

000
001 DIFFERENTIATING WITHOUT PARTIAL EVALUATION
002003 **Anonymous authors**
004 Paper under double-blind review
005
006
007008 ABSTRACT
009010 In the physical sciences, the gradient of a model is often simplified into
011 a compact form ideal for a given context to be interpretable and more
012 efficient; in fact, sometimes the efficiency of evaluation can be improved by
013 an asymptotic factor due to symmetries. To learn interpretable surrogate
014 models that accelerate physics simulations, a differentiation system capable of
015 compact and unevaluated gradient expressions is highly desirable. However,
016 standard symbolic and algorithmic differentiation both start by partially
017 evaluating the model. After this points, the gradients irreversibly become
018 blackboxes with potentially obscure performance ceilings. Based on the
019 observation that composition is one of two combinators that form a complete
020 basis with captures, we compliment the chain rule with a second rule that
021 enables differentiation without any form of evaluation. Using a prototype
022 implementation, we obtain compact gradient expressions for an MLP and a
023 common physics model that, historically, resisted algorithmic differentiation.
024 Lastly, we discuss the theoretical and practical limitations of our approach.
025026 1 INTRODUCTION
027028 What is the gradient of a composition $w \mapsto f(g(w))$? The obvious answer is the chain
029 rule $w \mapsto g'(w) \cdot f'(g(w))$, which is a powerful tool because it allows us to differentiate by
030 rearranging instead of evaluating f or g to specific functions. For example, using the chain
031 rule, we can differentiate $x \mapsto (x+1)^n$ as $x \mapsto n(x+1)^{n-1}$ without a binomial expansion,
032 which would lead to a very large differentiation problem. Let us now consider $w \mapsto f(w)(g)$,
033 which is a slightly modification that leads to a great deal of hardship because it is not a
034 composition. The simplest answer to this is tracing Baydin et al. (2015); Elliott (2018);
035 Griewank and Walther (2008), which is a form of partial evaluation Innes (2018) that runs
036 the function with specific values of f , g , and w while recording all primitive operations
037 applied to w as a computation graph to obtain a composition. For example, if we trace the
038 computation with $f = x \mapsto v \mapsto xv$, $g = 2$, and $w = 1$, we find that w is multiplied by 2,
039 so it suffices to differentiate $w \mapsto 2w$. To summarize, the chain rule enables differentiating
040 a function without evaluating it, as long as the function is a composition. However, when
041 this assumption breaks, one typically needs to **partially evaluate** the function numerically
042 or symbolically until it is a composition. In source transform system, this problem can
043 be addressed through functional approaches Vytiniotis et al. (2019); Elsman et al. (2022);
044 Pearlmutter and Siskind (2008); Ehrhard and Regnier (2003), although expressing scientific
045 applications as functional programs remains difficult.
046047 This is not a fictitious problem. In particular, we will see that tensor operations, which is
048 the building blocks for many physics models, also fall into this category. For differentiating
049 tensor operations, it is essential that we retain a symbolic form for two reasons. First,
050 tensors in Physics have symmetries, which can be used to simplify the gradient. The
051 simplification often leads to a performance gain by an integer or even an asymptotic factor.
052 Second, the gradient needs to be interpretable because it usually represents the physical
053 law of the theory, which may contain as much insight as its numerical solution. These two
054 requirements make algorithmic differentiation less attractive. Specifically, tracing based
055 systems such as PyTorch Paszke et al. (2017; 2019) and JAX Bradbury et al. (2018a)
056 partially evaluates the models into a computation graph which represents the gradient.
057 This is clearly amenable to neither interpretation nor symbolic manipulation. The other
058 alternative is source transformation such as Enzyme Moses and Churavy (2020); Moses
059

et al. (2021; 2022) and Tapenade Hascoet and Pascual (2013), which either requires the code to be written in low-level procedural primitives or compiles the code to intermediate representations, thus removing the abstraction $w \mapsto f(w)(g)$. The last common option is symbolic differentiation such as SymPy Meurer et al. (2017) and Mathematica, which appears to fit our requirements, but differentiating functions of the type $w \mapsto f(w)(g)$ still requires partial symbolic evaluation, which is susceptible to expression swell Baydin et al. (2015) and is not suitable for general problems such as ML models, which we also need.

In this paper, we show that adding a second differentiation rule in addition to the chain rule makes it possible to delay all evaluation until after the differentiation. This enables a symbolic differentiation system that avoids common cases of expression swell, which is not too different from a source transformation system enriched with symbolic capabilities. As the result, we obtain gradients for tensor operations that can be interpreted and simplified using symmetries. Additionally, because the output of the differentiation is also tensor operations in symbolic form, it can be fed into tensor operation engines, thus resolving difficulties in the gradient code such as differentiability constraints Bradbury et al. (2018a;b); Lukas Devos and contributors (2023) and handling tensor contraction order cuTENSOR; Georganas et al. (2021); Fishman et al. (2020); Hirata (2003); Abbott et al. (2023).

Specifically, similar to how the chain rule avoids some of the evaluation when differentiating, we find a second rule that avoids the rest of the evaluation, thus narrowing the gap between symbolic and algorithmic differentiation. The **key insight** that enables this work is that composition is one of two “bolts and nuts” of mathematical functions, which can be used to assemble an arbitrary function from a few univariate primitives. Formally, the two components are known as the **B** (composition) and **C** combinators in combinatory logic Schönfinkel (1924), and their differentiation rules are straightforward to derive. Notably, we also allow for captures in the composed function, so the **S** combinator may be a more appropriate description than **B**. These combinators has been primarily used to study computability Curry et al. (1958). In practice, it has been used for building parsers Fokker (1995); Leijen and Meijer (2001), reasoning about data updates Foster et al. (2007), automatic parallelization Lafont (1997), as well as extending AD frameworks Lin (2023) as high-level primitives.

To reiterate, our main message is a **qualitative claim** that a second differentiation rule in addition to the chain rule enables differentiation without evaluation, which leads to gradient expressions for tensor operations that can be simplified using symmetries and interpreted with physical meaning. The result is demonstrated via a prototype implementation that produces compact gradient expressions for a representative set of examples. It is worthwhile to clarify that this paper is **neither** suggesting a new high-level or low-level differentiation framework, **nor** does it claim to achieve quantitatively better efficiency for any class of problems. As an outline, we start the paper with some notation and background of AD. We then present the theoretical model and illustrate how combinators help us bypass partial evaluation in either numerical or symbolic form. We provide a prototype implementation with MLP, Hartree-Fock (HF) Thijssen (2012); Slater (1951), and conjugate gradient Hestenes and Stiefel (1952); Trefethen (2022) as examples, which typically require partial evaluation of some form to differentiate. Lastly, we discuss the class of problems that we are limited to and engineering complications that we face.

2 NOTATION

We use anonymous functions (lambdas) extensively so that we can write functions as values such as $x \mapsto x + 1$ instead of definitions $f(x) = x + 1$. This makes it easy to think of functions as inputs and outputs of other functions. Moreover, we adopt the anonymous notation for expressing tensors and treat them as maps from integer indices to their corresponding tensor elements. Invoking a tensor as a function is the same as indexing. For example, $v(i)$ and v_i are equivalent. Similarly a tensor can be constructed as a function. For example, $i \mapsto 2v(i)$ is the same as $2v$.

We will also make extensive use of delta functions, including the Kronecker delta function

$$\delta(i, j, k) = \begin{cases} k & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}, \quad (1)$$

108 The main identity regarding the delta function that we will use is the contraction theorem
 109

110 **Theorem 1** *Delta contraction theorem: the contraction of the delta function with a function*
 111 *f results in a substitution of the argument of f.*

$$112 \quad \Sigma(i \mapsto \delta(i, j, f(i))) = f(j). \quad (2)$$

114 This holds when i, j are integers, real and complex numbers, tensors, as well as continuous
 115 functions.

116 This theorem is well-known and easily checked when i, j are integers, which means that δ is
 117 a Kronecker delta and Σ is a simple sum. The more general cases are less intuitive but is
 118 algebraically derived in the appendix. For the purposes of this paper, it suffices to understand
 119 the integer case and accept that an algebraic generalization is possible.

