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ABSTRACT

Large Language Models (LLMs) have demonstrated impressive reasoning and
planning capacities, yet grounding these abilities to a specific environment remains
challenging. Recently, there has been a growing interest in representing environ-
ments as scene graphs for LLMs, due to their serializable format, scalability to
large environments, and flexibility in incorporating diverse semantic and spatial
information for various downstream tasks. Despite the success of prompting graphs
as text, existing methods suffer from hallucinations with large graph inputs and
limitation in solving complex spatial problems, restricting their application beyond
simple object search tasks. In this work, we explore grounding LLM reasoning
in the environment through the scene graph schema. We propose SG-RwR, an
iterative reason-while-retrieve scene graph reasoning framework involving two co-
operative schema-guided code-writing LLMs: a (1) Reasoner for task planning and
information querying, and a (2) Retriever for extracting graph information based
on these queries. This cooperation facilitates focused attention on task-relevant
graph information and enables sequential reasoning on the graph essential for
complex tasks. Additionally, the code-writing design allows for the use of tools to
solve problems beyond the capacity of LLMs, which further enhance its reasoning
ability on scene graphs. We also demonstrate that our framework can benefit from
task-level few-shot examples, even in the absence of agent-level demonstrations,
thereby enabling in-context learning without data collection overhead. Through
experiments in multiple simulation environments, we show that SG-RwR surpasses
existing LLM-based approaches in numerical Q&A and planning tasks.

1 INTRODUCTION

Large language Models (LLMs) have shown remarkable prowess in not only language interpretation
(Achiam et al.}[2023; Touvron et al., 2023)) but also reasoning and planning (Song et al.| 2023} Zeng
et al.,2022). Prior works have successfully leveraged the world knowledge encapsulated in LLMs for
plan generation (Song et al.| 2023)), interaction (Joublin et al.,2024)), and action selection (Rana et al.}
2023)), which suggests a promising path towards embodied intelligence (Huang et al.,[2023a; [2022).

Despite much progress, the challenge of grounding the reasoning process of LLMs to situated
environments remains unsolved, predominantly due to the absence of a generalizable and explicit
representation of environmental spatial and semantic information that LLMs can process (Huang
et al.,[2023c)). One vein of research explores leveraging LLMs to interface with external tools for
the extraction of task-oriented states from perceptual data (Liang et al.| 2023} |Huang et al.| 2023b).
Although this strategy has shown effectiveness for several manipulation and planning tasks, it requires
LLMs to compose tools in a predetermined way taught through in-context learning (Brown et al.,
2020), restricting LLMs from reasoning flexibly on novel tasks. Furthermore, sensory inputs such
as images capture only a fraction of the environmental information and are inadequate for tasks
necessitating a comprehensive understanding of a 3D scene. In contrast, scene graphs have emerged
as a powerful and scalable high-level representation of environments Hughes et al.| (2022); (Gu
et al. (2024). Unlike images, scene graphs explicitly encapsulate spatial relationships and offer the
flexibility to incorporate diverse semantic and quantitative attributes (Zhu et al.| 2021). Additionally,
they are parsable by LLMs, thus enabling the direct grounding of LLM reasoning to the underlying
environment (Rana et al., 2023 N1 et al., [2023)).
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Figure 1: LLM Graph Processing Framework Comparison. (a) Reason-Only: A Reasoner LLM is
directly prompted with a full textualized graph. (b) Retrieve-then-Reason: A Retriever LLM filters out
a task-related sub-graph for use by another Reasoner LLM as text inputs. (c) Reason-while-Retrieve
(Ours): A Reasoner and a Retriever collaborate in solving a task by attending to the graph dynamically
based on the progress in solving the task. Both Retriever and Reasoner LLMs write code to process
information to avoid hallucinations and to enhance numerical and spatial reasoning.

Leveraging LLMs for reasoning with scene graphs remains an under-explored problem. Reasoning
requires LLMs to interpret task descriptions, comprehend the relational and semantic information
within the graph, and apply their intrinsic knowledge to solve the task by grounding on the graph
and in turn the environment. Recent research explores graphs-as-text as the input for LLMs Fatemi
et al.[(2024);|Gu et al.[(2024). LLMs are shown to possess a preliminary capacity to interpret graph
topology. Yet, they are prone to hallucinations or exceed input token limits when handling large
graphs (Wang et al., [2023)). To tackle the challenges, (Luo et al.| [2024) propose a "Retrieve-then-
Reason" wherein the LLM first explores the graph identifying the sub-graph pertinent to a given task,
and then performs reasoning on the retrieved part to generate the task solution. The exploration phase
employs a heuristic strategy, either by exploring neighborhood nodes and edges of visited parts [Sun
et al.|(2023) or expanding the sub-tree rooted at nodes at a certain hierarchical level Rana et al.|(2023)).
This strategy is adept at information collection, however, it is less suited for intricate tasks that require
a comprehensive understanding of the entire graph. It is also limited in its ability to dynamically shift
focus based on the reasoning process and the requirements of task sub-steps. Additionally, LLMs are
incapable of solving complex spatial reasoning tasks that human experts can solve with ease, due to
their well-established limitation in numerical reasoning ability (Nezhurina et al., 2024} |Ahn et al.,
2024). The aforementioned limitations restrict the utility of LLMs in understanding complex scenes
from textualized graphs.

To overcome these limitations, we propose Reason-while-Retrieve (SG-RwR) framework, depicted in
Figure[I] which interleaves the reasoning and information retrieval phases. The interleaving ensures
that LLMs focus only on the information that is selectively aligned with the task solving process,
and that the reasoning trace is grounded in the graph by factoring in the retrieved graph information.
Our framework consists of two cooperative LLM-powered modules: a Reasoner that decomposes
the task and generates queries for the information that can guide subsequent steps; and a Retriever
that processes the queries and wrifes code to retrieve related graph information for the Reasoner. To
prevent hallucinations when processing excessive information, we prompt both LLMs with only the
graph schema instead of the entire graph. The schema describes the types, format, and semantics of
the scene information in the grap. It guides the Reasoner to determine what information is helpful to
solve a given task, and informs the Retriever to write code for accessing the graph as a database to
obtain the desired information. We also equip the Reasoner with code-writing capabilities to conduct
precise numerical reasoning and employ external tools for well-defined atomic problems, thereby
enhancing the framework’s ability to tackle complex scene understanding and planning tasks.

