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ABSTRACT

We study the problem of residual error estimation for matrix and vector norms
using a linear sketch. Such estimates can be used, for example, to quickly assess
how useful a more expensive low-rank approximation computation will be. The
matrix case concerns the Frobenius norm and the task is to approximate the k-
residual ∥A−Ak∥F of the input matrix A within a (1 + ε)-factor, where Ak is the
optimal rank-k approximation. We provide a tight bound of Θ(k2/ε4) on the size
of bilinear sketches, which have the form of a matrix product SAT . This improves
the previous O(k2/ε6) upper bound in (Andoni et al. SODA 2013) and gives the
first non-trivial lower bound, to the best of our knowledge. In our algorithm, our
sketching matrices S and T can both be sparse matrices, allowing for a very fast
update time. We demonstrate that this gives a substantial advantage empirically,
for roughly the same sketch size and accuracy as in previous work.
For the vector case, we consider the ℓp-norm for p > 2, where the task is to
approximate the k-residual ∥x − xk∥p up to a constant factor, where xk is the
optimal k-sparse approximation to x. Such vector norms are frequently studied in
the data stream literature and are useful for finding frequent items or so-called heavy
hitters. We establish an upper bound of O(k2/pn1−2/p poly(log n)) for constant ε
on the dimension of a linear sketch for this problem. Our algorithm can be extended
to the ℓp sparse recovery problem with the same sketching dimension, which seems
to be the first such bound for p > 2. We also show an Ω(k2/pn1−2/p) lower bound
for the sparse recovery problem, which is tight up to a poly(log n) factor.

1 INTRODUCTION

Low-rank approximation is a fundamental task for which, given an m× n matrix A, one computes
a rank-k matrix B for which ∥A − B∥2F is small. This works well in practice since it is often the
case that matrices are close to being low rank, and only have large rank because of a small amount of
noise. Also, B provides a significant compression of A, involving only (m+ n)k parameters (if B is
represented in factored form) rather than mn, which then makes it quicker to compute matrix-vector
products and so on.

However, computing a low-rank approximation can be expensive if m and n are large. While there
exist fast sketching techniques, see, e.g., (Woodruff, 2014a), such techniques would still require
Ω(k(m+ n)) memory even to write down the output B in factored form, and a stronger lower bound
of Ω(k(m+ n)/ε) exists in the data stream model (Clarkson & Woodruff, 2009), even if the rows
or columns appear in order (Woodruff, 2014b). Here ε is the desired accuracy, so one should have
∥A−B∥F ≤ (1+ε)∥A−Ak∥F , where Ak is the best rank-k approximation to A in Frobenius norm.

Given that it is expensive both in time and memory to compute a low-rank approximation, it is natural
to first ask if there is value in doing so. We would like ∥A − B∥F to be as small as possible, and
much less than ∥A∥F so that B accurately represents A. One way to do this is to try to first estimate
the residual error of ∥A−Ak∥F , which potentially one can do with an amount of memory depending
only on k and ε. Indeed, this is precisely what (Andoni & Nguyen, 2013) show, namely, that by
computing a sketch SAT , where S and T are random Gaussian matrices each with small dimension
O(k/ε3), ignoring logarithmic factors, that ∥(SAT )− (SAT )k∥F = (1± ε)∥A−Ak∥F . Note that
it is important that S and T do not depend on A itself, as one may not have access to the parts of
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A in a stream needed when applying S and T , or A may be distributed across multiple servers, etc.
That is, S and T are said to be oblivious sketches, which is the focus of this paper. Thus, with only
O(k2/ε6) memory words in a stream, one can first figure out if it is worthwhile to later compute a
low-rank approximation to A.

There are several weaknesses to the above result. First, it is unclear if the O(k/ε3) dimension bounds
are tight, and optimizing them is especially important for small ε. Can the upper bound be improved?
Also, the only known lower bound on the small dimension of sketches S and T and even when one
requires an estimator of the form ∥(SAT )− (SAT )k∥F , as far as we are aware, is Ω(k+1/ε2). This
follows from both S and T needing to preserve rank and preserve the norm of a fixed vector. Such a
lower bound is even more unclear if we are allowed an arbitrary recovery procedure f(S, T, SAT ).
Second, the running time is not ideal, as each entry of A in the stream needs to be multiplied on the
left and right by dense Gaussian sketches.

