
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Differentiating without Partial Evaluation

Anonymous authors
Paper under double-blind review

Abstract

In the physical sciences, the gradient of a model is often simplified into
a compact form ideal for a given context to be interpretable and more
efficient; in fact, sometimes the efficiency of evaluation can be improved by
an asymptotic factor due to symmetries. To learn interpretable surrogate
models that accelerate physics simulations, a differentiation system capable of
compact and unevaluated gradient expressions is highly desirable. However,
standard symbolic and algorithmic differentiation both start by partially
evaluating the model. After this points, the gradients irreversibly become
blackboxes with potentially obscure performance ceilings. Based on the
observation that composition is one of two combinators that form a complete
basis with captures, we compliment the chain rule with a second rule that
enables differentiation without any form of evaluation. Using a prototype
implementation, we obtain compact gradient expressions for an MLP and a
common physics model that, historically, resisted algorithmic differentiation.
Lastly, we discuss the theoretical and practical limitations of our approach.

1 Introduction

What is the gradient of a composition w 7→ f(g(w))? The obvious answer is the chain
rule w 7→ g′(w) · f ′(g(w)), which is a powerful tool because it allows us to differentiate by
rearranging instead of evaluating f or g to specific functions. For example, using the chain
rule, we can differentiate x 7→ (x+ 1)n as x 7→ n(x+ 1)n−1 without a binomial expansion,
which would lead to a very large differentiation problem. Let us now consider w 7→ f(w)(g),
which is a slightly modification that leads to a great deal of hardship because it is not a
composition. The simplest answer to this is tracing Baydin et al. (2015); Elliott (2018);
Griewank and Walther (2008), which is a form of partial evaluation Innes (2018) that runs
the function with specific values of f , g, and w while recording all primitive operations
applied to w as a computation graph to obtain a composition. For example, if we trace the
computation with f = x 7→ v 7→ xv, g = 2, and w = 1, we find that w is multiplied by 2,
so it suffices to differentiate w 7→ 2w. To summarize, the chain rule enables differentiating
a function without evaluating it, as long as the function is a composition. However, when
this assumption breaks, one typically needs to partially evaluate the function numerically
or symbolically until it is a composition. In source transform system, this problem can
be addressed through functional approaches Vytiniotis et al. (2019); Elsman et al. (2022);
Pearlmutter and Siskind (2008); Ehrhard and Regnier (2003), although expressing scientific
applications as functional programs remains difficult.

This is not a fictitious problem. In particular, we will see that tensor operations, which is
the building blocks for many physics models, also fall into this category. For differentiating
tensor operations, it is essential that we retain a symbolic form for two reasons. First,
tensors in Physics have symmetries, which can be used to simplify the gradient. The
simplification often leads to a performance gain by an integer or even an asymptotic factor.
Second, the gradient needs to be interpretable because it usually represents the physical
law of the theory, which may contain as much insight as its numerical solution. These two
requirements make algorithmic differentiation less attractive. Specifically, tracing based
systems such as PyTorch Paszke et al. (2017; 2019) and JAX Bradbury et al. (2018a)
partially evaluates the models into a computation graph which represents the gradient.
This is clearly amenable to neither interpretation nor symbolic manipulation. The other
alternative is source transformation such as Enzyme Moses and Churavy (2020); Moses

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

et al. (2021; 2022) and Tapenade Hascoet and Pascual (2013), which either requires the
code to be written in low-level procedural primitives or compiles the code to intermediate
representations, thus removing the abstraction w 7→ f(w)(g). The last common option
is symbolic differentiation such as SymPy Meurer et al. (2017) and Mathematica, which
appears to fit our requirements, but differentiating functions of the type w 7→ f(w)(g) still
requires partial symbolic evaluation, which is susceptible to expression swell Baydin et al.
(2015) and is not suitable for general problems such as ML models, which we also need.

In this paper, we show that adding a second differentiation rule in addition to the chain
rule makes it possible to delay all evaluation until after the differentiation. This enables a
symbolic differentiation system that avoids common cases of expression swell, which is not
too different from a source transformation system enriched with symbolic capabilities. As the
result, we obtain gradients for tensor operations that can be interpreted and simplified using
symmetries. Additionally, because the output of the differentiation is also tensor operations
in symbolic form, it can be fed into tensor operation engines, thus resolving difficulties in the
gradient code such as differentiability constraints Bradbury et al. (2018a;b); Lukas Devos
and contributors (2023) and handling tensor contraction order cuTENSOR; Georganas et al.
(2021); Fishman et al. (2020); Hirata (2003); Abbott et al. (2023).

Specifically, similar to how the chain rule avoids some of the evaluation when differentiating,
we find a second rule that avoids the rest of the evaluation, thus narrowing the gap between
symbolic and algorithmic differentiation. The key insight that enables this work is that
composition is one of two “bolts and nuts” of mathematical functions, which can be used to
assemble an arbitrary function from a few univariate primitives. Formally, the two components
are known as the B (composition) and C combinators in combinatory logic Schönfinkel
(1924), and their differentiation rules are straightforward to derive. Notably, we also allow
for captures in the composed function, so the S combinator may be a more appropriate
description than B. These combinators has been primarily used to study computability Curry
et al. (1958). In practice, it has been used for building parsers Fokker (1995); Leijen and Meijer
(2001), reasoning about data updates Foster et al. (2007), automatic parallelization Lafont
(1997), as well as extending AD frameworks Lin (2023) as high-level primitives.

To reiterate, our main message is a qualitative claim that a second differentiation rule in
addition to the chain rule enables differentiation without evaluation, which leads to gradient
expressions for tensor operations that can be simplified using symmetries and interpreted
with physical meaning. The result is demonstrated via a prototype implementation that
produces compact gradient expressions for a representative set of examples. It is worthwhile
to clarify that this paper is neither suggesting a new high-level or low-level differentiation
framework, nor does it claim to achieve quantitatively better efficiency for any class of
problems. As an outline, we start the paper with some notation and background of AD. We
then present the theoretical model and illustrate how combinators help us bypass partial
evaluation in either numerical or symbolic form. We provide a prototype implementation with
MLP, Hartree-Fock (HF) Thijssen (2012); Slater (1951), and conjugate gradient Hestenes
and Stiefel (1952); Trefethen (2022) as examples, which typically require partial evaluation
of some form to differentiate. Lastly, we discuss the class of problems that we are limited to
and engineering complications that we face.

2 Notation

We use anonymous functions (lambdas) extensively so that we can write functions as values
such as x 7→ x+1 instead of definitions f(x) = x+1. This makes it easy to think of functions
as inputs and outputs of other functions. Moreover, we adopt the anonymous notation for
expressing tensors and treat them as maps from integer indices to their corresponding tensor
elements. Invoking a tensor as a function is the same as indexing. For example, v(i) and vi
are equivalent. Similarly a tensor can be constructed as a function. For example, i 7→ 2v(i)
is the same as 2v.

We will also make extensive use of delta functions, including the Kronecker delta function

δ(i, j, k) =

{
k if i = j

0 otherwise
, (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The main identity regarding the delta function that we will use is the contraction theorem

Theorem 1 Delta contraction theorem: the contraction of the delta function with a function
f results in a substitution of the argument of f .

