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INT8 quantization is an essential compression tool to deploy a deep neural network
(DNN) on resource-limited edge devices. While it greatly reduces model size
and memory cost, current edge-regime DNN models cannot well utilize INT8
quantization to reduce inference latency. In this work, we find that the poor INT8
latency performance is due to the quantization-unfriendly issue: the operator and
configuration (e.g., channel width) choices in a normal model design space lead to
diverse quantization efficiency and can slow down the INT8 latency. To alleviate
this issue, we propose SpaceEvo to efficiently search a novel hardware-aware,
quantization-friendly search space, where its top-tier sub-networks achieve both
superior quantization efficiency and accuracy. The key idea is to automatically
evolve hardware-preferred operators and configurations guided by a search space
quality metric, called Q-T score. However, naively training a candidate space from
scratch for Q-T score evaluation brings prohibitive training cost, making it difficult
to evolve search space on large-scale tasks (e.g., ImageNet). We further propose to
conduct block-wise training and build INT8 accuracy lookup table to greatly reduce
the cost. On diverse devices, SpaceEvo consistently outperforms existing manually-
designed search spaces by producing both tiny and large quantized models with
superior ImageNet accuracy and hardware efficiency. The discovered models,
named SeqNet, achieve up to 10.1% accuracy improvement under the same latency.
Our study addressed the hardware-friendly search space design challenge in NAS
and paved the way for searching the search space towards efficient deployment.

1 INTRODUCTION

Edge AI, where the deep neural networks (DNNs) inference is fully executed on mobile and client
devices, shows rapid growth (blog, 2020) and many advantages such as privacy protection. To deploy
DNN models on these resource-limited devices, many quantization approaches have been proposed
for different bit-width compression. Among them, INT8 quantization has been widely supported
and becomes the dominant on edge devices, reducing 4× model size and memory cost compared to
full-precision (FP32) models. However, existing state-of-the-art (SOTA) DNNs often receive little
benefit from INT8 quantization, which yields limited speedup on real-world devices. (Fig. 2(ab)).

Conventional deployment process adopts a two-stage design-quantize scheme. It first designs an
efficient model with low FLOPs and then quantizes it to 8bit for minimal accuracy loss (Esser et al.,
2020). Unfortunately, since FLOPs cannot reflect INT8 quantized latency on real-world devices, this
traditional routine may fail to get a good quantized model. We observe that existing compact models
with low FLOPs have marginal latency speedup by INT8 quantization, and the quantized latency
can be unexpectedly longer than a large model as in Fig. 2(c). Applying Neural Architecture Search
(NAS) (Shen et al., 2021; Wang et al., 2020) seems to be an alternative, that searches quantized
models for target INT8 latency from a SOTA search space. However, we argue that prior art search
spaces cannot be well applied to quantization on the diverse edge devices, as the current design can
unexpectedly hurt the INT8 latency. For instance, Squeeze-and-Excitation (SE) (Hu et al., 2018) and
Hardswish are widely-used operators in CNN search space as it improves accuracy with little latency
introduced, but their INT8 inference is slower than full-precision inference on VNNI CPU (Table 1).
As a result, these prior art search spaces undesirably limit NAS to find better quantized models.

We perform an in-depth study to understand the factors that determine on-device quantization
efficiency and how they affect search space design. Our study shows: (1) both operator type and
configurations (e.g., channel width) greatly impact the INT8 latency; Improper selections can slow
down the INT8 latency. (2) The quantization efficiency varies across different hardware, and the
preferred settings can be contradictory. Based on these observations, we argue that designing a
quantization-friendly search space must consider hardware preferred operators and configurations to
guarantee efficiency while maintaining the same level of accuracy as normal search spaces. Moreover,
each type of device requires a specialized search space to avoid contradictory preferred designs.
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Figure 1: (a) The search concept of SpaceEvo is analogous to NAS: we have three major components:
hyperspace (search spaces pool), search algorithm and space quality estimator; (b) we adopt block-
wise knowledge distillation to greatly reduce model accuracy evaluation cost in a search space.

However, we face the challenge of designing such quantization-friendly search space for the large
variety of edge devices, as it requires domain knowledge from both AI and hardware experts
to optimize the accuracy and INT8 latency. Recently, (Ci et al., 2021; Chen et al., 2021) can
automatically shrink a large space to better search spaces without any human efforts. Inspired by this,
the questions naturally arise: 1) Can we design a search space pool and automatically search a good
one that is consisting of quantization-friendly operators and configurations for the target device? 2)
How to handle with the prohibitive cost caused by quality evaluation of a candidate search space?

To this end, we propose SpaceEvo, the first to search a quantization-friendly search space for a given
device, so that its top-tier sub-networks can achieve optimal INT8 quantization latency and accuracy.
We first formulate the space search into neural architecture search (NAS) process as shown in Fig. 1(a).
Specifically, we factorize and encode a search space into a sequence of elastic stages, which have
flexible operator types and configurations. Then, we design a large hyperspace to include many
candidate search spaces and leverage aging evolution (Real et al., 2019) to perform random elastic
stage mutations for search space evolution. The evolution process is guided by Q-T score, which is
proposed to evaluate the INT8 accuracy-latency quality of top-tier sub-networks in a search space.
However, Q-T score requires expensive accuracy evaluation for numerous sub-networks. Therefore,
instead of naively training a candidate search space from scratch, we further propose a block-wise
quantization scheme to build a quantized accuracy lookup table in Fig. 1(b). This significantly
reduces the training and evaluation cost, while providing effective accuracy rankings among search
spaces. Finally, we train a quantized-for-all supernet over the searched space containing a variety of
well-quantized models with adaptive sizes and latency. An evolutionary search (Cai et al., 2020)
with an INT8 latency predictor is performed to get Pareto-frontier INT8 models. The specialized
models can be directly deployed on target hardware without additional training or quantization cost.

Extensive experiments on ImageNet and two popular edge devices (Pixel 4 CPU and Intel VNNI
CPU) demonstrate that our searched spaces consistently produce superior INT8 quantized models
than the existing manually-designed search spaces with much higher accuracy, lower latency and
better speedups. Code and models will be released. In summary, we make the following contributions:

• We systematically study the INT8 quantization efficiency on real-world edge devices and find that
the choices of operator types and configurations in a quantized model can significantly impact the
INT8 inference latency, leaving a huge room for quantized model design optimization.

• Motivated by our study, we propose SpaceEvo, the first space search algorithm that evolves a
quantization-friendly search space producing superior quantized models under desired INT8 latency
constraints. To reduce the extremely expensive search cost, we further propose a novel block-wise
quantization scheme to build accuracy lookup table.

• We demonstrate the effectiveness and efficiency of SpaceEvo on two edge devices and ImageNet
dataset. Our discovered model, SeqNet@vnni-A4 achieves 80.0% accuracy on ImageNet, which is
3.3ms faster with 1.8% higher accuracy than FBNetV3-A. SeqNet@pixel4-A1 runs 2.1× faster than
EfficientNetB0 with 0.9% higher accuracy. Moreover, SpaceEvo produces superior tiny models,
achieving up to 10.1% accuracy improvement over the tiny ShuffleNetV2x0.5 (41M FLOPs, 4.3ms).

2 ON-DEVICE QUANTIZATION EFFICIENCY ANALYSIS

Most existing works optimize the quantized models through reducing FLOPs. While such metric does
not reflect the real on-device latency for quantized models. To understand what factors and design
choices slow down the INT8 latency, we conduct a comprehensive study on two widely-used edge
devices: an Intel CPU device supported with VNNI instructions and onnxruntime (abbr Intel VNNI)
and a Pixel 4 phone CPU with TFLite 2.7 (abbr Pixel 4). We reveal key observations as follows:
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Figure 2: INT8 latency and speedups (annotated) for SOTA models. FLOPs and FP32 latency are not
good indicators of INT8 latency; Compact models have very limited quantization speedup (∼1.5×).

Observation 1: FLOPs and FP32 latency are bad indicators of INT8 latency. Existing low-FLOPs
models achieve marginal latency speedup. To deploy a model on edge devices, a common belief is
that a compact model with low FLOPs or FP32 latency is preferred than a larger model. However,
our comparison in Fig. 2 between models with low and high FLOPs, shows that neither FLOPs nor
FP32 latency can be a good indicator of INT8 latency. As shown in Fig. 2(c), a very large model
(ResNet18) can be even faster than a compact model (EfficientNetB0) after quantization. Moreover,
the recent SOTA compact models searched by FBNets (Wan et al., 2020; Dai et al., 2021), OFA (Cai
et al., 2020) and AttentiveNAS (Wang et al., 2021b) all have only ∼1.5× speedup by INT8 inference,
suggesting that only optimizing FLOPs and FP32 latency can not lead to lower INT8 latency.

