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Abstract
We compute a distance between tasks modeled as joint distributions on data and1

labels. We develop a stochastic process that transports the marginal on the data of2

the source task to that of the target task, and simultaneously updates the weights3

of a classifier initialized on the source task to track this evolving data distribution.4

The distance between two tasks is defined to be the shortest path on the Rieman-5

nian manifold of the conditional distribution of labels given data as the weights6

evolve. We derive connections of this distance with Rademacher complexity-based7

generalization bounds; distance between tasks computed using our method can8

be interpreted as the trajectory in weight space that keeps the generalization gap9

constant as the task distribution changes from the source to the target. Experiments10

on image classification datasets verify that this task distance helps predict the11

performance of transfer learning and shows consistency with fine-tuning results. 112

1 Introduction13

Figure 1: Coupled transfer of the data and the condi-
tional distribution. We solve an optimization problem
that transports the source data distribution ps(x) to the
target distribution pt(x) as ⌧ ! 1 while simultaneously
updating the model using samples from the interpolated
distribution p⌧ (x). Distance between source and target
tasks is defined to be the length of the optimal trajectory
of the weights under the Fisher Information Metric.

A part of the success of Deep Learning stems14

from the fact that deep networks learn features15

that are discriminative yet flexible. Models pre-16

trained on a task can be easily transferred to17

perform well on other tasks. There are also18

situations when transfer learning does not work.19

For instance, a pre-trained ImageNet model is20

a poor representation to transfer to images in21

radiology (Merkow et al., 2017). It stands to22

reason that if source and target tasks are “close”23

to each other then we should expect transfer24

learning to work well. We lack theoretical tools25

that define when two learning tasks are close26

to each other. We also lack algorithmic tools27

to robustly transfer models on new tasks, for28

instance, fine-tuning methods require careful29

design (Li et al., 2020) and it is unclear what30

one should do if they do not work.31

Our approach on these problems is based on32

the following two ideas: First, most algorithmic methods that devise a distance between tasks in33

the current literature, do not take into account the hypothesis space of the model. We argue that34

transferring the representation of a small model with limited capacity from a source task to a target35

task is difficult because there are fewer redundant features in the model. The distance between the36

same two tasks may be small if a high-capacity model is being transferred. A definition of task37

distance or an algorithm for instantiating this definition, therefore needs to take the capacity of the38

hypothesis class into account.39

Second, distance between tasks as measured using techniques in the current literature does not take40

into account the dynamics of learning; distances often depend on how the transfer was performed. For41

instance, if one considers the number of epochs of fine-tuning required to reach a certain accuracy, a42

different strategy may result in a different distance. A sound notion of distance between tasks should43

not depend on the specific dynamical process used of transfer.44

1See the Appendix for the longer version of the paper.



2 Theoretical setup45

Consider a dataset bps = {(xi, yi) ⇠ p
s}i=1,...,Ns

where xi 2 X, yi 2 Y denote input data and46

their ground-truth annotations respectively. Data are drawn from a distribution p
s supported on47

X ⇥ Y . Training a parameterized model, say a deep network, involves minimizing the cross-48

entropy loss `s(w) := � 1
Ns

PNs

i=1 log pw(yi|xi) using a sequence of weight updates dw(⌧)/d⌧ =49

�br`
s(w); w(0) = w

s; these are typically implemented using Stochastic Gradient Descent (SGD).50

The notation br`
s(w) indicates a stochastic estimate of the gradient. We will denote the marginal of51

the joint distributions on the input data as ps(x) and p
t(x) respectively.52

2.1 Fisher-Rao metric on the manifold of probability distributions53

Consider a manifold M = {pw(z) : w 2 Rp} of probability distributions. Information Geome-54

try (Amari, 2016) studies invariant geometrical structures on such manifolds. For two points w,w0 255

M , we can use the Kullback-Leibler (KL) divergence KL [pw, pw0 ] =
R

dpw(z) log (pw(z)/pw0(z)) ,56

to obtain a Riemannian structure on M . Such a structure allows the infinitesimal distance ds on the57

manifold to be written as58

ds2 = 2KL [pw, pw+dw] =
pX

i,j=1

gij dwidwj (1)

gij(w) =

Z
dpw(z) (@wi log pw(z))

�
@wj log pw(z)

�
(2)

where the Fisher Information Matrix (FIM) (gij) is positive-definite. Given a continuously differ-59

entiable curve {w(⌧)}⌧2[0,1] on the manifold M we can compute its length by integrating the in-60

finitesimal distance |ds| along it. The shortest length curve(geodesic) between two points w,w0 2 M61

induces a metric on M known as the Fisher-Rao distance (Rao, 1945)62

dFR(w,w
0) = min

w: w(0)=w,w(1)=w0

Z 1

0

p
hẇ(⌧), g(w(⌧))ẇ(⌧)id⌧ ; (3)

We will only parametrize the conditional, i.e., we write p
s
w(x, y) := p

s(x) pw(y|x). The marginal63

on input is not parameterized. This is a simplifying assumption and allows us to decouple the64

data distribution from the conditional. Notice that we do not need to compute the FIM but given a65

trajectory of weights {w(⌧)}⌧2[0,1] we can compute its length directly by averaging the square root66

of the KL-divergence between the conditional distributions of labels given data.67

2.2 Transporting the data distribution68

We would like to modify the empirical input distribution from bps(x) source to bpt(x) target, that69

consist of finite samples Ns and Nt respectively. We will use tools from optimal transportation (OT)70

for this purpose and the optimal coupling is71

�⇤ = argmin
�2⇧(bps,bpt)

{h�, Ci � ✏H(�)} (4)

where ⇧(bps, bpt) =
n
� 2 RNs⇥Nt

+ : � Ns = bps,�>
Nt = bpt

o
and Cij = kxs

i � x
t
jk22 is the pair-72

wise transportation cost between the source and target data. McCann’s interpolation Santambrogio73

(2015) can be written explicitly as the distribution74

p⌧ (x, y) =
NsX

i=1

NtX

j=1

�⇤
ij �(1�⌧)xi+⌧x0

j
(x) �(1�⌧)yi+⌧y0

j
(y). (5)

In practice, we compute the cost Cij using a feature generate (a large neural network trained on some75

some arbitrary task) and implement the peculiar convex combination of the input data in (5) using76

Mixup (Zhang et al., 2017).77
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3 Methods78