Σ(i 7→ δ(i, j, f(i))) = f(j). (2)

This holds when i, j are integers, real and complex numbers, tensors, as well as continuous
functions.

This theorem is well-known and easily checked when i, j are integers, which means that δ is
a Kronecker delta and Σ is a simple sum. The more general cases are less intuitive but is
algebraically derived in the appendix. For the purpos of this paper, it suffices to understand
the integer case and accept that an algebraic generalization is possible.

3 Background

To put our theory in the context of AD, we briefly introduce the theory for reverse mode AD,
which is based on the composition and the chain rule. In a AD system based on tracing, the
chain rule is typically presented in multivariate calculus with Jacobian products. Given a
composite function g(x) = f1(f2(x)), where f1 ∈ RN → R and f2 ∈ RM → RN , the gradient
of g is

∇g(x) = J g(x)T = J f2(x)
T · J f1(f2(x))

T . (3)
Computing and multiplying the full Jacobian matrices can be inefficient in practice if the
Jacobian is sparse. For example, if f2 is an element-wise map, then J f2(x) is diagonal.

Instead, one can encode the Jacobian through its action on some vector k using pullbacks

Pf(x, k) = J f(x)T · k = i 7→
∑

j
kj∂f(x)j/∂xi, (4)

where we have used anonymous notation and denoted a vector by describing its ith element.
As a simple example, the pullback of multiplication by a scalar is

P(x 7→ vx) = (x, k) 7→ k
∂(vx)

∂x
= kv. (5)

Using pullbacks, the Jacobian chain rule can be written in terms of its actions

Pg(x, k) = J f2(x)
T · (J f1(f2(x))

T · k) = Pf2(x,Pf1(f2(x), k)), (6)
∇g(x) = Pg(x, 1) = Pf2(x,Pf1(f2(x), 1)). (7)

In reverse mode AD, the forward pass is essentially the evaluation of f2 at x and the reverse
pass is the evaluation of Pf1 and Pf2 with their respective arguments.

Figure 1: The computation graph traced from computing f(w)(g). The graph represents
w 7→ 2w.

When differentiating a function that is not a composition such as w 7→ f(w)(g), the standard
strategy is to convert it to a composition via partial evaluation. One can do this numerically
and record all primitive operations 1. This recording can be represented as a graph where
nodes are calls to primitives and edges are data. For example, running f(w)(g) with w = 1,
g = 2, and f = x 7→ v 7→ x ∗ v yields a single nodes graph shown in fig. 1. In the end, the
path from w to the sink is the composition of functions applied to w. Alternatively, one can
also do symbolic partial evaluation, which means substituting x with w and v with g to find
w 7→ wg.

1The tracing can be controlled to save only the necessary states.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 Theory

4.1 Derivatives of combinators

In section 1, we discussed the complications of partial evaluation and we claimed that the
use of combinators can help us avoid it. Towards that end, we introduce the combinators
and their differentiation rules. The definitions of B is

B = f 7→ (g 7→ (x 7→ f(g(x)))), x ∈ X, g ∈ (X → Y), f ∈ (Y → Z), (8)

Intuitively, B takes two functions f and g, composes them, and applies the result to x. f, g, x
can be in any space as long as they are consistent, meaning that the x is in the same space
as the input to g and the output of g is in the same space as the input of f . This constraints
is specified by the generic spaces X,Y, Z. Similarly, C is defined as

C = f 7→ (x 7→ (y 7→ f(y)(x))), x ∈ X, y ∈ Y, f ∈ (Y → (X → Z)), (9)

which takes f as the input and return a function that swaps the first two arguments. For
example, C(x 7→ v 7→ k) = v 7→ x 7→ k. f, x and y can be in any spaces as long as they are
consistent.

Using these combinators, a function can be decomposed into a small set of primitives through
a process called abstraction elimination Sørensen (2006). For example, w 7→ f(w)(g) can be
written as w 7→ B(f(w))(I)(g). Since we are differentiating with respect to w instead of g,
the chain rule needs to be modified

Theorem 2 The differentiation rule for the B combinator with captures is

P (x 7→ B(f)(g)(x)) = (x, k) 7→
P (g) (x,P (f) (g(x), k)) + P (x 7→ f) (x, i 7→ δ(g(x), i, k)),

(10)

where the first term is the chain rule and the second term is new. No evaluation is involved
in the rule because f, g are not specified. Equivalently, one can model the captures with the S
combinator, which is defined as

S = h 7→ (g 7→ (x 7→ h(x)(g(x)))). (11)

The B-rule with captures can be rephrased as the S-rule

P (x 7→ S(h)(g)(x)) = (x, k) 7→
P (g) (x,P (h(x)) (g(x), k)) + P (h) (x, i 7→ δ(g(x), i, k)).

(12)

Similarly, we have

Theorem 3 The differentiation rule for C

P (C(g)) = (x, k) 7→ Σ(b 7→ P (g(b)) (x, k(b))), (13)

which also involves no evaluation because g is not specified.

These rules can be derived by plugging the definitions of the combinators into the definition
of the pullback (see section 1 in the appendix), and the B-rule is known in lambda calculus
form Ehrhard and Regnier (2003). Importantly, the application of either rule only rearranges
existing symbols without evaluating any of them to specific functions or numbers.

4.2 Delaying Evaluation

To explicitly illustrate how the differentiation rules eq. (10) and eq. (13) delay evaluation,
let’s revisit the differentiation of w 7→ f(w)(g) using the B-rule

P(w 7→ B(f(w))(I)(g))(w, 1) = P(w 7→ I(g))(. . .)︸ ︷︷ ︸
0

+P(f)(w, i 7→ δ(g, i, 1)), (14)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

which is the analytic solution to our original problem in terms of f , g, w and their pullbacks.
Notice how the manipulation is restricted to moving symbols and neither f nor g is evaluated
to specific functions. If we separately differentiate f = x 7→ v 7→ xv using the C-rule, we find

P(C(v 7→ x 7→ xv))(y, k) = Σ(v 7→ P(x 7→ vx)(y, k(v))) (15)
= Σ(v 7→ ((x, k) 7→ vk)(y, k(v))). (16)

Similarly, the application of C in eq. (15) has only rearranged the symbols without evaluating
any function. The last step eq. (16) is simply looking up the pullback of a primitive
(multiplication by a constant). Combining eq. (14) and eq. (16) gives us Σvvδ(g, v, 1) = g,
which implements a symbolic evaluation using eq. (2), but only after the differentiation. In
the last step, we have invoked a general form of eq. (2), because v and g can be matrices or
functions, which makes the algebraic generalization necessary.

4.3 Tensor Operations

As a second illustration, we differentiate a basic tensor operation f 7→ Σjf(j), which can be
written as f 7→ Σ(j 7→ B(f)(I)(j)) or Σ(j 7→ S(I)(v 7→ j)) and the B-rule reads

P(f 7→ Σ(j 7→ f(j))(y, 1)) = Σ(i 7→ P(f 7→ f)(y, i 7→ δ(i, j, 1))) = i 7→ 1, (17)

where we have looked up the pullback of the identity primitive f 7→ f , which is (f, k) 7→ k.
The result states that evaluating the pullback of summation is an array of ones, and the
compiler should be able to map the final expression to a single call to memset. Generally,
both the model and gradient expressions are to be compiled to either IO optimized primitives
or for loops around mutations. This approach is to be contrasted against symbolically
expanding f into [f1, f2, . . .] or implementing the expression to low-level primitives sum +=
f[i], which are symbolic evaluations of f or

∑
into lower-level forms. The summation is

treated as a primitive for brevity, but its differentiation rule will be derived from the two
rules in the appendix. This derivation may be reminiscent of the more familiar variational
differentiation Gelfand (2000)

∂Σjfj/∂fi = Σjδij = 1. (18)

A more sophisticated tensor operation that is practically relevant will be found in section 5.2,
but the principles are the same.