Residual error is not only a useful concept for matrices, but can capture how useful a sparse approxi-
mation is for vectors, which is the standard way of compressing a vector using compressed sensing.
In this case, one would like to compute a sketch S · x of an underlying n-dimensional vector x so
that one can output a k-sparse vector x̂ for which ∥x − x̂∥p ≤ (1 + ε)∥x − xk∥p, where xk is the
best k-sparse approximation to x, namely, the vector formed by taking the k coordinates of x of the
largest absolute value. Here ∥z∥p = (

∑n
i=1 |zi|p)1/p is the vector p-norm. Just like for low-rank

approximation, one could ask if it is worthwhile to compute x̂, and that can be determined based on
whether ∥x − xk∥p is small. This is also useful in the data stream literature, and is referred to as
the heavy hitters estimation problem with tail error, and p > 2 enables to find heavy hitters that are
even “less heavy" than those for ℓ2, see, e.g., (Berinde et al., 2010), or residual heavy hitters, see,
e.g., Section 4 of (Harvey et al., 2008) for applications to entropy estimation in a stream as well as
(Indyk, 2004) for applications to computational geometry in a stream.

For 1 ≤ p ≤ 2 there are very efficient sketches to compute x̂ itself, which are sparse and only involve
a sketching dimension of O(k/ε2) up to logarithmic factors (Price & Woodruff, 2011). Notably,
for the ℓp sparse recovery problem where p ∈ {1, 2} and we are required to output a vector x̂, an
Ω(k log(n/k)) lower bound on the sketching dimension holds (Ba et al., 2010; Price & Woodruff,
2011), while if we only need to estimate ∥x− xk∥p, following the idea of (Indyk et al., 2011) where
we first perform a dimensionality reduction to poly(k/ε) dimensions, one can show that O(k log(k))
measurements suffice, which shows a separation between the two problems. Motivated by this, we
focus on residual norm estimation for p > 2, which is a choice of p that has been the focus of a long
line of work on frequency moments in a data stream, starting with (Alon et al., 1999). For such p, it is
not even known what the right dependence on n and k is, so we focus on constant ε for this problem.

1.1 OUR CONTRIBUTIONS

For residual norm estimation for low-rank approximation by sketches of the form SAT and estimators
of the form ∥SAT − [SAT ]k∥F , we improve the bound of (Andoni & Nguyen, 2013), showing that
both S and T can have small dimension O(k/ε2), up to logarithmic factors, rather than O(k/ε3).
Moreover, our sketch can be the composition of a CountSketch and a Gaussian matrix (Clarkson &
Woodruff, 2013), or use OSNAP (Nelson & Nguyen, 2012) as analyzed by Cohen (Cohen, 2016) to
achieve faster runtime or update time in a stream. We complement this upper bound with a matching
lower bound for bilinear sketches SAT and an arbitrary recovery procedure f(S, T, SAT ), where
we show that both S and T need to have Ω(k/ε2) small dimension, matching our upper bound.

For the residual vector norm estimation problem, we in fact design the first sparse recovery al-
gorithms, i.e., compressed sensing algorithms, for p > 2, designing a sketching matrix S with
n1−2/pk2/p poly(log n) small dimension for recovering the vector x̂ itself. By running a standard
sketching algorithm for p-norm estimation in parallel, we can thus estimate ∥x− x̂∥p to evaluate the
residual cost. We show that at least for the sparse recovery problem there is a nearly matching lower
bound on the sketching dimension of n1−2/pk2/p. While we do not resolve the sketching dimension
of residual norm estimation, a lower bound of n1−2/p follows from previous work (Bar-Yossef et al.,
2004) and so a polynomial dependence on n is required.

Finally, we empirically evaluate our residual norm estimation algorithm for low-rank approximation
on real data sets, showing that while we achieve similar error for the same sketching dimension, our
sketch is 4 to 7 times faster to evaluate.
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2 PRELIMINARIES

Notation. For an n× d matrix A, let Ak denote the best rank-k approximation of A and σ1(A) ≥
σ2(A) ≥ . . . ≥ σs(A) denote its singular values where s = min{n, d}. We then have ∥A−Ak∥2F =∑s

i=k+1 σ
2
i . Given a vector x ∈ Rn, let ∥x∥p = (

∑
i |xi|p)1/p denote the p-norm of the vector

x. Let xk ∈ Rn denote the best k-sparse vector approximation to x, such that we keep the top k
coordinates of x in absolute value and make the remaining coordinates 0. Let x−k = x− xk. We
next formally define the problems and models we consider.

Low-Rank Residual Error Estimation. Given a matrix A ∈ Rn×d, our goal is to estimate the
rank-k residual error ∥A−Ak∥F within a (1± ε) multiplicative factor, where Ak is the best rank-k
approximation to A.

Residual Vector Norm Estimation. In the data stream model, we assume there is an underlying
frequency vector x ∈ Zn, initialized to 0n, which evolves throughout the course of a stream. The
stream consists of updates of the form (i, w), meaning xi ← xi + w. At the end of the stream, we
are asked to approximate f(x) for a function f : Zn → R. In our problem, f(x) is the residual ℓp
norm ∥x− xk∥p. Our goal is to estimate this value within a (1± ε) factor.

ℓp Sparse Recovery. Rather than estimating the value of ∥x − xk∥p, here our goal is to output a
k-sparse vector x̂ ∈ Rn such that ∥x− x̂∥p ≤ (1± ε)∥x− xk∥p.