121 3 BACKGROUND

123 To put our theory in the context of AD, we briefly introduce the theory for reverse mode AD,
 124 which is based on the composition and the chain rule. In a AD system based on tracing, the
 125 chain rule is typically presented in multivariate calculus with Jacobian products. Given a
 126 composite function $g(x) = f_1(f_2(x))$, where $f_1 \in \mathbb{R}^N \rightarrow \mathbb{R}$ and $f_2 \in \mathbb{R}^M \rightarrow \mathbb{R}^N$, the gradient
 127 of g is

$$128 \quad \nabla g(x) = \mathcal{J}g(x)^T = \mathcal{J}f_2(x)^T \cdot \mathcal{J}f_1(f_2(x))^T. \quad (3)$$

129 Computing and multiplying the full Jacobian matrices can be inefficient in practice if the
 130 Jacobian is sparse. For example, if f_2 is an element-wise map, then $\mathcal{J}f_2(x)$ is diagonal.

131 Instead, one can encode the Jacobian through its action on some vector k using pullbacks

$$133 \quad \mathcal{P}f(x, k) = \mathcal{J}f(x)^T \cdot k = i \mapsto \sum_j k_j \partial f(x)_j / \partial x_i, \quad (4)$$

135 where we have used anonymous notation and denoted a vector by describing its i^{th} element.
 136 As a simple example, the pullback of multiplication by a scalar is

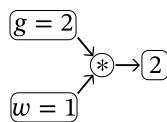
$$137 \quad \mathcal{P}(x \mapsto vx) = (x, k) \mapsto k \frac{\partial(vx)}{\partial x} = kv. \quad (5)$$

139 Using pullbacks, the Jacobian chain rule can be written in terms of its actions

$$141 \quad \mathcal{P}g(x, k) = \mathcal{J}f_2(x)^T \cdot (\mathcal{J}f_1(f_2(x))^T \cdot k) = \mathcal{P}f_2(x, \mathcal{P}f_1(f_2(x), k)), \quad (6)$$

$$142 \quad \nabla g(x) = \mathcal{P}g(x, 1) = \mathcal{P}f_2(x, \mathcal{P}f_1(f_2(x), 1)). \quad (7)$$

143 In reverse mode AD, the forward pass is essentially the evaluation of f_2 at x and the reverse
 144 pass is the evaluation of $\mathcal{P}f_1$ and $\mathcal{P}f_2$ with their respective arguments.



151 Figure 1: The computation graph traced from computing $f(w)(g)$. The graph represents
 152 $w \mapsto 2w$.

153 When differentiating a function that is not a composition such as $w \mapsto f(w)(g)$, the standard
 154 strategy is to convert it to a composition via partial evaluation. One can do this numerically
 155 and record all primitive operations¹. This recording can be represented as a graph where
 156 nodes are calls to primitives and edges are data. For example, running $f(w)(g)$ with $w = 1$,
 157 $g = 2$, and $f = x \mapsto v \mapsto x * v$ yields a single nodes graph shown in fig. 1. In the end, the
 158 path from w to the sink is the composition of functions applied to w . Alternatively, one can
 159 also do symbolic partial evaluation, which means substituting x with w and v with g to find
 160 $w \mapsto wg$.

161 ¹The tracing can be controlled to save only the necessary states.

162 4 THEORY
163164 4.1 DERIVATIVES OF COMBINATORS
165

166 In section 1, we discussed the complications of partial evaluation and we claimed that the
167 use of combinators can help us avoid it. Towards that end, we introduce the combinators
168 and their differentiation rules. The definitions of **B** is

$$169 \quad \mathbf{B} = f \mapsto (g \mapsto (x \mapsto f(g(x)))), \quad x \in X, g \in (X \rightarrow Y), f \in (Y \rightarrow Z), \quad (8)$$

171 Intuitively, **B** takes two functions f and g , composes them, and applies the result to x . f, g, x
172 can be in any space as long as they are consistent, meaning that the x is in the same space
173 as the input to g and the output of g is in the same space as the input of f . This constraints
174 is specified by the generic spaces X, Y, Z . Similarly, **C** is defined as

$$175 \quad \mathbf{C} = f \mapsto (x \mapsto (y \mapsto f(y)(x))), \quad x \in X, y \in Y, f \in (Y \rightarrow (X \rightarrow Z)), \quad (9)$$

177 which takes f as the input and return a function that swaps the first two arguments. For
178 example, $\mathbf{C}(x \mapsto v \mapsto k) = v \mapsto x \mapsto k$. f, x and y can be in any spaces as long as they are
179 consistent.

180 Using these combinators, a function can be decomposed into a small set of primitives through
181 a process called abstraction elimination Sørensen (2006). For example, $w \mapsto f(w)(g)$ can be
182 written as $w \mapsto B(f(w))(I)(g)$. Since we are differentiating with respect to w instead of g ,
183 the chain rule needs to be modified

184 **Theorem 2** *The differentiation rule for the **B** combinator with captures is*

$$186 \quad \mathcal{P}(x \mapsto \mathbf{B}(f)(g)(x)) = (x, k) \mapsto \quad (10)$$

$$187 \quad \mathcal{P}(g)(x, \mathcal{P}(f)(g(x), k)) + \mathcal{P}(x \mapsto f)(x, i \mapsto \delta(g(x), i, k)),$$

189 where the first term is the chain rule and the second term is new. No evaluation is involved
190 in the rule because f, g are not specified. Equivalently, one can model the captures with the **S**
191 combinator, which is defined as

$$192 \quad \mathbf{S} = h \mapsto (g \mapsto (x \mapsto h(x)(g(x)))). \quad (11)$$

194 The **B**-rule with captures can be rephrased as the **S**-rule

$$196 \quad \mathcal{P}(x \mapsto \mathbf{S}(h)(g)(x)) = (x, k) \mapsto \quad (12)$$

$$197 \quad \mathcal{P}(g)(x, \mathcal{P}(h(x))(g(x), k)) + \mathcal{P}(h)(x, i \mapsto \delta(g(x), i, k)).$$

198 Similarly, we have

200 **Theorem 3** *The differentiation rule for **C***

$$202 \quad \mathcal{P}(\mathbf{C}(g)) = (x, k) \mapsto \Sigma(b \mapsto \mathcal{P}(g(b))(x, k(b))), \quad (13)$$

204 which also involves no evaluation because g is not specified.

205 These rules can be derived by plugging the definitions of the combinators into the definition
206 of the pullback (see section 1 in the appendix), and the **B**-rule is known in lambda calculus
207 from Ehrhard and Regnier (2003). Importantly, the application of either rule only rearranges
208 existing symbols without evaluating any of them to specific functions or numbers.

210 4.2 DELAYING EVALUATION
211

212 To explicitly illustrate how the differentiation rules eq. (10) and eq. (13) delay evaluation,
213 let's revisit the differentiation of $w \mapsto f(w)(g)$ using the **B**-rule

$$215 \quad \mathcal{P}(w \mapsto B(f(w))(I)(g))(w, 1) = \underbrace{\mathcal{P}(w \mapsto I(g))(\dots)}_0 + \mathcal{P}(f)(w, i \mapsto \delta(g, i, 1)), \quad (14)$$

which is the analytic solution to our original problem in terms of f , g , w and their pullbacks. Notice how the manipulation is restricted to moving symbols and neither f nor g is evaluated to specific functions. If we separately differentiate $f = x \mapsto v \mapsto xv$ using the **C**-rule, we find

$$\mathcal{P}(C(v \mapsto x \mapsto xv))(y, k) = \Sigma(v \mapsto \mathcal{P}(x \mapsto vx)(y, k(v))) \quad (15)$$

$$= \Sigma(v \mapsto ((x, k) \mapsto vk)(y, k(v))). \quad (16)$$

Similarly, the application of **C** in eq. (15) has only rearranged the symbols without evaluating any function. The last step eq. (16) is simply looking up the pullback of a primitive (multiplication by a constant). Combining eq. (14) and eq. (16) gives us $\Sigma_v v \delta(g, v, 1) = g$, which implements a symbolic evaluation using eq. (2), but only after the differentiation. In the last step, we have invoked a general form of eq. (2), because v and g can be matrices or functions, which makes the algebraic generalization necessary.