For a coupling matrix �, the interpolated distribution corresponding to the transportation cost is given79

by (5). Observe that since � 2 RNs⇥Nt , the (ij)th entry of this matrix indicates the interpolation of80

source input xs
i 2 bps with that of target input xt

j 2 bpt. The distance between two tasks is now be81

computed for the two datasets bps and bpt iteratively as follows. Given an initialization �0 computed82

using some feature extractor output similarities, we perform the following updates at each iteration.83

�k+1 = argmin
�2⇧

�⌦
�, Ck

↵
� ✏H(�)� �

�1
⌦
�,�k

↵ 
, (6a)

C
k
ij =

Z 1

0

r
2KL

h
pwk

⌧
(·|x⌧

ij), pwk
⌧+d⌧

(·|x⌧
ij)
i
, (6b)

dwk+1
⌧

d⌧
= brw

⇢
E

(x,y)⇠p⌧

h
log pwk+1

⌧
(y|x)

i�
, (6c)

p⌧ (x, y) =
NsX

i=1

NtX

j=1

�k
ij �(1�⌧)xs

i+⌧xt
j
(x) �(1�⌧)ys

i+⌧yt
j
(y). (6d)

At each iteration, the matrix of costs Ck
ij is used to store the cost of transporting the input xs

i to x
t
j84

along the weight trajectory
�
w

k
⌧

 
⌧2[0,1]

obtained in (6c); all trajectories are initialized at wk(0) = w
s.85

Observe that the transport cost has the length of the trajectory in weight space (the integral in (3))86

incorporated into it. This is our current candidate for the OT cost matrix, similar to one in (4). Given87

these costs, we can compute the new coupling matrix �k+1 using (6a) which is in turn used in the88

next iteration to compute the interpolated distribution p⌧ via (6d). Computing the task distance is89

a non-convex optimization problem and we therefore include a proximal term in (6a) to keep the90

coupling matrix and trajectory of weights close to the one in the previous step. The task distance91

computed in (6) is asymmetric.92

Remark 1 (Fisher-Rao distance can be compared across different architectures). The length of93

the shortest path between two points on the manifold of distributions pw(y|x), namely the Fisher-Rao94

distance, does not depend on the number of parameters of the neural architecture. This enables a95

desirable property: for the same two tasks, task distance using our approach is numerically comparable96

across different architectures.97

4 Experimental evidence98

We use the CIFAR-10, CIFAR-100 datasets and thier subsets for our experiments. We show re-99

sults using an 8-layer convolutional neural network along with a larger wide-residual-network-16-100

4 (Zagoruyko and Komodakis, 2016). The first baseline is Task2Vec (Achille et al., 2019); the second101

baseline (fine-tuning) directly computes the length of the trajectory in the weight space, i.e.,
R
|dw|,102

the trajectory is truncated when validation accuracy on the target task is 95% of its final validation103

accuracy; the third baseline (uncoupled transfer) uses a mixture of the source and target data, where104

the interpolating parameter is sampled from Beta(⌧, 1� ⌧) Length of the trajectory is computed using105

the FIM metric.106
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Figure 2: Fig. 2a shows distances computed using coupled transfer
process, Fig. 2b using Task2Vec while Fig. 2c shows distance using
fine-tuning. Numerical values of the distances are not comparable
with each other. Coupled transfer distances satisfy certain sanity
checks, e.g., transferring to a subset task is easier than transferring
from a subset task (CIFAR-10-vehicles/animals).

Transferring between CIFAR-10107

and CIFAR-100. We consider four108

tasks (i) all vehicles in CIFAR-10, (ii)109

the remainder, namely six animals in110

CIFAR-10, (iii) the entire CIFAR-10111

dataset and (iv) the entire CIFAR-100112

dataset. We show results in Fig. 2 us-113

ing 4⇥4 distance matrices where num-114

bers in each cell indicate the distance115

between the source(row) and the tar-116

get(column) tasks.117

Coupled transfer shows similar trends118

as fine-tuning, e.g., the tasks animals119

and vehicles-CIFAR-10 are close to120
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each other while CIFAR-100 is far121

away. Task distance is asymmetric in Fig. 2a, Fig. 2c. Task2Vec distance estimates in Fig. 2b are122

qualitatively quite different from these two; the distance matrix is symmetric. Also, while fine-tuning123

from animals-vehicles is relatively easy, Task2Vec estimates the distance between them to be the124

largest.125

Transferring among subsets of CIFAR-100. We construct five tasks (herbivores, carnivores,126

vehicles-1, vehicles-2 and flowers) that are subsets of the CIFAR-100 dataset. Each of these tasks127

consists of 5 sub-classes. The distance matrices for coupled transfer, Task2Vec and fine-tuning are128

shown in Fig. 3a, Fig. 3b and Fig. 3c respectively. We also show results using uncoupled transfer129

in Fig. 3d.130
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Figure 3: Fig. 3a shows distance for coupled transfer, Fig. 3b shows distance for Task2Vec, Fig. 3c shows
distance for fine-tuning and Fig. 3d shows distance for uncoupled transfer. Numerical values the first and the last
sub-plot can be compared directly. Coupled transfer broadly agrees with fine-tuning except for carnivores-flowers
and herbivores-vehicles-1. For all tasks, uncoupled transfer overestimates the distances compared to Fig. 3a.
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Figure 4: Fig. 4a shows the task distance using coupled
transfer and Fig. 4b show the fine-tuning task distance.
The numbers in Fig. 4a can be directly compared to
those in Fig. 3a. The larger WRN-16-4 model predicts
a smaller task distance for all pairs compared to the
smaller convolutional network in Fig. 3a.