ℓp Norm Estimation. In the ℓp norm estimation problem, the goal is to approximate ∥x∥p within a
(1± ε) factor. This problem is well-understood and has space complexity Θ(n1−2/p/ poly(ε)), see,
e.g., (Andoni et al., 2011; Ganguly & Woodruff, 2018). The algorithms for this problem will be used
in our algorithm as a subroutine.

Next, we review the Count-Sketch algorithm for frequency estimation.

Count-Sketch. We have k distinct hash functions hi : [n] → [B] and an array C of size k × B.
Additionally, we have k sign functions gi : [n] → {−1, 1}. The algorithm maintains C such
that C[ℓ, b] =

∑
j:hℓ(j)=b xj . The frequency estimation x̂i of xi is defined to be the median of

{gℓ(i) · C[ℓ, hℓ(i)]}ℓ≤k

Finally, we mention some classical results regarding singular values.
Lemma 2.1 (Extreme singular values of Gaussian random matrices (Vershynin, 2018, Theorem
4.6.1)). Let G be an m× n (m ≥ n) Gaussian random matrix of i.i.d. N(0, 1) entries. It holds with
probability at least 1− exp(−ct2) that

√
m−C

√
n− t ≤ σmin(G) ≤ σmax(G) ≤

√
m+C

√
n+ t,

where C, c > 0 are absolute constants.
Lemma 2.2 (Weyl’s inequality (Horn & Johnson, 2012, (7.3.13))). Let A,B be m× n matrices with
m ≤ n. It holds that σi+j−1(A+B) ≤ σi(A) + σj(B) for all 1 ≤ i, j, i+ j − 1 ≤ m.

3 LOW-RANK RESIDUAL ERROR ESTIMATION

In this section, we consider the low-rank error estimation problem where our goal is to estimate the
rank-k residual error ∥A−Ak∥F , where Ak is the best rank-k approximation of A.

Lower Bound. We show that for any random S ∈ Rs×n, T ∈ Rn×t, suppose that with high
constant probability we can recover ∥A−Ak∥F within a factor of a (1 + ε). We must then have that
s = Ω(k/ε2) and t = Ω(k/ε2). Formally, we have the following theorem.
Theorem 3.1. Suppose that for random S ∈ Rs×n, T ∈ Rn×t, there exists an algorithmA satisfying
that A(S, T, SAT ) = (1± ε)∥A−Ak∥F for an arbitrary A ∈ Rn×n with high constant probability.
Then it must hold that s, t = Ω(k/ε2).

To achieve this, we first show an Ω(k2/ε2) sketching dimension lower bound for a general sketching
algorithm where the sketch has the form S · vec(A) where S ∈ Rs×n2

. Then we will show that
this implies an Ω(k2/ε4) lower bound for bilinear sketches. Consider the following two matrix
distributions

G+ c
√
εB and G+ c

√
εB + cα

√
ε · uv⊤ (1)

where
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1. G ∈ Rk/ε2×k is a random Gaussian matrix of i.i.d. N(0, 1) entries.
2. α is sampled from the distribution of the k-th singular values of a random Gaussian matrix

H ∈ Rk/ε2×k, u, v are uniformly random unit vectors and c is a sufficiently large constant.
3. B =

∑k−1
i=1 αiuiv

⊤
i where αi, ui, vi are sampled from the distribution of the i-th singular values

and singular vectors of H ∈ Rk/ε2×k conditioned on its k-th singular value and singular vectors
being α, u, v.

We will first show that any linear sketching algorithm with dimension smaller than O(k2/ε2) cannot
distinguish the two distributions with high constant probability. To do so, notice that by Yao’s minimax
principle, we can fix the rows of our sketching matrix, and show that the resulting distributions of the
sketch have small total variation distance. By standard properties of the variation distance, this implies
that no estimation procedure A can be used to distinguish the two distributions with sufficiently large
probability. Let L1 and L2 be the corresponding distribution of the linear sketch on D1 and D2 in (1),
respectively. Formally, we have
Lemma 3.2. Suppose that the sketching dimension of L1 and L2 is smaller than c1k

2/ε2 for some
constant c1. Then we have that dTV (L1,L2) ≤ 1/8.

Proof. We first consider the following two distributions.

G and G+ β

√
ε

k
wz⊤

where G ∈ Rk/ε2×k is a Gaussian random matrix and w ∈ Rk/ε2 , z ∈ Rk are random Gaussian
vectors, and β is a sufficiently large constant. From Theorem 4 of (Li & Woodruff, 2016), we have
that if the sketching dimension is smaller than c1k

2/ε2, then

dTV (S(G), S(G+ β

√
ε

k
wz⊤)) ≤ 1/10

where S(M) is the sketch on M . Let Sgood ⊆ Rk/ε2×k be the subset of matrix B where

Pr[α = Θ(
√
k/ε) | B] ≥ 0.99.