4.3 TENSOR OPERATIONS

As a second illustration, we differentiate a basic tensor operation $f \mapsto \Sigma_j f(j)$, which can be written as $f \mapsto \Sigma(j \mapsto \mathbf{B}(f)(I)(j))$ or $\Sigma(j \mapsto \mathbf{S}(I)(v \mapsto j))$ and the **B**-rule reads

$$\mathcal{P}(f \mapsto \Sigma(j \mapsto f(j))(y, 1)) = \Sigma(i \mapsto \mathcal{P}(f \mapsto f)(y, i \mapsto \delta(i, j, 1))) = i \mapsto 1, \quad (17)$$

where we have looked up the pullback of the identity primitive $f \mapsto f$, which is $(f, k) \mapsto k$. The result states that evaluating the pullback of summation is an array of ones, and the compiler should be able to map the final expression to a single call to `memset`. Generally, both the model and gradient expressions are to be compiled to either IO optimized primitives or for loops around mutations. This approach is to be contrasted against symbolically expanding f into $[f_1, f_2, \dots]$ or implementing the expression to low-level primitives `sum += f[i]`, which are symbolic evaluations of f or \sum into lower-level forms. The summation is treated as a primitive for brevity, but its differentiation rule will be derived from the two rules in the appendix. This derivation may be reminiscent of the more familiar variational differentiation Gelfand (2000)

$$\partial \Sigma_j f_j / \partial f_i = \Sigma_j \delta_{ij} = 1. \quad (18)$$

A more sophisticated tensor operation that is practically relevant will be found in section 5.2, but the principles are the same.

4.4 NONLINEARITY (FANOUT)

Nonlinear functions requires fanout, which is handled by the second part of the **B**-rule. For example, the binary product rule can be derived from the unary product rule as (keeping the two operants the same for simplicity).

$$\begin{aligned} & \mathcal{P}(x \mapsto x \cdot x)(x, k) \\ &= \mathcal{P}(x \mapsto (v \mapsto x \cdot v)(x))(x, k) \\ &= \mathcal{P}(x \mapsto x)(x, \mathcal{P}(v \mapsto x \cdot v)(x, k)) + \mathcal{P}(x \mapsto (v \mapsto x \cdot v))(x, i \mapsto \delta(i, x, k)) \\ &= \mathcal{P}(v \mapsto x \cdot v)(x, k) + \sum_v \mathcal{P}(x \mapsto x \cdot v)(x, \delta(v, x, k)) \\ &= xk + \sum_v v \delta(v, x, k) = 2xk. \end{aligned} \quad (19)$$

This approach is to be contrasted in hardcoding the product rule.

4.5 ORDERED ITERATIONS

In the fanout example, we have modeled a binary product as a unary product that captures x applied to x . This can be inductively generalized to an ordered sequence of functions with captures.

$$\bigwedge f = f(N) \circ f(N-1) \circ \dots \circ f(1), \quad (20)$$

270 where the size parameter N is assumed to be encoded in the domain of f . For convenience,
 271 we will use $\bigwedge_i f(i)$ interchangeably with $\bigwedge f$. Alternatively, following the **S** combinator, we
 272 can define

$$273 \quad \Gamma h = x \mapsto h(x)(N) \circ h(x)(N-1) \circ \dots \circ h(x)(1). \quad (21)$$

274 For example, a monomial $x \mapsto x^N$ can be defined as

$$275 \quad 276 \quad x \mapsto \left(\bigwedge (i \mapsto v \mapsto x \cdot v) \right) (1). \quad (22)$$

277 The differentiation rule for \bigwedge is inductively derived from the two basic rules in the appendix,
 278 where we also show that the rule for \bigwedge can be viewed as an abstraction over the typical
 279 prescription of differentiation by source transform as shown on page 125-127 in Griewank
 280 and Walther (2008). This rule in itself is not able to differentiate a model with respect to its
 281 parameters such as the MLP, but the benefit of an abstract rule is that it trivially extends
 282 to parametric models by composing with the other two rules as demonstrated in section 5.1.
 283 The rule for \bigwedge does not cover fixed point iterations, which will be discussed separately in the
 284 appendix. Unordered iteration can be differentiated this way, but they should be handled as
 285 tensor operations to avoid imposing unnecessary order.

286 4.6 MUTATIONS

288 It is possible to differentiate through mutations under our framework, but we choose to avoid
 289 supporting it in favor of directly writing and differentiating tensor operations. The tensor
 290 operations are to be mapped to IO optimized primitives or for loops around mutations by
 291 the compiler. Nevertheless, we will illustrate how to differentiate mutations for illustration.
 292 First, we bring mutations into a functional form that is confluent to the original statement.
 293 For example, $x[i] += 1$ is confluent to $x = (j \mapsto x(j) + \delta(i, j, 1))$, which maps x to an
 294 updated new vector. The functional form can be differentiated first by applying the C rule

$$295 \quad \mathcal{P}(x \mapsto j \mapsto x(j) + \delta(i, j, 1))(x, k) = \sum_j \mathcal{P}(x \mapsto x(j) + \delta(i, j, 1))(x, k(j))$$

297 Then we apply the B rule to get

$$298 \quad 299 \quad \sum_j i \mapsto \delta(i, j, k(j)) = i \mapsto k(i) = k.$$

300 Therefore, we have concluded that incrementing an array element by a constant merely adds
 301 an identity map in the backward phase, which can be optimized away by the compiler. Other
 302 types of mutations can be derived analogously.

304 5 EXAMPLES

306 Once partial evaluation is circumvented, the line separating AD and symbolic differentiation
 307 starts to blur. This is because the two methods differ largely in the compromises they
 308 make to accommodate partial evaluation. AD is efficient but blackbox, whereas symbolic
 309 differentiation is transparent but suffers expression swell.

310 With the two combinators at hand, one no longer needs to accept such a nuanced trade-off due
 311 to the use of partial evaluation and can simultaneously enjoy both efficiency and transparency.
 312 Concretely, this means we can differentiate code and obtain an gradient expression resembling
 313 the handwritten gradient for problems that typically require building computation graphs or
 314 differentiating low-level code. For demonstration, we now showcase differentiating a MLP
 315 and the HF energy, which are classic examples where numerical or symbolic partial evaluation
 316 is used for differentiation.

317 Our proof-of-concept system is implemented as a domain specific functional programming
 318 language within Julia, the source code of which will be provided along with all examples. The
 319 language supports most necessary ingredients of functional programming such as closures,
 320 conditionals, and let statements. The main missing piece is recursion, which has not been
 321 the appropriate iteration facility for scientific applications. Instead, unordered iteration is
 322 supported via tensor expressions, which can be mapped to optimized tensor engines. Future
 323 support for ordered iteration and fixed point iteration will be discussed in section 2 of the
 appendix.

324 5.1 MLP
 325

326 The most representative problem of backpropagation is the MLP. We show that we can
 327 generate a unevaluated and readable gradient. As shown in listing 1, we have an MLP whose
 328 weights are w_1 , w_2 , and w_3 , which are of type RM (real matrices) and RV (real vectors).
 329 The first layer is $(x::RV) \rightarrow \text{mvp}(w_1, x)$, which is a function that multiplies its input
 330 by w_1 . The output of this layer is piped ($|>$) to the second layer, which is element-wise
 331 nonlinear activation. Notice that ReLU is defined in the outer scope as an unknown of type
 332 RF (functions from real to real). After defining the model, we apply it to the sample batch.
 333 Lastly, we surround the function that we like to differentiate with the keyword pullback.

334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346

Listing 1: Multilayer perceptron

```
mvp = (A::RM, x::RV) -> (i::N) -> sum(j, A(i, j) * x(j))
vip = (x::RV, y::RV) -> sum(i, x(i) * y(i))
(batch::RV, Relu::RF) ->
  pullback((w_1::RM, w_2::RM, w::RV) ->      # define weights
            (((x::RV) -> mvp(w_1, x)) |>          # linear layer 1
             ((x::RV) -> (i::N) -> Relu(x(i)))) |> # nonlinear activation 1
            (((x::RV) -> mvp(w_2, x)) |>          # linear layer 2
             ((x::RV) -> (i::N) -> Relu(x(i)))) |> # nonlinear activation 2
            (((x::RV) -> vip(x, w)))(               # prediction
             batch))                                     # apply to sample
  ))
```

347 Differentiating this code yields the gradient shown in listing 2, which describes backpropagation
 348 for this specific MLP as concisely as one would hope for. Notice that the definition of
 349 mvp and vip do not appear in the gradient because these functions have never been evaluated
 350 numerically or symbolically. The pullback of ReLU appears in the backward pass even though
 351 the program is oblivious of what it is.