Coupled transfer estimates that all these sub-131

sets of CIFAR-100 are roughly equally far away132

from each other with herbivores-carnivores be-133

ing the farthest apart while vehicles-1-vehicles-2134

being closest. This ordering is consistent with135

the fine-tuning distance although fine-tuning re-136

sults in an extremely large value for carnivores-137

flowers and vehicles-1-herbivores. This order-138

ing is mildly inconsistent with the distances139

reported by Task2Vec in Fig. 3b the distance140

for vehicles-1-vehicles-2 is the highest here.141

Broadly, Task2Vec also results in a distance ma-142

trix that suggests that all tasks are equally far143

away from each other. Recall that distances for144

uncoupled transfer in Fig. 3d can be compared145

directly to those in Fig. 3a for coupled transfer.146

Task distances for the former are always larger. This demonstrates the utility of solving a coupled147

optimization problem in (6) which finds a shorter trajectory on the statistical manifold.148

Larger capacity results in smaller task distance. Task distances for coupled transfer in Fig. 4a are149

consistent with those for fine-tuning in Fig. 4b. Coupled transfer distances in Fig. 4a are much smaller150

compared to those in Fig. 3a. This experiment also demonstrates that the information-geometric151

distance computed by coupled transfer can be compared directly across different architectures; this is152

not so for most methods in the literature to compute distances between tasks. This gives a constructive153

strategy for selecting architectures for transfer learning.154

5 Discussion155

Our work is an attempt to theoretically understand when transfer is easy and when it is not. An often156

over-looked idea in large-scale transfer learning is that the dataset need not remain fixed to the target157

task during transfer. We heavily exploit this idea in the present paper and develop an optimization158

framework to adapt both the input data distribution and the weights from the source to the target.159

Although a metric is never unique, this gives legitimacy to our task distance. We compute the shortest160

distance in information space, i.e., the manifold of the conditional distributions. It is remarkable that161

this concept is closely related to the intuitive idea that a good transfer algorithm is one that keeps the162

generalization gap small during transfer, in particular at the end on the target task.163
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Abstract

This paper computes a distance between tasks
modeled as joint distributions on data and labels.
We develop a stochastic process that transports
the marginal on the data of the source task to that
of the target task, and simultaneously updates the
weights of a classifier initialized on the source
task to track this evolving data distribution. The
distance between two tasks is defined to be the
shortest path on the Riemannian manifold of the
conditional distribution of labels given data as the
weights evolve. We derive connections of this dis-
tance with Rademacher complexity-based general-
ization bounds; distance between tasks computed
using our method can be interpreted as the trajec-
tory in weight space that keeps the generalization
gap constant as the task distribution changes from
the source to the target. Experiments on image
classification datasets show that this task distance
helps predict the performance of transfer learning:
fine-tuning techniques have an easier time trans-
ferring to tasks that are close to each other under
our distance.

1 Introduction

A part of the success of Deep Learning stems from the
fact that deep networks learn features that are discrimina-
tive yet flexible. Models pre-trained on a task can be eas-
ily adapted to perform well on other tasks. The transfer
learning literature forms an umbrella for such adaptation
techniques. Transfer learning indeed works very well, see
for instance Mahajan et al. (2018); Dhillon et al. (2020);
Kolesnikov et al. (2019); Joulin et al. (2016) for image
classification or Devlin et al. (2018) for language model-
ing, to name a few of the many large-scale demonstrations.
There are however also situations when transfer learning
does not work well. For instance, a pre-trained ImageNet
model is a poor representation to transfer to images in radi-
ology (Merkow et al., 2017).

Figure 1: Coupled transfer of the data and the conditional dis-
tribution. We solve an optimization problem that transports the
source data distribution ps(x) to the target distribution pt(x) as
⌧ ! 1 while simultaneously updating the model using samples
from the interpolated distribution p⌧ (x). This modifies the condi-
tional distribution pws(y|x) on the source task to the correspond-
ing distribution on the target task pwt(y|x). Distance between
source and target tasks is defined to be the length of the optimal
trajectory of the weights under the Fisher Information Metric.

It stands to reason that if source and target tasks are “close”
to each other then we should expect transfer learning to
work well; it may be difficult to transfer across tasks that
are “far away”. We lack theoretical tools that define when
two learning tasks are close to each other; while there are
numerous candidates in the current literature a unified under-
standing of these domain-specific methods remains elusive.
We also lack algorithmic tools to robustly transfer models on
new tasks, for instance, fine-tuning methods require careful
design (Li et al., 2020) and it is unclear what one should do
if they do not work well. Our approach on this problem is
based on the following two ideas.

Main ideas First, most algorithmic methods that devise
a distance between tasks in the current literature, do not
take into account the hypothesis space of the model. We
argue that transferring the representation of a small model
with limited capacity from a source task to a target task is
difficult because there are fewer redundant features in the
model. The distance between the same two tasks may be
small if a high-capacity model is being transferred; this is
especially pertinent when transferring deep networks. A
definition of task distance or an algorithm for instantiating
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this definition, therefore needs to take the capacity of the
hypothesis class into account.
Second, distance between tasks as measured using tech-
niques in the current literature does not take into account the
dynamics of learning; distances often depend on how the
transfer was performed. For instance, if one considers the
number of epochs of fine-tuning required to reach a certain
accuracy, a different strategy may result in a different dis-
tance. A sound notion of distance between tasks should not
depend on the specific dynamical process used of transfer.

Summary of contributions Given data x and labels y,
we model the source and target tasks as joint distributions
p
s(x, y) and p

t(x, y) respectively where

p
s(x, y) = p

s
ws(y|x) ps(x);

here w
s are the parameters (weights) of a classifier on

the source task. The target task is decomposed analo-
gously. We define the distance between finite-sample
datasets bps = {(xi, yi) ⇠ p

s
}
Ns

i=1 drawn from tasks (with
bpt defined analogously) as the solution of the optimization
problem

min
�2⇧

Z 1

0
E

(x,y)⇠p⌧ (x,y)

q
2KL

�
pw⌧ (·|x), pw⌧+d⌧ (·|x)

��

subject to
dw⌧

d⌧
= brw

⇢
E

(x,y)⇠p⌧

[log pw⌧ (y|x)]

�
;

(1)

where

p⌧ (x, y) =
NsX

i=1

NtX

j=1

�ij �{(1�⌧)xs
i+⌧xt

j}
�
{(1�⌧)ys

i+⌧yt
j}
,

⇧ =
n
� 2 RNs⇥Nt

+ : � = bps, �> = bpt
o
.

(2)

The square root of the KL-divergence measures the infinites-
imal distance traveled along a geodesic on the manifold
of probability distributions pw⌧ (y|x). Distance as defined
in (1) and (2) is the path length on this manifold. Weights
w(⌧) evolve from their initial value ws using stochastic gra-
dient descent-based updates in (1) while the interpolated
data distributed p⌧ to which weights are being fitted to
evolves simultaneously from its initial value p

s to its final
value p

t using the linear coupling matrix �.
The distance in (1) is the Fisher-Rao distance on the mani-
fold of distributions pw(y|x). We use this to draw a link to
Rademacher complexity-based generalization bounds which
gives an intuitive understanding of the trajectory of weights
computed in (1). We show that our approach modifies the
task’s data distribution and weights so as to to minimize the
average generalization gap along the trajectory that joins
the weights on the source task w

s to their terminal value on
the target task w(1).
We devise an algorithmic procedure to solve the opti-
mization problem in (1) and (2) for image classifica-
tion tasks that are subsets of CIFAR-10 and CIFAR-100

datasets (Krizhevsky and Hinton, 2009). We show in Sec. 4
that the coupled transfer process estimates distances that
are more consistent with the difficulty of fine-tuning, as
compared to baselines.