We evaluate our method with two simulation environments: BabyAl (Chevalier-Boisvert et al.|
2018), a 2D grid world environment; and VirtualHome (Puig et al., |2018)), a large-scale indoor
multi-room environment. Our experiments on numerical Q&A and planning tasks show that SG-RwR
greatly improves the reasoning ability of LLMs on scene graphs. We also observe that SG-RwR
can effectively leverage end-to-end task-level few-shot examples without requiring module-level
demonstrations. Additionally, compared to direct graph prompting methods, SG-RwR can better
extrapolate from few-shot examples to unseen tasks without suffering from severe performance
degradation. Specifically, on the traversal plan generation task in BabyAl, our method outperforms
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Figure 2: SG-RwR Workflow. It solves tasks based on scene graphs through the cooperation of two
LLM agents: Reasoner and Retriever. Reasoner iteratively queries Retriever for graph information
and reasons based on the received data from the Retriever. Additionally, both agents employ the
code-writing skill: Retriever writes code to retrieve graph information, while the Reasoner writes
code to utilize external tools for solving complex atomic problems. In the graph, & and & represent
code writing and execution stage, respectively. They retrieve graph information G’ or enhance the
analysis stages a.

baselines by 18.5 percentage points (pp) in the zero-shot prompt setting, and by 3pp and 60pp in seen
and unseen environments in the few-shot prompt setting.

In summary, our contributions include:

* An iterative Reason-while-Retrieve (SG-RwR) framework with reasoning-oriented informa-
tion gathering mechanism for task solving on scene graphs.

* Schema-based grounding and code-writing for graph information retrieval and processing
that reduces hallucination and improves the reasoning ability of LLMs on complex tasks.

* We show that SG-RwR significantly enhances the performance in two distinct environments,
encompassing a wide range of tasks in both zero-shot and few-shot settings.

2 METHOD

2.1 PROBLEM STATEMENT

Our problem setting involves a natural language task instruction I and a scene graph G = (V, E),
where V' and E denote vertices and edges, respectively. Each node V; represents an object along with
its attributes, such as coordinates or colors, while each edge indicates a type of spatial relationship,
such as inside or on top of. Additionally, we assume access to the scene graph schema S, which is
a textual description of vertex, edge, and attribute types, formats, and semantics. Our objective is
to generate the solution of I using LL.Ms, based on the available information above, expressed as
A= f(I,G,S;LLMs).

2.2 OVERVIEW OF SG-RwR

While existing methods directly prompt LLMs with textualized graphs, we explore grounding the
reasoning process to scene graphs based on the scene graph schema S and the code-writing ability of
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LLMs. We develop SG-RwR, an LLM-based multi-agent framework that iteratively reasons through
the next steps and retrieves necessary information from the graph. As shown in Figure 2} our method
contains two LLM agents: a Reasoner and a Retriever. Given a task, the Reasoner determines the
next substep to approach the task and identifies the scene graph information necessary for it. It then
raises a natural language query to the Retriever for this information. Upon receiving the query, the
Retriever processes the scene graph through code-writing and sends the data back to Reasoner. By
iteratively performing these steps, both agents collaborate to solve the task.

Our system initializes with the Scene Graph Schema, the Environment Description, general Guidance
to direct the cooperation process, and task-dependent information such as the description of Agent
Actions and Reasoning Tools. Then, given the Task, the Reasoner outputs analysis in natural language
labeled as Explanation, and Query the Retriever. In turn, given the Scene Graph and a Query, the
Retriever provides structured responses grounded in the Scene Graph. This process iterates until the
Reasoner outputs a plan.

The next two subsections explain workflows of each agent, as well as techniques that ensure a fluent
and automated task-solving process.

2.3 REASONER

Reasoner is the core of SG-RwR, steering the task-solving iterations. We prompt it with the schema
S, environment and task information (such as action description for the planning task), annotations
of reasoning tools, general guidance to ensure automated task-solving conversation, and optionally,
few-shot task-level examples. Reasoner then initiates the conversation with Retriever to solve a given
task.

Concretely, without any knowledge about the graph data initially, the Reasoner analyzes the task
I and graph schema S, and generates the first analysis, denoted as ag, and sends out the first
associated information retrieval query, designated as qg, to the Retriever to access the graph in-
formation. At the t** round of conversation, the Reasoner consumes the conversation history,
which includes past information retrieval queries, retrieved information, and the past analyses:
{(a0,q0,G}), -+, (ar—1,q:-1,G;_1)}. It then generates the next corresponding analysis a; and
query q:, where a,; involves intermediate conclusions and the next subtask to be solved, which
informs and justifies ;. For example, in the 2" round of conversation shown in Figure Reasoner
processes previously retrieved agent and red box room and location ({(ao, g0, G4), (a1, ¢1, 1)), iden-
tifies that the next subtask is to find "the path between two rooms" (a2), and then query for
the "door IDs and attributes" that connect two rooms (g2) for solving the subtask. In this
way, each reasoning step is grounded to the environment by factoring in the retrieved information,
and the graph data processed by LLMs is filtered by the reasoning.

The grounded iterative reasoning above involves solving spatial graph problems, such as navigation
and object search. Prior work shows that LLMs give unreliable solutions to quantitative problems
(Ahn et al.,[2024). To circumvent the deficiency, we follow prior work (Schick et al., [2024; [Paranjape
et al.L|2023) to enable code-writing and tool-use for the Reasoner. We provide programmatic functions
to address atomic problems critical to the given task family. As shown in Figure at the #*" round of
conversation, the Reasoner uses the provided pathfinding tool t raverse_room to identify obstacles
that need to be removed to traverse to the key, a problem beyond the capacity of LLMs. We include
tool annotations in the prompt to guide the Reasoner in querying for the information necessary. The
introduction of tools prevents hallucination on complex problems and reduces the burden of LLMs
by leveraging known algorithms.