Observation 2: The choice of operators’ type and configurations greatly impacts the INT8 latency.

Table 1: Avg. INT8 latency
speedup (refer to FP32) of ma-
jor operators in MobileNetV3.

Operator Intel VNNI Pixel4
Conv 2.6× 2.5×

DWConv 1.2× 2.0×
SE 0.7× 1.4×

Hardswish 0.7× 0.5×
Swish 0.8× 2.1×

While edge regime models require a small FLOPs (≤600M FLOPs),
the prior art search spaces in recent NAS works are MobileNetV2
or MobileNetV3 based chain-structure, where a search space is
comprised with a sequence of blocks (stages). The block type is fixed
to the MBConv and is allowed to search from a handcraft range of
configurations including kernel size, expansion ratio, channel width
and depth. In particular, these handcraft configurations are designed
with human wisdom. For instance, many works (Cai et al., 2019;
Wang et al., 2021b) observe that mobile CNNs prefer deeper depths and narrower channels, and
manually set small channel numbers but large depths in the search space.

Figure 3: Conv1x1 speedups under
various channel numbers. Config:
HW=28, Cout=4xCin(expand=4).

However, we find that many block type and configuration
choices in current search space unexpectedly slow down the
INT8 latency. We first study the operator type impact in Ta-
ble 1. SE and Hardswish are lightweight operators in edge
regime search spaces, but their INT8 inference becomes slower
on Intel VNNI. Compared to Conv, DWConv can greatly re-
duce the FLOPs, but it benefits less from INT8 quantization.
Besides the operator type, the configuration choices also de-
termine the quantization efficiency. Fig. 3 shows the speedups
of Conv1×1 under various channel numbers. Results suggest
that small channel widths in OFA and AttentiveNAS spaces
cannot benefit well from quantization. In contrast, SpaceEvo
can automatically search a search space with larger channel
widths to better utilize hardware capability.

Observation 3: Quantization-friendly settings are diverse and contradictory across devices.

The real-world edge devices are equipped with (i): diverse processors, such as ARM CPU, Intel CPU,
and GPU, that have fundamentally different hardware designs; (ii) diverse inference engines, such as
TFLite (Google, 2022) and Onnxruntime (Microsoft, 2022), that have different optimizations. To deal
with the huge diversity, many NAS works (Cai et al., 2019; 2020) use one handcraft search space for
all hardware and conduct latency-aware search. However, this does not apply to INT8 inference on
diverse devices, because each device has its own set of quantization-friendly operators as shown in
Table 1. Constructing a huge search space to cover all devices’ preferred settings can be an intuitive
solution. However, the very large search space has been demonstrated with prohibitive search cost
and convergence failure issues (Ci et al., 2021; Zhang et al., 2020). Moreover, our two devices show
some contradictory behaviours. For instance, Swish achieves a 2× speedup on Pixel4, but it’s a
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Figure 4: The illustration of our hyperspace. A sampled search space is encoded by a sequential
elastic stages. An elastic stage can select its block type and channel number list in evolution search.

quantization-unfriendly operator on VNNI with a 0.8× slowdown. Thus, we argue that each device
requires a specialized search space to achieve the optimal quantized latency-accuracy trade-off.

3 METHODOLOGY

Motivated by the above observations, we propose SpaceEvo to search a quantization-friendly space
with optimal operator type and configurations for a given device. Our approach is based on two main
ideas: (i) we formulate the space search into the neural architecture search process; (ii) we introduce
the block-wise quantization scheme to tackle the challenge of huge search space evaluation cost.

3.1 PROBLEM FORMULATION

Search space factorization into elastic stages. In our work, we consider the chain-structured search
space (Cai et al., 2020; Yu et al., 2020; Wang et al., 2021b). It can be factorized as a sequence of STEM,
head and N searchable stages, where each stage is allowed to search from a range of configurations c
(e.g., kernel size, channel number, depth) for a block type b. This design can effectively reduce the
search complexity. Without loss of generality, we define a stage structure as elastic stage Eb,c. Given
a search space A with N stages, it can be modularized as STEM ◦ E1

b,c, ... ◦ ENb,c ◦ head.

Problem definition. Operator type b and configuration c are two crucial objectives when searching
quantization-friendly search space. Through the definition of elastic stage, the task of space search
then is simplified to find a search space with the optimal elastic stages. We formulate our problem as:

A(E1
b,c ◦ E2

b,c ◦ ... ◦ ENb,c)∗ = argmax
Ei

b,c∈Hi

Q(A(E1
b,c ◦ E2

b,c ◦ ... ◦ ENb,c), T ); (1)

where A(·) denotes the search space, and Eib,c is the ith elastic stage of A(·). H denotes the
hyperspace and Q is a measurement of search space quality. Given the constraints T (i.e., a set of
targeted quantized latency), SpaceEvo aims to find the optimal elastic stages (E1

b,c ◦E2
b,c ◦ ... ◦ENb,c)∗

from the 1st to N th stage for A∗ that has the maximum quality score Q: the top-tier quantized
models can achieve best accuracy under the constraint T . Fig. 1(a) illustrates the overall process. In
this work, we focus on the latency of INT8 quantized models. Our approach can be generalized to
lower bits once they are supported on commercial devices.

3.2 SEARCHING THE SEARCH SPACE

Hyperspace H. Analogous to NAS, hyperspace H defines which search space a search algorithm
might discover in principle. We factorize a search space into elastic stages and then search the optimal
architecture (i.e., operator type and configurations) for each elastic stage. As shown in Fig. 4, a search
space can be encoded by N=6 sequential elastic stages along with STEM and head layers. In our
work, we search the following two dimensions for an elastic stage:

• Block type b: MBv1 (Howard et al., 2017), MBv2 (Sandler et al., 2018), MBv3 (Howard et al.,
2019), residual bottleneck (He et al., 2016), residual bottleneck with SE, FusedMB (Tan & Le, 2021)
and FusedMB with SE. Among them, residual bottleneck and FusedMB are consisting of Conv and
thus are quantization-friendly blocks on our evaluated devices; the efficiency of MB blocks relies on
the device. For instance, DWConv and SE are less quantization-efficient on Intel VNNI.

• Output channel width list cout. In Section 2, we observe that quantized models can better utilize
edge devices under a larger channel number setting. However, directly increasing the channel
numbers will also lead to longer latency. Therefore, instead of manual configurations, we search the
optimal stage-wise channel width list cout: {w∗min, ..., w∗max}, which provides different channel
width choices for final neural architecture search. Specifically, as described in Fig. 4, we predefined
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a wide range of [wmin, wmax] by enlarging the channel widths in existing search spaces, and allow
each elastic stage to choose cout from [wmin, wmax]. To better utilize on-device INT8 quantization,
the channel widths in a model is constrained to be divisible by 8 on Pixel4 and 16 on Intel VNNI
(refer to Appendix B). For example, given a predefined range of [32, 64] and ck=2, the possible
channel number lists cout can be {32,48} or {48, 64} for Intel VNNI.

Besides channel widths, other configuration dimensions (e.g., kernel size) also impact a model’s
quantized latency. However, searching all dimensions leads to a large amount of choices in a stage,
which exponentially enlarges the hyperspace size. Fortunately, we observe that other dimensions
usually have a small space (e.g., kernel size selects from {3,5,7}). It’s easy to find the optimal value
for a model in the final NAS process. Therefore, we follow existing practices to configure the choices
of kernel size, depth, and expand ratios. Appendix C.1 provides more details.

Our hyperspace has a distinct advantage of balancing the trade-off between accuracy and quantization
efficiency. Suppose that a stage has m choices of channel widths, there are 7 (blocks)×m selections
for each elastic stage. In total, for a typical search space with N=6 stages, the hyperspace has ∼109
candidate search spaces, which is extremely large and poses challenges for efficient search.