4.4 Nonlinearity (Fanout)

Nonlinear functions requires fanout, which is handled by the second part of the B-rule. For
example, the binary product rule can be derived from the unary product rule as (keeping
the two operants the same for simplicity).

P(x 7→ x · x)(x, k)
=P(x 7→ (v 7→ x · v)(x))(x, k)
=P(x 7→ x)(x,P(v 7→ x · v)(x, k)) + P(x 7→ (v 7→ x · v))(x, i 7→ δ(i, x, k))

=P(v 7→ x · v)(x, k) +
∑
v

P(x 7→ x · v)(x, δ(v, x, k))

=xk +
∑
v

vδ(v, x, k) = 2xk.

(19)

This approach is to be contrasted in hardcoding the product rule.

4.5 Ordered Iterations

In the fanout example, we have modeled a binary product as a unary product that captures
x applied to x. This can be inductively generalized to an ordered sequence of functions with
captures. ∧

f = f(N) ◦ f(N − 1) ◦ . . . ◦ f(1), (20)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where the size parameter N is assumed to be encoded in the domain of f . For convenience,
we will use

∧
i f(i) interchangeably with

∧
f . Alternatively, following the S combinator, we

can define
Γh = x 7→ h(x)(N) ◦ h(x)(N − 1) ◦ . . . ◦ h(x)(1). (21)

For example, a monomial x 7→ xN can be defined as

x 7→
(∧

(i 7→ v 7→ x · v)
)
(1). (22)

The differentiation rule for
∧

is inductively derived form the two basic rules in the appendix,
where we also show that the rule for

∧
can be viewed as an abstraction over the typical

prescription of differentiation by source transform as shown on page 125-127 in Griewank
and Walther (2008). This rule in itself is not able to differentiate a model with respect to its
parameters such as the MLP, but the benefit of an abstract rule is that it trivially extends
to parametric models by composing with the other two rules as demonstrated in section 5.1.
The rule for

∧
does not cover fixed point iterations, which will be discussed separately in the

appendix. Unordered iteration can be differentiated this way, but they should be handled as
tensor operations to avoid imposing unnecessary order.

4.6 Mutations

It is possible to differentiate through mutations under our framework, but we choose to avoid
supporting it in favor of directly writing and differentiating tensor operations. The tensor
operations are to be mapped to IO optimized primitives or for loops around mutations by
the compiler. Nevertheless, we will illustrate how to differentiate mutations for illustration.
First, we bring mutations into a functional form that is confluent to the original statement.
For example, x[i] += 1 is confluent to x = (j) 7→ x(j) + δ(i, j, 1), which maps x to an
updated new vector. The functional form can be differentiated first by applying the C rule

P(x 7→ j 7→ x(j) + δ(i, j, 1))(x, k) =
∑
j

P(x 7→ x(j) + δ(i, j, 1))(x, k(j))

Then we apply the B rule to get∑
j

i 7→ δ(i, j, k(j)) = i 7→ k(i) = k.

Therefore, we have concluded that incrementing an array element by a constant merely adds
an identity map in the backward phase, which can be optimized away by the compiler. Other
types of mutations can be derived analogously.

5 Examples

Once partial evaluation is circumvented, the line separating AD and symbolic differentiation
starts to blur. This is because the two methods differ largely in the compromises they
make to accommodate partial evaluation. AD is efficient but blackbox, whereas symbolic
differentiation is transparent but suffers expression swell.

With the two combinators at hand, one no longer needs to accept such a nuanced trade-off due
to the use of partial evaluation and can simultaneously enjoy both efficiency and transparency.
Concretely, this means we can differentiate code and obtain an gradient expression resembling
the handwritten gradient for problems that typically require building computation graphs or
differentiating low-level code. For demonstration, we now showcase differentiating a MLP
and the HF energy, which are classic examples where numerical or symbolic partial evaluation
is used for differentiation.

Our proof-of-concept system is implemented as a domain specific functional programming
language within Julia, the source code of which will be provided along with all examples. The
language supports most necessary ingredients of functional programming such as closures,
conditionals, and let statements. The main missing piece is recursion, which has not been
the appropriate iteration facility for scientific applications. Instead, unordered iteration is
supported via tensor expressions, which can be mapped to optimized tensor engines. Future
support for ordered iteration and fixed point iteration will be discussed in section 2 of the
appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.1 MLP

The most representative problem of backpropagation is the MLP. We show that we can
generate a unevaluated and readable gradient. As shown in listing 1, we have an MLP whose
weights are w_1, w_2, and w_3, which are of type RM (real matrices) and RV (real vectors).
The first layer is (x::RV) -> mvp(w_1, x), which is a function that multiplies its input
by w_1. The output of this layer is piped (|>) to the second layer, which is element-wise
nonlinear activation. Notice that ReLU is defined in the outer scope as an unknown of type
RF (functions from real to real). After defining the model, we apply it to the sample batch.
Lastly, we surround the function that we like to differentiate with the keyword pullback.

Listing 1: Multilayer perceptron
mvp = (A::RM, x::RV) -> (i::N) -> sum(j, A(i, j) * x(j))
vip = (x::RV, y::RV) -> sum(i, x(i) * y(i))
(batch::RV, Relu::RF) ->

pullback ((w_1::RM, w_2::RM, w::RV) -> # define weights
(((x::RV) -> mvp(w_1 , x)) |> # linear layer 1
((x::RV) -> (i::N) -> Relu(x(i))) |> # nonlinear activation 1
((x::RV) -> mvp(w_2 , x)) |> # linear layer 2
((x::RV) -> (i::N) -> Relu(x(i))) |> # nonlinear activation 2
((x::RV) -> vip(x, w)))(# prediction

batch # apply to sample
))

Differentiating this code yields the gradient shown in listing 2, which describes backpropaga-
tion for this specific MLP as concisely as one would hope for. Notice that the definition of
mvp and vip do not appear in the gradient because these functions have never been evaluated
numerically or symbolically. The pullback of ReLU appears in the backward pass even though
the program is oblivious of what it is.