Since the Reasoner controls the iterative process to address a task, it is critical to control its behavior
to ensure a smooth flow of the conversation. We control the message exchange between the Reasoner
and the Retriever through both prompt guidance and manual interference. Specifically, we prompt
the Reasoner with the graph schema and the guidance to "Communicate using the terms in
the graph schema" to avoid confusion. We also filter out only the next query ¢;; to send to the
Retriever, removing the analysis a; and the past conversation. We find that without doing so, the
Retriever might attempt to realize all plan steps in the language analysis in the conversation, while
omitting the actual desired information, which leads to a failure eventually.
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Figure 3: Experiment Settings. (Best viewed in color) The environment and tasks for evaluation.
(a) BabyAl Trv-1 task with single-side door obstacle; (b) BabyAlI Trv-2 task with double-side door
obstacles; (c) BabyAl Numerical Q&A task; (d) Two VirtualHome household environments (left:
VH-1; right: VH-2) and an examplar task.

2.4 RETRIEVER

The Retriever assists the Reasoner by processing its queries and returning the requested information
from the graph. Specifically, given a free-form language query g, the Retriever generates code that
executes on the scene graph to retrieve the relevant subgraph containing the required information
G' = (V',E') = h(G). Here, V' and E’ denote subsets of graph nodes and edges, respectively.
While the Reasoner may query for either the entire node or edge or just a subset of their attributes, we
use V’ and E’ as the general representation for either case. Similar to the prompt for the Reasoner,
the prompt forthe Retriever includes the environment description, the scene graph schema S, and
general guidance. The key difference is that S guides the Retriever in writing the information retrieval
code. Confusion is avoided by ensuring that both agents communicate using the same terms from the
schema.

2.5 SELF-DEBUGGING AND ERROR PREVENTION IN CODE-WRITING

Even with adequate context, LLMs are not guaranteed to write executable code in a single attempt.
Therefore, we introduce a self-debugging mechanism to both the Retriever and the Reasoner to ensure
the successful execution of their code (Chen et al., [2024)). Specifically, we establish an inner iteration
between the code-writing LLM and the code executor. At each round, we prompt the history of
attempts, including the initial query ¢, previous programs hg, - - - , h;_1, and execution outcomes
ho(G), -+ ,hi—1(G), back to the LLM for review. If execution errors exist, the code-writing LLM
corrects the code and repeats the process. Conversely, if the code execution is successful, then the
debugging iteration terminates.

What’s more, we observe hallucination in the code written by LLMs as prior work (Liu et al., [2024).
In our case, the Reasoner might hallucinate about scene information without querying for it from
the Retriever. To prevent this, we design a reprompting technique based on keyword detection.
Specifically, we detect the keywords "assuming"” and "assume" in the code written by LLMs, and
prompt the code back to the Reasoner with the query to remove any assumptions in the code. We
observe that the simple technique prevents scene information hallucination in most cases.

3 EXPERIMENTAL SETTINGS

We evaluate our methods on a series of numerical Q&A (NumQ&A) and planning tasks within
the BabyAl (Chevalier-Boisvert et al., 2018}, (Chevalier-Boisvert et al., |2023) and VirtualHome
(VH) (Puig et al., 2018)) environments. Detailed descriptions of these environments are provided
in the following subsections. For each environment, we provide a single scene graph schema and
environment description that is consistent across all tasks for that environment. Our method then
generates solutions grounded in different scene graph instance inputs for each experiment.
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Each task in our experiments requires reasoning on both the spatial structure and the semantic
information encoded in the graph. We use the success rate as our evaluation metric, where success is
defined as either providing the correct answer or achieving the desired outcome in the simulation.
In this paper, we use GPT-4o for all methods, including SG-RwR and the baselines below. SG-RwR

process is implemented using AutoGen (Wu et al, 2023).

Baselines Following NLGraph (Wang et al.l [2023), we compare our approach against several
direct reasoning methods based on whole graph prompting. These methods include three zero-
shot approaches: zero-shot prompting (ZERO-SHOT), Zero-Shot Chain-of-Thought (0-cOT)

(Kojima et al., [2022), Least-to-Most (LTM) 2022)); and three few-shot methods: Chain-
of-Thought (coT) (Wei et al.| 2022), Build-a-Graph (BAG) (Wang et al., 2023)), Algorithmic
Prompting (ALGORITHM) (Wang et al., [2023). In addition to the few-shot examples, ALGORITHM
also require a language description of the task solving method. We also compare against ReAct
[2022)), a generic iterative reasoning and acting approach that is able to call database
APIs to retrieve information. Furthermore, we compare against SayPlan (Rana et all, 2023)), a
retrieve-then-reason baseline. Compared to other methods of this category, Sayplan is specifically
designed on the scene graphs that represent spatial layout, and thus is more suitable for the problem
scope considered in this paper. For the detailed function design for SayPlan and ReAct, please refer

to Appendix

Few-shot SG-RwR We investigate the performance of SG-RwR in both zero-shot and few-shot
settings. For the latter, we introduce two few-shot versions of SG-RwR: SG-RwR +FewShot(SG-
RwR-FS), which incorporates additional in-context learning examples for the Reasoner, and SG-RwR
+Algorithm(SG-RwR-A): which adds both in-context examples and algorithmic prompts to the
Reasoner. Notably, although SG-RwR involves dialogue between two agents, we do not provide either
agent with detailed conversation examples, as these can be impractical to collect and may constrain
the reasoning flexibility of LLMs. In this way, we examine whether our framework can leverage
task-level examples to enhance its reasoning capacity.