Evolutionary space search. We leverage aging evolution (Real et al., 2019) to efficiently search the
large hyperspace. We first randomly initialize a population of P search spaces, where each sampled
space is encoded as (E1

b,c ◦E2
b,c ◦ ... ◦ENb,c). Each individual is rapidly evaluated with a Q-T quality

score (see next section). After this, evolution improves the initial population in mutation iterations.
At each iteration, we sample S random candidates from the population and select the one with highest
score as the parent. Then we alternately mutate the parent for block type and widths to generate
two children search spaces. For instance, suppose the ith stage Eib,c is selected for mutation, we first
randomly modify its block type and produce Eib∗,c for child 1, then we mutate the widths and produce
Eib,c∗ for child 2. Once the children are constructed, we evaluate their Q-T scores by equation 2. We
add the children to current population and remove the oldest two for next iteration. After all iterations
finish, we collect all the sampled space and select the one with best score as the final search space.

Quality estimator Q-T score. Q-T score serves as the metric to measure the quality of a search space,
and guide the evolution search process. Since our ultimate goal is to search best quantized models
from the searched space, we treat a space with good quality if its top-tier sub-networks achieve
optimal quantized accuracy under constraints T . We use multiple INT8 latency constraints to
measure a space’s quality, as real-world applications usually have different deployment requirements.
For a sampled space A and a set of quantized latency constraints T1,...,n, Q-T score is the sum of
each constraint: Q(A, T1,...,n)= Q(A, T1)+Q(A, T2)+..., Q(A, Tn), where Q(A, Ti) is defined as:

Q(A, Ti) = Eα∈A,LAT (α)≤Ti
[Accint8(α)] (2)

where α denotes a top-tier (best searched) sub-network in A and Accint8(α) is its top-1 quantized
accuracy evaluated on ImageNet validation set, LAT (α) predicts the quantized latency (in next
section). In our experiments, we randomly sample 5k sub-networks and select top 20 that under the
latency constraints as the top-tier models to approximate the expectation term.

To measure the Q-T score, the most accurate evaluations are to get accuracy by training a supernet
(search space) from scratch (Ci et al., 2021; Chen et al., 2021) and get latency by on-device measure-
ment. However, it’s impractical to conduct large-scale search due to the prohibitive cost. For example,
it costs more than 10 days to train a supernet on 8 V100 GPUs (Yu et al., 2020). To address this issue,
we introduce block-wise knowledge distillation scheme and latency predictor in next section.

3.3 EFFICIENT Q-T SCORE EVALUATION

Block-wise quantization with knowledge distillation. Block-wise knowledge distillation (BKD) is
firstly proposed in DNA (Li et al., 2020a) and then further improved in DONNA (Moons et al., 2021).
It uses block-wise representation of existing models (teacher) to supervise a student (a stage block
of the search space). Since a stage size is much smaller than search space size, the training time is
greatly reduced. Inspired by this, we adopt BKD to train all the elastic stages in our hyperspace.

Fig. 1(b) illustrates the BKD process. We use EfficientNet-B5 as the teacher, and separately train
each elastic stage to mimic the behavior of corresponding teacher block by minimizing the NSR
loss (Moons et al., 2021) between their output feature maps. Specifically, the ith stage receives the
output of (i − 1)th teacher block as the input and is optimized to predict the output of ith teacher
block with NSR loss. At each training step, we adopt sandwich rule (Yu et al., 2020) to sample four
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Table 2: ImageNet results compared with SOTA
quantized models on the Intel VNNI CPU.

Model Acc% VNNI Latency Acc% FLOPsINT8 INT8 speedup FP32

MobileNetV3Small 66.3 4.4 ms 1.1× 67.4 56M
SeqNet@vnni-A0 74.7 4.4 ms 2.0× 74.8 163M

MobileNetV2 71.4 7.3 ms 2.2× 72.0 300M
ProxylessNAS-R 74.6 8.8 ms 1.8× 74.6 320M

OQAT-8bit 74.8 9.8 ms 1.8× 75.2 214M
MobileNetV3Large 74.5 10.3 ms 1.5× 75.2 219M

OFA (#25) 75.6 11.2 ms 1.5× 76.4 230M
SeqNet@vnni-A1 77.4 8.8 ms 2.4× 77.5 358M

APQ-8bit 73.6 15.0 ms 1.5× 73.6 297M
AttentiveNAS-A0 76.1 15.1 ms 1.4× 77.3 203M

OQAT-8bit 76.3 14.9 ms 1.7× 76.7 316M
EfficientNet-B0 76.7 18.1 ms 1.6× 77.3 390M

SeqNet@vnni-A2 78.5 14.1 ms 2.4× 78.8 638M
APQ-8bit 74.9 20.0 ms 1.5× 75.0 393M

OQAT-8bit 76.9 19.5 ms 1.6× 77.3 405M
AttentiveNAS-A1 77.2 22.4 ms 1.4× 78.4 279M
AttentiveNAS-A2 77.5 22.5 ms 1.3× 78.8 317M
SeqNet@vnni-A3 79.5 18.9 ms 2.6× 79.6 981M

FBNetV2-L1 75.8 25.0 ms 1.2× 77.2 325M
FBNetV3-A 78.2 27.7 ms 1.3× 79.1 357M

SeqNet@vnni-A4 80.0 24.4 ms 2.4× 80.1 1267M

Table 3: ImageNet results compared with SOTA
quantized models on the Pixel 4 smartphone.

Model Acc% Pixel4 Latency Acc% FLOPsINT8 INT8 speedup FP32

MobileNetV3Small 66.3 6.4 ms 1.3× 67.4 56M
SeqNet@pixel4-A0 73.6 5.9 ms 2.1× 73.7 107M

MobileNetV2 71.4 16.5 ms 1.9× 72.0 300M
ProxylessNAS-R 74.6 18.4 ms 1.8× 74.6 320M

MobileNetV3Large 74.5 15.7 ms 1.5× 75.2 219M
APQ-8bit 74.6 14.9 ms 2.0× 74.4 340M
OFA (#25) 75.6 14.8 ms 1.7× 76.4 230M
OQAT-8bit 75.8 15.2 ms 1.9× 76.2 287M

AttentiveNAS-A0 76.1 15.2 ms 2.0× 77.3 203M
SeqNet@pixel4-A1 77.6 14.7 ms 2.2× 77.7 274M

APQ-8bit 75.1 20.0 ms 1.9× 75.1 398M
OQAT-8bit 76.5 20.4 ms 1.8× 76.8 347M

AttentiveNAS-A1 77.2 21.1 ms 2.0× 78.4 279M
AttentiveNAS-A2 77.5 22.7 ms 2.0× 78.8 317M

SeqNet@pixel4-A2 78.3 19.4 ms 2.3× 78.4 402M
FBNetV2-L1 75.8 26.7 ms 1.5× 77.2 325M
OQAT-8bit 77.0 29.9 ms 1.7× 77.2 443M
FBNetV3-A 78.2 30.5 ms 1.5× 79.1 357M

SeqNet@pixel4-A3 79.5 30.8 ms 2.1× 79.5 591M
EfficientNet-B0 76.7 36.4 ms 1.7× 77.3 390M

SeqNet@pixel4-A4 79.9 35.5 ms 2.2× 80.0 738M

sub-paths from the target elastic stage to improve the training efficiency. Each elastic stage is firstly
trained for 5 epochs and then performed 1 epoch LSQ+ (Bhalgat et al., 2020) for INT8 quantization.

The key insight behind BKD is that block-level quality (i.e., per-stage NSR loss on validation set) can
be used to rate model accuracy. Thus, we follow DNA to estimate the quantized loss of a sampled
model by summing up the NSR loss of all stages. To reduce the evaluation cost, we build a quantized
loss lookup table (see Fig. 1 (b)). Specifically, we randomly sample 2k architectures from each
elastic stage and evaluate their stage-wise NSR loss. These stage-architectures and losses are stored
in the lookup table. When evaluating the Q-T score, we measure a sampled model’s quantized loss
by rapidly looking up its all stage-architectures from the table. We inverse the measured loss to
approximate the quantized accuracy. In our work, the BKD and lookup table construction can be sped
up in a parallel way and finished in 1 day, which amounts a one-time cost before the space search.

nn-Meter for INT8 latency prediction. Pevious works build a latency lookup table to measure
all the stage-architectures’ latencies in a search space. In our work, it requires 0.2 millions of
measurements on each device, which is extremely expensive. To reduce the cost, we use nn-
Meter (Zhang et al., 2021) to build kernel-level (i.e., a fusion of multiple fused operators) latency
regressors, which can accurately predict latency for a kernel with arbitrary configurations. We
predict the total INT8 latency of a model by the latency sum of all kernels.