Listing 2: MLP gradient
let

mvp = (A, x) -> (i) -> sum((j), x(j)*A(i, j))
vip = (x, y) -> sum((i), x(i)*y(i))
(batch , Relu) -> (w_1 , w_2 , w_3) -> let

_y = mvp(w_1 , batch) # |
_y_1 = (i) -> Relu(_y(i)) # |
_y_2 = mvp(w_2 , _y_1) # |
_y_3 = (i) -> Relu(_y_2(i)) # | forward
_y_4 = vip(_y_3 , w_3) # v pass
_l = P((_z) -> vip(_z, w_3))(_y_3 , 1) # |
_l_1 = (_a) -> P(Relu)(_y_2(_a), _l(_a)) # |
_l_2 = P((_z_1) -> mvp(w_2 , _z_1))(_y_1 , _l_1) # | backward
_l_3 = (_a) -> P(Relu)(_y(_a), _l_2(_a)) # v pass
tuple(P((_z) -> mvp(_z, batch))(w_1 , _l_3), # |

P((_z) -> mvp(_z, _y_1))(w_2 , _l_1), # |
P((_z_2) -> vip(_y_3 , _z_2))(w_3 , 1)) # | gradient

end
end

One may notice that our expression is suboptimal in memory usage compared to an optimized
AD library, which accumulates the gradient instead of allocating memory for every sample.
This is an example of how subtle performance questions in reverse mode differentiation
become obvious once a compact gradient expression is available. Moreover, instead of
building the accumulation into the differentiation library, we can leave it to the simplification
stage, which can decide whether to accumulate based on the context. In principle, other
performance optimization such as pipelining and recomputation Huang et al. (2018); Feng
and Huang (2018) can also potentially be left to the simplification stage instead of extending
an AD library itself.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 Hartree Fock

As an example scientific application, we showcase taking the derivative of HF energy, which
is representative of a rather different class of problems common in electronic structure
theories Lin and Lu (2019); Martin (2004): tensor contractions. To differentiate tensor
contractions, one can either trace out the low-level primitives, which is leads to very large
graphs. One can also decompose it as a sequence of matrix operations in many different
ways, but finding the way that minimizes memory and compute is hard. Most importantly,
there are often duplicated terms that arise during differentiation due to symmetries, which
must be leveraged to be comparable with hand-written gradients that are then implemented
directly. Some physics terminology will be used in this example for an accurate presentation,
but no physics background is needed to understand the message.

We consider the Coulomb energy term in the HF energy, which is a contraction between a
fourth order complex tensor J ∈ CN×N×N×N and a complex matrix C ∈ CN×Ne

J 7→ C 7→ Σi,j,p,q,r,sC
∗
p,iC

∗
r,jJp,q,r,sCs,jCq,i. (23)

One expects four terms in the derivative because the function is quartic, but all four terms
are the same due to tensor symmetries. Thus, the gradient should be a single term, which
also happens to be an intermediate of the Coulomb energy itself, so the gradient evaluation
barely incurs an extra cost.

There are two symmetries of J that enable the simplification: Jpqrs = J∗
qpsr and Jpqrs = Jrspq,

each of which is specified as a transform on J as an invariant. For examples, consider the
transform f = J 7→ (a, b, i, j) 7→ J(i, j, a, b), it is easy to verify that f(J) = J implies
Jpqrs = Jrspq. The code for the symmetries and the Coulomb energy is shown in listing 3,
where CM denotes complex matrices and (N, N, N, N) -> R states that J is a map from four
natural numbers to a complex number (i.e. fourth order complex tensor)

Listing 3: Hartree Fock
@space ERI begin

type = (N, N, N, N) -> C
symmetries = (J -> (j, i, b, a) -> J(i, j, a, b)’,

J -> (a, b, i, j) -> J(i, j, a, b))
end

(J::ERI) -> pullback ((C::CM) ->
sum((i, j, p, q, r, s), C(p, i)’ * C(q, i) * C(r, j)’ * C(s, j) *

J(p, q, r, s)))

Without considering symmetries, the generated gradient consists of four distinct terms shown
in listing 4. If we leverage symmetries, the compiler can detect that the four terms are in fact
the same and combine them into one. This example is also an independent illustration of
how combinators bypass partial evaluation, since no symbol has been evaluated symbolically
or numerically.

Listing 4: HF gradient
Without symmetry
(J) -> (C) -> (_a, _a_1) -> (
sum((i, p, q, r), J(p, q, r, _a) * C(p, i) * C(r, _a_1) * C(q, i)’)+
sum((j, p, r, s), J(p, _a, r, s) * C(p, _a_1) * C(r, j) * C(s, j)’)+
sum((j, q, r, s), J(_a, q, r, s) * C(s, j) * C(q, _a_1) * C(r, j)’)+
sum((i, p, q, s), J(p, q, _a, s) * C(s, _a_1) * C(q, i) * C(p, i)’))

With symmetry
(J) -> (C) -> (_a, _a_1) -> sum((i, p, q, r),

J(q, p, _a, r) * C(p, i) * C(r, _a_1) * C(q, i)’) * 4.0

5.3 Conjugate gradient

Lastly, we show an example where the gradient expression can be used for algorithmic
insight with a conceptually simple and novel derivation of the conjugate gradient (CG)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

algorithm Hestenes and Stiefel (1952); Trefethen (2022). The idea is to minimize R =
x 7→ 1

2x
TAx − bTx, whose stationary condition yields Ax = b. We consider a general

momentum-like optimization step parametrized by the step sizes x + α(r + βp), where
x ∈ RN is the current iterate, p ∈ RN is the previous step direction and r ∈ RN is the
current gradient. The residual as a function of the parameters after taking the gradient step
is (α, β) 7→ R(x+ α(r + βp)), which we minimize with respect to α and β.

In listing 5, we first differentiate the residual without substituting the objective function R
to obtain an abstract theory that is generally applicable. Then we show that replacing R
with the quadratic form gives the CG coefficients.

Listing 5: Conjugate gradient
(A::Sym , r::RV, p::RV, b::RV, x::RV) -> begin

R = (x::RV) ->
sum((i, j), 0.5 * x(i) * A(i, j) * x(j)) - sum(i, x(i) * b(i))

pullback ((alpha::R, beta::R) ->
R((i::N) -> x(i) + alpha * (r(i) + beta * p(i))))

end

The result of line 9 of listing 5 is shown in eq. (24), which gives a vector of two components.
This shows that we can differentiate through unknown functions as a consequence of avoiding
the partial evaluation.

(A, r, p, b, x) 7→ let

R = x 7→ (−1.0 · xT · b+ 0.5 · xT ·A · x)
(α, β) 7→ (∇(R)((α · (β · p+ r) + x))T · (β · p+ r),

∇(R)((α · (β · p+ r) + x))T · p · α)
end

(24)

If we write pk = r + βp, ∇R(αpk + x)T · pk = 0 has the interpretation that the gradient
at the next iterate should be orthogonal to the current step direction. Combined with
∇R(αpk + x)T · p · α = 0, we have a nonlinear system of two equations for α and β, the
coefficients and thus the solutions of which depends on R.

Once we substitute the quadratic form for R in line 11 of listing 5, the gradient reduces to

(A, r, p, b, x) 7→ (α, β) 7→
(((β · p+ r)T ·A · (α · (β · p+ r) + x)− 1.0 · (β · p+ r)T · b),
α · (pT ·A · (α · (β · p+ r) + x)− 1.0 · bT · p)).

(25)

Using the fact that the gradient r = Ax− b is orthogonal to the previous step direction p,
the two nonlinear equations can be solved by hand to get

α =
pTk · (b−Ax)

pTkApk
= − (r + βp)T r

pTkApk
= − rT · r

pTkApk
, (26)

β =
(bT − xT ·A) · p− αrT ·A · p

αpTAp
=

rTAp

pTAp
, (27)

which can be recognized as the parameters that produce the conjugate gradient method.