2 Theoretical setup

Consider a dataset bps = {(xi, yi) ⇠ p
s
}i=1,...,Ns

where
xi 2 X, yi 2 Y denote input data and their ground-truth
annotations respectively. Data are drawn from a distribution
p
s supported on X ⇥ Y . Training a parameterized model,

say a deep network, involves minimizing the cross-entropy
loss `

s(w) := �
1
Ns

PNs

i=1 log pw(yi|xi) using a sequence
of weight updates

dw(⌧)/d⌧ = �br`
s(w); w(0) = w

s; (3)

these are typically implemented using Stochastic Gradient
Descent (SGD). The notation br`

s(w) indicates a stochastic
estimate of the gradient using a subset of the data.
We will denote the marginal of the joint distributions on the
input data as ps(x) and p

t(x) respectively.

2.1 Low-capacity models are difficult to transfer

The Information Bottleneck (IB) Principle (Tishby et al.,
2000) abstracts a parametric classifier as a Markov chain
x ! z ! y where z is called the representation. The
main idea behind IB is to learn sufficient and minimal rep-
resentations that discard information in the data that are
not relevant to predicting labels (Shwartz-Ziv and Tishby,
2017). Gao and Chaudhari (2020) build upon this idea to
design a Lagrangian to study transfer learning

Fps(�, �) = min
e(z|x),d(x|z),c(y|z)

{R+ �D + �C} . (4)

Here e(z|x) is an encoder that constructs the representation
z, c(y|z) predicts the labels and d(x|z) is the decoder mea-
sures the trade-off between redundant features that give a
lossless representation of the data and discriminative fea-
tures for the classifier. The quantities R,D and C are the
rate of the encoder, distortion of the decoder and the classi-
fication loss respectively (see ?? for more details).
The situation with a low-capacity model (encoder and clas-
sifier) can be modeled as follows. If source and target task
are similar then transfer is easy because features of the
encoder trained on source are also good for the target. If
the tasks are dissimilar, observe that KKT conditions give
dFps = �dR� �dD � �dC. A low-capacity model needs
a large � to achieve the same classification loss C which
according to the KKT condition leads to larger value of
the D (for fixed �). This indicates that the model does not
learn redundant features that may be potentially useful on a
dissimilar target task. This is not the case for a model with
large capacity where (4) learns both redundant and discrim-
inative features, without being forced to make a trade-off
between them.
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2.2 Fisher-Rao metric on the manifold of probability
distributions

Consider a manifold M = {pw(z) : w 2 Rp
} of probability

distributions. Information Geometry (Amari, 2016) studies
invariant geometrical structures on such manifolds. For two
points w,w0

2 M , we can use the Kullback-Leibler (KL)
divergence KL [pw, pw0 ] =

R
dpw(z) log (pw(z)/pw0(z)) ,

to obtain a Riemannian structure on M . Such a structure
allows the infinitesimal distance ds on the manifold to be
written as

ds2 = 2KL [pw, pw+dw] =
pX

i,j=1

gij dwidwj (5)

where the Fisher Information Matrix (FIM) (gij) with each

gij(w) =

Z
dpw(z) (@wi log pw(z))

�
@wj log pw(z)

�
(6)

is positive-definite. The weights w play the role of a co-
ordinate system for computing the distance. The FIM is
the Hessian of the KL-divergence; we may think of the
FIM as quantifying the amount of information present in
the model about the data it was trained on. The FIM is
the unique metric on M (up to scaling) that is preserved
under diffeomorphisms (Bauer et al., 2016). This property
motivated Liang et al. (2019) to define a geometric notion
of model complexity called the Fisher-Rao norm as

kwk
2
fr = hw, g wi . (7)

This will be discussed further in Sec. 3.3.
Given a continuously differentiable curve {w(⌧)}⌧2[0,1] on
the manifold M we can compute its length by integrating
the infinitesimal distance |ds| along it. The shortest length
curve between two points w,w0

2 M induces a metric on
M known as the Fisher-Rao distance (Rao, 1945)

dFR(w,w
0) = min

w: w(0)=w
w(1)=w0

Z 1

0

p
hẇ(⌧), g(w(⌧))ẇ(⌧)id⌧ ; (8)

Let us note that shortest paths on a Riemannian manifold
are geodesics, i.e., they are locally “straight lines”.
Assumption 1 (Fisher-Rao distance is computed only
for the conditional distribution). Although we are inter-
ested in the manifold of joint distributions we will only
parametrize the conditional, i.e., we write

p
s
w(x, y) := p

s(x) pw(y|x). (9)

The marginal on input is not parameterized. This is a simpli-
fying assumption and allows us to decouple the data distri-
bution from the conditional; we can tackle the former using
techniques in optimal transport and the latter using tech-
niques in information geometry. Parameterizing the joint
distribution directly and using a unified approach to com-
pute the task distance is possible but will require generative
modeling of ps(x) which is computationally challenging.

Under Assumption 1, the FIM in (6) can be written as

gij(w) = E
x⇠ps(x), y⇠pw(y|x)

⇥
@wi log pw(y|x) @wj log pw(y|x)

⇤
.

The FIM is difficult to compute for large models and approx-
imations often work poorly (Kunstner et al., 2019). Notice
that we do not need to compute the FIM but only need to
compute the distance |ds|. Given a trajectory of weights
{w(⌧)}⌧2[0,1] we can compute its length directly by aver-
aging the square root of the KL-divergence between the
conditional distributions of labels given data.