3.4 INT8 MODEL DEPLOYMENT WITH QUANTIZATION-FRIENDLY SPACE

Once SpaceEvo discovers a quantization-friendly search space for the target device, we perform
two-stage neural architecture search to derive the Pareto-frontier quantized models. The first stage
is to train a quantized-for-all supernet. We start by pretraining a full-precision supernet without
quantizers on ImageNet. We adopt the sandwich sampling rule and inplace distillation introduced
in (Yu et al., 2020). Then, we perform quantization-aware training (QAT) on the trained supernet.
This step follows the same training protocol (i.e., sandwich rule and inplace distillation). To better
quantize MB-based blocks, we use LSQ+ as the QAT algorithm. In the second stage, we search
Pareto-frontier models from the quantized-for-all supernet with nn-Meter INT8 latency predictor.
Note all the quantized models can be directly deployed without retraining or finetuning.

4 EVALUATION
4.1 EXPERIMENT SETUP

We conduct space search for two popular edge devices. The INT8 latency constraints are {8, 10, 15,
20, 25} ms for Intel VNNI, and {15, 20, 25, 30, 35} ms for Pixel4. For each device, we search 5k
search spaces in total. The population size P is 500 and sample size S is 125. After the search finishes,
we train a quantized-for-all supernet over the searched space. The full-precision supernet follows a
similar training receipt and hyperparameter setting in BigNAS (Yu et al., 2020) and AlphaNet (Wang
et al., 2021a). For the supernet QAT, we use a 10× smaller initial learning rate and set 50 epochs for
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Figure 5: Model error distribution comparison of different search spaces. For a target latency
constraint on each device, we randomly sample 512 models to characterize the error distribution.

Figure 6: Comparison of best searched INT8 models from different
spaces. Our searched spaces deliver a much wider latency range of
better models than existing manually-designed search spaces.

Figure 7: Space search under di-
verse INT8 latency constraints.
SpaceEvo(6-25) delivers superior
tiny INT8 models.

training. For the final INT8 quantized model search, we use the evolutionary search in OFA (Cai
et al., 2020) to search 5k models for a given INT8 latency. We list out detailed training settings
in Appendix D. In the following, we refer to the two searched spaces as SpaceEvo@VNNI and
SpaceEvo@Pixel4, the searched model families are SeqNet@vnni and SeqNet@pixel4.

4.2 MAIN RESULTS ON IMAGENET

Comparison with SOTA quantized models. We compare SeqNet with two baselines: (1) prior art
manually-designed and NAS-searched models on ImageNet; and (2) quantization-aware NAS. For
baseline (1), we collect official pre-trained FP32 checkpoints and conduct LSQ+ QAT to get the
quantized accuracy. The hyperparameter settings follow the original LSQ+ paper, except that we set
a larger epoch of 10 to achieve better accuracy. The latency numbers are measured on our devices.
For (2), we compare with strong baselines including APQ (Wang et al., 2020) and OQAT (Shen et al.,
2021). Specifically, we limit APQ to search for the fixed 8bit (INT8) models. Since OQAT has no
8bit supernet checkpoint, we follow the official source code and conduct supernet QAT for 50 epochs.
During the INT8 model search, we use nn-Meter as the INT8 latency predictors for fair comparison.

Table 2 and Table 3 summarize the results on two edge devices. Remarkably, our searched model
family, SeqNet significantly outperform SOTA efficient models and quantization-aware NAS searched
models, with higher INT8 quantized accuracy, lower INT8 latency and better speedups. Without
finetuning, our tiny models - SeqNet@vnni-A0 and SeqNet@pixel4-A0 achieve 74.7% and 73.6%
top1 accuracy on ImageNet, which is 8.4% and 7.3% higher than MobileNetV3-Small (56M FLOPs)
while maintaining the same level quantized latency. For larger models, SeqNet@vnni-A4 (80.0%)
outperforms FBNetV3-A with 1.8% higher accuracy while runs 3.3ms faster. In particular, to
achieve the same level accuracy (i.e., around 77.2%), AttentiveNAS-A1 has 22.4ms latency while
SeqNet@vnni-A1 (77.4%) only needs 8.8 ms (2.6 × faster). More importantly, our searched models
can better utilize the INT8 hardware optimizations: the latency speedups compared to full-precision
inference are all ≥ 2×, and this leaves room to search larger models with higher accuracy.

Comparison with SOTA search spaces. The performance gains of SeqNet in tables 2 and 3 come
from our quantization-friendly search spaces. To further demonstrate it, we compare both model
distributions and top-tier models’ accuracy with prior art search spaces including: (1) MobileNetV3,
ProxylessNAS and AttentiveNAS search spaces that are manually designed for mobile-regime models;
and (2) ResNet50 search space proposed by OFA that is a quantization-friendly space on our two
devices. For fair comparison, we use one supernet training and QAT receipt for all search spaces.
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Figure 8: Q-T score effectiveness
(Kendall’s τ ) on ranking search spaces.

Method Op Width Best quantized models
10ms 15ms 20ms 30ms 36ms

Manual Design† - - - 76.6 77.2 79.0 79.5
SpaceEvo-op search fix∗ 75.0 76.6 77.8 78.6 78.8

SpaceEvo-width fix∗ search 75.4 77.4 78.0 79.1 79.5
SpaceEvo search search 75.7 77.6 78.3 79.5 79.9

Table 4: Different space search methods and their best re-
sulting quantized models on Pixel4. †: we compare with the
SOTA mobile-friendly AttentiveNAS space. ∗: the search
dimension use the same settings in AttentiveNAS.

We use nn-Meter as the INT8 latency predictor for model sampling and search. For all experiments,
search space is the only difference.

Model distributions. We first sample a set of quantized models from each search space to characterize
the model error distributions (Radosavovic et al., 2019). Specifically, we focus on comparing
low latency models and set two tight quantized latency constraints in Fig. 5. For each constraint,
we randomly sample 512 models from the quantized-for-all supernet and evaluate their quantized
accuracy on ImageNet. As shown in Fig. 5, compared to SOTA search spaces, we have significantly
better model distributions in terms of quantized accuracy while under a same latency.

Pareto-frontier models. We conduct evolutionary search to compare the resulting top-tier mod-
els of each search space. Specifically, for each space, we measure its min and max latency and
search the Pareto-frontier models within that range. As shown in Fig. 6, SpaceEvo@VNNI and
SpaceEvo@Pixel4 consistently deliver superior quantized models than state-of-the-art search spaces.
Under the same-level latency, the best quantized models from SpaceEvo@VNNI outperform the
existing state-of-the-art search spaces with +0.7% to +3.8% (+0.4% to +3.2% on Pixel4 ) higher
accuracy. Moreover, our search space is the only that is able to deliver superior quantized models
under both extremely low ( only ∼5ms) and large latency constraints.

SpaceEvo under diverse latency constraints. We extensively study the effectiveness of SpaceEvo
under different latency constraints. Specifically, we perform space search under two tight constraints
of {10, 15, 20, 25, 30}ms and {6, 10, 15, 20, 25}ms on Pixel4. The results are shown in Fig. 7. Our
proposed method can handle the diverse latency requirements and produce high-quality spaces. As
expected, the searched spaces under 10-30ms and 6-25ms have much more low-latency quantized
models. To further verify the effectiveness of these low-latency models, we compare with existing
SOTA tiny models. Significantly, even under the extremely low latency constraints of 6-25 ms, our
searched space delivers very competitive tiny quantized models. Compared to the smallest model
ShuffleNetV2x0.5, we can achieve +10.1% higher accuracy under the same latency of 4.3 ms.

Search space design implications. We now summarize our learned practice and implications for
designing quantization-friendly search space. We notice that the searched spaces show different
preferences when targeting different devices: (i) All stages should use much wider channel widths
compared to existing manually-designed spaces on the VNNI, while only early stages prefer wider
channels on Pixel 4. (ii) VNNI space prefers MBv2, MBv3 and FusedMB blocks. Pixel4 prefers
MBv2 and MBv3 under large latency constraints. When given lower latency constraints, Pixel4 space
prefers to use more MBv1 and Residual blocks. The searched space details are in Appendix C.2.