352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370

Listing 2: MLP gradient

```
let
  mvp = (A, x) -> (i) -> sum((j), x(j)*A(i, j))
  vip = (x, y) -> sum((i), x(i)*y(i))
  (batch, Relu) -> (w_1, w_2, w_3) -> let
    _y = mvp(w_1, batch)                                # |
    _y_1 = (i) -> Relu(_y(i))                         # |
    _y_2 = mvp(w_2, _y_1)                               # |
    _y_3 = (i) -> Relu(_y_2(i))                      # | forward
    _y_4 = vip(_y_3, w_3)                             # v pass
    _l = P((z) -> vip(z, w_3))(_y_3, 1)            # |
    _l_1 = (a) -> P(Relu)(_y_2(a), _l(a))           # |
    _l_2 = P((z_1) -> mvp(w_2, z_1))(_y_1, _l_1)    # | backward
    _l_3 = (a) -> P(Relu)(_y(a), _l_2(a))           # v pass
    tuple(P((z) -> mvp(z, batch))(w_1, _l_3),      # |
          P((z) -> mvp(z, _y_1))(w_2, _l_1),        # |
          P((z_2) -> vip(z_2, _y_3))(w_3, 1))        # | gradient
  end
end
```

371 One may notice that our expression is suboptimal in memory usage compared to an optimized
 372 AD library, which accumulates the gradient instead of allocating memory for every sample.
 373 This is an example of how subtle performance questions in reverse mode differentiation
 374 become obvious once a compact gradient expression is available. Moreover, instead of
 375 building the accumulation into the differentiation library, we can leave it to the simplification
 376 stage, which can decide whether to accumulate based on the context. In principle, other
 377 performance optimization such as pipelining and recomputation Huang et al. (2018); Feng
 378 and Huang (2018) can also potentially be left to the simplification stage instead of extending
 379 an AD library itself.

378 5.2 HARTREE FOCK
379

380 As an example scientific application, we showcase taking the derivative of HF energy, which
381 is representative of a rather different class of problems common in electronic structure
382 theories Lin and Lu (2019); Martin (2004): tensor contractions. To differentiate tensor
383 contractions, one can either trace out the low-level primitives, which leads to very large
384 graphs. One can also decompose it as a sequence of matrix operations in many different
385 ways, but finding the way that minimizes memory and compute is hard. Most importantly,
386 there are often duplicated terms that arise during differentiation due to symmetries, which
387 must be leveraged to be comparable with hand-written gradients that are then implemented
388 directly. Some physics terminology will be used in this example for an accurate presentation,
389 but no physics background is needed to understand the message.

390 We consider the Coulomb energy term in the HF energy, which is a contraction between a
391 fourth order complex tensor $J \in \mathbb{C}^{N \times N \times N \times N}$ and a complex matrix $C \in \mathbb{C}^{N \times N_e}$

$$392 J \mapsto C \mapsto \sum_{i,j,p,q,r,s} C_{p,i}^* C_{r,j}^* J_{p,q,r,s} C_{s,j} C_{q,i}. \quad (23)$$

393 One expects four terms in the derivative because the function is quartic, but all four terms
394 are the same due to tensor symmetries. Thus, the gradient should be a single term, which
395 also happens to be an intermediate of the Coulomb energy itself, so the gradient evaluation
396 barely incurs an extra cost.

397 There are two symmetries of J that enable the simplification: $J_{pqrs} = J_{qpsr}^*$ and $J_{pqrs} = J_{rspq}$,
398 each of which is specified as a transform on J as an invariant. For examples, consider the
399 transform $f = J \mapsto (a, b, i, j) \mapsto J(i, j, a, b)$, it is easy to verify that $f(J) = J$ implies
400 $J_{pqrs} = J_{rspq}$. The code for the symmetries and the Coulomb energy is shown in listing 3,
401 where CM denotes complex matrices and $(N, N, N, N) \rightarrow R$ states that J is a map from four
402 natural numbers to a complex number (i.e. fourth order complex tensor)

404 Listing 3: Hartree Fock

```
405 @space ERI begin
406     type = (N, N, N, N) -> C
407     symmetries = (J -> (j, i, b, a) -> J(i, j, a, b)', 
408                   J -> (a, b, i, j) -> J(i, j, a, b))
409 end
410
411 (J::ERI) -> pullback((C::CM) ->
412     sum((i, j, p, q, r, s), C(p, i)' * C(q, i) * C(r, j)' * C(s, j) *
413     J(p, q, r, s)))
```

414 Without considering symmetries, the generated gradient consists of four distinct terms shown
415 in listing 4. If we leverage symmetries, the compiler can detect that the four terms are in fact
416 the same and combine them into one. This example is also an independent illustration of
417 how combinators bypass partial evaluation, since no symbol has been evaluated symbolically
418 or numerically.

419 Listing 4: HF gradient

```
420 # Without symmetry
421 (J) -> (C) -> (_a, _a_1) -> (
422     sum((i, p, q, r), J(p, q, r, _a) * C(p, i) * C(r, _a_1) * C(q, i)') +
423     sum((j, p, r, s), J(p, _a, r, s) * C(p, _a_1) * C(r, j) * C(s, j)') +
424     sum((j, q, r, s), J(_a, q, r, s) * C(s, j) * C(q, _a_1) * C(r, j)') +
425     sum((i, p, q, s), J(p, q, _a, s) * C(s, _a_1) * C(q, i) * C(p, i)'))
426 # With symmetry
427 (J) -> (C) -> (_a, _a_1) -> sum((i, p, q, r),
428     J(q, p, _a, r) * C(p, i) * C(r, _a_1) * C(q, i)') * 4.0
```

429 5.3 CONJUGATE GRADIENT
430

431 Lastly, we show an example where the gradient expression can be used for algorithmic
432 insight with a conceptually simple and novel derivation of the conjugate gradient (CG)

432 algorithm Hestenes and Stiefel (1952); Trefethen (2022). The idea is to minimize $R =$
 433 $x \mapsto \frac{1}{2}x^T Ax - b^T x$, whose stationary condition yields $Ax = b$. We consider a general
 434 momentum-like optimization step parametrized by the step sizes $x + \alpha(r + \beta p)$, where
 435 $x \in \mathbb{R}^N$ is the current iterate, $p \in \mathbb{R}^N$ is the previous step direction and $r \in \mathbb{R}^N$ is the
 436 current gradient. The residual as a function of the parameters after taking the gradient step
 437 is $(\alpha, \beta) \mapsto R(x + \alpha(r + \beta p))$, which we minimize with respect to α and β .

438 In listing 5, we first differentiate the residual without substituting the objective function R
 439 to obtain an abstract theory that is generally applicable. Then we show that replacing R
 440 with the quadratic form gives the CG coefficients.
 441

442 **Listing 5: Conjugate gradient**
 443 $(A::\text{Sym}, r::\text{RV}, p::\text{RV}, b::\text{RV}, x::\text{RV}) \rightarrow \text{begin}$
 444 $R = (x::\text{RV}) \rightarrow$
 445 $\text{sum}((i, j), 0.5 * x(i) * A(i, j) * x(j)) - \text{sum}(i, x(i) * b(i))$
 446 $\text{pullback}((\text{alpha}::R, \text{beta}::R) \rightarrow$
 447 $R((i::N) \rightarrow x(i) + \text{alpha} * (r(i) + \text{beta} * p(i))))$
 448 end

449 The result of line 9 of listing 5 is shown in eq. (24), which gives a vector of two components.
 450 This shows that we can differentiate through unknown functions as a consequence of avoiding
 451 the partial evaluation.

452 $(A, r, p, b, x) \mapsto \text{let}$
 453 $R = x \mapsto (-1.0 \cdot x^T \cdot b + 0.5 \cdot x^T \cdot A \cdot x)$
 454 $(\alpha, \beta) \mapsto (\nabla(R)((\alpha \cdot (\beta \cdot p + r) + x))^T \cdot (\beta \cdot p + r),$
 455 $\nabla(R)((\alpha \cdot (\beta \cdot p + r) + x))^T \cdot p \cdot \alpha)$
 456 end
 457

458 If we write $p_k = r + \beta p$, $\nabla R(\alpha p_k + x)^T \cdot p_k = 0$ has the interpretation that the gradient
 459 at the next iterate should be orthogonal to the current step direction. Combined with
 460 $\nabla R(\alpha p_k + x)^T \cdot p \cdot \alpha = 0$, we have a nonlinear system of two equations for α and β , the
 461 coefficients and thus the solutions of which depends on R .