We claim that Pr[B ∈ Sgood] ≥ 0.99. Otherwise, Pr[α ̸∈ Θ(
√
k/ε)] ≥ Pr[α ̸∈ Θ(

√
k/ε) |

B ̸∈ Sgood] Pr[B ̸∈ Sgood] ≥ 0.01 · 0.01, contradicting the fact following from Lemma 2.1 that
Pr[α ̸∈ Θ(

√
k/ε)] ≤ exp(−Ω(k/ε2)).

Now, fix a B ∈ Sgood. Recall that α is dependent with B while u, v is independent with B, and
combined with the concentration property of the ℓ2 norm of a Gaussian vector, we get that with
probability at least 0.98, we have that β

√
ε
k ∥w∥2 ∥z∥2 = Θ(α

√
ε), which implies

dTV (S(G+ c
√
εB), S(G+ c

√
εB + cα

√
ε · uv⊤)) ≤ 1/9

for such fixed B. Since Pr[B ∈ Sgood] ≥ 0.99, from the definition of total variation distance we
have that dTV (L1,L2) ≤ 1/9 + 0.01 < 1/8.

We next show that if we have an algorithmA that computes a (1±ε)-approximation to the rank-(k−1)
residual error, we then can distinguish the two distributions D1 and D2 in (1) with high probability.

Theorem 3.3. Suppose that for random matrix S ∈ Rs×n2

, there exists an algorithm A satisfying
thatA(S, S ·vec(A)) = (1±ε)∥A−Ak∥F for an arbitrary A ∈ Rn×n with high constant probability.
Then it mush hold that s = Ω(k2/ε2).

Proof. By Yao’s minimax principle, we may assume that A is drawn from the distributions in (1)
and S is a deterministic sketching matrix. Note that for both matrix families, the drawn matrix A is
rank-k with high probability, and hence the rank-(k − 1) residual error of A is equal to its smallest
singular value. We shall examine the smallest singular value for the two distributions. If A ∼ D1,
from Lemma 2.1 and Weyl’s inequality (Lemma 2.2), we have that with high probability

σmin(G+ c
√
εB) ≤ σmax(G) + σmin(c

√
εB) = σmax(G) ≤

√
k

ε
+ C1

√
k
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since B is rank k− 1. On the other hand, when A ∼ D2, from the definition of B,α, u, v, we see that
B + αuv⊤ is also a Gaussian matrix and thus G+ c

√
ε(B + αuv⊤) is a Gaussian random matrix

with entries N(0, 1 + c2ε). Again, from Lemma 2.1, we have with high probability that

σmin(G+ c
√
εB + cα

√
ε · uv⊤) ≥

√
1 + c2ε · (

√
k

ε
− C
√
k) ≥

√
k

ε
+ C2

√
k,

provided that c2/2 ≥ C2 +C
√
1 + c2ε. This is satisfied by choosing c to be large enough. It follows

immediately that A can distinguish the two distributions D1 and D2 and the theorem then follows
from Lemma 3.2.

Proof of Theorem 3.1. Suppose that M is drawn from the distribution in (1). By Yao’s minimax
principle, we can assume that S and T are deterministic sketching matrices. Let A ∈ Rk/ε2×k/ε2 be
one of the following two matrices with the same probability

[M 0] or
[
M⊤

0

]
.

We first consider the case when A = [M 0], then SAT = SMT ′, where T ′ is the first k rows of T .
Let T ′′ be a submatrix of T ′ consisting of a maximal linearly independent subset of columns of T ′.
Then T ′′ has t′ ≤ k columns. Furthermore, since the columns of T ′ are linear combinations of the
columns of T ′′, we can recover SMT ′ from SMT ′′. Hence, A(S, T, SAT ) induces an algorithm
A′(S, T ′′, SMT ′′) of the same output, which estimates ∥A−Ak∥F = ∥M −Mk∥F up to a (1± ε)-
factor. Next, note that the (i, j)-th entry of SMT ′′ is equal to ⟨SiT

′′⊤
j , vec(M)⟩. Therefore, from

Theorem 3.3, we have that s · t′ = Ω(k2/ε2). Since t′ ≤ k, it follows immediately that s = Ω(k/ε2).

A similar argument for A = [M
⊤

0
] yields that t = Ω(k/ε2).

Upper Bound. We shall give an O(k2/ε4) upper bound for bilinear sketches. We first recall the
definition of Projection-Cost Preserving sketches (PCPs).
Definition 3.4 ((Cohen et al., 2015)). Given a matrix A ∈ Rn×d, ε > 0, c ≥ 0 and an integer k ∈ [d],
a sketch S ∈ Rs×n is an (ε, c, k)-column projection-cost preserving sketch of A if for all rank-k
projection matrices P , (1− ε)∥A(I − P )∥2F ≤ ∥SA(I − P )∥2F + c ≤ (1 + ε)∥A(I − P )∥2F .
Lemma 3.5 ((Cohen et al., 2015; Musco & Musco, 2020)). Let S ∈ Rm×n be drawn from any of the
following matrix families. Then with probability 1− δ, S is an (ε, 0, k)-projection-cost-preserving
sketch of A.