3.1 2D GRID WORLD NUMERICAL Q&A )

Our first experiment is on a numerical Q&A task o

in a customized 9-room 2D BabyAl [+ Q
Boisvert et al, 2018) environment, as shown
in Figure[3{c). We generate scene graph repre-
sentation of the environment following the hier-
achical graph design from 3DSG
[2019), illustrated in Figure[d Specifically, the
graph represents the spatial scene layout through
three levels: root, rooms, and objects, with ad-
ditional door nodes connecting room pairs.

Inspired by the complex search questions
designed in SayPlan (Rana et al. 2023)), we
design the following question template: £ind
the color of the {TARGET_OBJECT}

in a room next to the room with
{NUM_IDENTIFIER} {COLOR_IDENTIFIER}
{IDENTIFIER_OBJECT}, where contents in
curley brackets are populated based on each
new environment instance. The environment and question pairs are designed to ensure that there is
only one answer.

Figure 4: BabyAlI Scene Graph Representation.
Graph nodes represent items, agents, rooms, and

. Edges indicate items or agents located in-
side a room, or doors that connect rooms. Room
nodes are connected to a root node.

We test each method in 100 different environment and task instance. For few-shot methods, we sample
two instances and manually annotate the solution and the explanation as the in-context learning
prompt.
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3.2 2D GRID WORLD TRAVERSAL PLANNING

We also test on the traversal planning task in BabyAl, where the task is to generate a sequence
of node-centric actions to pick up a target item. We design three atomic actions, including (1)
pickup (nodeID): Walk to and pickup an object specified by the node ID; (2) remove (nodeID):
Walk to and remove an object specified by the node ID; (3) open (nodeID): Walk to and open a door
specified by the node ID. We directly query SG-RwR and all baselines to generate the actions in the
format above.

As shown in Figure [3(a)(b), the traversal planning task is tested in two related double-room envi-
ronments, both of which require the agent to pick up the key of the correct color to unlock the door,
remove any obstacle that blocks the door, open the door, and pick up the target. The difference is that
the first environment, Trvl, contains only the agent-side obstacle, whereas the second environment,
dubbed Trv2, contains another target-side obstacle. We generate the in-context examples only in
Trv1, and test if the methods can extrapolate to Trv2. As before, we evaluate each method in 100
times in different instance of both types of the environment. For SG-RwR, we provide the reasoning
function traversal_room programmed based on the A* algorithm, which identifies the item to
remove in order to reach from an initial to a desired location within the same room. As we will show,
SG-RwR is able to leverage this external tool to compensate for the limited mathematical problem
solving ability of LLMs.

3.3 HOUSEHOLD TASK PLANNING

Our last evaluation is in two VirtualHome (VH) (Puig et al.l 2018)) environments shown in Figure
Bld). We denote them as VH-1 and VH-2, respectively. Each of these is encoded as a built-in
environment graph that naturally serves as the input to our method. Compared to BabyAl, VH
environments are larger in scale in terms of the state space and action space. Both of them con-
tain 115 object instances, 8 relationship types encoded as edges in the graph, and multiple object
properties and states that determine the executability of an action. Hence the VH environment
is more challenging in terms of task-dependent information distillation. For each environment,
we adopt the 10 household tasks from ProgPrompt (Singh et al.| 2023)), such as "put the soap
in the bathroom cabinet", and query each method for the action sequence to accomplish
the task. As before, we task each method to directly generate the plan in the VH action for-
mat. It includes [action_name]<object_name> (object_id) for one argument actions, and
[action_name]<object_namel> (object_idl) <object_name2> (object_id2) for two ar-
gument actions. Two of the tasks, together with the ground truth action sequences, serve as the
few-shot examples, whereas the other eight are for testing. To situate the task in the environment, we
follow CoELA [Zhang et al.|(2024) to specify the task as the desired states. For example, the task of
above is specified as soap INSIDE bathroomcabinet. To achieve the desired state, LLMs need
to reason over the current state of the environment in order to identify the sequence of actions that
ultimately achieve the achieve the desired outcome. A plan is considered successful if the desired
states are reached after simulation. Please refer to Appendix [C|for more details.

4 RESULTS AND ANALYSIS

Zero-Shot Few-Shot

Task  ZeroShot0-CoT LTM SG-RwR CoT BAG Alg ReAct SayPlan> 0 RWRSG-RwR

(FS)  (Alg)
NumQ&A 55% 48% 52% 95% 45% 53% 51% 65% 24% 35%  94% 97 %
Trv-1 20%  23% 17% 61% 34% 35% 64% 13 18%  67% 64 %
Trv-2 11% 7% 6% 56% 1% 1% 0% 0% 0% 61% 56 %

Table 1: Results in BabyAI SG-RwR achieves the best performance across all tasks in both zero-shot
and few-shot settings, showing that SG-RwR (1) is effective in solving spatial tasks; (2) can harness
the information from in-context examples and extrapolate better to unseen tasks.
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[walk]<barsoap>(34) [grab]<barsoap>(34) [walk]<bathroomcabinet> [open]<bathroomcabinet> [putin]<barsoap>(34)
26) (26) <bathroomcabinet>(26)
(a) Retrieve the node with the class_name "barsoap". (c) Retrieve the node with the class_name "bathroomcabinet".
(b) We have identified the bar soap with the details: (d) We have identified the bathroom cabinet with the details:
- ID: 34 - ID: 26
- Class Name: barsoap - Class Name: bathroomcabinet
- Properties: ['GRABBABLE', 'MOVABLE', 'CREAM’] - Properties: ['SURFACES', 'CAN_OPEN', 'CONTAINERS']

- States: ['CLOSED’]

= (e) We need to open the bathroom cabinet (ID: 26) since it is closed.
easoner

Figure 5: VirtualHome Qualitative Demonstration. Top row: Plan Execution; Middle row:
Generated plan in the VirtualHome action format. Bottom row: SG-RwR Reasoner-side conversation
behind the generated plan.