462 Once we substitute the quadratic form for R in line 11 of listing 5, the gradient reduces to
 463

464 $(A, r, p, b, x) \mapsto (\alpha, \beta) \mapsto$
 465 $((((\beta \cdot p + r)^T \cdot A \cdot (\alpha \cdot (\beta \cdot p + r) + x) - 1.0 \cdot (\beta \cdot p + r)^T \cdot b),$
 466 $\alpha \cdot (p^T \cdot A \cdot (\alpha \cdot (\beta \cdot p + r) + x) - 1.0 \cdot b^T \cdot p)).$
 467

468 Using the fact that the gradient $r = Ax - b$ is orthogonal to the previous step direction p ,
 469 the two nonlinear equations can be solved by hand to get
 470

$$471 \alpha = \frac{p_k^T \cdot (b - Ax)}{p_k^T A p_k} = -\frac{(r + \beta p)^T r}{p_k^T A p_k} = -\frac{r^T \cdot r}{p_k^T A p_k}, \quad (26)$$

$$472 \beta = \frac{(b^T - x^T \cdot A) \cdot p - \alpha r^T \cdot A \cdot p}{\alpha p^T A p} = \frac{r^T A p}{p^T A p}, \quad (27)$$

473 which can be recognized as the parameters that produce the conjugate gradient method.
 474

475 6 LIMITATIONS

476 6.1 THEORETICAL LIMITATIONS

477 The main limitation of our theory is that it requires stable dimensions, which means that
 478 the tensor dimensions cannot depend on the values in the tensor. For example, `filter` is
 479 not dimensionally stable because the length of the output depends not only on the length
 480 but also the values of its input. On the other hand, `map` is dimensionally stable because the
 481 length of the output is determined only by the length of its input.

486 The second theoretical limitation is not supporting mutations, although a substantial number
 487 of scientific applications are implemented as updating big tensors in a loop. In principle,
 488 mutations can be supported as shown in section 4.6, but allowing mutations encourages
 489 the users to use low level primitives to implement tensor operations, which make symbolic
 490 simplification impossible. Instead, we let the compiler implement the specified tensor
 491 operations as it sees fit either by offloading to IO optimized primitives or low-level mutating
 492 primitives.

494 6.2 PRACTICAL LIMITATIONS

495 Aside from general software quality problems, we do not have a reliable implementation
 496 of fixed point iteration or the general sequential iteration, which we claim is possible in
 497 theory. These constructs are necessary for ODE constrained optimization problems and
 498 sensitivity analysis Fiacco and McCormick (1990); Gould et al. (2016), so the applicability
 499 of our approach to these problems still needs to be demonstrated in practice.

500 Tracing not only evaluates the values, but also the types of tensors, which is necessary
 501 information for differentiation. Since our differentiation happens entirely at compile time,
 502 we basically require a static type system. This does not integrate well with the dynamic
 503 type system in Python or Julia, and a separate or restricted type system is necessary.

505 7 CONCLUSION

506 Motivated by combinatory logic and scientific applications, we showed that introducing a
 507 second differentiation rule in addition to the chain rule allows us to avoid partial evaluation
 508 in either numerical or symbolic form for tensor operations and parametrized models. The
 509 result of the differentiation can be simplified and interpreted. Using a proof of concept
 510 functional programming language, we demonstrated that the theory can be implemented
 511 concretely and one can obtain readable expressions for gradients, even if the problem is not
 512 a composition and only partially known. We have also pointed out cases where our method
 513 does not work and issues that still need to be resolved in our implementation. Nevertheless,
 514 there appears to be a path to overcome partial evaluation and accelerate scientific endeavors.

517 REFERENCES

518 Michael Abbott, Dilum Aluthge, N3N5, Vedant Puri, Chris Elrod, Simeon Schaub, Carlo
 519 Lucibello, Jishnu Bhattacharya, Johnny Chen, Kristoffer Carlsson, and Maximilian Gel-
 520 brecht. `mcabbott/tullio.jl`: v0.3.7, October 2023. URL <https://github.com/mcabbot/tullio.jl/blob/f7d4cbab5a8e3cf259deb06aab4c64934606c0a/README.md>.

521 Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
 522 Siskind. Automatic differentiation in machine learning: a survey. Feb 2015. URL <http://arxiv.org/abs/1502.05767v4>. Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey
 523 Andreyevich Radul, Jeffrey Mark Siskind. Automatic differentiation in machine learning:
 524 a survey. The Journal of Machine Learning Research, 18(153):1–43, 2018.

525 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
 526 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
 527 Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018a. URL
 528 <http://github.com/google/jax>.

529 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
 530 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
 531 Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018b. URL
 532 https://github.com/google/jax/blob/be1e40dc2e1777d83b870afa31e178123f2a1366/docs/notebooks/Common_Gotchas_in_JAX.md.

533 Haskell Brooks Curry, Robert Feys, William Craig, J Roger Hindley, and Jonathan P Seldin.
 534 *Combinatory logic*, volume 1. North-Holland Amsterdam, 1958.

- 540 cuTENSOR. cutensor: A high-performance cuda library for tensor primitives. URL <https://docs.nvidia.com/cuda/cutensor/latest/index.html>.
 541
 542
- 543 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. *Theoretical
 544 Computer Science*, 309:1–41, 12 2003. doi: 10.1016/s0304-3975(03)00392-x. URL [https://doi.org/10.1016/s0304-3975\(03\)00392-x](https://doi.org/10.1016/s0304-3975(03)00392-x).
 545
 546
- 547 Conal Elliott. The simple essence of automatic differentiation. *Proceedings of the ACM on
 548 Programming Languages*, 2:1–29, 7 2018. doi: 10.1145/3236765. URL <http://dx.doi.org/10.1145/3236765>.
 549
 550
- 551 Martin Elsman, Fritz Henglein, Robin Kaarsgaard, Mikkel Kragh Mathiesen, and Robert
 552 Schenck. Combinatory adjoints and differentiation. *EPTCS* 360, 2022, pp. 1–26, 7 2022.
 553 doi: 10.4204/EPTCS.360.1. URL <http://arxiv.org/abs/2207.00847v1>.
 554
 555 Jianwei Feng and Dong Huang. Optimal gradient checkpoint search for arbitrary computation
 556 graphs. Jul 2018. URL <http://arxiv.org/abs/1808.00079v6>.
 557
 558 Anthony V Fiacco and Garth P McCormick. *Nonlinear programming: sequential uncon-
 strained minimization techniques*. SIAM, 1990.
 559
 560 Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. The itensor software library
 561 for tensor network calculations. Jul 2020. doi: 10.21468/SciPostPhysCodeb.4. URL
 562 <http://arxiv.org/abs/2007.14822v2>. SciPost Phys. Codebases 4 (2022).
 563
 564 Jeroen Fokker. Functional parsers. In *Advanced Functional Programming: First International
 565 Spring School on Advanced Functional Programming Techniques Båstad, Sweden, May
 24–30, 1995 Tutorial Text 1*, pages 1–23. Springer, 1995.
 566
 567 J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and
 568 Alan Schmitt. Combinators for bidirectional tree transformations. *ACM Transactions on
 569 Programming Languages and Systems*, 29:17, 5 2007. doi: 10.1145/1232420.1232424. URL
 570 <http://dx.doi.org/10.1145/1232420.1232424>.
 571
 572 I. M. Gelfand. *Calculus of variations*. Dover Publications, 2000. ISBN 9780486414485.
 573
 574 Evangelos Georganas, Dhiraj Kalamkar, Sasikanth Avancha, Menachem Adelman, Deepti
 575 Aggarwal, Cristina Anderson, Alexander Breuer, Jeremy Bruestle, Narendra Chaudhary,
 576 Abhisek Kundu, Denise Kutnick, Frank Laub, Vasimuddin Md, Sanchit Misra, Rama-
 577 narayan Mohanty, Hans Pabst, Brian Retford, Barukh Ziv, and Alexander Heinecke.
 578 Tensor processing primitives: A programming abstraction for efficiency and portability
 579 in deep learning & hpc workloads. Apr 2021. doi: 10.1145/3458817.3476206. URL
<http://arxiv.org/abs/2104.05755v4>.
 580
 581 Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz,
 582 and Edison Guo. On differentiating parameterized argmin and argmax problems with
 583 application to bi-level optimization. *ArXiv*, abs/1607.05447, 2016. URL <https://api.semanticscholar.org/CorpusID:7186854>.
 584
 585 Andreas Griewank and Andrea Walther. *Evaluating Derivatives*. Society for Industrial and
 586 Applied Mathematics, 1 2008. ISBN [‘9780898716597’, ‘9780898717761’]. doi: 10.1137/1.
 587 9780898717761. URL <http://dx.doi.org/10.1137/1.9780898717761>.
 588
 589 Laurent Hascoet and Valérie Pascual. The tapenade automatic differentiation tool. *ACM
 590 Transactions on Mathematical Software*, 39:1–43, 4 2013. doi: 10.1145/2450153.2450158.
 591 URL <https://doi.org/10.1145/2450153.2450158>.
 592
 593 M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
 594 *Journal of Research of the National Bureau of Standards*, 49:409, 12 1952. doi: 10.6028/jres.049.044. URL <http://dx.doi.org/10.6028/jres.049.044>.