2.3 Transporting the data distribution

We next focus on the marginals on the input data. We would
like to modify the input distribution from p

s(x) to p
t(x)

during transfer. We will use tools from optimal transporta-
tion (OT) for this purpose; see Santambrogio (2015); Peyré
and Cuturi (2019) for an elaborate introduction to OT.
Let ⇧(ps, pt) be the set of joint distributions with first
marginal equal to p

s(x) and second marginal pt(x0). The
Kantorovich relaxation of the OT problem solves for

W
2
2 (p

s
, p

t) = inf

⇢Z
kx� x

0
k
2 d� : � 2 ⇧(ps, pt)

�

to compute the best joint coupling �
⇤
2 ⇧. The solution of

this problem is the Wasserstein metric W2(ps, pt) between
the two distributions. In this paper, we are interested, not
in the Wasserstein metric, but the transport trajectory that
the optimal coupling �

⇤ entails. This is the subject of dis-
placement interpolation (McCann, 1997): it turns out that
the geodesic that joins ps and p

t is a locally distance mini-
mizing curve in the W2 metric. If p⌧ is the distribution at
an intermediate step ⌧ 2 [0, 1], we have

W2(p
s
, p⌧ ) = ⌧W2(p

s
, p

t).

The path that the optimal coupling �
⇤ takes is therefore a

constant-speed geodesic.
We are interested in instantiating this idea for source and
target input datasets (we denote these by bps(x) and bpt(x))
that consist of finite samples Ns and Nt respectively. The
development is more convenient in this case and the set of
transport plans is a (convex) polytope

⇧(bps, bpt) =
n
� 2 RNs⇥Nt

+ : � Ns = bps,�>
Nt = bpt

o
(10)

and the optimal coupling is given by

�⇤ = argmin
�2⇧(bps,bpt)

{h�, Ci � ✏H(�)} (11)

where Cij = kxi � x
0
jk

2
2 is the matrix of pairwise distances

between the source and target data. The inner product in
the first term measures the total cost

P
ij �ijCij incurred

for the transport and minimizing it directly is typically done
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using interior point methods. This can be accelerated using
an entropic penalty H(�) = �

P
ij �ij log�ij popularized

by Cuturi (2013). McCann’s interpolation for the finite-
dimensional case with the quadratic loss Cij can be written
explicitly as the distribution

p⌧ (x) =
NsX

i=1

NtX

j=1

�⇤
ij �(1�⌧)xi+⌧x0

j
(x). (12)

Notice that this is a sum of Dirac-delta distributions sup-
ported at interpolated input data x = (1� ⌧)xi + ⌧x

0
j . We

can also create pseudo labels for samples from p⌧ by a lin-
ear interpolation of the one-hot encoding of their respective
labels to get

p⌧ (x, y) =
NsX

i=1

NtX

j=1

�⇤
ij �(1�⌧)xi+⌧x0

j
(x) �(1�⌧)yi+⌧y0

j
(y).

(13)

Modifications to the interpolated distribution We next
make two practically motivated modifications to the inter-
polated distribution p⌧ (x, y).
First, the quadratic distance Cij = kxi � x

0
jk

2 is not a
reasonable notion of visual/text data that have strong local
correlations. It is therefore beneficial to compute Cij using
a feature extractor, say a large neural network ', that is
trained on some generic task

Cij := k'(xi)� '(x0
j)k

2
2. (14)

This gives us a good coupling matrix � in practice because
the feature space '(x) is much more Euclidean-like than
the original input space; similar ideas are often employed
in the metric learning literature (Snell et al., 2017; Hu et al.,
2015; Qi et al., 2018).
Second, the peculiar form of the interpolating distribution
in (13) that consists of convex combinations of inputs and la-
bels is the result of the quadratic cost. Samples from such an
interpolated distribution will have visual artifacts for image-
based data. In practice, we treat the time ⌧ as parameter of a
Beta-distribution Beta(⌧, 1� ⌧). Thereby samples from p⌧

are similar to those created in Mixup regularization Zhang
et al. (2017); a fraction ⌧ of the samples are similar to those
from p

s and the remainder are similar to those from p
t. Note

that which data is used to form the Mixup combinations is
still governed by the coupling matrix �⇤. We use this trick
for both inputs and labels in our experiments.

3 Methods

We now combine the development of Sec. 2.2–2.3 to trans-
port the marginal on the data and modify the weights on
the statistical manifold. This section also discusses tech-
niques to efficiently implement the approach and make it
scalable to large deep networks. Sec. 3.3 discusses an al-
ternate perspective on this coupled transfer process using

the connection between Rademacher complexity and the
Fisher-Rao norm.

3.1 Interpolating tasks using a mixture distribution

Interpolating the source and target tasks using a mixture
distribution is a simple way to demonstrate the main idea of
our approach. For ⌧ 2 [0, 1], consider

p⌧ (x, y) = (1� ⌧)ps(x, y) + ⌧p
t(x, y). (15)

This amounts to, on average, 1� ⌧ fraction of samples from
bps and the rest from bpt. At time instant ⌧ , weights of the
classifier are updated using SGD to fit samples from p⌧ . We
write this as

dw⌧/d⌧ = brw E
(x,y)⇠p⌧

[log pw⌧ (y|x)] ; w(0) = w
s (16)

Weights w⌧ can be thought of as fitted to the task p⌧ for
every ⌧ , in particular for ⌧ = 1, the weights w(1) is fitted
to p

t. We can now integrate the length of the trajectory
using (8) to compute the distance between tasks.
Changes in the data distribution and updates to the weights
are not synchronized in this approach. For instance, changes
in the data may be unfavorable to the current weights and
this forces a different trajectory in the weight space as
the weights struggle to track p⌧ . If changes in data were
synchronized with those in weights, the weight trajectory
would be different and necessarily shorter because the KL-
divergence in (5) is large if the conditional distribution
changes quickly; our experimental results also corroborate
this.

3.2 Modifying the task and weights simultaneously

We now reintroduce the transport process for the data distri-
bution. For a coupling matrix �, the interpolated distribution
corresponding to the squared Euclidean cost in OT is given
by (13). Observe that since � 2 RNs⇥Nt , the (ij)th entry
of this matrix indicates the interpolation of source input
x
s
i 2 bps with that of target input xt

j 2 bpt. The distance
between two tasks as defined in (1) and (2) can now be
computed for the two datasets bps and bpt iteratively as fol-
lows. Given an initialization �0 computed using a feature
extractor in (14), we perform the following updates at each
iteration.