1. S is a dense Johnson-Lindenstrauss (JL) matrix, with c = 0, m = O((k + log(1/δ))/ε2) and
each element is chosen independently and uniformly in ±

√
1/m.

2. S is a COUNTSKETCH with c = 0, m = O(k2/(ε2δ)), where each column has a single ±1 in a
random position.

3. S is an ONSAP sparse subspace embedding matrix (Nelson & Nguyen, 2013), with c = 0 and
m = O(k log(k/δ)/ε2), where each column has s = O(log(1/ε)) random ±1/

√
s.

We remark that it is easy to see from the definition that if S1 and S2 are both (ε, 0, k)-PCP sketches
of A, then S1S2 is an (O(ε), 0, k)-PCP sketch of A.

Our algorithm is as follows. Suppose that S and T are matrices such that S and T⊤ both satisfy the
condition in Definition 3.5. We then compute the rank-k error ∥SAT − [SAT ]k∥F and use it as our
final estimate. To show the correctness of our algorithm, we first prove the following lemma.
Lemma 3.6. Suppose that S is an (ε, c, k) projection-cost preserving sketch of SA. Then we have

∥A−Ak∥2F ≤ ∥SA− [SA]k∥2F + c ≤ (1 + ε)∥A−Ak∥2F

Proof. Suppose that P̃ is the minimizer of ∥SA(I − P )∥2F over all rank-k projections P , and P ∗ is
the minimizer of ∥A(I − P )∥2F . Since S is an (ε, c, k) projection-cost preserving sketch of A, we
have that

∥A(I − P ∗)∥2F ≤ ∥A(I − P̃ )∥2F ≤ ∥SA(I − P̃ )∥2F + c

≤ ∥SA(I − P ∗)∥2F + c ≤ (1 + ε)∥A(I − P ∗)∥2F .
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Algorithm 1: (1± ε)-approximator for ∥x−k∥pp
1 Set b = Θ(ε−2p/(p−1)k2/pn1−2/p) and ℓ = O(log n);
2 Initialize ℓ · b buckets z1,1, . . . , zb,logn to 0;
3 Initialize ℓ pairwise independent hash functions hi : [n]→ [b];
4 Initialize ℓ 4-wise hash functions sj : [n]→ {−1, 1};
5 Initialize a (1± ε)-ℓp estimation algorithm A with Õ(n1−2/p/ poly(ε)) space [e.g., (Andoni

et al., 2011)];
6 foreach (i, v) update comes do
7 for j ← 1 to ℓ do
8 zhj(i),j ← zhj(i),j + v · sj(i);
9 end

10 Perform the update (i, v) in A;
11 end
12 for i← 1 to ℓ do
13 x̂i = medianj{sj(i) · zhj(i),j}
14 end
15 Choose the top k coordinates of x̂ to form set J ;
16 foreach j ∈ J do
17 Perform the update (j,−x̂j) in A.
18 end
19 return Output of A;

Next, from the definitions of P̃ and P ∗, we have that ∥SA − [SA]k∥2F = ∥SA(I − P̃ )∥2F and
∥A−Ak∥2F = ∥A(I − P ∗)∥2F . The desired result follows.

Theorem 3.7. There exist random matrices S ∈ RO(k/ε2)×n and T ∈ Rd×O(k/ε2) such that with
high constant probability

∥A−Ak∥2F ≤ ∥SAT − [SAT ]k∥2F ≤ (1 + ε)∥A−Ak∥2F . (2)

Moreover, the sketch SAT can be computed in nnz(A) + poly(k/ε) time.

Proof. We construct S = S1S2, where S1 ∈ RO(k/ε2)×O(k2/ε2) is a JL matrix and S2 ∈
RO(k2/ε2)×n is the COUNT-SKETCH matrix in Lemma 3.5. Then T⊤ = T⊤

1 T⊤
2 is the same construc-

tion with S but replacing n with d. Because S2 and T2 are both COUNT-SKETCH matrices, we can
compute S2AT2 in nnz(A) time. Then note that S2AT2 are matrices with size O(k2/ε2)×O(k2/ε2),
so we can compute SAT = S1S2AT2T1 in nnz(A) + poly(k/ε) time.

We next consider the accuracy. From Lemma 3.5 we have that with high constant probability S, T
are both rank-k PCPs with error ε. Hence we first have

∥A−Ak∥2F ≤ ∥SA− [SA]k∥2F ≤ (1 + ε)∥A−Ak∥2F .

Applying Lemma 3.6 to T⊤ and A⊤S⊤ yields that

∥SA− [SA]k∥2F ≤ ∥SAT − [SAT ]k∥2F ≤ (1 + ε)∥SA− [SA]k∥2F .