4.3 ABLATION STUDY

Q-T score effectiveness. Q-T score is crucial as it guides the space evolution process. To evaluate
its effectiveness, we randomly sample 30 search spaces, and measure the rank correlation (Kendall’s
τ ) between their Q-T score and their actual Pareto-frontier models’ accuracies. Specifically, we
use VNNI as the test device and set a same latency constraints of {8, 10, 15, 20, 25}ms. For each
sampled space, we train it from scratch for 50 epochs, and conduct evolutionary search to get the
Pareto-frontier models’ accuracies. As shown in Fig. 8, the Kendall’s τ between the Q-T score and
the actual Pareto-frontier models’ accuracies is 0.8, which indicates a very high rank correlation.

Space search effectiveness. In Section 2, we conclude that operator type and configuration are two
key factors impacting INT8 latency, which is our motivation of SpaceEvo. To verify the effectiveness,
we create two strong baselines based on the SOTA mobile-regime AttentiveNAS search space: (1)
SpaceEvo-op: we fix each elastic stage’s width to AttentiveNAS space, then allow each elastic
stage to search for the optimal operator type; and (2) SpaceEvo-width: we fix all elastic stages’
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Table 5: Comparison with SOTA space search methods. We measure the time cost on 8 Tesla V100
GPUs. N denotes the number of deployment scenarios.

Method Model Operators Configurations Hardware-
aware

Search
iterations

Total Cost
GPU hours

NSE (Ci et al., 2021) FP32 CNN searchable fixed 7 6 560N
S3 (Chen et al., 2021) FP32 Transformer fixed searchable 7 3 960N

SpaceEvo (Ours) Quantized CNN searchable searchable 3 5000 24+1N

block types to AttentiveNAS space, then search for the optimal width. Table 4 reports the space
comparison between different search methods on the Pixel4. By searching both operator type and
width, SpaceEvo finds the optimal search space where its best searched quantized models achieve
the highest accuracy under all latency constraints. Moreover, even searching for one dimension,
SpaceEvo-op and SpaceEvo-width outperform AttentiveNAS space under small latency constraints.

Search cost. Finally, we measure the search cost of SpaceEvo and compare with state-of-the-art
space shrinking methods. The cost is evaluated as the time to obtain search spaces for N deployment
scenarios (one scenario is denoted by a given range of latency constraints). As shown in Table 5,
SpaceEvo can search a space under a given constraint (N=1) in 1 day, which saves cost by 22×
and 38× compared to NSE (Ci et al., 2021) and S3 (Chen et al., 2021), respectively. NSE and S3
are time-consuming, as they need to train each search space from scratch for quality evaluation. In
contrast, SpaceEvo only requires a preprocess of accuracy lookup table construction (24 hours),
which amounts one time cost. Thus, SpaceEvo is lightweight and feasible for real-world usage.

5 RELATED WORKS
Quantization has been widely used for efficiency in deployment. Extensive efforts can be classified
into post-training quantization (PTQ) (Nagel et al., 2019; Banner et al., 2019) and quantization-aware
training (QAT) (Jacob et al., 2018; Louizos et al., 2019; Esser et al., 2020; Bhalgat et al., 2020). QAT
generally outperforms PTQ in quantizing compact DNNs to typical 8bit and very low-bit (2, 3, 4bit)
by finetuning the quantized weights. Despite their success, traditional quantization methods focus on
minimizing accuracy loss for a given pre-trained model, but ignore the real-world inference efficiency.
In our work, we consider both the quantized accuracy and latency on diverse edge devices.

Neural Architecture Search. Early NAS works focus on automating neural network design for
SOTA accuracy. Recent hardware-aware NAS methods (Cai et al., 2019; 2020; Dai et al., 2021)
consider both accuracy and hardware efficiency by introducing latency predictors. However, these
works consider the latency of FP32 models, leading to a big gap and performance degradation for
INT8 quantized models. (Wang et al., 2019; Wu et al., 2019; Guo et al., 2020; Wang et al., 2020; Cai
& Vasconcelos, 2020) formulates mixed-precision problem into NAS to search layer bit-width with a
given architecture. Recently, (Shen et al., 2021; Bai et al., 2021) train a quantized-for-all supernet
to search both architecture and bit-width. However, little attention is paid on optimizing quantized
model latency on real-world devices. Through searching quantization-friendly search space, our
discovered quantized models can achieve both high accuracy and low latency.

Search Space Design. Starting from (Cai et al., 2019), the manually-designed MBConv-based space
becomes the dominant in most NAS works (Cai et al., 2019; 2020; Yu et al., 2020; Wang et al., 2021b).
RegNet (Radosavovic et al., 2020) is the first to present standard guidelines to optimize a search
space by each dimension. Recently, (Hu et al.; Noy et al., 2020; Li et al., 2020b; Xia et al., 2022; Ci
et al., 2021; Chen et al., 2021) propose to shrink to a better compact search space by either pruning
unimportant operators or configurations. However, these works focus on optimizing the accuracy
and cannot be applied to search a quantization-friendly space for two reasons. Firstly, none of them
search the space for both operator type and configurations, which are the crucial factors impacting
INT8 latency; Secondly, the current search is constrained within 10 iterations due to the huge training
cost. Our work is the first lightweight solution for hardware-friendly search space automation.

6 CONCLUSION
In this paper, we introduced SpaceEvo, the first to search a quantization-friendly space for a given
device, which delivers superior INT8 quantized models with SOTA efficiency on real-world edge
devices. Through the use of accuracy look-up-table, built through block-wise quantization, SpaceEvo
efficiently evolves search space for the optimal quantization-friendly operator type and configurations
guided by the Q-T score. Extensive experiments on two popular edge devices demonstrate its
effectiveness compared to existing prior art manual-designed search spaces. In future work, we plan
to apply SpaceEvo for other hardware efficiency optimization (e.g., energy-efficient search space).
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A DEVICE AND LATENCY PREDICTION

Name Framework Processor Measured Hz∗ Precision
Intel VNNI Onnxruntime v1.10 Intel (R) Xeon(R) Silver 4210 CPU 2GHz FP32/INT8

Pixel 4 TFLite v2.7 CortexA76 CPU 2.42GHz FP32/INT8

Table 6: Our measured edge devices. ∗: For fair comparison, we measure the model latency on a
single CPU core with a fixed frequency.

Device RMSE ±5% accuracy ±10% accuracy
Intel VNNI 1.5ms 79.8% 92.5%

Pixel4 1.3ms 89.6% 100%

Table 7: INT8 quantized latency prediction performance of nn-Meter. We report the ±5% and ±10%
accuracy, that are the percentage of models with predicted latency within the corresponding error
bound relative to the measured latency

Device details and latency measurement. Table 6 lists out the detailed inference engine and
hardware for our two measured devices. Specifically, we select TFLite and onnxruntime as the
inference engines for Pixel 4 mobile CPU and Intel CPU, respectively, because they are well-known
high-performance engines for edge AI inference. For latency measurement, we always measure the
inference latency of a given model (either FP32 or INT8 quantized model) on a single CPU core with
fixed frequency. The inference batch size is 1. The reported latency in the paper is the arithmetic
mean of 50 runs after 10 warmup runs. The 95% confidence interval is within 2%.

Latency prediction of quantized models. We now illustrate the details of building quantized latency
predictors. Following the original nn-Meter paper, the latency of a given model is the sum of all
kernels’ predicted latency. Then the procedure contains two main steps: (i) detect kernels in a model,
and (ii) build latency predictors for these kernels. For step (i), we perform the fusion rule detection in
nn-Meter and detects 17 kernels (e.g., Conv-bn-relu and DWConv-bn-relu6). For step (ii), we run the
adaptive data sampler to collect training data for each kernel and train a randomforest regressor as
the kernel-level latency predictor. Each training data sample is a pair of (configurations of a kernel,
the inference latency). Taking Conv-bn-relu kernel as an example, we sample different kernel sizes,
strides, input/output channel numbers and input resolution for Conv-bn-relu kernel, then we measure
their INT8 quantized latency on the target device.

The kernel-level latency predictors training and construction are conduct offline. During the evo-
lutionary search, we use them to predict the INT8 quantized latency for arbitrary model. Table 7
lists out the prediction performance. Specifically, we randomly sample 2k models and predict their
INT8 quantized latency for evaluation. Remarkably, nn-Meter achieves 92.5% and 100% prediction
accuracy on the Intel VNNI and Pixel 4, respectively.

B ON-DEVICE QUANTIZATION EFFICIENCY ANALYSIS

Figure 9: The choice of channel number greatly impact the INT8 latency of DWConv. INT8 latency
of DWConv shows a step pattern. Configuration: HW=56.