�k+1 = argmin
�2⇧

�⌦
�, Ck

↵
� ✏H(�)� �

�1
⌦
�,�k

↵ 
, (17a)

C
k
ij =

Z 1

0

r
2KL

h
pwk

⌧
(·|x⌧

ij), pwk
⌧+d⌧

(·|x⌧
ij)
i
, (17b)

dwk+1
⌧

d⌧
= brw

⇢
E

(x,y)⇠p⌧

h
log pwk+1

⌧
(y|x)

i�
, (17c)

p⌧ (x, y) =
NsX

i=1

NtX

j=1

�k
ij �(1�⌧)xs

i+⌧xt
j
(x) �(1�⌧)ys

i+⌧yt
j
(y). (17d)

At each iteration, the matrix of costs Ck
ij is used to store

the cost of transporting the input xs
i to x

t
j along the weight
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trajectory
�
w

k
⌧

 
⌧2[0,1]

obtained in (17c); all trajectories are
initialized at wk(0) = w

s. Observe that the transport cost
has the length of the trajectory in weight space (the integral
in (8)) incorporated into it. This is our current candidate for
the OT cost matrix, similar to one in (11). Given these costs,
we can compute the new coupling matrix �k+1 using (17a)
which is in turn used in the next iteration to compute the
interpolated distribution p⌧ via (17d). Computing the task
distance is a non-convex optimization problem and we there-
fore include a proximal term in (17a) to keep the coupling
matrix close to the one in the previous step �k. This has
the added effect of keeping the entire trajectory of weights�
w

k+1
⌧

 
⌧2[0,1]

close to the trajectory in the previous iter-
ation. Proximal point iteration (Bauschke and Combettes,
2017) is insensitive to the step-size � and it is therefore
beneficial to employ it in these updates.
Let us note that the task distance computed in (17) is asym-
metric, the length of the trajectory for transferring from bps
to bpt is different from the one that transfers from bpt to bps.

Remark 2 (Fisher-Rao distance can be compared across
different architectures). The length of the shortest path be-
tween two points on the manifold of distributions pw(y|x),
namely the Fisher-Rao distance, does not depend on the
embedding dimension of the manifold M . More specifi-
cally, the distance between tasks as computed by this length
does not depend on the number of parameters of the neu-
ral architecture, it only depends upon the capacity to fit
the conditional distribution pw(y|x). This enables a desir-
able property: for the same two tasks, task distance using
our approach is numerically comparable across different
architectures.

Remark 3 (Scaling up the computation). The formula-
tion in (17) updates � 2 RNs⇥Nt and w⌧ 2 Rp. Execut-
ing the updates, even for large deep networks and standard
datasets is easy for the weights. The coupling matrix � has a
large number of entries and it is therefore challenging. Some
common approaches to handling large-scale OT problems
are hierarchical methods (Lee et al., 2019), and greedy com-
putation (Carlier et al., 2010). In practice, we initialize (17a)
with a block-diagonal approximation of the coupling matrix
using (14) as the costs and perform mini-batch updates on
the non-zero entries of �. At each iteration, we sample from
the interpolated distribution (17d) using only entries of �k

that are a part of the mini-batch. Experiments in Sec. 4 show
that the weight trajectory converges under such mini-batch
updates of �k.

3.3 An alternative perspective via Rademacher
complexity

We next study how the trajectory given by the formulation
of (17) looks under the lens of learning theory. We show
that we can interpret the solution of coupled transfer as a
trajectory that minimizes the integral of the generalization
gap as the task and the weights are modified. This gives us

an intuitive understanding of what qualifies as good transfer;
indeed weight trajectories that do not lead to degradation of
the generalization gap result in weights on the target task
w

t that also generalize well.
We introduce a few quantities before giving the main result.
We consider binary classification in this section for clar-
ity. Given a w 2 A, we define the empirical Rademacher
complexity (Bartlett and Mendelson, 2001) as

bRN (A) = E
�

"
sup
w2A

1

N

NX

i=1

✏
i
`(w;xi

, y
i)

#
, (18)

where �
i are independent and uniformly distributed on

{�1, 1} and `(w;xi
, y

i) is the loss on the i
th datum of a

dataset bp with N samples. We will choose the set A to be
the r-ball in the Fisher-Rao norm

A := {w : kwkfr  r} ,

and write the corresponding complexity as R̂N (r). The
Rademacher complexity is the expectation of the empirical
complexity over draws of different datasets

RN (r) = E
bp⇠p

h
bRN (r)

i
.

The classical Rademacher complexity-based generalization
bound characterizes the ability of binary classifiers h in a
hypothesis class h 2 H to fit random noise. We have that
for all h 2 H the absolute value of the generalization error
and the training error is upper bounded by

R2N (H) + 2

r
log(1/�)

N
(19)

with probability at least 1� �. We build upon this to obtain
the following theorem.

Theorem 4. Given a trajectory of the weights {w⌧}⌧2[0,1]
and a sequence 0  ⌧1 < ⌧2 < ... < ⌧K  1, then for all
✏ >

2
K

PK
k=1 RN (kwtkkfr), the probability that

1

K

KX

k=1

0

@ E
(x,y)⇠p⌧k

[`(!⌧k , x, y)]�
1

N

X

(x,y)⇠p̂⌧k

`(!⌧k , x, y)

1

A

is greater than ✏ is upper bounded by

exp

8
<

:�
2K

M2

 
✏�

2

K

KX

k=1

RN (kwtkkfr)

!2
9
=

; . (20)

The proof is provided in ??. In other words, ensuring that the
generalization gap of the model is small during transfer can
be achieved by ensuring that the Rademacher complexity
RN (kw⌧kfr) is small at all times during transfer.
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Specializing the result for multi-layer linear models.
Characterizing the Rademacher complexity of the r-ball
in Fisher-Rao norm is difficult. However, for multi-layer
linear classifiers with input domain X ⇢ Rp, Liang et al.
(2019) showed that

RN (r)  r

r
p

N

assuming the data covariance matrix Ex⇠p[x>
x] is full-

rank. For such a model, minimizing the integral of the
Rademacher complexity is achieved by minimizing

Z 1

0

p
hw⌧ , g(w⌧ )w⌧ i d⌧ ; (21)

which is an upper-bound on the Fisher-Rao distance of the
trajectory between pws and pwt . The optimization problem
in (17) finds the latter and we have thus obtained a close
connection between the coupled transfer process and the
intuitive idea that as the model is transferred, keeping the
generalization gap small at all instants of the trajectory
would lead to a good generalization gap on the target dataset.
As the authors in Liang et al. (2019) discuss further,
the Fisher-Rao norm ball is an envelope of popular
norms such as spectral norm (Bartlett et al., 2017), group
norm (Neyshabur et al., 2015b) and path norm (Neyshabur
et al., 2015a) introduced to characterize the complexity of
deep neural networks. The Rademacher complexity using
these other norms can therefore be upper-bounded in terms
of the Fisher-Rao norm, which leads to a similar conclusion
for non-linear models.