- 594 So Hirata. Tensor contraction engine: abstraction and automated parallel implementation
 595 of configuration-interaction, coupled-cluster, and many-body perturbation theories. *The*
 596 *Journal of Physical Chemistry A*, 107:9887–9897, 11 2003. doi: 10.1021/jp034596z. URL
 597 <http://dx.doi.org/10.1021/jp034596z>.
- 598
- 599 Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen,
 600 HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe:
 601 Efficient training of giant neural networks using pipeline parallelism. Nov 2018. URL
 602 <http://arxiv.org/abs/1811.06965v5>.
- 603
- 604 Michael Innes. Don’t unroll adjoint: Differentiating ssa-form programs. Oct 2018. URL
 605 <http://arxiv.org/abs/1810.07951v4>.
- 606
- 607 Yves Lafont. Interaction combinators. *Information and Computation*, 137:69–101, 8 1997.
 608 doi: 10.1006/inco.1997.2643. URL <http://dx.doi.org/10.1006/inco.1997.2643>.
- 609
- 610 Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for the real
 611 world. 2001.
- 612
- 613 Lin Lin and Jianfeng Lu. *Mathematical Introduction to Electronic Structure Theory - Iterative
 614 Solution of Symmetric Quasi-Definite Linear Systems*. Society for Industrial and Applied
 615 Mathematics, 2019. ISBN 9781611975796.
- 616
- 617 Min Lin. Automatic functional differentiation in jax. Nov 2023. URL <http://arxiv.org/abs/2311.18727v2>.
- 618
- 619 Jutho Haegeman Lukas Devos, Maarten Van Damme and contributors. Tensor-
 620 operations.jl: Fast tensor operations using a convenient einstein index notation,
 621 10 2023. URL <https://github.com/Jutho/TensorOperations.jl/blob/f047345fa3b76f81db3394b14bb0beac108dab22/docs/src/man/autodiff.md>.
- 622
- 623 Richard M Martin. *Electronic Structure: Basic Theory And Practical Methods*. Cambridge
 624 Univ Press, 2004. ISBN 9780521782852.
- 625
- 626 Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B Kirpichev,
 627 Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al.
 628 Sympy: symbolic computing in python. *PeerJ Computer Science*, 3:e103, 2017.
- 629
- 630 William Moses and Valentin Churavy. Instead of rewriting foreign code for machine learning,
 631 automatically synthesize fast gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
 632 Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33,
 633 pages 12472–12485. Curran Associates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf>.
- 634
- 635 William S. Moses, Valentin Churavy, Ludger Paehler, Jan Hückelheim, Sri Hari Krishna
 636 Narayanan, Michel Schanen, and Johannes Doerfert. Reverse-mode automatic differen-
 637 tiation and optimization of gpu kernels via enzyme. In *Proceedings of the International
 638 Conference for High Performance Computing, Networking, Storage and Analysis*, SC ’21,
 639 New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384421.
 doi: 10.1145/3458817.3476165. URL <https://doi.org/10.1145/3458817.3476165>.
- 640
- 641 William S. Moses, Sri Hari Krishna Narayanan, Ludger Paehler, Valentin Churavy, Michel
 642 Schanen, Jan Hückelheim, Johannes Doerfert, and Paul Hovland. Scalable automatic dif-
 643 ferentiation of multiple parallel paradigms through compiler augmentation. In *Proceedings
 644 of the International Conference on High Performance Computing, Networking, Storage
 and Analysis*, SC ’22. IEEE Press, 2022. ISBN 9784665454445.
- 645
- 646 Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
 647 DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
 differentiation in pytorch. 2017.

- 648 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
 649 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
 650 Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
 651 Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
 652 style, high-performance deep learning library. 12 2019. URL <http://arxiv.org/abs/1912.01703v1>.
- 653
- 654 Barak A. Pearlmutter and Jeffrey Mark Siskind. Reverse-mode ad in a functional framework.
 655 *ACM Transactions on Programming Languages and Systems*, 30:1–36, 3 2008. doi: 10.
 656 1145/1330017.1330018. URL <https://doi.org/10.1145/1330017.1330018>.
- 657
- 658 M. Schönfinkel. Über die bausteine der mathematischen logik. *Mathematische Annalen*, 92:
 659 305–316, 9 1924. doi: 10.1007/bf01448013. URL <http://dx.doi.org/10.1007/bf01448013>.
- 660
- 661 J. C. Slater. A simplification of the hartree-fock method. *Physical Review*, 81:385–390, 2
 662 1951. doi: 10.1103/physrev.81.385. URL <http://dx.doi.org/10.1103/physrev.81.385>.
- 663 Morten Heine Sørensen. *Lectures on the Curry-Howard isomorphism*. Elsevier, 2006. ISBN
 664 9780444520777.
- 665
- 666 Jos Thijssen. *Computational Physics*. Cambridge University Press, 2012. ISBN
 667 9781139171397.
- 668 Lloyd N. Trefethen. *Numerical Linear Algebra*. Society for Industrial and Applied Mathe-
 669 matics, 2022. ISBN 9781611977158.
- 670
- 671 Dimitrios Vytiniotis, Dan Belov, Richard Wei, Gordon Plotkin, and Martin Abadi. The
 672 differentiable curry. In *Program Transformations for ML Workshop at NeurIPS 2019*,
 673 2019. URL <https://openreview.net/forum?id=ryxuz9SzDB>.
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 OVERVIEW
703704 In section 8, we show the derivation of the **B**-rule and the **C**-rule. In section 9, we extend
705 our formalism to sequential iterations and fixed points. Lastly, in section 11, we explain our
706 treatment of complex numbers.
707708 8 DERIVATIVES OF COMBINATORS
709710 8.1 DIFFERENTIATING **C**
711712 Given a function $f : \mathbb{R}^M \mapsto \mathbb{R}^N$, recall that our definition of pullback is
713

714
$$\mathcal{P}(f) = (x, k) \mapsto \left(i \mapsto \Sigma \left(b \mapsto k(b) \frac{\partial f(x)(b)}{\partial x(i)} \right) \right). \quad (28)$$

715

716 Moving the map over i into the contraction, we find
717

718
$$\mathcal{P}(f)(x, k) = \Sigma \left(b \mapsto \left(i \mapsto k(b) \frac{\partial f(x)(b)}{\partial x(i)} \right) \right) \quad (29)$$

719

720
$$= \Sigma \left(b \mapsto \mathcal{P}(x \mapsto f(x)(b))(x, k(b)) \right) \quad (30)$$

721

722
$$= \Sigma \left(b \mapsto \mathcal{P}(\mathbf{C}(f)(b))(x, k(b)) \right), \quad (31)$$

723

724
$$\mathcal{P}(\mathbf{C}(g))(x, k) = \Sigma \left(b \mapsto \mathcal{P}(g(b))(x, k(b)) \right). \quad (32)$$

725

726 One may observe that the **C**-rule merely rewrites partial derivatives in terms of pullbacks and
727 the index i is eliminated. This rule does not perform any evaluation although the notation
728 $g(b)$ makes it seem so. For example, the pullback of a map that double a vector element-wise
729 can be derived without evaluation
730

731
$$\mathcal{P}(v \mapsto (i \mapsto 2v(i)))(v, k) = \mathcal{P}(\mathbf{C}(i \mapsto v \mapsto 2v(i)))(v, k) \quad (33)$$

732

733
$$= \Sigma(i \mapsto \mathcal{P}(v \mapsto 2v(i))(v, k(i))). \quad (34)$$

734

735 8.2 DIFFERENTIATING **B**
736737 The last result in eq. (34) motivates us to find $\mathcal{P}(v \mapsto v(i))$. Following the definition of
738 pullbacks in eq. (28), we have
739

740
$$\mathcal{P}(v \mapsto v(i)) = j \mapsto k(j) \frac{\partial v(i)}{\partial v(j)} = j \mapsto \delta(i, j, k(j)). \quad (35)$$

741

742 The result is a unit vector $\hat{e}_i k(i)$ if i, j are integers. If i, j are real numbers, the result is
743 a ‘ket’ $k(i) |i\rangle$ as used in quantum mechanics. There does not appear to be a common
744 nomenclature for the case where i, j are paths. To obtain our **B**-rule, the derivation in
745 eq. (35) can be generalized to $w \mapsto f(g)$, where f is dependent on w
746

747
$$\mathcal{P}(w \mapsto f(g)) = j \mapsto k(b) \frac{\partial f(g)}{\partial w(j)} \quad (36)$$