In Section. 2, we studied how the operator type and channel widths in a quantized model impact final
inference efficiency. Next, we will illustrate the impact of other configuration dimensions.

Kernel size. Table 8 shows the latency speedup of Conv and DWConv with different kernel sizes
on two devices. Results suggest that the choice of kernel size can result in different speedups after
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Kernel
size

Intel VNNI Pixel4
Conv DWConv Conv DWConv

1 3.5× 2.7× 2.6× 0.9×
3 3.6× 1.4× 4.0× 2.8×
5 3.8× 1.1× 3.9× 1.1×
7 4.0× 0.8× 3.8× 1.1×

Table 8: INT8 quantization speedup on two devices. Kernel size impacts the speedup for DWConv.
Configuration: H=W=56, Cin=Cout=96.

INT8 quantization. Specifically, we notice that kernel size is more crucial to DWConv quantization
efficiency than Conv. Unlike Conv can consistently achieve speedups under various kernel sizes,
improper kernel size of DWConv can lead to a significant slowdown. Moreover, the most efficient
kernel size for DWConv is highly relying on the target devices. DWConv with smaller kernel sizes
can achieve larger speedup on Intel VNNI, while DWConv with K = 3 achieves the maximum
speedup of 2.8× on Pixel 4.

Consequently, the INT8 quantized models should consider the choices of kernel sizes to achieve both
high accuracy and low inference latency. Instead of searching the optimal kernel sizes for a search
space, we directly allow all stages to choose from {3, 5, 7}. In our work, we perform latency-aware
evolutionary search to derive the optimal quantized models from the resulting search space. As shown
in Table 18 and Table 19, the optimal quantization-friendly kernel sizes are chosen for our discovered
model family SeqNet. For example, kernel size of 3×3 is the dominate choice in DWConv in SeqNet.

Channel number of DWConv. Fig. 9 show the latency of DWConv 3×3 with different channel
number on two devices. Surprisingly, we observe a step pattern: the latency of DWConv 3×3 achieves
minimal at special channel numbers. Specifically, in terms of INT8 quantized latency, when C is
divisible to 8 on Pixel 4 (16 on Intel VNNI), the latency achieves a minimal and can be accelerated
by 2.9× ( 1.7× on Intel VNNI). Therefore, we constrain the channel widths in our search space to
be divisible by 8 on Pixel 4 and 16 on Intel VNNI. Moreover, we notice that the latency patterns of
FP32 and INT8 inference are different on two devices, which further motivates SpaceEvo.

C SEARCH SPACE DETAILS

C.1 HYPER SPACE

Stage Depths Kernel
Size Stride

Channel
Widths

16-divisible
ck

Conv (STEM) 1 3 2 16 - 32 -
Residual (STEM) 1-2 3 1 16 - 32 -

Stage1 2-4 3, 5, 7 2 32 - 64 2
Stage2 2-4 3, 5, 7 2 32 - 96 2
Stage3 2-6 3, 5, 7 2 64 - 144 3
Stage4 2-6 3, 5, 7 1 112 - 192 3
Stage5 2-6 3, 5, 7 2 192 - 304 5
Stage6 1-2 3, 5, 7 1 304 - 448 7

Classifier (head) - - - - -
input resolution 160, 176, 192, 208, 224

Table 9: VNNI hyperspace. We search the opti-
mal block type and channel widths for Stage1-6.

Stage Depths Kernel
Size Stride

Channel
Widths

8-divisible
ck

Conv (STEM) 1 3 2 16-32 -
MBv2 (STEM) 1-2 3 1 16-32 -

Stage1 2-4 3, 5, 7 2 24 - 32 2
Stage2 2-6 3, 5, 7 2 40 - 56 2
Stage3 2-6 3, 5, 7 2 80 - 104 3
Stage4 2-8 3, 5, 7 1 96 - 128 3
Stage5 2-8 3, 5, 7 2 192 - 256 5
Stage6 1-2 3, 5, 7 1 320 - 416 7

Classifier (head) - - - - -
input resolution 160, 176, 192, 208, 224

Table 10: Pixel4 hyperspace. We search the opti-
mal block type and channel widths for Stage1-6.

Block type Search id Intel VNNI Pixel4
Expand Ratios Activation Expand Ratios Activation

MBv1 0 - relu - relu
MBv2 1 4, 6, 8 relu6 3, 6, 8 relu6
MBv3 2 4, 6, 8 hswish 3, 6, 8 swish

Residual bottleneck 3 0.5, 1.0, 1.5 relu 0.5, 1.0, 1.5 relu
Residual bottleneck+SE 4 0.5, 1.0, 1.5 relu 0.5, 1.0, 1.5 relu

FusedMB 5 1, 2, 3, 4 swish 1, 2, 3, 4 swish
FusedMB+SE 6 1, 2, 3, 4 swish 1, 2, 3, 4 swish

Table 11: Block choices for an elastic stage. We set larger expand ratios and use swish as the
activation function
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Table 9 and Table 10 summarize the hyperspace structures when targeting Intel VNNI CPU and Pixel
4 mobile CPU, respectively. As introduced in Section 3.2, we search the 6 stages (Stage1-Stage6) for
a quantization-friendly search space. For each elastic stage, it can search: (i) an optimal block type
from a pool as shown in Table 11; and (ii) the optimal channel widths for that block type as shown in
Table 9 and Table 10. Other search space dimensions including kernel sizes, expand ratios and input
resolutions are unsearchable and using manual settings.

In total, the hyperspace contains ∼109 possible candidate search spaces, which is extremely large
and we leverage the aging evolution for efficient search. For better mutations, we encode a candidate
search space as the format of PerStageBlock-PerStageWidth. As shown in Table 11, we assign an
unique search id for each candidate block types. For example, 1 indicates selecting the MBv2 block.
For the channel widths, we use the minimal channel index as the encoding. For example, 0 indicates
selecting channel widths of {32, 48} (32 is the 0th item in {32, 48, 64}) for Stage1 on the Intel VNNI;
1 indicates selecting {48, 64}. Taking 111111-000000 as an example, it means that all stages choose
the MBv2 block; and the chosen channel widths for Stage1 to Stage6 are {32, 48}, {32, 48}, {64, 80,
96}, {112, 128, 144}, {192, 208, 224, 240, 256}, {304, 320, 336, 352, 368, 384, 400}, respectively.

C.2 SEARCHING THE QUANTIZATION-FRIENDLY SEARCH SPACE

Figure 10: Our overall pipeline has three steps: search a quantization-friendly search space; train a
quantized-for-all supernet; search an optimal quantized model under diverse latency constraints.

Algorithm 1 Search Space Evolution Algorithm

Input: HyperspaceH, total number of spaces to explore N , population size P , sample
size S, latency_auc tradeoff α, target latency constraints T0,1,..n

1: population(0)← initialize (H, P )
2: for i=1: (N -P ) do
3: parent← sample_with_maximum_score (population(i−1),S)
4: child1← mutate-block-type (parent, T0,1,..n)
5: score1← get_quality_score (child1, T0,1,..n,α ) (see Equation 2)
6: child2← mutate-block-width (parent, T0,1,..n)
7: score2← get_quality_score (child2, T0,1,..n, α ) (see Equation 2)
8: population(i)← add child1 and child2 to right of population(i−1), remove the oldest two spaces

from left of population(i−1)

9: end for
10: return the search space with maximum score under the T0,1,...n

Search algorithm. Algorithm 1 illustrates the major procedures of searching a quantization-friendly
search space. To generate the initial population, we randomly sample P=500 search spaces from
the hyperspace, then we perform random mutations to evolve better search spaces. Specifically, for
each evolution iteration, we first sample S=125 spaces from the current population, and select the
one with highest Q-T score as the parent. Then we alternately mutate the parent and produce two
children (line 4-7). The following illustrates an example. Assume the search space 111111-000000 is
selected as the parent, and stage 2 is randomly selected for mutation. For the block type mutation,
an example child1 131111-000000 is produced. For the channel width mutation, we can randomly
create 111111-020000 as the child2. We add the two children into the current population and remove
the oldest two for next iteration. In total, we search 5k search spaces for each device.

Fig. 11 compares the search efficiency with random search. For each method, we set a same range of
latency constraints, and keep track of the searched spaces for every 500 iterations. We select the top
10 spaces with the best Q-T score over time. Fig. 11 demonstrates that our space evolution algorithms
consistently achieve better search spaces (i.e., higher Q-T score) than random search.