6 Limitations

6.1 Theoretical limitations

The main limitation of our theory is that it requires stable dimensions, which means that
the tensor dimensions cannot depend on the values in the tensor. For example, filter is
not dimensionally stable because the length of the output depends not only on the length
but also the values of its input. On the other hand, map is dimensionally stable because the
length of the output is determined only by the length of its input.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

The second theoretical limitation is not supporting mutations, although a substantial number
of scientific applications are implemented as updating big tensors in a loop. In principle,
mutations can be supported as shown in section 4.6, but allowing mutations encourages
the users to use low level primitives to implement tensor operations, which make symbolic
simplification impossible. Instead, we let the compiler implement the specified tensor
operations as it sees fit either by offloading to IO optimized primitives or low-level mutating
primitives.

6.2 Practical limitations

Aside from general software quality problems, we do not have a reliable implementation
of fixed point iteration or the general sequential iteration, which we claim is possible in
theory. These constructs are necessary for ODE constrained optimization problems and
sensitivity analysis Fiacco and McCormick (1990); Gould et al. (2016), so the applicability
of our approach to these problems still needs to be demonstrated in practice.

Tracing not only evaluates the values, but also the types of tensors, which is necessary
information for differentiation. Since our differentiation happens entirely at compile time,
we basically require a static type system. This does not integrate well with the dynamic
type system in Python or Julia, and a separate or restricted type system is necessary.

7 Conclusion

Motivated by combinatory logic and scientific applications, we showed that introducing a
second differentiation rule in addition to the chain rule allows us to avoid partial evaluation
in either numerical or symbolic form for tensor operations and parametrized models. The
result of the differentiation can be simplified and interpreted. Using a proof of concept
functional programming language, we demonstrated that the theory can be implemented
concretely and one can obtain readable expressions for gradients, even if the problem is not
a composition and only partially known. We have also pointed out cases where our method
does not work and issues that still need to be resolved in our implementation. Nevertheless,
there appears to be a path to overcome partial evaluation and accelerate scientific endeavors.

References

Michael Abbott, Dilum Aluthge, N3N5, Vedant Puri, Chris Elrod, Simeon Schaub, Carlo
Lucibello, Jishnu Bhattacharya, Johnny Chen, Kristoffer Carlsson, and Maximilian Gel-
brecht. mcabbott/tullio.jl: v0.3.7, October 2023. URL https://github.com/mcabbott/
Tullio.jl/blob/f7d4cbab5a8e3cfd259deb06aab4c64934606c0a/README.md.

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Feb 2015. URL http:
//arxiv.org/abs/1502.05767v4. Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey
Andreyevich Radul, Jeffrey Mark Siskind. Automatic differentiation in machine learning:
a survey. The Journal of Machine Learning Research, 18(153):1–43, 2018.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018a. URL
http://github.com/google/jax.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018b. URL
https://github.com/google/jax/blob/be1e40dc2e1777d83b870afa31e178123f2a1366/
docs/notebooks/Common_Gotchas_in_JAX.md.

Haskell Brooks Curry, Robert Feys, William Craig, J Roger Hindley, and Jonathan P Seldin.
Combinatory logic, volume 1. North-Holland Amsterdam, 1958.

10

https://github.com/mcabbott/Tullio.jl/blob/f7d4cbab5a8e3cfd259deb06aab4c64934606c0a/README.md
https://github.com/mcabbott/Tullio.jl/blob/f7d4cbab5a8e3cfd259deb06aab4c64934606c0a/README.md
http://arxiv.org/abs/1502.05767v4
http://arxiv.org/abs/1502.05767v4
http://github.com/google/jax
https://github.com/google/jax/blob/be1e40dc2e1777d83b870afa31e178123f2a1366/docs/notebooks/Common_Gotchas_in_JAX.md
https://github.com/google/jax/blob/be1e40dc2e1777d83b870afa31e178123f2a1366/docs/notebooks/Common_Gotchas_in_JAX.md

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

cuTENSOR. cutensor: A high-performance cuda library for tensor primitives. URL https:
//docs.nvidia.com/cuda/cutensor/latest/index.html.

Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical
Computer Science, 309:1–41, 12 2003. doi: 10.1016/s0304-3975(03)00392-x. URL https:
//doi.org/10.1016/s0304-3975(03)00392-x.

Conal Elliott. The simple essence of automatic differentiation. Proceedings of the ACM on
Programming Languages, 2:1–29, 7 2018. doi: 10.1145/3236765. URL http://dx.doi.org/
10.1145/3236765.

Martin Elsman, Fritz Henglein, Robin Kaarsgaard, Mikkel Kragh Mathiesen, and Robert
Schenck. Combinatory adjoints and differentiation. EPTCS 360, 2022, pp. 1-26, 7 2022.
doi: 10.4204/EPTCS.360.1. URL http://arxiv.org/abs/2207.00847v1.

Jianwei Feng and Dong Huang. Optimal gradient checkpoint search for arbitrary computation
graphs. Jul 2018. URL http://arxiv.org/abs/1808.00079v6.

Anthony V Fiacco and Garth P McCormick. Nonlinear programming: sequential uncon-
strained minimization techniques. SIAM, 1990.

Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. The itensor software library
for tensor network calculations. Jul 2020. doi: 10.21468/SciPostPhysCodeb.4. URL
http://arxiv.org/abs/2007.14822v2. SciPost Phys. Codebases 4 (2022).

Jeroen Fokker. Functional parsers. In Advanced Functional Programming: First International
Spring School on Advanced Functional Programming Techniques Båstad, Sweden, May
24–30, 1995 Tutorial Text 1, pages 1–23. Springer, 1995.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and
Alan Schmitt. Combinators for bidirectional tree transformations. ACM Transactions on
Programming Languages and Systems, 29:17, 5 2007. doi: 10.1145/1232420.1232424. URL
http://dx.doi.org/10.1145/1232420.1232424.

I. M. Gelfand. Calculus of variations. Dover Publications, 2000. ISBN 9780486414485.

Evangelos Georganas, Dhiraj Kalamkar, Sasikanth Avancha, Menachem Adelman, Deepti
Aggarwal, Cristina Anderson, Alexander Breuer, Jeremy Bruestle, Narendra Chaudhary,
Abhisek Kundu, Denise Kutnick, Frank Laub, Vasimuddin Md, Sanchit Misra, Rama-
narayan Mohanty, Hans Pabst, Brian Retford, Barukh Ziv, and Alexander Heinecke.
Tensor processing primitives: A programming abstraction for efficiency and portability
in deep learning & hpc workloads. Apr 2021. doi: 10.1145/3458817.3476206. URL
http://arxiv.org/abs/2104.05755v4.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz,
and Edison Guo. On differentiating parameterized argmin and argmax problems with
application to bi-level optimization. ArXiv, abs/1607.05447, 2016. URL https://api.
semanticscholar.org/CorpusID:7186854.

Andreas Griewank and Andrea Walther. Evaluating Derivatives. Society for Industrial and
Applied Mathematics, 1 2008. ISBN [’9780898716597’, ’9780898717761’]. doi: 10.1137/1.
9780898717761. URL http://dx.doi.org/10.1137/1.9780898717761.