748

749
$$= j \mapsto \Sigma \left(b \mapsto \frac{\partial f(b)}{\partial w(j)} \delta(b, g, k(b)) \right) \quad (37)$$

750

751
$$= j \mapsto \Sigma \left(b \mapsto \frac{\partial f(b)}{\partial w(j)} (i \mapsto \delta(i, g, k(i))(b)) \right) \quad (38)$$

752

753
$$= \mathcal{P}(w \mapsto f)(w, i \mapsto \delta(i, g, k(i))), \quad (39)$$

754

755 which is half of our **B** rule. The other half is the chain rule, which we will not prove because
756 it is well-established.
757758 What is less obvious is why the two parts can be simply added, so we will prove that now.
759 Consider $\mathcal{P}(x \mapsto f(g(x)))$, where f is dependent on x , we can write this as a different
760 composition
761

762
$$\mathcal{P}(x \mapsto ((p, q) \mapsto p(q))((x \mapsto (f, g(x)))(x))). \quad (40)$$

763

756 $x \mapsto (f, g(x))$ is a function that returns a tuple. Its pullback can be derived from the eq. (28)
 757 as

$$\mathcal{P}(x \mapsto (f, g(x)))(x, k_1, k_2) = \mathcal{P}(x \mapsto f)(x, k_1) + \mathcal{P}(g)(x, k_2), \quad (41)$$

759 where the addition already arises in a similar fashion to partial derivatives. Likewise,
 760 $(p, q) \mapsto p(q)$ takes a tuple and applies the first object to the second. Its pullback is
 761

$$\mathcal{P}((p, q) \mapsto p(q))(p, q, k) = (\mathcal{P}(p \mapsto p(q))(p, k), \mathcal{P}(q \mapsto p(q))(q, k)) \quad (42)$$

$$= (j \mapsto \delta(q, j, k(j)), \mathcal{P}(p)(q, k)). \quad (43)$$

764 Applying the chain rule to eq. (40) gives us the complete rule
 765

$$\mathcal{P}(x \mapsto \mathbf{B}(f)(g)(x))(x, k) = \mathcal{P}(x \mapsto (f, g(x)))(x, \mathcal{P}((p, q) \mapsto p(q))(f, g(x), k)) \quad (44)$$

$$= \mathcal{P}(x \mapsto (f, g(x)))(x, (j \mapsto \delta(g(x), j, k(j)), \mathcal{P}(f)(g(x), k))) \quad (45)$$

$$= \mathcal{P}(x \mapsto f)(x, j \mapsto \delta(g(x), j, k(j))) + \mathcal{P}(g)(x, \mathcal{P}(f)(g(x), k))). \quad (46)$$

771 9 SEQUENTIAL ITERATION AND FIXED POINTS

773 9.1 SEQUENTIAL ITERATION

775 To support general sequential iterations such as a `for` loop, we need a generalization of \mathbf{B} ,
 776 which we denote as \bigwedge and defined as composing a sequence of functions

$$\bigwedge f = f(N) \circ f(N-1) \circ \dots \circ f(1), \quad (47)$$

779 where f is assumed to map an integer to a function. The integer N is encoded in the domain
 780 of f when f is defined. A concrete example is summation, which can be implemented as
 781

$$v \mapsto \bigwedge (i \in [1, N] \mapsto (x \mapsto x + v(i)))(0). \quad (48)$$

783 For notational brevity, we use $\bigwedge f$ and $\bigwedge (i \mapsto f(i))$ interchangeably.
 784

785 Differentiating \bigwedge means differentiating $\bigwedge f$ with respect to f , which is not differentiating
 786 $(\bigwedge f)(x)$ with respect to x . Denoting the intermediates as

$$y(i) = \left(\bigwedge_{t=1}^i f(t) \right) (y0), \quad l(i) = \left(\bigwedge_m^i k \mapsto \mathcal{P}(f(N-m+1))(y(N-m), k) \right) (k(y0)), \quad (49)$$

790 the result is
 791

$$\mathcal{P}(\bigwedge) = j \mapsto \lambda \mapsto \Sigma_{y0} \delta(\lambda, y(j-1), l(N-j)). \quad (50)$$

793 The proof is simply applying the **C**-rule before inducting on the fanout part of the **B**-rule
 794

$$\mathcal{P} \left(f \mapsto y0 \mapsto \left(\bigwedge_i^N f(i) \right) (y0) \right) (f, k) \quad (51)$$

$$= \Sigma_{y0} \mathcal{P}(f \mapsto y(N))(f, k(y0)) \quad \text{apply C-rule} \quad (52)$$

$$= \Sigma_{y0} \mathcal{P}(f \mapsto f(N)(y(N-1)))(f, k(y0)) \quad (53)$$

$$= \Sigma_{y0} \mathcal{P}(f \mapsto y(N-1))(f, \mathcal{P}(f(N)))(y(N-1), k(y0)) \quad (54)$$

$$+ \mathcal{P}(f \mapsto f(N))(f, \lambda \mapsto \delta(\lambda, y(N-1), k(y0))) \quad \text{apply B-rule} \quad (55)$$

$$= \Sigma_{y0} \mathcal{P}(f \mapsto f(N-2))(f, \mathcal{P}(f(N-1)))(y(N-2), \mathcal{P}(f(N))(y(N-1), k(y0))) \quad (56)$$

$$+ \mathcal{P}(f \mapsto f(N-1))(f, \lambda \mapsto \delta(\lambda, y(N-2), \mathcal{P}(f(N))(y(N-1), k(y0)))) \quad (57)$$

$$+ \mathcal{P}(f \mapsto f(N))(f, \lambda \mapsto \delta(\lambda, y(N-1), k(y0))) \quad (58)$$

$$= \Sigma_{y0} \Sigma_i \mathcal{P}(f \mapsto f(N-i))(f, \lambda \mapsto \delta(\lambda, y(N-i-1), l(i))) \quad (59)$$

$$= \Sigma_{y0} \Sigma_i \mathcal{P}(f \mapsto f)(f, j \mapsto \delta(j, N-i, \lambda \mapsto \delta(\lambda, y(N-i-1), l(i)))) \quad (60)$$

$$= \Sigma_{y0} (j \mapsto \Sigma_i \delta(N-j, i, \lambda \mapsto \delta(\lambda, y(N-i-1), l(i)))) \quad (61)$$

$$= j \mapsto \lambda \mapsto \Sigma_{y0} \delta(\lambda, y(j-1), l(N-j)). \quad (62)$$

810 Thus, the derivative depends on y and l , which are the forward and backward intermediates in
 811 neural network or ODE settings. To differentiate a specific problem, one only needs to plug in
 812 a concrete f . For example, a `for` loop can be translated to \bigwedge by explicitly passing the state as
 813 a variable, as shown in listing 6, which is a standard technique in functional programming for
 814 avoiding mutations. Immutable code generally comes with a performance overhead, but this
 815 is not a consequence of our conversion, but a general limitation of automatic differentiation.

816 Listing 6: Explicit state passing. The loop variable i is converted to be the first input of f
 817 and the state are the second. The mutated state are returned as the output of f .

```
819     state = 0
820     for i in 1:10
821         state = state + 1
822     end
823
824     final_state = seq(
825         (i::N{10}) ->
826             state -> state + 1
827     )(0)
```

9.2 FIXED POINT

829 Our sequential iteration only works if the number of iterations is “stable”, which means
 830 that it only depends on the sizes of our tensors and not the values within it. This is
 831 mostly acceptable in numerical applications with the main exception being the fixed point.
 832 Differentiating a fixed point is also known as implicit differentiation or sensitivity analysis.
 833 Fortunately, this special case is relatively straightforward to address.

834 Let us consider a system of equations $g(x) = 0$ and a procedure ρ that maps g to one of its
 835 roots, where the condition $g \mapsto g(\rho(g)) = g \mapsto 0$ is satisfied. Differentiating both sides yields
 836

$$0 = \mathcal{P}(g \mapsto \rho(g))(g, \mathcal{P}g(\rho(g), k)) + \mathcal{P}(g \mapsto g)(g, i \mapsto \delta(i, \rho(g), k)) \quad (63)$$

$$= \mathcal{P}(\rho)(g, H(k)) + i \mapsto \delta(i, \rho(g), k), \quad H(k) = \mathcal{P}g(\rho(g), k) \quad (64)$$

$$\mathcal{P}(\rho) = (g, k) \mapsto i \mapsto \delta(i, \rho(g), -H^{-1}(k)), \quad (65)$$

841 where $H(k)$ is a linear map on k . The inverse of H is a linear least square and can be written
 842 in terms of ρ as

$$H^{-1}(k) = \rho(t \mapsto H(t) - k), \quad (66)$$

844 which does not require introducing new primitives and can be further differentiated.