Searched space. Table 12 and Table 13 list out the searched space structures for Intel VNNI and
Pixel4 mobile CPU, respectively. In experiment section, the main results (Table 2, Table 3, Fig. 5 and
Fig. 6) are reported through searching the two search spaces. In addition, we provide the detailed
search space structures under other latency constraints in Table 14, Table 15 and Table 16.
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Figure 11: Space search efficiency comparison.

Stage Depths Kernel
Size Stride

Channel
Widths

16-divisible
Expand
Ratio

Conv 1 3 2 16 - 32 -
Residual bottleneck 1-2 3 1 16 - 32 0.5

MBv2 2-4 3, 5, 7 2 32 - 48 4, 6, 8
FusedMB 2-4 3, 5, 7 2 64 - 80 1, 2, 3, 4

MBv2 2-6 3, 5, 7 2 112 - 144 4, 6, 8
MBv2 2-6 3, 5, 7 1 144 - 176 4, 6, 8

MBv3 (hswish) 2-6 3, 5, 7 2 240 -304 4, 6, 8
MBv3 (hswish) 1-2 3, 5, 7 1 320 - 416 4, 6, 8

Classifier - - - - -
input resolution 160, 176, 192, 208, 224

Table 12: SpaceEvo@VNNI: searched space un-
der constraint of {8, 10, 15, 20, 25}ms on VNNI.

Stage Depths Kernel
Size Stride

Channel
Widths

8-divisible
Expand
Ratio

Conv 1 3 2 16-32 -
MBv2 1-2 3 1 16-32 1
MBv2 2-4 3, 5, 7 2 32 - 40 3, 6, 8
MBv3 2-6 3, 5, 7 2 64 - 72 3, 6, 8
MBv3 2-6 3, 5, 7 2 96 - 112 3, 6, 8
MBv3 2-8 3, 5, 7 1 144 - 160 3, 6, 8
MBv3 2-8 3, 5, 7 2 192 - 224 3, 6, 8
MBv3 1-2 3, 5, 7 1 216 - 312 3, 6, 8

Classifier - - - - -
input resolution 160, 176, 192, 208, 224

Table 13: SpaceEvo@Pixel4: searched space un-
der constraint of {15, 20, 25, 30, 35}ms on Pixel4.

Stage Depths Kernel
Size Stride

Channel
Widths

8-divisible
Expand
Ratio

Conv 1 3 2 16 - 32 -
MBv2 1-2 3 1 16 - 32 1
MBv2 2-4 3, 5, 7 2 32 - 40 3, 6, 8
MBv2 2-4 3, 5, 7 2 64 - 72 3, 6, 8
MBv3 2-6 3, 5, 7 2 88 - 104 3, 6, 8
MBv3 2-6 3, 5, 7 1 144 - 160 3, 6, 8
MBv3 2-6 3, 5, 7 2 200 - 240 3, 6, 8
MBv1 1-2 3, 5, 7 1 216 - 312 3, 6, 8

Classifier - - - - -
input resolution 160, 176, 192, 208, 224

Table 14: SpaceEvo@Pixel4-medium: searched
space under constraint of {10, 15, 20, 25, 30}ms.

Stage Depths Kernel
Size Stride

Channel
Widths

8-divisible
Expand
Ratio

Conv 1 3 2 16-32 -
MBv2 1-2 3 1 16-32 1

Residual bottleneck 2-4 3, 5, 7 2 32 - 40 3, 6, 8
Residual bottleneck 2-6 3, 5, 7 2 48 - 56 3, 6, 8

MBv3 2-6 3, 5, 7 2 88- 104 3, 6, 8
MBv2 2-8 3, 5, 7 1 128 - 144 3, 6, 8
MBv2 2-8 3, 5, 7 2 192 - 224 3, 6, 8
MBv1 1-2 3, 5, 7 1 216 - 312 3, 6, 8

Classifier - - - - -
input resolution 160, 176, 192, 208, 224

Table 15: SpaceEvo@Pixel4-tiny: searched space
under constraint of {6, 10, 15, 20, 25}ms.

Stage Depths Kernel
Size Stride

Channel
Widths

16-divisible
Expand
Ratio

Conv 1 3 2 16 - 32 -
Residual bottleneck 1-2 3 1 16 - 32 0.5

MBv2 2-4 3, 5, 7 2 48 - 64 4, 6, 8
MBv3 (hswish) 2-4 3, 5, 7 2 80 - 96 4, 6, 8

MBv2 2-6 3, 5, 7 2 112 - 144 4, 6, 8
MBv2 2-6 3, 5, 7 1 160 - 192 4, 6, 8

MBv3 (hswish) 2-6 3, 5, 7 2 240 - 304 4, 6, 8
MBv3 (hswish) 1-2 3, 5, 7 1 320 - 416 4, 6, 8

Classifier - - - - -
input resolution 160, 176, 192, 208, 224

Table 16: SpaceEvo@VNNI-large: searched space under constraint of {10, 15, 20, 25, 30}ms.
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C.3 BLOCK-WISE QUANTIZATION

Figure 12: A detailed illustration of block-wise knowledge quantization process. We separately distill
all elastic stages from the corresponding teacher block.

Fig. 12 illustrates the detailed process of quantizing a candidate elastic stage through block-wise
knowledge distillation (BKD). Firstly, we divide our teacher model EfficientNet-B5 and our search
space into 6 stages. Then, we separately train each candidate elastic stage (student) in the search
space under the guidance of teacher’s feature map in the corresponding block.

At each training step, we apply sandwich rule to sample 4 stage-architectures (min, max, and two
random) from an elastic stage. The two random stage-architectures are allowed to select different
channel numbers, kernel sizes, expand ratios, depths, and input resolutions. Since the channel
numbers of the sampled stage-architecture (student) may be different from that in the teacher block,
we cannot directly leverage the input and output of the teacher block as the training data. Inspired by
(Xu et al., 2021), we use a learnable linear transformer layer of Conv1x1 at the input and output of
the elastic stage to transform the input/output channel numbers to match that of the teacher block, as
shown in Fig. 12.

NSR Loss. For a sampled stage-architecture m in the ith stage of a search space, it receives the
output of the (i − 1)th teacher block as the input and is optimized to predict the output of the ith
teacher block with NSR (per-channel noise-to-signal-power ratio) loss:

L(E(m)
i
, Yi) =

1

C

C∑
c=0

‖Yi,c − f(Yi−1;E(m)
i
)c‖2

σ2
i,c

(3)

Where E(m)
i is a sampled stage-architecture in elastic stage Ei, it take the (i− 1)th teacher block’s

output feature map Yi−1 as the input. Yi is the target output feature map of the ith block of the
teacher model, f(Yi−1;E(m)

i
) maps the output feature map of the sampled stage-architecture. C is

the number of channels in a feature map and σ2
i,c is the variance of Yi,c.

Training Hyperparameters. All candidate elastic stages are trained in a parallel way. Specifically,
each elastic stage is trained for 6 epochs on 4 V100 GPUs. The first 5 epochs are full-precision
training without INT8 quantizers. We use 0.005 as the initial learning rate for Stage 1 and Stage 6,
and 0.01 for all the other Stages. We apply a cosine learning rate schedule (Loshchilov & Hutter,
2017), a batch size of 256, the Adam (Kingma & Ba, 2015) optimizer. After the full-precision training
finishes, we conduct 1 epoch INT8 quantization-aware training with LSQ+. We use a much smaller
learning rate of 0.0025 for quantization.

D EXPERIMENT

Supernet Training and QAT. To train our quantized-for-all supernet, we perform two-stage training:
(i) supernet pretraining without quantizers; and (ii) QAT on the pretrained supernet.

(i) supernet pretraining without quantizers. We use the sandwich rule and inplace distillation in
BigNAS (Yu et al., 2020). Our training hyperparameters setting follows AlphaNet (Wang et al.,
2021a). Specifically, we use SGD with a cosine learning rate decay. We train our supernet for 360
epochs on 8 Tesla Nvidia V100 GPUs. The mini-batch size is 128 per GPU. The initial learning rate is
set as 0.1 and is linearly scaled up for every 256 training samples. We use momentum of 0.9, weight
decay of 1e-5, dropout of 0.2 after the global average pooling layer. We use AutoAugment Cubuk
et al. (2019) for data augmentation and set label smoothing coefficient to 0.1.
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(ii) QAT on the pretrained supernet. This step starts from a full-precision pretrained supernet. We
load checkpoints from step (i) and perform LSQ+ for supernet quantization. The training receipt
follows step (i) except we use a smaller learning rate of 0.01 and train the supernet for 50 epochs.