Combining the two equations above leads to

∥A−Ak∥2F ≤ ∥SAT − [SAT ]k∥2F ≤ (1 +O(ε))∥A−Ak∥2F
and the claimed result then follows immediately by rescaling ε.

4 Fp RESIDUAL ERROR ESTIMATION

We next consider the Fp residual error estimation task where our goal is to estimate the k-residual
error ∥x−k∥p up to a (1± ε)-factor.

The algorithm is shown in Algorithm 1. At a high level, we use the classical COUNTSKETCH to
estimate the frequency of each coordinate of x. Then we select the top k coordinates that have the k
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largest estimated values. In parallel we run an Fp estimation algorithm A and then subtract these
coordinates with the estimated value. We then use the output of A to be our final estimation of
∥x−k∥pp. Suppose that I is the set of coordinates that are the genuine k largest coordinates, and J
is the set of candidates we choose. In the remainder of this section, we shall show that ∥x− xJ∥p
is within a (1 ± ε) factor of ∥x − xI∥p = ∥x−k∥p. Hence, if we run an Fp frequency estimation
algorithm in parallel (see, e.g., (Ganguly & Woodruff, 2018)) and after subtracting the estimated
frequency x̂j on each of the coordinates in J , we will obtain the k residual error up to a (1± ε) factor.

For the purpose of exposition, we first assume b = Θ(ε−2k2/pn1−2/p) and will show that it gives
a O(1 + ε1−1/p)-approximation. Then, after normalization, we get the desired bound. We first
bound the error of COUNTSKETCH for each coordinate. The following lemma is a standard fact of
COUNTSKETCH. The corollary below easily follows from Hölder’s inequality.
Lemma 4.1 ((Minton & Price, 2014)). Suppose that ℓ ≥ c log n for a constant c. Then with
probability at least 9/10, we have that |x̂i − xi| ≤ ∥x−k∥2/

√
b holds for all i simultaneously.

Corollary 4.2. If we set the number of buckets b = Θ(ε−2k2/pn1−2/p), then with probability at least
9/10, we have that |x̂i − xi| ≤ ε∥x−k∥p/(c1k1/p), where c1 is a universal constant.

For an index set T ⊆ [n], we define ST =
∑

t∈T |xt|p. From the definition of the set I and J , we
have that SJ ≤ SI . For the other direction, we have
Lemma 4.3. It holds that SJ ≥ SI −O(ε1−1/p) · ∥x−k∥pp.

Proof. It follows from Lemma 4.2 and the definitions of I and J that if some i ∈ I is replaced by

some j ∈ J , we must have (i) |xi − xj | ≤ ε
∥x−k∥p

c1k1/p , and (ii) |xi|p ≥ |xj |p ≥
∣∣∣|xi| − 2ε

∥x−k∥p

c1k1/p

∣∣∣p.

We claim that |xi|p ≤ 2 ∥x−k∥pp for all i ∈ I \ J . If not, suppose that |xi| > 21/p ∥x−k∥p for some
i ∈ I \ J , we would obtain an estimate x̂i with |x̂i| > (21/p − ε/(c1k

1/p)) ∥x−k∥p by Corollary 4.2.
Since i ̸∈ J , the estimates of xj for every j ∈ J must be at least (21/p − ε/(c1k

1/p)) ∥x−k∥p, which
further implies that there exists some j ̸∈ I such that |xj | ≥ (21/p − 2ε/(c1k

1/p)) ∥x−k∥p. This
contradicts the fact that ∥x−k∥p ≥ |xj |. Hence it must hold that |xi|p ≤ 2 ∥x−k∥pp for all i ∈ I \ J .

We next decompose I as I = (I ∩ J) ∪ T0 ∪ T1 ∪ · · · ∪ Tm ∪ Tm+1, where m = O(log(k/ε)) is
such that 2m−1 ≤ k/(10ε) < 2m,

Tℓ =

{
i ∈ I \ J :

∥x−k∥pp
2ℓ

< |xi|p ≤
∥x−k∥pp
2ℓ−1

}
, ℓ = 0, 1, 2, . . . ,m

and

Tm+1 =

{
i ∈ I \ J : |xi|p ≤

10ε∥x−k∥pp
k

}
.

For Tm+1 we have that ∑
i∈Tm+1

|xi|p ≤ k ·
10ε∥x−k∥pp

k
= 10ε∥x−k∥pp.