4 Experimental evidence

This section discusses experiments on image classification
datasets which demonstrate that the distance computed using
our methods is consistent with the difficulty of fine-tuning
from the source dataset to the target dataset. We compare
and contrast our distance estimtes with existing methods,
discuss how the optimization problem in (17) converges to
its solution across iterations and show that larger models are
easier to transfer between tasks.

4.1 Setup

We use the CIFAR-10, CIFAR-100 datasets for our experi-
ments. Source and target tasks consist of subsets of these
datasets, each task with one or more of the original classes
inside it. We show results using an 8-layer convolutional
neural network with ReLU nonlinearities, dropout, batch-
normalization with a final fully-connected layer along with
a larger wide-residual-network (WRN-16-4, (Zagoruyko
and Komodakis, 2016)). More details of pre-processing,
architecture and training procedure are provided in ??.

Baselines The first baseline is Task2Vec (Achille et al.,
2019a) which embeds tasks using the diagonal of the FIM

of a model trained on them individually; cosine distance
between these vectors is defined as the distance. We com-
pute the robust approximation of the FIM via Monte Carlo
updates as done by the original authors.
The second baseline (fine-tuning) directly computes the
length of the trajectory in the weight space, i.e.,

R
|dw|.

The trajectory is truncated when validation accuracy on the
target task is 95% of its final validation accuracy. Note
that no adaptation of input data is performed and the model
directly takes SGD updates on the target task after being pre-
trained on the source task. The learning rate for each model
was tuned across all datasets to ensure that the validation
accuracy on the target dataset is good and fixed thenceforth
for all experiments. The number of epochs required for
fine-tuning is a popular way to measure distance between
tasks (Kornblith et al., 2019).
The third baseline (uncoupled transfer) uses a mixture of the
source and target data, where the interpolating parameter
is sampled from Beta(⌧, 1 � ⌧) (see Sec. 3.1) in order to
be consistent with the way we implement coupled transfer
and avoid visual artifacts in the input data. Length of the
trajectory is computed using the FIM metric in this case,
which enables direct comparison of the task distances for
coupled and uncoupled transfer.

4.2 Transferring between CIFAR-10 and CIFAR-100

We consider four tasks (i) all vehicles (airplane, automobile,
ship, truck) in CIFAR-10, (ii) the remainder, namely six
animals in CIFAR-10, (iii) the entire CIFAR-10 dataset and
(iv) the entire CIFAR-100 dataset. We show results in Fig. 2
using 4⇥4 distance matrices where numbers in each cell
indicate the distance between the source task (row) and the
target task (column).
Coupled transfer shows similar trends as fine-tuning, e.g.,
the tasks animals-CIFAR-10 or vehicles-CIFAR-10 are close
to each other while CIFAR-100 is far away from all tasks (it
is closer to CIFAR-10 than others). Task distance is asym-
metric in Fig. 2a, Fig. 2c. Distance from CIFAR-10-animals
is smaller than animals-CIFAR-10; this is expected because
animals is a subset of CIFAR-10. Task2Vec distance esti-
mates in Fig. 2b are qualitatively quite different from these
two; the distance matrix is symmetric. Also, while fine-
tuning from animals-vehicles is relatively easy, Task2Vec
estimates the distance between them to be the largest.
This experiment also shows that our approach can scale to
medium-scale datasets and can handle situations when the
source and target task have different number of classes.

4.3 Transferring among subsets of CIFAR-100

We construct five tasks (herbivores, carnivores, vehicles-1,
vehicles-2 and flowers) that are subsets of the CIFAR-100
dataset. Each of these tasks consists of 5 sub-classes. The
distance matrices for coupled transfer, Task2Vec and fine-
tuning are shown in Fig. 3a, Fig. 3b and Fig. 3c respectively.
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Figure 2: Fig. 2a shows distances (numbers in the cell) computed
using our coupled transfer process, Fig. 2b shows distances esti-
mated using Task2Vec while Fig. 2c shows the distance estimating
using fine-tuning. The numerical values of the distances in this
figure are not comparable with each other. Coupled transfer dis-
tances satisfy certain sanity checks, e.g., transferring to a subset
task is easier than transferring from a subset task (CIFAR-10-
vehicles/animals).

We also show results using uncoupled transfer in Fig. 3d.
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Figure 3: Fig. 3a shows the distance for coupled transfer, Fig. 3b
shows the distance for Task2Vec, Fig. 3c shows the distance for
fine-tuning and Fig. 3d shows the distance for uncoupled transfer.
Numerical values the first and the last sub-plot can be compared
directly. Coupled transfer broadly agrees with fine-tuning except
for carnivores-flowers and herbivores-vehicles-1. For all tasks,
uncoupled transfer overestimates the distances compared to Fig. 3a.

Coupled transfer estimates that all these subsets of CIFAR-
100 are roughly equally far away from each other with
herbivores-carnivores being the farthest apart while vehicles-
1-vehicles-2 being closest. This ordering is consistent with
the fine-tuning distance although fine-tuning results in an
extremely large value for carnivores-flowers and vehicles-
1-herbivores. This ordering is mildly inconsistent with the
distances reported by Task2Vec in Fig. 3b the distance for
vehicles-1-vehicles-2 is the highest here. Broadly, Task2Vec
also results in a distance matrix that suggests that all tasks
are equally far away from each other. As has been reported
before (Li et al., 2020), this experiment also demonstrates
the fragility of fine-tuning.
Recall that distances for uncoupled transfer in Fig. 3d can be
comparable directly to those in Fig. 3a for coupled transfer.
Task distances for the former are always larger. Further,

distance estimates of uncoupled transfer do not bear much
resemblance with those of fine-tuning; see for example the
distances for vehicles-2-carnivores, flowers-carnivores, and
vehicles-1-vehicles-2. This demonstrates the utility of solv-
ing a coupled optimization problem in (17) which finds a
shorter trajectory on the statistical manifold.