845 There is a number of problems that can be treated as a fixed point for differentiation purpose.
 846 For example, minimization problems $\min_x R(x)$ can be treated as $\nabla R(x) = 0$. Constrained
 847 optimization problem can be treated by adding the constraints to g . Eigenvalue problems
 848 can be treated as $g(\lambda, v) = Av - \lambda v$. Although a fixed point theory is too weak a
 849 formalism for most of these problems, it suffices for differentiation because we assume that
 850 the true solution has been found.

852 10 RELATION TO SOURCE TRANSFORM

854 Let us illustrate the relation through a concrete example. Consider summing over a vector
 855 $\sum_{i=1}^N w(i)$, whose pullback can be derived as

$$857 \mathcal{P}(w \mapsto \sum_i w(i))(w, k) = \sum_i \mathcal{P}(w \mapsto w)(w, j \mapsto \delta(j, i, k)) = j \mapsto k. \quad 858$$

859 The result is a vector whose elements are k .

861 If one were to do this the procedural way, the code would resemble listing 7.

862 Listing 7: Implementing summation as a for loop

```
863 sum = 0
```

```

864 for i in 1:N
865     sum += w[i]
866 end
867

```

One can also unroll the ordered loop into a sequence of steps as in listing 8

868 Listing 8: Implementing summation as an unrolled loop.

```

870 w -> begin
871     y1 = (t -> t + w(1))(0)
872     y2 = (t -> t + w(2))(y1)
873     ...
874 end
875

```

876 In either form, one can apply the standard prescription for source transformation as on page
877 125-127 in Griewank and Walther (2008).

878 The confluent functional counter part for the procedural sum is

$$880 \quad \mathcal{P}(w \mapsto \bigwedge (i \mapsto t \mapsto t + w(i))(0))(w, k).$$

881 The differentiation is just repeated applications of **B**, **C**, and \wedge -rules. The result is

$$883 \quad \sum_t q \mapsto \sum_{y0} \delta(t, y(q-1), l(N-q)) = q \mapsto \sum_{y0} l(N-q).$$

886 $l(N-q)$ are

$$887 \quad l(N-q) = \bigwedge_{m=1}^{N-q} (k \mapsto \mathcal{P}(t \mapsto t + w(N-m+1))(y(N-m), k))(\delta(y0, 0, k))$$

891 This can be simplified into $\bigwedge_{m=1}^{N-q} (k \mapsto k)(\delta(y0, 0, k)) = \delta(y0, 0, k)$. Therefore, the final result
892 is again $q \mapsto k$. However, if one now unroll y and l , the result is shown in listing 9, which is
893 almost the same as the result of regular source transform.

894 Listing 9: Unrolled derivative of summation.

```

895 w -> sum(y0 -> begin
896     y1 = (t -> t + w(1))(y0)
897     y2 = (t -> t + w(2))(y1)
898     y3 = (t -> t + w(3))(y2)
899     l0 = delta(y0, 0, k)
900     l1 = P(t -> t + w(3))(y2, l0)
901     l2 = P(t -> t + w(2))(y1, l1)
902     [l2, l1, l0]
903 end
904

```

905 The **delta** can propagate out and annihilate with the $y0$ sum because pullbacks are linear.
906 Then we will have completed a source transform.

907 We can immediately generalize the problem to differentiating a model $x \mapsto \dots$ with respect
908 to model parameters w

$$910 \quad \mathcal{P}(w \mapsto x \mapsto \bigwedge (i \mapsto t \mapsto t + w(i) * x(i))(0)),$$

911 which is sometimes the point where typical source transform systems start to struggle. In
912 our framework, the derivation become an extra application of the **C** rule.
913

914 11 COMPLEX PRIMITIVES

915 We now explain our treatment of complex numbers, which leads to the complex conjugates
916 in primitive pullbacks. The main difficulty in dealing with complex numbers is that the

standard complex analysis does not prescribe a useful gradient for optimization. For example, minimizing $z \mapsto |z|^2$ is evidently equivalent to minimizing $(a, b) \mapsto a^2 + b^2$, but a Cauchy-Riemann argument shows that $|z|^2$ is nowhere analytic, so the pullback makes no sense. For a real and scalar valued function, this problem is partly resolved through the Wirtinger derivative

$$\partial f(z)/\partial z = \partial f(z)/\partial a + i\partial f(z)/\partial b, \quad z = a + ib, \quad (67)$$

which can be used for, e.g., gradient descent.

This formalism is insufficient for symbolic automation because it does not handle the case where $f(z)$ is complex and requires splitting z into its real and imaginary parts. Differentiating a complex function $f(z)$ may seem unnecessary when the objective function to optimize is always a real scalar. However, we differentiate $f(z)$ by differentiating its constituents, which are complex-valued functions. Moreover, representing a complex gradient in terms of the real and imaginary parts of z is not acceptable for symbolic purposes, and it is preferable to avoid splitting a complex variable to begin with (rather than trying to reassemble them from the real and imaginary parts in the end).

These problems can be resolved by extending the definition of pullback to complex numbers. We start by proposing the operators \mathcal{V} and \mathcal{W}

$$\mathcal{V}(z) = [\operatorname{Re}(z_1) \quad \operatorname{Im}(z_1) \quad \dots \quad \operatorname{Re}(z_n) \quad \operatorname{Im}(z_n)]^T, \quad (68)$$

$$\mathcal{W}(f) = v \mapsto \mathcal{V}(f(\mathcal{V}^{-1}(v))). \quad (69)$$

\mathcal{V} and \mathcal{V}^{-1} establish an isomorphism between \mathbb{C}^N and \mathbb{R}^{2N} so that we can convert a complex problem to a real one that is equivalent. Analogously, \mathcal{W} converts between $\mathbb{C}^N \rightarrow \mathbb{C}^M$ and $\mathbb{R}^{2N} \rightarrow \mathbb{R}^{2M}$. One can check that the following identities hold

$$\forall f \in \mathbb{C}^N \rightarrow \mathbb{C}^M, \quad \mathcal{V}(f(z)) = (\mathcal{W}(f))(\mathcal{V}(z)), \quad (70)$$

$$\forall f \in \mathbb{C}^N \rightarrow \mathbb{R}, \quad f(z) = \mathcal{V}(1)^T \cdot (\mathcal{W}(f))(\mathcal{V}(z)). \quad (71)$$

To minimize a scalar-valued function $f(z)$ over z , we can equivalently minimize the real function $u \mapsto \mathcal{V}(1)^T \cdot (\mathcal{W}(f))(u)$ and convert u to the corresponding complex number with $z = \mathcal{V}^{-1}(u)$. The gradient of the real function can be written as $(\mathcal{J}(\mathcal{W}(f)))(u)^T \cdot \mathcal{V}(1)$. Transforming this vector back into the complex space gives the complex gradient $\mathcal{V}^{-1}((\mathcal{J}(\mathcal{W}(f)))(u)^T \cdot \mathcal{V}(1))$. Therefore, we write the Wirtinger gradient as

$$\nabla f(z) = \mathcal{V}^{-1}(\mathcal{J}(\mathcal{W}(f))(\mathcal{V}(z))^T \cdot (\mathcal{V}(1))). \quad (72)$$

To be able to find the gradient through the pullback as $\nabla f(z) = \mathcal{P}(f)(z, 1)$, we suggest to define the complex pullbacks as

$$\mathcal{P}(f) = (z, k) \mapsto \mathcal{V}^{-1}(\mathcal{J}(\mathcal{W}(f))(\mathcal{V}(z))^T \cdot \mathcal{V}(k)). \quad (73)$$

Since the pullback remains a vector Jacobian product just like eq. (28), the **B** and **C** rules are not affected by the change. Therefore, the only modification to the theory is to derive the pullbacks of the univariate primitives using eq. (73) instead of eq. (28). As an example, writing $z = x + iy$ and $k = a + ib$, the pullback of the complex conjugate can be derived as

$$\mathcal{W}(z \mapsto z^*) = (x, y) \mapsto (x, -y), \quad (74)$$

$$\mathcal{P}(z \mapsto z^*) = (z, k) \mapsto \mathcal{V}^{-1} \left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} \right) = (z, k) \mapsto k^*. \quad (75)$$

961
962
963
964
965
966
967
968
969
970
971