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Abstract

Federated graph learning enables organizations with distributed graph data to
collaboratively train GNNs without sharing raw features. However, in node
classification and related tasks, local graphs are typically non-IID in both struc-
ture and attributes, making a single global model suboptimal. We propose
PFEDGNN, a personalized federated graph learning framework that privately
infers the global graph structure across clients and then derives a client-level
collaboration graph via coarsening principles. Concretely, we estimate a global
Laplacian in a privacy-preserving manner and obtain the collaboration graph by
lifting with a partition matrix (Lc = P Lg P '), where edge weights encode
collaboration strength among clients. This structure guides graph-aware param-
eter aggregation, allowing clients with similar data distributions to share more
while preserving personalization. Experiments on diverse graph benchmarks
show that PFEDGNN significantly improves node classification performance
over strong FL/pFL baselines; notably, our method learns the collaboration
graph in one shot, reducing both communication and computation compared to
iterative approaches.

1 Introduction

Graph-structured data arise in diverse domains such as social networks [1], molecular chemistry
[2], and biomedical knowledge graphs [3], where effective analysis is vital for applications like
drug discovery, disease diagnosis, and social behavior modeling. Graph Neural Networks (GNNs)
have become state-of-the-art for these tasks [4], learning node, edge, and graph level representations
that surpass traditional methods. In many practical scenarios, graph data are inherently distributed
across multiple organizations or data silos [5]. For example, hospitals hold patient records [6],
pharmaceutical labs maintain molecular datasets [7], and financial institutions control transaction
networks [8]. In such settings, privacy and regulatory constraints prohibit direct sharing, yet most
graph-based semi-supervised methods assume centralized access to raw data [9], raising privacy
concerns. A natural solution is Federated Learning (FL) with GNNs [10], where multiple clients
train local models on limited labeled data, and a server aggregates them into a global model in a
privacy-preserving manner.

FL [11] enables collaborative training without exposing raw data: clients perform local updates and
only share model parameters or gradients, aggregated by a central server. This paradigm, pioneered
by [12, 13], allows multiple parties to jointly train models while preserving data locality. While
FL mitigates direct privacy risks, it faces unique challenges on graph data [14]. First, the global
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Figure 1: Pipeline of pFedGNN. Client datasets remain private, yielding an incomplete distance
matrix where inter-client entries are unknown. From this partial information, we infer the global
graph structure via the Laplacian L. In parallel, we learn the partition matrix P, which maps data
points to clients. Using both, the client-level collaboration graph is obtained as PLP T, which then
guides personalized federated learning.

structure of the graph essential for many GNN-based tasks is unavailable, as edges between entities
residing in different clients cannot be directly observed. This hampers the ability to capture cross-
client dependencies. Second, graph data are inherently heterogeneous: clients differ in distributions,
structural patterns, and label spaces, causing divergent local updates and degrading the performance
of a single global model. To address these issues, Personalized FL (pFL) has emerged as a promising
paradigm. Early methods [15-17] learn multiple global or cluster-specific models for groups of
similar clients, while recent approaches [18-21] emphasize client-specific personalization, where
the global model serves primarily for knowledge transfer. Thus, FL’s objective has shifted from
producing one global model to enabling many high-performing, client-specific models while retaining
collaboration benefits.

A key open problem is determining which clients should collaborate and to what extent. Relationships
among participants can be naturally modeled as a graph, where nodes denote clients and edges
capture potential collaboration (e.g., similarity or trust). However, balancing individual utility with
collaborative gains remains difficult [22], since heterogeneity is unknown under privacy constraints.
Existing methods lack mechanisms to adaptively decide collaboration intensity, limiting their flexi-
bility in handling diverse heterogeneity or malicious clients. We address this gap with a three-stage
framework (see Figure 1) for personalized federated graph learning: (i) infer a privacy-preserving
estimate of the global graph structure, (ii) derive a client-level collaboration graph via coarsening
principles, and (iii) perform personalized federated learning guided by this collaboration graph. In
the collaboration graph, each node represents a client’s personalized GNN model, and edge weights
quantify collaboration intensity based on model similarity. This serves as a proxy for data similarity,
enabling adaptive, fine-grained collaboration.

2 Background and Related Work

Graphs and GNNs. A graph is denoted G = (V, &, X) with node set V, edge set £, and
feature matrix X € RIVIX?  TIts structure is commonly represented by the adjacency matrix
A, the degree matrix D, and the graph Laplacian L = D — A. GNNs [23-26] leverage
this structure to learn node- and graph-level representations. A two-layer GCN [27] computes
fo(X,A) = softmax(A 0(AXW;)Wj,), with parameters § = {W7, Wy}. GNNs are widely
used for semi-supervised node classification, link prediction, and graph-level learning across domains.

