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Abstract

Sequence labelling tasks like Dialog Acts
(DA) and Emotion/Sentiment (E/S) are very
important in spoken dialog systems. In fact,
they allow distinguishing different dialog acts
and emotions from different conversations.
In this work, we propose an intent classifier
that allows to identify different labels such as
communicative intent or dialog acts from a
given conversation. We evaluate this classifier
on the SILICONE benchmark introduced by
Chapuis et al. [2020]. Our experiments show
that using an encoder with the BERT model
enables to build a strong intent classifier
achieving good performances. All our numer-
ical experiments and codes are located here :
https://github.com/Jeremstym/NLP_intent_class

1 Introduction

Sequence labeling tasks are a type of natural lan-

guage processing (NLP) task that involves assign-

ing a label or category to each element in a se-

quence of input data. The input data can be any

kind of sequential data, such as words in a sen-

tence, letters in a word, or sounds in speech.

In NLP, sequence labeling tasks are commonly

used for tasks such as part-of-speech (POS) tag-

ging, named entity recognition (NER), and senti-

ment analysis. In POS tagging, the task is to assign

a grammatical tag (such as noun, verb, adjective,

etc.) to each word in a sentence. In NER, the task

is about identifying ang then classifying entities

(such as people, organizations, and locations) in a
∗equal contribution

text. In sentiment analysis, the task is to classify

the sentiment or emotion expressed in a sentence

or document.

We focus in this document on the third utility

namely identifying communicative intent, dialog

acts and emotions/sentiments. This identification

is very useful in a way that it helps improving

model performance on a dialog task. It especially

avoids having unspecified responses that can fit to

many utterances ([Colombo et al., 2019, 2021a]).

In this paper, we will first introduce some works

that have been done before explaining our method

and how it can obtain good performances. We

will then set the experiments settings such as the

dataset and the model used and we will finally ex-

pose the results.

The goal of this work is to train a supervised model

on the SILICONE database [Li et al., 2017, Leech

and Weisser, 2003, Busso et al., 2008, Passonneau

and Sachar., 2014, Thompson et al., 1993, Poria

et al., 2018, Shriberg et al., 2004, Mckeown et al.,

2013] in order to perform an intent classification

on Dialog Acts and identify questions, commis-

sive, directive or informative acts.

2 Related works

A first work was done by Chapuis et al. [2020]

where a hierarchical encoder is built to predict

both the label of a text Ci (a conversation, a mono-

logue, a letter, etc.) and the label of an utter-

ance (e.g. in a dialogue, there are questions, an-

swers, opinions etc.). and then, at a lower level,

predict the label of an utterance (e.g. in a dia-
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logue, there are questions, answers, opinions etc.).

First we will use the labels of this paper, i.e. Dia-

logue Acts (DA) and Emotion/Sentiment (E/S) for

a conversation set D = (C1, . . . , C|D|) and then

the labels: questions (qw), statement non-opinion

(sd) backchannel (b) and response acknowledg-

ment (bk), where (b) concerns interjections and

transition words. Besides, even though using large

corpora can allow learning complex models like it

was developed in Colombo et al. [2020], it also re-

quires using more annotated data. As so, the work

of Chapuis et al. [2020] showed that it can be not

always optimal to use such large corpora and that

using hierarchical encoders can even achieve high

performances with less parameters while working

on a reduced number of GPUs. Moreover, using

hierarchical encoder has been proved in the work

of Garcia et al. [2019] as being an efficient pro-

cedure to capture dependencies at different levels

which is very important in dialog embedding be-

cause it allows reaching grained levels and it re-

duces the number of model parameters allowing

in consequence faster learning.

3 Method

3.1 Limits of previous works

In the first article cited, we could discuss the labels

used for the classification. Opposing DA and E/S

allows to make a binary classification, which has

many advantages such as simplicity of the model

and readability of the metrics (confusion matrix,

ROC curve, etc.). Moreover, the proposed labels

are interesting because they encapsulate several

modalities of a conversation, and then can enable

a model to reproduce them. However, in our pa-

per, we intend to clarify how an encoder can be

very powerful to enable a classifier to identify all

the above-mentioned labels. We will also check

other metrics and analyze the performance of the

model in terms of computation (number of data

used, computation time).

3.2 Method

Let us recall here an important difference. Fine-

tuning of a model (e.g. an encoder) means that

we start with a pre-trained model and, during the

training phase, every parameters are updated with

respect to the labels. In this case we retain the

whole model. On the other hand, the feature ex-

traction techniques entail a pre-trained model as

well, but only the final layer is updated, the layer

from which the prediction are made. In our case,

since it was less expensive, we adopted the last

technique by adding an extra layer to the BERT

model, as shown in the figure 1, even if we use the

word "fine-tuning" for simplicity.

Figure 1: Architecture of the baseline model, using
BERT

We used the "bert-base-uncased" model from

HuggingFace Devlin et al. [2019] in order to rep-

resent every utterance in a vector space. The sen-

tences with the same intent are more likely to be

close to each other. Then, we added a linear layer

to learn in order to predict the classes. We use

the same method as Hinton et al.[2012] that ran-

domly zeroes some of the elements of the input

tensor because it has proven to be an effective

technique for regularization and preventing the co-

adaptation of neurons. It can explain that some-

times the train error is bigger than the test error.

We use both the tokenizer and the encoder (self-

attention) of BERT before "fine-tuning" the clas-

sifier. We also trained a binary model (the labels

are "question" and "non-question") in order to see

the performance of the encoder with a binary clas-

sifier.



