
IMPACT: Irregular Multi-Patch Adversarial Composition Based on Two-Phase Optimization

**Zenghui Yang^{1,5}, Xingquan Zuo^{2,5*}, Hai Huang^{2,5}, Gang Chen³,
Xinchao Zhao⁴, Tianle Zhang^{1,5}**

¹Shool of Cyberspace Security, Beijing University of Posts and Telecommunications

²School of Computer Science, Beijing University of Posts and Telecommunications

³School of Engineering and Computer Science, Victoria University of Wellington

⁴School of Science, Beijing University of Posts and Telecommunications

⁵Key Laboratory of Trustworthy Distributed Computing and Service

{yangzh,zuoxq,hhuang,zhaoxc,tlezhang}@bupt.edu.cn

aaron.chen@ecs.vuw.ac.nz

Abstract

Deep neural networks have become foundational in various applications but remain vulnerable to adversarial patch attacks. Crafting effective adversarial patches is inherently challenging due to the combinatorial complexity involved in jointly optimizing critical factors such as patch shape, location, number, and content. Existing approaches often simplify this optimization by addressing each factor independently, which limits their effectiveness. To tackle this significant challenge, we introduce a novel and flexible adversarial attack framework termed IMPACT (Irregular Multi-Patch Adversarial Composition based on Two-phase optimization). IMPACT uniquely enables comprehensive optimization of all essential patch factors using gradient-free methods. Specifically, we propose a novel dimensionality reduction encoding scheme that substantially lowers computational complexity while preserving expressive power. Leveraging this encoding, we further develop a two-phase optimization framework: phase 1 employs differential evolution for joint optimization of patch mask and content, while phase 2 refines patch content using an evolutionary strategy for enhanced precision. Additionally, we introduce a new aggregation algorithm explicitly designed to produce contiguous, irregular patches by merging localized regions, ensuring physical applicability. Extensive experiments demonstrate that our method significantly outperforms several state-of-the-art approaches, highlighting the critical benefit of jointly optimizing all patch factors in adversarial patch attacks. Our source code is available at <https://yangzh216.github.io/IMPACT>.

1 Introduction

Deep Neural Networks (DNNs) have become one of the core technologies in modern artificial intelligence. With their exceptional learning ability, DNNs have demonstrated outstanding performance in fields such as image classification [21], object detection [3], and natural language processing [34], driving the rapid advancement of numerous real-world applications. However, recent studies demonstrate a concerning vulnerability: DNNs are susceptible to adversarial attacks [35], where minor, specifically designed perturbations to input images can significantly degrade their performance [4]. While early adversarial attack methods primarily relied on global perturbations [35, 15, 4] constrained by ℓ_2 or ℓ_∞ norms and sparse perturbations [7, 24, 8] constrained by ℓ_0 norm, recent approaches have

*corresponding authors: zuoxq@bupt.edu.cn

shifted focus towards localized perturbations, known as adversarial patches [12, 42, 16]. While being more visually conspicuous, they have greater practical applicability and effectiveness [2, 40, 25].

Adversarial patches, characterized by distinct shapes, locations, number, and content, significantly complicate the attack optimization process due to their high-dimensional and combinational nature. Previous studies typically simplify this complex problem by independently optimizing patch content [20] or location [28, 41], often assuming fixed shapes and limiting patches to single or basic geometric forms [45, 27]. This simplification, however, considerably restricts the adversarial potential and practicality of these attacks, leaving open a critical research gap: **the joint optimization of multiple essential patch factors, including shapes, locations, number, and content.**

Motivated by this critical challenge, we propose **IMPACT** (Irregular Multi-Patch Adversarial Composition Based on Two-Phase Optimization), a flexible and novel adversarial attack framework specifically designed to support comprehensive optimization of multiple adversarial patch factors. The **IMPACT** framework is inherently versatile, allowing the integration of any gradient-free optimization algorithms tailored to specific adversarial objectives or constraints. To demonstrate the effectiveness and practicality of **IMPACT**, we present one concrete implementation leveraging evolutionary algorithms (EAs), renowned for their efficacy in black-box optimization tasks lacking gradient information. Our EA-based implementation of **IMPACT** introduces a two-phase optimization scheme:

Joint Optimization Phase: This phase jointly optimizes patch masks (defining shape and location) and patch content. To overcome the curse of dimensionality, we introduce a novel dimensionality reduction encoding scheme, reducing computational complexity while maintaining solution expressiveness. Additionally, we develop a random aggregation algorithm that plays a crucial role in generating practical adversarial patches. Unlike methods relying on fixed shapes [43, 36, 27], our algorithm produces diverse, irregular patch geometries by merging local regions. This ensures each patch is locally well formed, making them suitable for physical application. The irregularity further enhances their adversarial potential. This phase is implemented with differential evolution (DE).