Graph Coarsening (GC). GC compresses a graph G(V, £, X) with N nodes and features X €
RN >4 into a smaller graph G.(V, &, X) with n < N supernodes and features X € R™*<, This is
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done via a partition matrix P € R™*N that merges structurally or feature-similar nodes, producing
X = PX while approximately preserving key structural and spectral properties [28-31].

FL and Personalized FL. FL enables M clients C1,...,C)s to collaboratively train models
without sharing raw data, exchanging updates with a central server instead [32-35]. While preserving
privacy, standard FL targets a single global model, which underperforms on heterogeneous (non-
IID) data. pFL mitigates this by adapting models to individual clients while retaining cross-client
knowledge transfer. Approaches include regularization-based methods (Ditto [36], pFedMe [37]),
clustering (CFL [38]), adaptive aggregation (FedAMP [39], FedRep [40]), hypernetworks (pFedHN
[41]), and collaboration graphs (pFedGraph [42]). Yet, most rely on iterative similarity estimation or
communication-heavy updates, motivating our one-shot, coarsening-inspired strategy for efficient
collaboration graph inference.

3 Methodology

Our framework consists of three key stages: (i) inferring a privacy-preserving estimate of the global
graph structure, (ii) deriving a client-level collaboration graph via coarsening, and (iii) performing
personalized federated graph machine learning guided by this collaboration graph.

Inference of Global Structure. A central challenge in federated graph learning is that the global
structure required for effective GNN training is inaccessible due to privacy constraints: raw data and
cross-client edges cannot be shared. We address this using the anchor-based distance reconstruction
framework from PPDA [43], which estimates global structure from incomplete, privacy-preserving
distance measurements. Let C = {C1,...,C} be the set of clients, each holding private data
D, = xgm), e 7:m(fn)} C R The server provides K public anchors A = {ai,...,ax}. Each
client computes squared distances between its local data and the anchors, transmitting only these

values:
(m) 2 .
.. Z; —aj ) 1, 697
D) = {127 sl (9)
unobserved, otherwise,

where 0 C [N] x [K] is the set of observed distance entries (N is the total number of data points
across all clients). Then structured matrix completion is used to recover the full distance matrix D
from Dq. The global graph Laplacian is then estimated from an affinity matrix W derived from D as

Lg = Diag(Wl) — W. Thus, L¢ provides a faithful approximation of the global structure while
ensuring rigorous privacy guarantees.

Lemma 1 (Privacy-Preserving Global Structure, adapted from [43]) Ler X = {z1,...,2n} C
R be the union of all client data and A the set of K anchors. If K < d, the original features
{x;} cannot be uniquely reconstructed from {||x; — a;||3}: ;. Hence, Lg preserves global structure
without exposing private data.

Inference of the Collaboration Graph. Given the global Laplacian L, we infer collaboration
relationships among clients using graph coarsening. Let P € {0, 1} *¥ denote the partition matrix
mapping each of the N data points to one of the M clients. The client-level (coarsened) Laplacian is
Lc = PLgPT [28, 29, 31].

Remark 1 (Collaboration Graph via Coarsening) With Lg as the global Laplacian and P as the
client partition matrix, the coarsened Laplacian Le = PLgP" induces a collaboration graph
Gc over clients. Each entry (L¢);; encodes the collaboration strength between C; and C;: larger
weights indicate stronger structural similarity, while smaller weights reflect dissimilarity.

This formulation yields the collaboration graph in one shot, supported by coarsening theory, and
avoids the heavy cost of iterative similarity estimation or repeated refinement common in existing
pFL methods [42].

Personalized Federated GNN. With the collaboration graph G in place, we move beyond a single
global model toward personalization. Purely global models ignore heterogeneity, while purely local
models forgo collaboration. Personalized FL balances these extremes: each client maintains a model
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Table 1: Node classification accuracy of baseline methods vs. pFedGNN on benchmark datasets.