Next consider Tℓ. Note that ∑
i∈Tℓ

i is displaced by j

|xj |p ≤ ∥x−k∥pp ,

and it must hold that |Tℓ| = O(2ℓ). Suppose that i ∈ Tℓ is displaced by j ∈ J . It then follows from
the above discussion that

|xi|p − |xj |p ≤ |xi|p −
∣∣∣∣|xi| − 2ε

∥x− xk∥p
c1k1/p

∣∣∣∣p ≤ |xi|p−1 · 2pε∥x− xk∥p
c1k1/p

≤
∥x− xk∥p−1

p

2(ℓ−1)· p−1
p

· 2pε∥x− xk∥p
c1k1/p

= 2pε
∥x−k∥pp

c1(2
1− 1

p )ℓ−1k
1
p

7
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Taking the sum we get that
∑

i∈Tℓ
|xi|p −

∑
i∈Tℓ

i is displaced by j
|xj |p ≤ O(2ℓ) · 2pε ∥x−k∥p

p

c1(2
1− 1

p )ℓ−1k
1
p

=

O

(
ε2ℓ/p∥x−k∥p

p

k1/p

)
. Summing over ℓ yields that SI − SJ ≤ O(ε1−1/p) · ∥x−k∥pp, which is what we

need.

Suppose that we have SI − SJ ≤ O(ε) · ∥x−k∥pp (we normalize ε here). Then this means that∣∣∥x− xJ∥pp − ∥x−k∥pp
∣∣ = ∣∣∥x− xJ∥pp − ∥x− xI∥pp

∣∣ ≤ ε∥x−k∥pp. Then, from the discussion above

we also have that for each j ∈ J , |x̂j − xj | ≤ εp/(p−1) ∥x−k∥p

c1k1/p , which means that | ∥x− x̂J∥pp −

∥x− xJ∥pp | ≤ k · ε
p/(p−1)∥x−k∥p

p

cp1k
= O(εp/(p−1) ∥x−k∥pp). Therefore,

∣∣∣∥x− x̂J∥pp − ∥x−k∥pp
∣∣∣ =

O
(
ε ∥x−k∥pp

)
, whence we see that any (1 ± ε)-approximation of ∥x− x̂J∥pp is an (1 ± O(ε))-

approximation of ∥x−k∥pp. We can now conclude with the following theorem.

Theorem 4.4. There is an algorithm that uses space Õ(ε−2p/(p−1)k2/pn1−2/p) and outputs a
(1± ε)-approximation of the k-residual error ∥x−k∥pp with high constant probability.

ℓp Sparse Recovery. Recall that in our algorithm, the vector x̂J is k-sparse and satisfies that
∥x− x̂J∥ ≤ (1 + ε)∥x−k∥pp, which means that Algorithm 1 actually solves the ℓp sparse recovery
problem. We have the following theorem.

Theorem 4.5. There is an algorithm that uses space Õ(ε−2p/(p−1)k2/pn1−2/p) and solves the
(1 + ε)-ℓp sparse recovery problem with high constant probability.

Below we show an Ω(k2/pn1−2/p) lower bound for the ℓp sparse recovery problem with a constant
approximation factor. To achieve this, we consider the Gap-infinity problem in (Bar-Yossef et al.,
2004).
Definition 4.6 (Gap-infinity problem, (Bar-Yossef et al., 2004)). There are two parties, Alice and Bob,
holding vectors a, b ∈ Zn respectively, and their goal is to decide if ∥a− b∥∞ ≤ 1 or ∥a− b∥∞ ≥ s.

Theorem 4.7 ((Bar-Yossef et al., 2004)). Any protocol that solves the Gap-infinity problem with
probability at least 9/10 must have Ω(n/s2) bits of communication.

The lower bound also holds if we assume there is exactly 1 or 0 coordinates i satisfying |ai − bi| ≥ s,
each case occurring with constant probability. The work of (Bar-Yossef et al., 2004) provides
an information cost lower bound for this problem, which, together with the direct sum theorem
((Chakrabarti et al., 2001; Bar-Yossef et al., 2004)), leads to the following corollary.
Corollary 4.8. Suppose that there are t independent instances of the Gap-infinity problem. If Alice
and Bob can solve a constant fraction of the instances with probability at least 9/10, then they must
have Ω(tn/s2) bits of communication.

Now we are ready to prove a bit lower bound for the ℓp-sparse recovery problem.
Theorem 4.9. Suppose that c is a sufficiently small constant. Any algorithm that solves the (1 + c)
ℓp sparse recovery problem with high constant probability requires Ω(k2/pn1−2/p) bits of space.

Proof. We reduce the multi-instance Gap-infinity problem to the ℓp sparse recovery problem. Suppose
that there are k instances of the Gap-infinity problem (ai, bi) with length n/k and s = (n/k)1/p.
Let zi = ai − bi (i ∈ [n/k]) and x ∈ Zn be the resulting vector after concatenating all zi. Suppose
that x̂ is a k-sparse vector which satisfies ∥x− x̂∥pp ≤ (1 + c)∥x− xk∥pp, where c is a sufficiently
small constant. We shall show how we can solve, using x̂, a constant fraction of copies of the
Gap-infinity problem on (ai, bi). As mentioned above, we can assume for each instance (ai, bi)
that there is exactly 1 or no coordinates j satisfying |(ai)j − (bi)j | ≥ s, each case occurring with
constant probability. Under this assumption, with high constant probability, there are Θ(k) instances
for which ∥ai − bi∥∞ = s and ∥x−k∥pp = O(n). Note that for a coordinate xi, if |xi − x̂i| ≥ s/2, it
will contribute Ω(n/k) to ∥x− x̂∥pp. Thus, for a (1 + c)-approximation, this event can only happen
at most O(k) times, which means that from the solution x̂, we can solve a constant fraction of the
instances (ai, bi). The theorem then follows from Corollary 4.8.