4.1 EXPERIMENT RESULTS

Numerical Q&A Resutls The results are collected in Table|1} The vanilla version of our method
outperforms the best baseline by 30 percentage points (pp), even though it does not take the advantage
of the few-shot examples. In this task, few-shot methods do not show significant advantage over
zero-shot methods. They can all reason correctly on this problem, but tend to make mistakes when
addressing the substeps such as counting the item or locating the neighboring rooms. The room-by-
room graph traverse mechanism used in SayPlan further degrades the performance, as the relevance
of the information to the task cannot be determined without reasoning first. That is, the target
neighboring room cannot be identified without finding the identifier room first. In contrast, SG-RwR
attends to the graph information in the correct order by querying for it based on the reasoning process.

2D Traversal Results Table [I] also reports
the success rate for all methods in two traver-

sal environments. In the seen environment, our Method Few-Shot 1 1 v

method achieves 38pp and 3pp higher success Examples

rate against the best performing baselines un- ZeroShot 87.5%  15%

der zero-shot and few-shot settings, respectively. 0-CoT 87.5%  75%

While few-shot baselines perform more than LTM 87.5% 62.5%

10pp better compared to zero-shot baselines, CoT v’ 87.5%  15%
BAG v’ 87.5% 62.5%

they perform even worse in the unseen settings,
achieving less than or equal to 1% success rate. RwR 100%
This indicates that although few-shot examples

help improve the performance in the seen tasks, Table 2: Results in VirtualHome. The superior
LLMs do not learn the reasoning process to ex- performance of SG-RwR shows that it is capable
trapolate to similar unseen tasks. Rather, LLMs of grounding its plan to the environmental states.
might only memorize the heuristic mechanism

that can help solve the same task, such as removing the item on the left of the door in this case. On
the other hand, by separating out the Retriever that handles the graph information, the Reasoner in
SG-RwR learns the reasoning process from the few-shot examples that is essential for the task, and
can thus extrapolate well to similar problems utilizing the knowledge. SayPlan achieves even inferior
results compared to reason-only methods, indicating that its heuristic retrieval method is unsuitable
for tasks concerning global information.

100%

Household Task Planning Results The planning success rate on the 8 tasks in the 2 VH environ-
ments are shown in Table[2] We observe that all baselines consistently fail to address the precondition
of the planned action. For example, all of them failed to generate [open] <garbagecan> (ID)
before [putin] <plum> (ID) <garbagecan> (ID), forgetting that the state of the garbage can
is state: {CLOSED} from the extensive graph input. On the other hand, SG-RwR doesn’t process the
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Code-Writing

Method & Tool-Use Iterative process | Numerical Q&A  Trv-1 Trv-2
SingleCoder v’ 80% 33%  25%
RwR_Text v’ 57% 18% 8%
RwR v’ v’ 95 % 61% 56%

Table 3: Ablation in BabyAl traversal and numerical Q&A. The best result is achieved by
combining both Reason-while-Retrieve framework and the code-writing, justifying the key designs in
our method.

entire graph. Instead, it queries for the specific object information, which helps to better determine
the action parameter and examine the action preconditions. For qualitatitve demonstration, please
refer to Figure [5]for an examplar task and solution by our method.

4.2 ABLATION

Setup To further validate the design of SG-RwR framework, we conduct an ablation study for the
key component of our method. To this end, we introduce two variants of SG-RwR:

* SingleCoder: A single LLM that directly writes the entire code to address a given task. It
benefits from the accurate numerical reasoning and tool-use capacity from the code-writing,
but does not have the opportunity to analyze the intermediate graph information from the
iterative retrieving and reasoning (dubbed Iferative RetRea in this section). We prompt the
SingleCoder LLM with the combination of the information for both the Reasoner and the
Retriever in SG-RwR, including the environment and action space information, scene graph
schema, and tool annotations. The self-debugging mechanism is also introduced.

* SG-RwR _Text: The other variant disables the code-writing ability of both the Retriever and
Reasoner in SG-RwR. Instead, both cooperative agents rely purely on language reasoning
and communication skill to solve a given task. This design evaluates the performance of the
iterative retrieve and reason process without the code-writing. We observe that this variant
is only capable of generating plans in natural language. Hence, we add an additional action
translator that converts the output to the executable action format, following prior works
(Song et al., 2023} [Huang et al., [2023c).

Both variants are tested in BabyAlI Trv-1 and Numerical Q&A tasks under the zero-shot setting.

Results The ablation study results are demonstrated in Table 3] where both variants impair the
effectiveness of the method. While the iterative task solving can better break the task down, correct
solution for each substep cannot always be obtained without the code-writing. For example, queried
with "Find all rooms that contain 5 green balls", the non-code-writing Retriever is
not able to solve the counting problem and locate the correct room without code-writing. On the other
hand, while SingleCoder is better at solving numerical problems, it is unable to address complex
planning tasks without the iterative cooperation. By combining the advantage from both designs, our
method achieves the best result over both variants and all baselines.

5 RELATED LITERATURE

Language models for Task and Motion Planning With the advance of large language or multi-
modal models, many earlier works look into harnessing their power for decision making (Xi et al.|
2023; |Chen et al.| 2023 [Liu et al.,|2023)) and robotic control (Dalal et al., 2024} [Zhang et al., 2023}
Lin et al.|[2023; (Chen et al., [2021; [Hatori et al.| 2018)). With rich built-in knowledge and in-context
learning ability trained from the large internet-scale text corpora, language models are used for
generating task-level plans (Raman et al., [2022; Gao et al., 2024), action selection (Ahn et al., 2022;
Nasiriany et al., [2024), processing environmental or human feedback (Skreta et al.,|2023)), training
or finetuning language-conditioned policy models (Team et al., 2024} [Padalkar et al., 2023} |Szot
et al.| 2023)), and more. To allow the language models to factor in the environment during planning,
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recent studies have explored using LLMs for programmatic plan generation (Singh et al., [2023)),
combining knowledge from external perception tools via code-writing (Liang et al., 2023} |[Huang
et al.,|2023b) or grounded decoding (Huang et al.| 2023c), and value function generation Yu et al.
(2023). While proven effective, those methods are limited to small scale environments, and rely on
multimodal or expert perception models to extract task-related states from the scene representation
with implicit spatial structure. In this work, we study using pretrained LLMs to process the the global
representation of large environments with explicit structure, and generate the solution that is grounded
in the environment.

