbial attacks
model Pixel ratio ASR L0_avg L2_avg AST_avg SSIM_avg
CNN 2% 0.99 0.019 357.87 13.98 0.9
CNN 5% 0.98 0.049 572.78 8.47 0.78
CNN 10% 0.98 0.097 746.87 7.18 0.65

VGG16 2% 0.99 0.02 25.92 2.46 0.92
VGG16 5% 0.98 0.049 40.23 3.52 0.82
VGG16 10% 1 0.097 477.15 2.3 0.64
Alexnet 2% 0.99 0.019 250.94 7.09 0.85
Alexnet 5% 1 0.049 394.19 7.75 0.71
Alexnet 10% 1 0.097 342.58 4.8 0.62

Densenet 2% 0.91 0.019 22.71 10.7 0.88
Densenet 5% 0.92 0.049 18.26 13.98 0.83
Densenet 10% 0.86 0.097 12.22 13.18 0.87
Res-net18 2% 0.99 0.019 6.81 11.69 0.95
Res-net18 5% 0.98 0.049 3.85 11.04 0.97
Res-net28 10% 0.98 0.097 4.96 18.86 0.95

Define the loss function L(x + δ). We aim to generate a δ that solves the following optimization
problem:

min
δ⃗

F (x+ δ⃗) s.t. ∥δ⃗∥0 ≤ ϵ, 0 ≤ x+ δ⃗ ≤ 1,

where F (x+ δ⃗) =
(
L(x+ δ⃗), ∥δ⃗∥2, ∥δ⃗∥0

)⊤
is the objective vector. δ⃗ is the universal perturbation

that we seek to optimize e use the pre-trained model on the CIFAR-10 dataset, we attacked five
classifiers: CNN, VGG16, AlexNet, DenseNet, and ResNet. Two types of attacks were implemented:
targeted and non-targeted attacks. In the targeted attack, the cross-entropy loss function was used to
misclassify the model into a specific target class, while the non-targeted attack employed margin loss
to force the model’s output to differ from the actual class. Additionally, the algorithm restricted per-
turbations to the discrete value set {−1, 1, 0}, which helped reduce the l2 norm and ensured sparsity,
enhancing both the effectiveness and stealth of the attack. Metrics to evaluate the performance of
attack methods include: Average Attack Success Rate (ASR_avg), which measures the average
success rate of misclassification due to adversarial attacks; Attack Success Rate (ASR), indicating the
proportion of successful misclassifications; l0 and l2 norms, where l0 counts the modified pixels and
l2 assesses perturbation magnitude; and Structural Similarity Index (SSIM), evaluating the similarity
between the adversarial example and the original image, with values closer to 1 indicating less
perceptible modifications.

We set M = 2, α = 0.1, γ = 0.001, v = 0.0001, the maximum number of attack attempts 1000,
and maximum modification per pixel 0.5. The corresponding results in Table 1 imply that the higher
accuracy of the model could bring better effectiveness of the attack, which aligns with the principles
of the zeroth-order multi-objective algorithm (the more accurate the loss, the more accurate the
gradient based on the loss). Moreover, our attack success rate is generally above 90 percent, further
demonstrating the advantages of our algorithm.

8 CONCLUSION

In this paper, we introduce the SZMOD algorithm, designed explicitly for black-box multi-objective
learning. Theoretically, we establish the statistical guarantees for optimization error, generalization
bound, and distance to conflict avoidance directions comparable to the relevant first-order method.
Furthermore, we discover that zeroth-order methods could bridge the above three evaluation criteria
of SZMOD. Experimentally, we validate SZMOD’s performance in terms of optimization accuracy,
generalization capability, and conflict avoidance. Additionally, we demonstrate the effectiveness of
our algorithm in practical black-box attack scenarios, as evidenced by high attack success rates and
low modification rates.
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