Refinement Phase: This phase precisely refines patch content at the pixel level, transitioning from global exploration in phase 1 to targeted local exploitation, thus further optimizing attack effectiveness. In our implementation, this phase uses (1+1)-ES to balance computational cost and attack efficacy.

Figure 1: Adversarial patches by **IMPACT**. Phase One: DE-optimized block content. Phase Two: (1+1)-ES refined pixel content. White-Box: **IMPACT** mask with gradient-optimized content. Examples show diverse shapes, locations, and content.

Extensive experiments conducted on widely-used benchmark models (ResNet50 [17], VGG16 [32], ViT-B [11]) confirm that **IMPACT** outperforms multiple state-of-the-art patch attack methods in black-box scenarios. Our results underline the importance of jointly considering all key patch factors, demonstrating that **IMPACT** can significantly improve adversarial effectiveness. Figure 1 presents examples of adversarial patches generated by **IMPACT**. These patches exhibit locally coherent structures, making them physically printable and suitable for real-world deployment. Their irregular, optimized designs further enhance adversarial effectiveness by increasing the perturbation diversity and expressiveness. Our main contributions are summarized as follows:

- We introduce **IMPACT**, a flexible framework for adversarial patch attacks that allows seamless integration of diverse gradient-free optimization algorithms. The presented EA-

based implementation showcases the framework’s capability for joint optimization of all critical adversarial patch factors.

- In line with the IMPACT framework, we propose a novel dimensionality reduction encoding scheme, simplifying the high-dimensional solution space while preserving the solution’s diversity and quality. We further develop a new aggregation algorithm that merges scattered patch elements into locally coherent and irregular shapes, enabling physically printable adversarial patches.
- Through comprehensive evaluations against state-of-the-art methods, we demonstrate the superior effectiveness and efficiency of our IMPACT implementation. This systematic analysis provides valuable insights into how jointly optimizing multiple patch factors can substantially enhance adversarial attack success rates.

2 Related Work

This section provides an overview of two related research directions: Adversarial patch attacks, which craft localized, visible perturbations, and EA-based methods for black-box adversarial attacks.

2.1 Adversarial Patch Attacks

Depending on the level of knowledge an attacker has about the target model, adversarial patches can be categorized into *white-box attacks* and *black-box attacks*.

For the white-box attack, most studies focus primarily on optimizing patch content through gradient-based techniques. Brown et al. [2] proposed a universal adversarial patch for real-world targeted attacks. Karmon et al. [20] introduced LaVAN for generating visible localized noise patches. Their work focused on adversarial attacks in the digital domain, where modifications are made directly to the pixel values of digital images in a dataset. This approach enabled successful attacks using significantly smaller visible perturbations. Unlike earlier studies on universal patches designed to work across various images, Rao et al. [28] showed that image-specific patches, optimized for individual images, offer a more powerful alternative by leveraging the unique characteristics of each image. They emphasized the importance of patch location, proposing an optimization algorithm to determine the most effective location for the patch. Chen et al. [5] recognized that the patch shape is an equally critical factor. Building on this insight, they proposed the deformable patch attack. However, their approach was limited to generating a single patch. In the context of multi-patch attacks, Fu et al. [14] introduced PATCH-FOOL, which leverages an attention-aware patch selection mechanism to generate multiple patches simultaneously. Sharma et al. [31] further explored multi-patch attacks, demonstrating the advantages of using multiple patches over single-patch attacks. In addition, Huang et al. [19] proposed a multi-mini-patch adversarial attack for remote sensing image classification. However, these multi-patch schemes are restricted to rectangular shaped patches.