Laurent Hascoet and Valérie Pascual. The tapenade automatic differentiation tool. ACM
Transactions on Mathematical Software, 39:1–43, 4 2013. doi: 10.1145/2450153.2450158.
URL https://doi.org/10.1145/2450153.2450158.

M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49:409, 12 1952. doi: 10.6028/
jres.049.044. URL http://dx.doi.org/10.6028/jres.049.044.

11

https://docs.nvidia.com/cuda/cutensor/latest/index.html
https://docs.nvidia.com/cuda/cutensor/latest/index.html
https://doi.org/10.1016/s0304-3975(03)00392-x
https://doi.org/10.1016/s0304-3975(03)00392-x
http://dx.doi.org/10.1145/3236765
http://dx.doi.org/10.1145/3236765
http://arxiv.org/abs/2207.00847v1
http://arxiv.org/abs/1808.00079v6
http://arxiv.org/abs/2007.14822v2
http://dx.doi.org/10.1145/1232420.1232424
http://arxiv.org/abs/2104.05755v4
https://api.semanticscholar.org/CorpusID:7186854
https://api.semanticscholar.org/CorpusID:7186854
http://dx.doi.org/10.1137/1.9780898717761
https://doi.org/10.1145/2450153.2450158
http://dx.doi.org/10.6028/jres.049.044

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

So Hirata. Tensor contraction engine: abstraction and automated parallel implementation
of configuration-interaction, coupled-cluster, and many-body perturbation theories. The
Journal of Physical Chemistry A, 107:9887–9897, 11 2003. doi: 10.1021/jp034596z. URL
http://dx.doi.org/10.1021/jp034596z.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen,
HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Nov 2018. URL
http://arxiv.org/abs/1811.06965v5.

Michael Innes. Don’t unroll adjoint: Differentiating ssa-form programs. Oct 2018. URL
http://arxiv.org/abs/1810.07951v4.

Yves Lafont. Interaction combinators. Information and Computation, 137:69–101, 8 1997.
doi: 10.1006/inco.1997.2643. URL http://dx.doi.org/10.1006/inco.1997.2643.

Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for the real
world. 2001.

Lin Lin and Jianfeng Lu. Mathematical Introduction to Electronic Structure Theory - Iterative
Solution of Symmetric Quasi-Definite Linear Systems. Society for Industrial and Applied
Mathematics, 2019. ISBN 9781611975796.

Min Lin. Automatic functional differentiation in jax. Nov 2023. URL http://arxiv.org/
abs/2311.18727v2.

Jutho Haegeman Lukas Devos, Maarten Van Damme and contributors. Ten-
soroperations.jl: Fast tensor operations using a convenient einstein index no-
tation, 10 2023. URL https://github.com/Jutho/TensorOperations.jl/blob/
f047345fa3b76f81db3394b14bb0beac108dab22/docs/src/man/autodiff.md.

Richard M Martin. Electronic Structure: Basic Theory And Practical Methods. Cambridge
Univ Press, 2004. ISBN 9780521782852.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al.
Sympy: symbolic computing in python. PeerJ Computer Science, 3:e103, 2017.

William Moses and Valentin Churavy. Instead of rewriting foreign code for machine learning,
automatically synthesize fast gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 12472–12485. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf.

William S. Moses, Valentin Churavy, Ludger Paehler, Jan Hückelheim, Sri Hari Krishna
Narayanan, Michel Schanen, and Johannes Doerfert. Reverse-mode automatic differen-
tiation and optimization of gpu kernels via enzyme. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384421.
doi: 10.1145/3458817.3476165. URL https://doi.org/10.1145/3458817.3476165.

William S. Moses, Sri Hari Krishna Narayanan, Ludger Paehler, Valentin Churavy, Michel
Schanen, Jan Hückelheim, Johannes Doerfert, and Paul Hovland. Scalable automatic dif-
ferentiation of multiple parallel paradigms through compiler augmentation. In Proceedings
of the International Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’22. IEEE Press, 2022. ISBN 9784665454445.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

12

http://dx.doi.org/10.1021/jp034596z
http://arxiv.org/abs/1811.06965v5
http://arxiv.org/abs/1810.07951v4
http://dx.doi.org/10.1006/inco.1997.2643
http://arxiv.org/abs/2311.18727v2
http://arxiv.org/abs/2311.18727v2
https://github.com/Jutho/TensorOperations.jl/blob/f047345fa3b76f81db3394b14bb0beac108dab22/docs/src/man/autodiff.md
https://github.com/Jutho/TensorOperations.jl/blob/f047345fa3b76f81db3394b14bb0beac108dab22/docs/src/man/autodiff.md
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://doi.org/10.1145/3458817.3476165

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. 12 2019. URL http://arxiv.org/abs/1912.
01703v1.

Barak A. Pearlmutter and Jeffrey Mark Siskind. Reverse-mode ad in a functional framework.
ACM Transactions on Programming Languages and Systems, 30:1–36, 3 2008. doi: 10.
1145/1330017.1330018. URL https://doi.org/10.1145/1330017.1330018.

M. Schönfinkel. Über die bausteine der mathematischen logik. Mathematische Annalen, 92:
305–316, 9 1924. doi: 10.1007/bf01448013. URL http://dx.doi.org/10.1007/bf01448013.

J. C. Slater. A simplification of the hartree-fock method. Physical Review, 81:385–390, 2
1951. doi: 10.1103/physrev.81.385. URL http://dx.doi.org/10.1103/physrev.81.385.

Morten Heine Sørensen. Lectures on the Curry-Howard isomorphism. Elsevier, 2006. ISBN
9780444520777.

Jos Thijssen. Computational Physics. Cambridge University Press, 2012. ISBN
9781139171397.

Lloyd N. Trefethen. Numerical Linear Algebra. Society for Industrial and Applied Mathe-
matics, 2022. ISBN 9781611977158.

Dimitrios Vytiniotis, Dan Belov, Richard Wei, Gordon Plotkin, and Martin Abadi. The
differentiable curry. In Program Transformations for ML Workshop at NeurIPS 2019,
2019. URL https://openreview.net/forum?id=ryxuz9SzDB.

13

http://arxiv.org/abs/1912.01703v1
http://arxiv.org/abs/1912.01703v1
https://doi.org/10.1145/1330017.1330018
http://dx.doi.org/10.1007/bf01448013
http://dx.doi.org/10.1103/physrev.81.385
https://openreview.net/forum?id=ryxuz9SzDB

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Overview

In section 8, we show the derivation of the B-rule and the C-rule. In section 9, we extend
our formalism to sequential iterations and fixed points. Lastly, in section 11, we explain our
treatment of complex numbers.