Graph as the Scene Representation The scope of the solvable task is largely determined by
the state representation. Compare to sensory representation such as images or point clouds, scene
graphs are compact thus scalable to large environments |Greve et al.| (2024), structured to represent
spatial layout explicitly [Hughes et al.| (2022); Wu et al.|(2021), and efficient in representing diverse
states of the environment|Armeni et al.|(2019). Due to that reason, they have been used in various
manipulation or navigation tasks [Ravichandran et al.| (2022)); |[Zhu et al.|(2021). In this paper, we
exploit these favorable features of the scene graph representation to ground the reasoning process of
LLMs to the environment.

LLMs for Reasoning on Graph Leveraging language models for reasoning on graphs is a growing
area. While prior works integrates learnt graph and language knowledge through training or finetuning
(Ye et al.l [2023; N1 et al., |2023)), recent study explore serializing graph-structured data for prompting
to pretrained LLMs (Wang et al., 2023} [Fatemi et al.,2024])). This strategy has been successfully used
to enhance the reasoning ability of LLMs with external knowledge graphs (Sun et al., 2023 |Luo et al.|
2024])) and robotic task planning on open vocabulary 3D scene graphs (Gu et al.,[2024)). Closest to our
work, SayPlan (Rana et al.;[2023) prompts scene graphs to LLMs and designs a Retrieve-then-Reason
framework for the planning tasks. However, it designs the room-by-room retrieve mechanism only
for the object search purpose, whereas we design the Reason-while-Retrieve framework that allows
graph information retrieval for any type of reasoning. We further incorporate the code-writing and
tool-use ability to LLMs, so that our proposed method can effectively retrieve information based on
scene graphs and address numerical tasks that fall beyond the expertise of LLMs (Nezhurina et al.,
2024).

6 CONCLUSION AND FUTURE WORK

In this work, we have proposed SG-RwR: an iterative, multi-agent framework that grounds LLMs
in a physical environment through scene graphs, and enables them to reason using both natural and,
crucially, programming languages. Specifically, SG-RwR facilitates reasoning on large scene graphs
by enabling LLMs to write code that retrieves task-related information during the reasoning process.

Our ablation study shows that both the iterative cooperation process and the code-writing design
are crucial to the framework’s enhanced performance. The former ensures that the data specific to
the environment enters the planning process in a just-in-time manner, while later enables prompting
with a data schema instead directly with the data itself. In short, both of these are ways to limit
“information overload” in the Reasoner.

One unexplored benefit of the SG-RwR framework is its inherent flexibility: new agents with new
specialties can be added to the framework with ease. In future work, we plan to experiment with a third
agent, the Verifier, to correct mistakes in the Reasoner’s plan based on the graph information. Another
promising direction is to add new agent expert on new modalities to integrate richer information
about the environment into our method. The iterative nature of SG-RwR, however, can lead to longer
task-solving times: The number of conversation rounds required increases with task complexity and
the number of agents. This suggests future work investigating additional agents must be accompanied
with methods to steer the LLMs to minimize the required conversation rounds.
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A PROMPT TEMPLATES FOR SG-RwR

SG-RwR adopts template-based prompt generation for both the Reasoner and Retriever. The templates
for them are shown in Table[4]and Table[5] The prompt is generated by populating the red contents in
the template with the specific graph information.
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Table 4: Reasoner Prompt Template

Reasoner Prompt Template

You are a planning agent that is excellent at collaboration and
code writing. Given the environment description, schema of the
graph representaiton of that environment, a retriever agent that
can retrieve information from the graph, and a set of user defined
reasoning tool(s), you know what information to ask from the
retriever and how to use them as well as the reasoning tool(s) to
solve a planning task. Then you can generate a plan executable by
the agent to achieve the given mission.

Environment Description:
{ENVIRONMENT PROMPT}

Scene Graph Schema:
{SCENE GRAPH SCHEMA PROMPT}

Agent Actions:
{AGENT ACTIONS}

Please follow the guidance below:
* Solve tasks step-by-step. Figure out the next step that can help
you get closer to the solution.
* If you need any information from the graph based on the graph
schema, raise a language query. A retriever will return the
information to you.
= If you have enough information to solve the next substep, use
your reasoning and code writing skill to solve it. If you write
code, print out the result with succint explanation. The code
execution output will be sent back to you.
* You might be provided with reasoning tools. They are a set of
python functions for solving an atomic subproblem, which might be
helpful for your task. Please use the tools whenever suitable. The
annotation of the tools will be provided at end of the guidance.
* When asking the retriever for information:
— Raise language queries that are clear, self-contained, and
addressable by traversing through the graph.
— Communicate using the terms in the graph schema.
— Please break questions into simpler queries and raise them
one-by-one. Avoid asking for all necessary information at once.
* When the task is solved, summarize the solution and reply ‘TASK
TERMINATE' in a separate paragraph. Do this ONLY when you obtain
the complete solution.
* Format your information query message in the following way:
[Explanation]
Explane why querying for the information.
[Query]
The information retrieval query to the retriever.
* Format your code writing message in the following way:
[Explanation]
Explain what your code does.
[Code]
Python code that solves a subproblem. Wrap the code in the
python code block.
* Format your entire solution summary message in the following way:
[Summary]
Summarize the enire solving process.
[Actions]
[ACTION1, ACTION2, ...]
TASK TERMINATE
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Table 5: Retriever Prompt Template

Retriever Prompt Template

You are a excellent graph information retrieval agent. Given the
environnment description and the schema of the graph
representaiton of the environment, you are good at writing code to
obtain information from a graph following language queries.
Environment Description:

{ENVIRONMENT PROMPT}

Scene Graph Schema:
{SCENE GRAPH SCHEMA PROMPT}

Please follow the guidance below:

* Please write python code to retrieve information from the graph.
Please include node id in your result and print out the result in
your code.

x* If there is no required information stored in the graph, print
None in your code.