Method Cora CiteSeer PubMed Squirrel RE AR CS

FedPub 81.47 70.74 86.47 44.25 42.03 45.00 89.40
FedAvg 80.85 69.24 85.55 39.98 45.04 45.04 89.53
FedGTA 81.26 69.15 85.44 38.22 44.66 45.06 89.46
FedDC 83.83 75.17 81.81 35.62 27.00 38.81 90.25
MOON 82.18 71.09 85.64 40.44 4499 4454 8991
Scaffold 75.58 75.26 70.14 35.34 20.21 36.81 83.10
pFedGNN 89.18 79.61 87.17 46.36 45.04 5221 9247

(a) Citeseer (b) Cora (c) Chameleon (d) Squirrel

Figure 2: Visualization of the inferred collaboration graphs. Each heatmap shows the interaction
strength between pairs of clients, with stronger values indicating higher similarity and greater potential
for collaboration. Results are shown here for 10 clients.

that integrates its own knowledge with that of structurally similar peers. Formally, let §; € R? denote
the parameters of client C;. We define the update rule as a graph-regularized message-passing step:

oY =t +(1—a) 3 w6,
JEN ()

where « € [0, 1] controls self-reliance vs. collaboration, A (¢) is the neighborhood of client i in G,

and w;; = % are normalized edge weights. This update mirrors message passing in GNNs:

each client retains a self-weighted local model while aggregating information from neighbors in G¢.
Personalization thus emerges naturally from the inferred collaboration structure, enabling tailored
models that respect both heterogeneity and privacy.

4 Experiments

We evaluate pFedGNN on benchmark graph datasets against strong baselines. This section outlines
the datasets, baselines, and implementation details, followed by results and analysis.

Experimental Setup. We evaluate our approach on 7 widely used benchmark datasets spanning
three categories. (a) Citation Networks: Cora, Citeseer, Pubmed [44]; (b) Co-author and Wiki-page
Networks: Coauthor-CS, [45], and Squirrel [46]; (c) General Networks: Roman-Empire (Article
Syntax), Amazon-Ratings (Social) [47]. Dataset statistics are in Table 2. More details about training
setting and baselines are included in Appendix A.2.

Results. Table 1 shows that, while preserving data privacy, our approach successfully infers both the
global structure and client-level collaboration strengths, which are then leveraged in the pFedGNN
framework. This leads to consistently strong node classification performance compared to baselines.
Unlike existing methods that struggle with graph heterogeneity, pFedGNN achieves substantial
accuracy gains across all datasets.

Visualization of Collaboration Graph. Figure 4 shows collaboration graphs for Cora, Citeseer,
Chameleon and Squirrel. Heatmaps illustrate client—client interaction strengths, with darker cells
denoting stronger collaboration. The inferred graphs adaptively capture heterogeneous client relation-
ships, crucial for pFL as they guide collaboration by underlying data similarity rather than a single
global model.
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5 Conclusion

In federated graph-based machine learning, graphs within the same domain often exhibit non-1ID
properties. To tackle this challenge, we employ a personalized federated graph learning approach. A
critical issue in personalized federated graph learning is finding the right balance between individual
utilities and collaborative benefits. We address this with pFedGNN, where the collaboration graph
guides each client to collaborate more with similar and beneficial peers, thereby enhancing local graph
data homogeneity. Experiments across various graph networks show that pFedGNN outperforms
baseline methods in GNN node classification, demonstrating its effectiveness in adaptive learning.
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A Appendix
A.1 Dataset Statistics.

The data sets are summarized below in Table 2.

Table 2: Summary of graph datasets.

Data Nodes Edges Features Class

Cora 2,708 5,429 1,433 7
CiteSeer (Cite.) 3,327 4,732 3,703 6
PubMed (Pub.) 19,717 44,338 500 3

—_

Co-author CS (CS) 18,333 81,894 6,805
Chameleon (Cham.) 2,277 36,101 2,325 5
Squirrel (Sqi.) 5,201 216,933 2,089 5
Co-author Physics (Phy.) 34,493 247,962 8,415 5

Roman-empire (RE) 22,662 32,927 300 8
Amazon-ratings (AR) 24,492 93,050 300 5

5

—_—

A.2 Training Setting and Baselines

Training Settings. Experiments use 50 communication rounds, as personalized FL converges quickly,
with each client running 200 iterations [48]. The local model is a 2-layer GNN with hidden dimen-
sions [120, 84]. We train with SGD (Ir=0.01). All runs are on a server with 72-core Intel(R) Xeon(R)
Platinum 8360Y CPU, 1 TB RAM, and an NVIDIA RTX A6000 GPU (48 GB), under Ubuntu 20.04.1.

Baselines. For node classification comparisons (Table 1), we adopt baselines from the OpenFGL
benchmark [49].