8 Derivatives of combinators

8.1 Differentiating C

Given a function f : RM 7→ RN , recall that our definition of pullback is

P(f) = (x, k) 7→
(
i 7→ Σ

(
b 7→ k(b)

∂f(x)(b)

∂x(i)

))
. (28)

Moving the map over i into the contraction, we find

P(f)(x, k) = Σ

(
b 7→

(
i 7→ k(b)

∂f(x)(b)

∂x(i)

))
(29)

= Σ(b 7→ P(x 7→ f(x)(b))(x, k(b))) (30)
= Σ(b 7→ P(C(f)(b))(x, k(b))), (31)

P(C(g))(x, k) = Σ(b 7→ P(g(b))(x, k(b))). (32)

One may observe that the C-rule merely rewrites partial derivatives in terms of pullbacks and
the index i is eliminated. This rule does not perform any evaluation although the notation
g(b) makes is seem so. For example, the pullback of a map that double a vector element-wise
can be derived without evaluation

P(v 7→ (i 7→ 2v(i))))(v, k) = P(C(i 7→ v 7→ 2v(i)))(v, k) (33)
= Σ(i 7→ P(v 7→ 2v(i))(v, k(i))). (34)

8.2 Differentiaing B

The last result in eq. (34) motivates us to find P(v 7→ v(i)). Following the definition of
pullbacks in eq. (28), we have

P(v 7→ v(i)) = j 7→ k(j)
∂v(i)

∂v(j)
= j 7→ δ(i, j, k(j)). (35)

The result is a unit vector êik(i) if i, j are integers. If i, j are real numbers, the result is
a “ket” k(i) |i⟩ as used in quantum mechanics. There does not appear to be a common
nomenclatures for the case where i, j are paths. To obtain our B-rule, the derivation in
eq. (35) can be generalized to w 7→ f(g), where f is dependent on w

P(w 7→ f(g)) = j 7→ k(b)
∂f(g)

∂w(j)
(36)

= j 7→ Σ

(
b 7→ ∂f(b)

∂w(j)
δ(b, g, k(b))

)
(37)

= j 7→ Σ

(
b 7→ ∂f(b)

∂w(j)
(i 7→ δ(i, g, k(i))(b))

)
(38)

= P(w 7→ f)(w, i 7→ δ(i, g, k(i))), (39)

which is half of our B rule. The other half is the chain rule, which we will not prove because
it is well-established.

What is less obvious is why the two parts can be simply added, so we will prove that now.
Consider P(x 7→ f(g(x))), where f is dependent on x, we can write this as a different
composition

P(x 7→ ((p, q) 7→ p(q))((x 7→ (f, g(x)))(x))). (40)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

x 7→ (f, g(x)) is a function that returns a tuple. Its pullback can be derived from the eq. (28)
as

P(x 7→ (f, g(x)))(x, k1, k2) = P(x 7→ f)(x, k1) + P(g)(x, k2), (41)
where the addition already arises in a similar fashion to partial derivatives. Likewise,
(p, q) 7→ p(q) takes a tuple and applies the first object to the second. Its pullback is

P((p, q) 7→ p(q))(p, q, k) = (P(p 7→ p(q))(p, k),P(q 7→ p(q))(q, k)) (42)
= (j 7→ δ(q, j, k(j)),P(p)(q, k)). (43)

Applying the chain rule to eq. (40) gives us the complete rule

P(x 7→ B(f)(g)(x))(x, k) =P(x 7→ (f, g(x)))(x,P((p, q) 7→ p(q))(f, g(x), k)) (44)
=P(x 7→ (f, g(x)))(x, (j 7→ δ(g(x), j, k(j)),P(f)(g(x), k))) (45)
=P(x 7→ f)(x, j 7→ δ(g(x), j, k(j))) + P(g)(x,P(f)(g(x), k)))).

(46)

9 Sequential iteration and fixed points

9.1 Sequential iteration

To support general sequential iterations such as a for loop, we need a generalization of B,
which we denote as

∧
and defined as composing a sequence of functions∧

f = f(N) ◦ f(N − 1) ◦ . . . ◦ f(1), (47)

where f is assumed to map an integer to a function. The integer N is encoded in the domain
of f when f is defined. A concrete example is summation, which can be implemented as

v 7→
∧

(i ∈ [1, N] 7→ (x 7→ x+ v(i)))(0). (48)

For notational brevity, we use
∧
f and

∧
(i 7→ f(i)) interchangeably.

Differentiating
∧

means differentiating
∧
f with respect to f , which is not differentiating

(
∧
f) (x) with respect to x. Denoting the intermediates as

y(i) =

(
i∧

t=1

f(t)

)
(y0), l(i) =

(
i∧
m

k 7→ P(f(N −m+ 1))(y(N −m), k)

)
(k(y0)), (49)

the result is

P(
∧

) =j 7→ λ 7→ Σy0δ (λ, y(j − 1), l(N − j)) . (50)

The proof is simply applying the C-rule before inducting on the fanout part of the B-rule

P

(
f 7→ y0 7→

(
N∧
i

f(i)

)
(y0)

)
(f, k) (51)

=Σy0P (f 7→ y(N)) (f, k(y0)) apply C-rule (52)
=Σy0P (f 7→ f(N) (y(N − 1))) (f, k(y0)) (53)
=Σy0P (f 7→ y(N − 1)) (f,P(f(N))) (y(N − 1), k(y0)) (54)
+ P(f 7→ f(N))(f, λ 7→ δ (λ, y(N − 1), k(y0)) apply B-rule (55)

=Σy0P(f 7→ f(N − 2))(f,P(f(N − 1)))(y(N − 2),P(f(N))(y(N − 1), k(y0))) (56)
+ P(f 7→ f(N − 1))(f, λ 7→ δ(λ, y(N − 2),P(f(N))(y(N − 1), k(y0)))) (57)
+ P(f 7→ f(N))(f, λ 7→ δ(λ, y(N − 1), k(y0))) (58)

=Σy0ΣiP(f 7→ f(N − i)) (f, λ 7→ δ (λ, y(N − i− 1), l(i))) (59)
=Σy0ΣiP(f 7→ f) (f, j 7→ δ (j,N − i, λ 7→ δ (λ, y(N − i− 1), l(i)))) (60)
=Σy0 (j 7→ Σiδ (N − j, i, λ 7→ δ (λ, y(N − i− 1), l(i)))) (61)
=j 7→ λ 7→ Σy0δ (λ, y(j − 1), l(N − j)) . (62)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Thus, the derivative depends on y and l, which are the forward and backward intermediates in
neural network or ODE settings. To differentiate a specific problem, one only needs to plug in
a concrete f . For example, a for loop can be translated to

∧
by explicitly passing the state as

a variable, as shown in listing 6, which is a standard technique in functional programming for
avoiding mutations. Immutable code generally comes with a performance overhead, but this
is not a consequence of our conversion, but a general limitation of automatic differentiation.

Listing 6: Explicit state passing. The loop variable i is converted to be the first input of f
and the state are the second. The mutated state are returned as the output of f .

state = 0
for i in 1:10

state = state + 1
end

final_state = seq(
(i::N{10}) ->

state -> state + 1
)(0)

9.2 Fixed point

Our sequential iteration only works if the number of iterations is “stable”, which means
that it only depends on the sizes of our tensors and not the values within it. This is
mostly acceptable in numerical applications with the main exception being the fixed point.
Differentiating a fixed point is also known as implicit differentiation or sensitivity analysis.
Fortunately, this special case is relatively straightforward to address.