Quantization-aware NAS baselines. In our paper, we focus on INT8 quantization because it has
been widely supported on real-world devices. Since existing quantization-aware NAS works focus on
searching mixed-precision models, we would like not to directly compare our method with mixed-
precision NAS works. We select the two state-of-the-art methods of APQ and OQAT and make some
modifications based on their original settings.

APQ originally searches the model architecture and its layer-wise mixed-precision of {4, 8} bits. It
manages an accuracy predictor that can predict the accuracy of a mixed-precision quantized model.
To compare with APQ, we constrain each layer can only search 8bit. For fair comparison, we add
our INT8 quantized latency predictor nn-Meter during the model search process. After the search
finishes, we follow APQ to perform finetuning of 30 epochs.

OQAT also trains a quantized-for-all supernet. However, it supports 4bit and 2 bit. To compare with
OQAT, we simply modify its source code to quantize 8bit and re-do the supernet QAT process. Same
with us, the supernet QAT is trained for 50 epochs.

Search Space Best searched models
smallest 8ms 10ms 15ms 20ms 25ms 28ms

SpaceEvo@VNNI 74.7 (4.4ms) 76.7 77.4 78.7 79.5 80.0 80.1
SpaceEvo@VNNI-large 76.2 (6.7ms) 76.5 77.1 78.9 79.7 80.1 80.3

Table 17: SpaceEvo@VNNI-large: searched space under constraint of {10, 15, 20, 25, 30}ms. We
report the best searched quantized model accuracy and latency.

SpaceEvo under larger latency constraints for Intel VNNI. In Section 4.2, we focus on tight INT8
latency constraints. We now provide additional results of search under larger latency constraints
of {10, 15, 20, 25, 30}ms. The searched space structure is shown in Table 16. We report the best
searched quantized models and compare with SpaceEvo@VNNI in Table 17. Under larger latency
constraints, the searched space SpaceEvo@VNNI-large produces better large models (≥15 ms).
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E ARCHITECTURE VISUALIZATION OF SEQNET

In the following, we visualize the searched INT8 quantized model architectures in Table 18 and
Table 19. ‘d’ denotes number of layers, ‘c’ denotes the number of output channels, ‘k’ denotes kernel
size, ‘e’ denotes expansion ratio. If a stage has multiple layers, we list out the kernel size, output
channel numbers, expansion ratios for each layer and use ‘-’to separate them. For example, c: 32-48
indicates that the channel numbers are 32 for the first layer and 48 for the second layer.

SeqNet@vnni-A0 SeqNet@vnni-A1 SeqNet@vnni-A2 SeqNet@vnni-A3 SeqNet@vnni-A4

Conv
d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 32
k: 3

Residual bottleneck

d: 1
c: 16
k: 3

e: 0.5

d: 1
c: 16
k: 3

e: 0.5

d: 1
c: 16
k: 3

e: 0.5

d: 1
c: 32
k: 3

e: 0.5

d: 1
c: 32
k: 3

e: 0.5

MBv2

d: 2
c: 32-32
k: 3-3
e: 4-4

d: 2
c: 32-32
k: 3-3
e: 4-4

d: 2
c: 32-32
k: 3-3
e: 4-6

d: 2
c: 32-48
k: 3-3
e: 4-8

d: 3
k: 3-3-3

c: 48-48-32
e: 4-6-6

FusedMB

d: 2
c: 64-64
k: 3-3
e: 1-1

d: 2
c: 64-80
k: 3-3
e: 2-1

d: 2
c: 64-64
k: 3-3
e: 3-2

d: 2
c: 80-80
k: 3-3
e: 4-2

d: 3
c: 64-64-64

k: 5-3-3
e: 4-3-1

MBv2

d: 2
c: 112-112

k: 3-3
e: 4-4

d: 3
c: 128-112-112

k: 3-5-3
e: 4-6-4

d: 4
c: 112-112-128

k: 3-3-5-5
e: 4-4-6-8

d: 3
c: 144-128-112

k: 5-5-5
e: 6-6-6

d: 4
c: 112-112-112-112

k: 5-5-3-5
e: 8-8-4-4

MBv2

d: 2
c: 144-144

k: 3-3
e: 4-4

d: 2
c: 144-176

k: 3-3
e: 4-4

d: 4
c: 144-144-160-160

k: 3-5-5-3
e: 8-4-4-4

d: 4
c: 144-176-144-144

k: 3-3-5-3
e: 6-8-4-4

d: 5
c: 176-176-144-144-160

k: 5-5-3-3-3
e: 8-4-4-6-4

MBv3 (hswish)

d: 2
c: 240-240

k: 3-3
e: 4-4

d: 3
c: 304-304-256

k: 3-3-3
e: 4-6-4

d: 4
c: 288-272-288-256

k: 3-3-3-3
e: 4-6-6-4

d: 4
c: 272-288-272-240

k: 3-5-3-3
e: 8-6-4-6

d: 4
c: 304-272-272-288

k: 3-3-5-3
e: 8-8-6-4

MBv3 (hswish)

d: 1
c: 320
k: 3
e: 4

d: 1
c: 368
k: 5
e: 4

d: 1
c: 320
k: 5
e: 4

d: 1
c: 320
k: 3
e: 6

d: 2
c: 352-320

k: 3-3
e: 6-4

Resolution 160 192 208 224 224

Table 18: INT8 quantized models produced by SpaceEvo@VNNI.
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SeqNet@pixel4-A0 SeqNet@pixel4-A1 SeqNet@pixel4-A2 SeqNet@pixel4-A3 SeqNet@pixel4-A4

Conv
d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 16
k: 3

d: 1
c: 24
k: 3

MBv2

d: 1
c: 16
k: 3
e: 1

d: 1
c: 16
k: 3
e: 1

d: 1
c: 16
k: 3
e: 1

d: 1
c: 16
k: 3
e: 1

d: 2
c: 16-24
k: 3-3
e: 1-1

MBv2

d: 2
c: 32-32
k: 3-3
e: 3-3

d: 2
c: 32-32
k: 3-3
e: 3-3

d: 2
c: 40-32
k: 3-3
e: 3-3

d: 2
c: 32-32
k: 3-3
e: 8-3

d: 2
k: 3-3

c: 32-32
e: 6-8

MBv3

d: 2
c: 64-64
k: 3-3
e: 3-3

d: 2
c: 64-64
k: 3-3
e: 3-3

d: 2
c: 64-72
k: 3-3
e: 3-3

d: 3
c: 64-72
k: 3-3-5
e: 3-6-3

d: 3
c: 72-64-64

k: 3-3-5
e: 6-3-3

MBv3

d: 2
c: 96-96
k: 3-3
e: 3-3

d: 2
c: 96-96
k: 7-3
e: 3-3

d: 2
c: 96-96
k: 3-3
e: 3-6

d: 3
c: 64-112-96

k: 7-3-3
e: 8-3-6

d: 4
c: 112-96-104-104

k: 3-5-5-3
e: 6-6-3-3

MBv3

d: 2
c: 144-144

k: 3-3
e: 3-3

d: 2
c: 144-144

k: 3-3
e: 3-3

d: 3
c: 152-160-152

k: 5-3-3
e: 3-6-3

d: 4
c: 104-152-144-152

k: 3-3-3-5
e: 6-6-3-3

d: 4
c: 152-144-144-152

k: 3-3-3-5
e: 8-8-6-3

MBv3

d: 2
c: 192-192

k: 3-3
e: 3-3

d: 4
c: 224-192-208-192

k: 3-3-5-3
e: 6-6-6-3

d: 4
c: 200-224-200-200

k: 7-5-7-5
e: 6-3-3-6

d: 4
c: 200-192-208-192

k: 3-3-3-5
e: 6-8-6-6

d: 5
c: 224-216-208-224-208

k: 7-5-3-5-3
e: 8-6-6-3-3

MBv3

d: 1
c: 216
k: 3
e: 3

d: 1
c: 232
k: 3
e: 3

d: 1
c: 248
k: 5
e: 3

d: 1
c: 280
k: 3
e: 6

d: 1
c: 296
k: 3
e: 6

Resolution 160 208 224 224 224

Table 19: INT8 quantized models produced by SpaceEvo@Pixel4
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