* The code execution result will be send back to you. Please check
the result. If the information is retrieved, summarize the
information and replay ’INFO RETRIEVED’ in a separate paragraph
following the format below:

[Summary]
Summarize the required information
INFO RETRIEVED

B BABYAI ENVIRONMENT AND SCENE GRAPH DETAILS

Node attributes The node attributes in BabyAl scene graph involve:

""type'': String. The type of the element type. Choices:
root, room, agent, key, door, box, ball
""color'"': String. For doors and items. The color of the element.

""coordinate‘‘: List of integer. Exist for all types of nodes except for the root node. For
room nodes, the top left corner coordinate. For other nodes, the 2D coordinate in the grid.

"is_locked'': Binary. For door. State indicating if a door is locked or not.
"'size'": List of integer. For room. The size of a room.

C VIRTUALHOME ENVIRONMENT AND SCENE GRAPH DETAILS

Node attributes The node attributes in VirtualHome involve:

’id’: Int. Node id.

>category’: Str. Meta category. E.g. "Room".
’class_name’: Str. Specific class name. E.g. "bathroom".
’prefab_name’: Str. Instance name.

’obj_transform’: Dict. ’position’: 3D vector, 'rotation’: Quaternion form as 4D vector,
’scale’: 3D vector

’bounding_box’: Dict. ’center’: 3D vector, "size": 3D vector
’properties’: List. Object properties. Determine the action that can act upon it.

’states’: List. Object states. Full list of available states: ["CLOSED’, "OPEN’, "ON’,
’OFF’, *SITTING’, 'DIRTY’, ’CLEAN’, "LYING’, ’PLUGGED_IN’, "’PLUGGED_OUT”’,
"HEATED’, "WASHED’]
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Edge attributes The edge attributes in VirtualHome involve:

* ’from_id’: Int. Id of node in the from relationship.
* ’to_id’: Int. Id of node in the to relationship.
* ’relationships’: Str. Relationship between the 2 objects. Available relationships:

— ’ON’: Object from_id is on top of object to_id.

— "INSIDE’: Object from_id is inside of object to_id.

— "BETWEEN’: Used for doors. Door connects with room to_id.
— >CLOSE’: Object from_id is close to object to_id (< 1.5 metres).

— "FACING’: Object to_id is visible from objects from_id and distance is < 5 metres. If
objectl is a sofa or a chair it should also be turned towards object2.

— "HOLDS_RH’: Character from_id holds object to_id with the right hand.
— "HOLD_LH’: Character from_id holds object to_id with the left hand.
— SITTING’: Character from_id is sitting in object to_id.

Action Space

* [walk] <class_name> (id): Walk to an object.

* [grab] <class_name> (id): Grab an object. Requires that the agent has walked to that object
first.

* [open] <class_name> (id): Open an object. Requires that the agent has walked to that
object first.

* [close] <class_name> (id): Close an object. Requires that the agent has walked to that
object first.

* [switchon] <class_name> (id): Turn an object on. Requires that the agent has walked to
that object first.

* [switchoff] <class_name> (id): Turn an object off. Requires that the agent has walked to
that object first.

* [sit] <class_name> (id): Sit on an object. Requires that the agent has walked to that object
first.

* [putin] <class_namel> (id1) <class_name2> (id1): Put object 1 inside object 2. Requires
that the agent is holding object 1 and has walked to the object 2.

* [putback] <class_namel> (id1) <class_name2> (id1): Put object 1 on object 2. Requires
that the agent is holding object 1 and has walked to the object 2.

Example Task and State-based Specifications in VH-1 We show the 5 example tasks and their
desired final state in the VH-1 environment in Table

Task Name State Specification
Watch TV tv ON
Turn off tablelamp  tablelamp OFF
put the soap in the bathroomcabinet  barsoap INSDIE bathroomcabinet
throw away plum  plum INSIDE garbagecan
make toast breadslice INSIDE toaster; breadslice HEATED

Table 6: Results in BabyAI SG-RwR achieves the best performance across all tasks in both zero-shot
and few-shot settings, showing that SG-RwR (1) is effective in solving spatial tasks; (2) can harness
the information from in-context examples and extrapolate better to unseen tasks.
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Which room contains the red box (node ID 13)? What are the room's top left Now, we need to determine if the agent can traverse from its current location to

corner coordinate and size? the yellow key's location

+ The agent can traverse from its current location to the yellow key’s location
without needing to remove any items.

Which room contains the agent (node ID 9)? What are the room's top left « [pickup(3)]

corner coordinate and size? Next, we need to determine if the agent can traverse from the yellow key's

location to the locked door's location within room 1.

* The agent can traverse from the yellow key's location to the door's location, but it

Which door connects room 1 and room 72 What is the door's node ID, needs to remove the ball (node ID 8) to clear the path

coordinate, and locked status? + [pickup(3), remove(8), open(4)]

What are the coordinates and node IDs of all items in room 72

Now, we need to determine if the agent can traverse from the door's location to
the red box's location, considering these items as potential obstacles.

What is the color of the door with node ID 47 « The agent can traverse from the door's location to the red box's location without
i needing to remove any items. The final step is to create a plan for the agent to
Pickup the What is the node ID and coordinate of the yellow key? pick up the red box
red box + [pickup(3), remove(8), open(4), pickup(13)]
What are the coordinates and node IDs of all items in room 1? TASK TERMINATE /

Figure 6: Example SG-RwR Traversal task solving process (Reasoner-side). It shows the queries
or analysis generated by the Reasoner (in black), information obtained from the Retriever (in ),
the intermediate conclusion obtained through code-writing that processes the graph information (in
green), and the derived plan (in red). The final plan can successfully achieve the mission shown on
the left.