Let us consider a system of equations g(x) = 0 and a procedure ρ that maps g to one of its
roots, where the condition g 7→ g(ρ(g)) = g 7→ 0 is satisfied. Differentiating both sides yields

0 = P(g 7→ ρ(g))(g,Pg(ρ(g), k)) + P(g 7→ g)(g, i 7→ δ(i, ρ(g), k)) (63)
= P(ρ)(g,H(k)) + i 7→ δ(i, ρ(g), k), H(k) = Pg(ρ(g), k) (64)

P(ρ) = (g, k) 7→ i 7→ δ(i, ρ(g),−H−1(k)), (65)

where H(k) is a linear map on k. The inverse of H is a linear least square and can be written
in terms of ρ as

H−1(k) = ρ(t 7→ H(t)− k), (66)
which does not require introducing new primitives and can be further differentiated.

There is a number of problems that can be treated as a fixed point for differentiation purpose.
For example, minimization problems minx R(x) can be treated as ∇R(x) = 0. Constrained
optimization problem can be treated by adding the constraints to g. Eigenvalue problems
can may be treated as g(λ, v) = Av − λv. Although a fixed point theory is too weak a
formalism for most of these problems , it suffices for differentiation because we assume that
the true solution has been found.

10 Relation to Source Transform

Let us illustrate the relation through a concrete example. Consider summing over a vector∑N
i=1 w(i), whose pullback can be derived as

P(w 7→
∑
i

w(i))(w, k) =
∑
i

P(w 7→ w)(w, j 7→ δ(j, i, k)) = j 7→ k.

The result is a vector whose elements are k.

If one were to do this the procedural way, the code would resemble listing 7.

Listing 7: Implementing summation as a for loop
sum = 0

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

for i in 1:N
sum += w[i]

end

One can also unroll the ordered loop into a sequence of steps as in listing 8

Listing 8: Implementing summation as an unrolled loop.
w -> begin

y1 = (t -> t + w(1))(0)
y2 = (t -> t + w(2))(y1)
...

end

In either form, one can apply the standard prescription for source transformation as on page
125-127 in Griewank and Walther (2008).

The confluent functional counter part for the procedural sum is

P(w 7→
∧

(i 7→ t 7→ t+ w(i))(0))(w, k).

The differentiation is just repeated applications of B, C, and
∧

-rules. The result is∑
t

q 7→
∑
y0

δ(t, y(q − 1), l(N − q)) = q 7→
∑
y0

l(N − q).

l(N − q) are

l(N − q) =

N−q∧
m=1

(k 7→ P(t 7→ t+ w(N −m+ 1))(y(N −m), k))(δ(y0, 0, k))

This can be simplified into
∧N−q

m=1(k 7→ k)(δ(y0, 0, k)) = δ(y0, 0, k). Therefore, the final result
is again q 7→ k. However, if one now unroll y and l, the result is shown in listing 9, which is
almost the same as the result of regular source transform.

Listing 9: Unrolled derivative of summation.
w -> sum(y0 -> begin

y1 = (t -> t + w(1))(y0)
y2 = (t -> t + w(2))(y1)
y3 = (t -> t + w(3))(y2)
l0 = delta(y0, 0, k)
l1 = P(t -> t + w(3))(y2, l0)
l2 = P(t -> t + w(2))(y1, l1)
[l2, l1, l0]
end)

end

The delta can propagate out and annihilate with the y0 sum because pullbacks are linear.
Then we will have completed a source transform.

We can immediately generalize the problem to differentiating a model x 7→ . . . with respect
to model parameters w

P(w 7→ x 7→
∧

(i 7→ t 7→ t+ w(i) ∗ x(i))(0)),

which is sometimes the point where typical source transform systems start to struggle. In
our framework, the derivation become an extra application of the C rule.

11 Complex Primitives

We now explain our treatment of complex numbers, which leads to the complex conjugates
in primitive pullbacks. The main difficulty in dealing with complex numbers is that the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

standard complex analysis does not prescribe a useful gradient for optimization. For example,
minimizing z 7→ |z|2 is evidently equivalent to minimizing (a, b) 7→ a2 + b2, but a Cauchy-
Riemann argument shows that |z|2 is nowhere analytic, so the pullback makes no sense. For
a real and scalar valued function, this problem is partly resolved through the Wirtinger
derivative

∂f(z)/∂z = ∂f(z)/∂a+ i∂f(z)/∂b, z = a+ ib, (67)
which can be used for, e.g., gradient descent.

This formalism is insufficient for symbolic automation because it does not handle the case
where f(z) is complex and requires splitting z into its real and imaginary parts. Differentiating
a complex function f(z) may seem unnecessary when the objective function to optimize is
always a real scalar. However, we differentiate f(z) by differentiating its constituents, which
are complex-valued functions. Moreover, representing a complex gradient in terms of the
real and imaginary parts of z is not acceptable for symbolic purposes, and it is preferable
to avoid splitting a complex variable to begin with (rather than trying to reassemble them
from the real and imaginary parts in the end).

These problems can be resolved by extending the definition of pullback to complex numbers.
We start by proposing the operators V and W

V(z) = [Re(z1) Im(z1) . . . Re(zn) Im(zn)]
T
, (68)

W(f) = v 7→ V(f(V−1(v))). (69)

V and V−1 establish an isomorphism between CN and R2N so that we can convert a complex
problem to a real one that is equivalent. Analogously, W converts between CN → CM and
R2N → R2M . One can check that the following identities hold

∀f ∈ CN → CM , V(f(z)) = (W(f))(V(z)), (70)

∀f ∈ CN → R, f(z) = V(1)T · (W(f))(V(z)). (71)

To minimize a scalar-valued function f(z) over z, we can equivalently minimize the real
function u 7→ V(1)T · (W(f))(u) and convert u to the corresponding complex number
with z = V−1(u). The gradient of the real function can be written as (J (W(f)))(u)T ·
V(1). Transforming this vector back into the complex space gives the complex gradient
V−1

(
(J (W(f)))(u)T · V(1)

)
. Therefore, we write the Wirtinger gradient as

∇f(z) = V−1(J (W(f))(V(z))T · (V(1))). (72)

To be able to find the gradient through the pullback as ∇f(z) = P(f)(z, 1), we suggest to
define the complex pullbacks as

P(f) = (z, k) 7→ V−1(J (W(f))(V(z))T · V(k)). (73)

Since the pullback remains a vector Jacobian product just like eq. (28), the B and C rules
are not affected by the change. Therefore, the only modification to the theory is to derive
the pullbacks of the univariate primitives using eq. (73) instead of eq. (28). As an example,
writing z = x+ iy and k = a+ ib, the pullback of the complex conjugate can be derived as

W(z 7→ z∗) = (x, y) 7→ (x,−y), (74)

P(z 7→ z∗) = (z, k) 7→ V−1

([
1 0
0 −1

]
·
[
a
b

])
= (z, k) 7→ k∗. (75)

18

	Introduction
	Notation
	Background
	Theory
	Derivatives of combinators
	Delaying Evaluation
	Tensor Operations
	Nonlinearity (Fanout)
	Ordered Iterations
	Mutations

	Examples
	MLP
	Hartree Fock
	Conjugate gradient

	Limitations
	Theoretical limitations
	Practical limitations

	Conclusion
	Derivatives of combinators
	Differentiating C
	Differentiaing B

	Sequential iteration and fixed points
	Sequential iteration
	Fixed point

	Relation to Source Transform
	Complex Primitives