A.3 Abalation Study

Effect of Varying Personalization (o). The parameter « controls the trade-off between local learning
and collaboration: lower « values encourage stronger inter-client cooperation, while higher values
emphasize local client models. The results in Figure 3 show that moderate « values (e.g., « = 0.7
for Cora, @ = 0.2 for CiteSeer) achieve the best balance between personalization and collaboration,
confirming the adaptability of pFedGNN to varying heterogeneity levels. Excessive reliance on either
extreme—purely local or fully global—reduces generalization, whereas a balanced trade-off enables
models to adapt effectively to client-specific and shared knowledge simultaneously.
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Figure 3: Effect of the varying (o)) parameter on test accuracy for (a) Cora and (b) CiteSeer.

A.4 Additional Experiments.

We conducted additional experiments, where we considered 11 other baseline methods, including
local model training without collaboration (referred to as Local), as well as FedAvg [32] and
FedProx [33], along with their fine-tuned (FT) versions. Additionally, we evaluate 6 representative
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Table 3: This table presents a comparison of node classification performance across various existing
methods on graph datasets. pFedGNN- demonstrates significant improvements on 3 out of the 5
datasets.

Method Citeseer Cora CS DBLP Physics Pubmed
Local 68.63 5794 96.78 87.63 96.20 46.20
FedAvg 54.84 3854 92.14 66.02  97.07 66.13
FedAvgFT 70.30 4484 97.34 88.99 96.94 65.83
FedProx 55.00 3839 92.00 62.15 97.13 64.07
FedProxFT  70.22 4543 97.38 88.71 96.91 65.73
FedAmp 72774 4540 97.23 90.51 96.86 57.37
Ditto 6430  46.10 9695 8822  96.85 67.47
FedRep 67.35 1146 95.13 8852  96.84 58.70
Knn-per 67.66  48.54 97.14 88.81 97.10 68.60
FedRodPer  71.46 17.13 9538 87.60 96.74 58.20
CFL 71.14  36.59 98.90 89.06  96.94 65.83
pFedGNN- 92.93 9284 9596 92.04  96.60 85.42

Table 4: This table illustrates the node classification accuracy (for pFedGNN-) when two different
similarity measures are used to generate the collaboration graph.

Method Citeseer Cora DBLP PubMed Physics

cosine 92.93 92.84 92.04 85.42 96.60
inner product 91.71 89.14  90.96 86.41 95.21

personalized federated learning (FL) methods. Among these, C' F'L [38] employs a clustering-based
approach, while Ditto [36] is based on regularized optimization. Fed AM P [22] modifies the
aggregation process, and F'ed Rep [50] focuses on sharing a backbone representation. F'ed RoD [51]
utilizes a multi-branch architecture, and K NN — Per [52] employs feature memorization. The
results for these are shown in Table 3, where we compared a non-private variant of pFedGNN called
’pFedGNN-" where we are learning the global structure of the graph between the clients without
using PPDA and simply by using smooth signals [53].

Existing methods are inadequate in handling graph datasets effectively. pFedGNN- demonstrates
substantial improvements in node classification accuracy across all these datasets. pFedGNN-
showcases good performance across different datasets and against 11 baslines. For instance, on the
Citeseer dataset, pPFedGNN- improves accuracy from 20.19% (compared to best existing method) to
38.09% (compared to worst-performing method). Similarly, for Cora, the accuracy increases from
35.20% to 81.38%, for DBLP from 2.98% to 29.89%, and for PubMed from 16.82% to 39.22%.

While pFedGNN is not the top-performing method on the CS and Physics datasets, it remains
competitive, with performance comparable to the best existing approaches. These results highlight
pFedGNN’s significant advantages in improving classification accuracy on challenging datasets,
although its performance on certain datasets may still be matched by other methods.
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Figure 4: This figure illustrates the collaboration graphs, where we considered varying numbers of
clients across different datasets: 8 for DBLP, 6 for Citeseer, 8 for CS, and 21 for Cora. Each cell in
the heatmap represents the interaction strength between different clients.
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Table 3 contains results for pFedGraph when we apply cosine similarity to optimize the collaboration
graph. We compare two types of model similarity metrics, including cosine-based and inner-product-
based. Results are reported in Table 4. From the table, we see that the proposed cosine-based
optimization tends to perform the best.

A.5 Visualization of Collaboration Graph

Here we visualize the collaboration graph of DBLP, Citeseer, CS Cora. Figure 4 illustrates the
collaboration graph for these datasets in the form of heat-map. We have considered the various
number of clients ranging from 6 to 20. Cosine is the measure of similarity while constructing the
collaboration graph.
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