D EXAMPLE SG-RwR COOPERATION ON BABYAI TRAVERSAL TASK

We qualitatively demonstrate how SG-RwR addresses a challenging BabyAl traversal task in Figure
[l It shows the task solving process from the Reasoner’s perspective, including the information
queried from the Retriever as well as the intermediate solution obtained through its own code writing.
It clearly demonstrates that SG-RwR is able to ground the plan to the environment by iteratively
retrieving graph information based on the task solving process and establishing the next step towards
solution based on the past retrieved information.

E ANALYSIS ON THE COMPUTATIONAL COST
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Figure 7: Compute Analysis. We show average conversation rounds and processed token counts
at each iteration by SG-RwR Reasoner for both NumQ&A (left) and Trv-1 (right) tasks. We also
demonstrate the average token counts of the textualized environment scene graph and CoT input for
reference.

We show the number of the token processed by our method by iterations and average conversation
rounds required to solve a query for the BabyAlI tasks in Figure[7] We also plot the token counts of
the scene graph and the CoT baseline input. As a direct whole-graph prompting method, the compute
required by CoT is determined by the graph size. So the processed token for NumQ&A is 4 times
larger than that for the Trv-1, despite that the former is a simpler task requiring less reasoning steps.

On the other hand, SG-RwR processed token number monotonically increase along the iteration,
as it processes the cumulative conversation history. Hence, the compute required by SG-RwR also
depends on the task difficulty. However, thanks to the code-writing-based retrieval design, SG-RwR
only processes limited tokens in early iterations. Thus, for simpler task such as NumQ&A, SG-RwR
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process less tokens compared to graph prompting method such as CoT at each iteration, which is
helpful for reducing hallucination over redundant information. For the traversal task, the processed
token count of our method grows beyond even the graph size. This trade-off in compute cost yields
superior performance, as demonstrated in Table 1.

F How SG-RwR AVOIDS HALLUCINATION VIA CODE-WRITING

Q: find the color of the box in a room next to the room with 4 red ball
0-CoT CoT
1. Identify the room with 4 red

RwR(ours)
[Query] Find the rooms that are connected to the

The room with 4 red balls is

balls: ... room 27. The rooms nextto_| room 27 through a door.

. . itare 54, and 25. Among [ 'for node in G.nodes:
2. Determine the rooms adjacent | - fcicTooms, the boxes i G.nodes[node] [ "type’] == ‘door’: &
to room 27: - Room 27 is present are: ... neighbors = l?st(G:neighbors(node))
connected to X if roon_id in neighbors:
room 34 (door 8), and soom 10 | [Answer] None  9¢ T ina- e otner- raon omected by this door
door 24). roon _d]acher_mom = [n for n in neighbors if n I=

i

3. Check for the presence of a 1f other_room:
box in any of these adjacent connected_roons. append(other_roon(e]) |
rooms: ... Door ID: 7; Other room ID: 34 -

[Answer] blue, green, yellow x

[Answer] green.

Cropped Environment

Room-door-level node IDs

(a) Baseline Hallucination: Spatial layout understanding.

Cropped Environment

Q: find the color of the ball in a room next to the room with 3 blue box

0-CoT CoT

Identify the room with 3 blue The room with 3 blue boxes
boxes: Room 26 has blue boxes is room 33. The rooms next
with IDs 17 and 42; Room 33 has | to it are ...

blue boxes with IDs 30...
[Answer] Gray x

RwR(ours)
[Query] Find the room that contains 4 gray keys

# Tterate through all nodes to find rooms
for node in G.nodes:
if G.nodes[node]["type'] == 'room’ :
room_id = node
grey_key_count = @
# Check all items in the room
for neighbor in G.neighbors(room_id):
if G.nodes[neighbor]['type'] == 'key' and
G.nodes[neighbor]['color'] == 'grey’:
grey_key_count += 1
# Check if the room contains exactly 4 grey keys

if grey_key_count == 4:

@

None of the rooms have exactly 3

X

[Answer] None

target_room id = room_id; break

Room that contains 3 blue boxes: 26

[Answer] green.

Rooms & Blue Boxes Node IDs

(b) Baseline Hallucination: Spatial counting problem.

Figure 8: Qualitative demonstration on how SG-RwR avoids hallucination. We show how
baselines might hallucinate under the following subtasks: (a) Interpreting spatial layout from the
scene graphs, where they identify the incorrect neighbor rooms; (b) Addressing the counting problem
under spatial constraint, where they miscount the number of a target item type in the room. SG-RwR
is able to avoid the hallucination via code-writing, which filters and processes the graph information
more reliably.

In Figure[8] we qualitative show how SG-RwR avoids hallucination problems happened on baselines
under several scenarios from our tasks. We use the zero-shot 0-CoT and the few-shot CoT as
comparison. To focus on the key difference, we only show snippets of reasoning processes for
each referent subtask. We show that when reasoning in language, baselines have the tendency to
hallucinate in the interpretation of the spatial layout from the scene graph structure, and in address
simple quantitative reasoning (e.g. counting) tasks. On the other hand, based on the scene graph
schema understanding, SG-RwR is able to solve these subtasks more reliably via code-writing.

G BASELINE DETAILS

G.1 REAcT

For ReAct, we create the following graph information retrieval APIs in the list below. Each of them
is a wrapper of a basic NetworkX (Hagberg et al.| 2008)) operation:
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* get_nodes (): Get all node IDs in the scene graph.

* get_links (): Getall links in the scene graph.

* get_attrs (node_id): Get the all attributes of a target node;

* get_neighbors (node_id): get all neighbor node IDs of a target node.

G.2 SAYPLAN

SayPlan [2023) is tested in BabyAl tasks. We follow the original work to create the
following APIs for the room-level graph traversal purpose:

* collapse (G) for retaining only room and root nodes;
* expand (node_id) for revealing all nodes rooted from a given room node;

* contract (node_id) for removing all nodes rooted from a given room node;

We don’t assume a graph simulator available for validating and refining the solution as is done in the
original paper. Instead, we evaluate the LLM-generated plan by executing it directly in the BabyAl.
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