Verifying the convergence of coupled transfer We use
an iterative algorithm to approximate the optimal couplings
between source and target data. Fig. 4a shows the evolu-
tion of training and test loss as computed on samples of the
interpolated distribution after 4 iterations of (17). As pre-
dicted by Thm. 4 the generalization gap. The training loss
increases towards the middle; this is expected because the
interpolated distribution is maximally far away from both
the source and target data distributions at this point. The
convex combination in (17d) keeps computations tractable
but could also be a cause for this increase.
We typically require 4–5 iterations of (17) for the task dis-
tance to converge; this is shown in Fig. 4b for a few in-
stances. This figure also indicates that computing the trans-
port coupling in (11) independently of the weights and using
this coupling to modify the weights, as done in say (Cui
et al., 2018), results in a larger distance than if one were to
optimize the couplings along with the weights. The coupled
transfer finds shorter trajectories for weights and will po-
tentially lead to better accuracies on target tasks in studies
like (Cui et al., 2018) because it samples more source data.
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Figure 4: Fig. 4a shows the evolution of the training and test
cross-entropy loss on the interpolated distribution as a function
of the transfer steps in the final iteration of coupled transfer of
vehicles-1-vehicles-2. As predicted by Thm. 4, generalization gap
along the trajectory is small. Fig. 4b shows the convergence of the
task distance with the number of iterations k in (17); the distance
typically converges in 4–5 iterations for these tasks.
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Figure 5: Fig. 5a shows the task distance using coupled transfer
and Fig. 5b show the fine-tuning task distance. The numbers
in Fig. 5a can be directly compared to those in Fig. 3a. The larger
WRN-16-4 model predicts a smaller task distance for all pairs
compared to the smaller convolutional network in Fig. 3a.
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Larger capacity results in smaller task distance We
next show that using a model with higher capacity results in
smaller distances between tasks. We consider a wide resid-
ual network (WRN-16-4) of Zagoruyko and Komodakis
(2016) and compute distances on subsets of CIFAR-100
in Fig. 5. First note that task distances for coupled transfer
in Fig. 5a are consistent with those for fine-tuning in Fig. 5b.
Coupled transfer distances in Fig. 5a are much smaller
compared to those in Fig. 3a. This is consistent with our
argument in Sec. 2.1. Roughly speaking, a high-capacity
model can learn a rich set of features, some discrimina-
tive and others redundant not relevant to the source task.
These redundant features are useful if target task is dissimi-
lar to the source. This experiment also demonstrates that the
information-geometric distance computed by coupled trans-
fer can be compared directly across different architectures;
this is not so for most methods in the literature to compute
distances between tasks. This gives a constructive strategy
for selecting architectures for transfer learning.

5 Related work

Domain-specific methods A rich understanding of task
distances has been developed in computer vision, e.g., Za-
mir et al. (2018) compute pairwise distances when differ-
ent tasks such as classification, segmentation etc. are per-
formed on the same input data. The goal of this work, and
others such as (Cui et al., 2018), is to be able to decide
which source data to pre-train to generalize well on a target
task. Task distances have also been widely discussed in
the multi-task learning (Caruana, 1997) and meta/continual-
learning (Liu et al., 2019; Pentina and Lampert, 2014; Hsu
et al., 2018). The natural language processing literature also
prevents several methods to compute similarity between
input data (Mikolov et al., 2013; Pennington et al., 2014).
Most of the above methods are based on evaluating the dif-
ficulty of fine-tuning, or computing the similarity in some
embedding space. It is difficult to ascertain whether the
distances obtained thereby are truly indicative of the diffi-
culty of transfer; fine-tuning hyper-parameters often need
to be carefully chosen (Li et al., 2020) and the embedding
space is not unique. For instance, the uncoupled transfer
process that modifies the input data distribution will lead to
a different estimate of task distance.

Information-theoretic approaches We build upon a line
of work that combines generative models and discriminatory
classifiers (see (Jaakkola and Haussler, 1999; Perronnin
et al., 2010) to name a few) to construct a notion of similar-
ity between input data. Modern variants of this idea include
Task2Vec (Achille et al., 2019a) which embeds the task us-
ing the diagonal of the FIM and computes distance between
tasks using the cosine distance for this embedding. The
main hurdle in Task2Vec and similar approaches is to de-
sign the architecture for computing FIM: a small model will
indicate that tasks are far away. Achille et al. (2019b,c) use

the KL divergence between the posterior weight distribution
and a prior to quantify the complexity of a task; distance be-
tween tasks is defined to be the increase in complexity when
the target task is added to the source task. This is an elegant
formalism to define task distances but instantiating these
ideas for deep networks requires drastic approximations,
e.g., a Gaussian posterior on the weight space.

Model complexity Learning theory typically studies out-
of-sample performance on a single task. Our goal is to
account for the model complexity while defining the task dis-
tance. Complexity measures such as VC-dimension (Vapnik,
1998), come with a number of caveats when applied to deep
networks because these measures are not reparameterization
invariant. We exploited the geometric characterization of
the statistical manifold Amari (2016) that leads to invariant
quantities such as the Fisher-Rao distance.

Coupled transfer of data and the model A key idea of
our work is to observe that the marginal on the input can be
transported in addition to the weights of the model. This
is motivated from two recent studies. Gao and Chaudhari
(2020) develop an algorithm that keeps the classification
loss unchanged across transfer. Their method interpolates
between the source and target data distribution using a
mixture distribution (we use it as a baseline, see Sec. 3.1
and Sec. 4.3). Our work exploits this idea and computes
the optimal way to modify both the input distribution and
the weights. We use ideas from optimal transportation to
compute the transport on input data; see Cui et al. (2018)
who also solve an optimal transport problem approximately
to estimate task distances. Coupled transport problems
on the input data are also solved for unsupervised trans-
lation (Alvarez-Melis and Jaakkola, 2018).

6 Discussion

Our work is an attempt to theoretically understand when
transfer is easy and when it is not. An often over-looked idea
in large-scale transfer learning is that the dataset need not
remain fixed to the target task during transfer. We heavily
exploit this idea in the present paper and develop an opti-
mization framework to adapt both the input data distribution
and the weights from the source to the target. Although
a metric is never unique, this gives legitimacy to our task
distance. We compute the shortest distance in information
space, i.e., the manifold of the conditional distributions. It
is remarkable that this concept is closely related to the in-
tuitive idea that a good transfer algorithm is one that keeps
the generalization gap small during transfer, in particular at
the end on the target task.
The most drastic approximation in this paper was to forgo a
generative framework for the input distribution. This opens
an interesting direction for future work which formulates
the distance between tasks simply as the shortest geodesic
on the manifold of joint distributions pw(x, y).
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