4 Experimental settings

4.1 Dataset

Here, we use the SILICONE dataset (Sequence la-

bellIng evaLuatIon benChmark fOr spoken laN-

guagE), coming from Chapuis et al. [2020] which

constitutes a good benchmark in order to measure

the performance of the various methods that we

are going to experiment afterwards. The dataset

utterances are essentially in English and cover a

variety of domains including daily life, scripted

scenarios, joint task completion, phone call con-

versations and television dialogue. The labels

classify the dialogue act utterances in 4 categories:

commissive/responsive ("all right"), directive ("I

suggest..."), inform ("It is important...") and ques-

tion ("do you believe this ?"), each of them cor-

responds to the above-mentioned labels in the re-

lated works. Here, the purpose is to obtain a classi-

fier able to recognize these DA categories in each

utterance with the methods presented in the sec-

tion.

4.2 Baseline model: feature extracting with
BERT

4.2.1 Architecture : BERT

We use BERT (Bidirectional Encoder Represen-

tations from Transformers) which is a pre-trained

language representation model developed by De-

vlin et al. [2019] from Google AI Language in

2018 for natural language processing (NLP) tasks.

It is based on the transformer architecture, which

is a type of neural network that is particularly ef-

fective for handling sequential data. This language

model is trained on a large corpus of text data us-

ing an unsupervised learning approach. The model

learns to predict missing words in a sentence based

on the surrounding context, using a technique

called masked language modeling (MLM). BERT

also learns to identify the relationships between

words in a sentence by processing the input text

in both forward and backward directions, hence

the term "bidirectional encoder". The pre-training

process of BERT results in the model learning

contextual representations of words, meaning that

it understands the meaning of a word in a sentence

based on the other words around it. This contex-

tual understanding makes BERT highly effective

for a variety of NLP tasks such as sentiment analy-

sis, named entity recognition, question answering,

and text classification (see figure A.1 in appendix)

4.2.2 Model : Attention model

We use an attention model which is a type of neu-

ral network architecture commonly used in natural

language processing (NLP) tasks. It is a mech-

anism that allows the network to selectively fo-

cus on the most important parts of the input data

when making predictions or generating output. In

a traditional neural network, each input feature

is given equal weight when making predictions.

However, in NLP tasks, some parts of the input

sequence may be more important than others for

making accurate predictions. An attention model

addresses this issue by allowing the network to

learn to weight the importance of each input fea-

ture or sequence element dynamically, based on

its relevance to the current prediction task. This is

achieved by calculating attention weights for each

input element, which reflect the degree of impor-

tance assigned to that element for the current task.

4.2.3 Cross entropy loss

We use for this model the cross-entropy loss

which is a commonly used loss function in ma-

chine learning, particularly in classification tasks.

It measures the difference between the predicted

probability distribution and the true probability

distribution of the target class. The loss is cal-

culated by summing the logarithm of the pre-

dicted probability for the true class label, across

all classes. The cross-entropy loss encourages

the model to output high probabilities for the true

class labels and low probabilities for the false class

labels, and is therefore commonly used as a train-

ing objective for classification models. The model



learns to minimize the cross-entropy loss by ad-

justing its weights and biases during training using

optimization algorithms such as gradient descent.

The cross entropy loss is defined as

L(y, ŷ) = −
n∑

i=1

yi log (ŷi)

where y is a one-hot encoded vector representing

the true class label and ŷ is a vector of predicted

probabilities for each class. The loss is calculated

by summing the logarithm of the predicted proba-

bility for the true class label, across all classes.

5 Results

Because of the cost in terms of computation time,

we have chosen to train the baseline model only

on 10 epochs, which already provides convincing

results. We observe in the figure 2 the evolution of

the test loss on the SILICONE dataset.

Figure 2: Test loss during the training of the baseline
model

We have selected some random data in the test

dataset to measure some metrics about the classi-

fier (see table 1).

precision recall f1-score support
commissive 1.00 0.03 0.06 32

directive 0.56 0.38 0.45 50
inform 0.69 0.89 0.78 142

question 0.79 0.83 0.81 96
accuracy 0.71 320

macro avg 0.76 0.53 0.53 320
weighted avg 0.73 0.71 0.67 320

Table 1: Usual classification metrics on the labels of
SILICONE

Some results may seem surprising here, but it

is due to the fact that we had chosen only some

data in the whole dataset (because of computation

time). The global accuracy of the model, measure

on the test dataset, is 74.8%, which is close to the

value given above. Moreover, we can see that it

is much easier for the classifier to detect question

than the other categories, which seems plausible

because of some literal indicators as "?".

We also have similar results for the binary

model. We reach an accuracy of 89.8% (see the

confusion matrix in appendixes, A.2).

Figure 3: Evolution of the loss and accuracy for the
binary classifier

precision recall f1-score support
non question 0.90 0.95 0.92 220

question 0.88 0.77 0.82 100
accuracy 0.89 320

macro avg 0.89 0.86 0.87 320
weighted avg 0.89 0.89 0.89 320

Table 2: Usual classification metrics on the labels of
SILICONE (for the binary model)

6 Conclusion

The intent classification plays an important role in

generation language or text identification in that

it can guide the responses and improves the per-

formance of language models (including genera-

tive language). Here, we have trained a supervised

model with different labels drawn from the SILI-

CONE database. In order to perform that classi-

fication, we have used an encoder with the BERT

model from HuggingFace. Then we added an ad-

ditional linear layer in order to adapt the trans-

formers (fine-tuning) to our classifier. The results

are robust and consistent in that, within 10 epochs,



the accuracy of the model reaches 74.8% on the

SILICONE test dataset. This classification is even

better with a binary model that distinguishes the

question from other types of sentence. We have

displayed several metrics that highlight these per-

formances.
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Appendices
A Extra figures

Figure A.1: Pre-training and fine-tuning procedures for BERT

Figure A.2: Confusion matrix of the binary classifier