8
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Table 1: Performance of our algorithm and (Andoni & Nguyen, 2013) on MovieLens 100K data and
KOS data, respectively.

k = 5 k = 10 k = 20
ε(Ours, m = 50) 0.146 0.295 0.545
ε(Ours, m = 100) 0.074 0.149 0.292
ε(AN13, m = 50) 0.135 0.287 0.541
ε(AN13, m = 100) 0.070 0.149 0.288

Runtime 0.105s 0.102s 0.105s(Ours, m = 50)
Runtime 0.106s 0.105s 0.109s(Ours, m = 100)
Runtime 0.377s 0.381s 0.388s(AN13, m = 50)
Runtime 0.735s 0.735s 0.728s(AN13, m = 100)

Streaming LRA 0.141s 0.149s 0.151s(m = 50)
Randomized SVD 0.056s 0.061s 0.075s

SVD 1.180s

k = 5 k = 10 k = 20
ε(Ours, m = 50) 0.135 0.287 0.543
ε(Ours, m = 100) 0.068 0.140 0.279
ε(AN13, m = 50) 0.141 0.288 0.540
ε(AN13, m = 100) 0.067 0.138 0.286

Runtime 0.117s 0.114s 0.120s(Ours, m = 50)
Runtime 0.126s 0.130s 0.123s(Ours, m = 100)
Runtime 0.399s 0.414s 0.397s(AN13, m = 50)
Runtime 0.747s 0.744s 0.744s(AN13, m = 100)

Streaming LRA 0.651s 0.657s 0.660s(m = 50)
Randomized SVD 0.199s 0.218s 0.230s
Runtime of SVD 22.070s

We have shown a lower bound in terms of total bits of space. We next show that such a lower bound
can be converted to a sketching dimension lower bound, for which we need the following lemma.

Lemma 4.10 ((Price & Woodruff, 2011, Lemma 5.2)). A lower bound of Ω(b) bits for the sparse
recovery bit scheme implies a lower bound of Ω(b/ log n) for regular sparse recovery with failure
probability δ − 1/n. 1

Our theorem follows immediately.

Theorem 4.11. Suppose that c is a sufficiently small constant. Any algorithm that solves the (1 + c)

ℓp sparse recovery problem with high constant probability requires Ω̃(k2/pn1−2/p) measurements.

5 EXPERIMENTS

In this section, we consider experiments for the low-rank residual error estimation problem on
real-world datasets. All of our experiments were done in Python and conducted on a device with a
3.30GHz CPU and 16GB RAM. We will use the following dataset.

• KOS data.2 A word frequency dataset. The matrix represents word frequencies in blogs and has
dimensions 3430 × 6906 with 353160 non-zero entries.

• MovieLens 100K. (Harper & Konstan, 2016) A movie ratings dataset, which consists of a
preference matrix with 100,000 ratings from 611 users across 9,724 movies.

As discussed in the previous section, our algorithm follows the same framework as that in (Andoni
& Nguyen, 2013): compute the sketch SAT and then compute the rank-k residual error on SAT :
∥SAT − [SAT ]k∥F . However, the work of Andoni & Nguyen (2013) only gives an O(k2/ε6)
upper bound for this bilinear sketch, while we have shown any sketch matrices with the rank-k
projection-cost preserving property suffice, which allows for an O(k2/ε4) upper bound and the use
of extremely sparse sketching matrices with this size.

The result is shown in Table 1. We define the error ε = (Output of the Algorithm)/∥A−Ak∥F − 1,
and take an average over 10 independent trials. Since the regime of interest is k ≪ n, d, we vary k
among {5, 10, 20} and set the sketching size to be m = 50, 100. For the work of Andoni & Nguyen
(2013), we set the matrices S, T to be random Gaussian matrices and for ours we set the S, T to be
the OSNAP matrices (Nelson & Nguyen, 2013; Cohen, 2016) with s = 2. The result shows that
while the error of the two ways is almost the same, the runtime of ours is about 4- to 7-fold faster
than the algorithm in (Andoni & Nguyen, 2013). This is because, in our algorithm, the sketching
matrix is extremely sparse, where each column has only O(1) non-zero entries.

1The theory in (Price & Woodruff, 2011) is for p ≤ 2, however, the argument still goes through for constant
p > 2 unchanged.

2The Bag of Words Data Set from the UCI Machine Learning Repository.
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