For the black-box attack, random search is the dominating approach for optimizing patch content. Fawzi et al. [13] were among the first to explore patch-based black-box attacks. Their method can generate rectangular, monochromatic patches with optimized shape and placement. Unfortunately, the attack’s effectiveness was limited due to the simplicity of the patch content. To address this issue, Yang et al. [45] proposed TPA, where reinforcement learning was employed to optimize both the position and texture parameters of each patch. Croce et al. [8] introduced a robust adversarial attack framework Patch-RS based on random search. However, the patches were limited to fixed square shapes. To investigate the impact of different shapes, Ran et al. [27] proposed a cross-shaped adversarial patch, consisting of two intersecting line segments extending toward the corners of the input image. Using random search to optimize position and content, the method achieved high attack success rate. However, the global perturbation structure caused the line segments to become excessively thin, rendering it challenging to apply in the physical world.

In summary, existing adversarial patch attack methods predominantly focused on optimizing one or two factors, such as patch shape, location, or content, while *neglecting a comprehensive, joint optimization of all critical factors*. This narrow focus restricts their capacity to fully leverage the optimization space, highlighting the potential for more comprehensive and effective approaches.

2.2 Adversarial Attacks Based on EAs

In the field of adversarial attacks, EAs have demonstrated its unique strength of effectively optimizing arbitrary target models without using gradient information [10, 43, 36, 22]. Several studies [1, 26, 22] have investigated the application of EA to generate adversarial examples under ℓ_2 and ℓ_∞ constraints. Other works [33, 38, 37] have focused on sparse adversarial attacks under ℓ_0 constraints.

Very recently, EAs have been increasingly used to generate adversarial patches; however, existing encoding schemes in these approaches do not support full optimization across all patch factors. For example, Williams et al. [43] introduced CamoPatch as an EA approach to generate camouflaged adversarial patches. Unlike traditional adversarial patches, this approach focuses on reducing the patch's visibility. Hu et al. [18] proposed AdvIB, leveraging DE to create adversarial patches deployable in the physical world. However, due to the limitations of their encoding scheme, their method only supports rectangular patch shapes and monochromatic patch content. Tang et al. [36] introduced a dimensionality reduction strategy focused on patch content, leveraging duplicating and tiling to upscale decision variables from a low-dimensional space to a higher-dimensional space. While this approach enhances the optimization process for patch content, their encoding scheme has notable limitations. Specifically, it only addresses patch content optimization while ignoring the patch mask, which remains in fixed square shapes.

Overall, most existing methods remain focused on designing encoding schemes to optimize patch content, while a *comprehensive approach that integrates patch shape, location, number, and content into the encoding process is still lacking*. This gap motivated us to develop a novel encoding scheme that supports joint optimization across all these critical patch factors.

3 Proposed Method

We present IMPACT, a framework that simultaneously optimizes both the patch mask and its content. Specifically, the IMPACT framework comprises two optimization phases. In phase 1, IMPACT operates at a block-level to simultaneously optimize the patch mask and the patch content. This phase aims for broad exploration of the solution space to identify promising patch configurations. Following phase 1, phase 2 focuses on meticulous, pixel-level optimization of the patch content. In this section, we first formulate the problem of adversarial patch attacks. Subsequently, we present the detailed EA-based implementation of IMPACT. Algorithm 1 outlines the overall procedure of using EA-based IMPACT for black-box adversarial patch attacks. Descriptions of the key functions within Algorithm 1 are provided in Appendix A.

Algorithm 1 Irregular Multi-Patch Adversarial Attack Based on Two-Phase Optimization

Input: Model f , original example x , true label y , number of mini-patches n , number of patches k , population size N , DE iterations T_d , (1+1)-ES iterations T_e

Output: Adversarial example \hat{x}

// Phase 1: DE for Joint Optimization

- 1: Initialize population $P_0 \leftarrow \text{PopInit}(n, k, N)$
- 2: Compute initial fitness $F_0 \leftarrow \text{Fitness}(P_0, f, x, y)$
- 3: **for** $t = 1, \dots, T_d$ **do**
- 4: $V_t \leftarrow \text{Mutation}(P_{t-1})$
- 5: $U_t \leftarrow \text{Crossover}(P_{t-1}, V_t)$
- 6: $U_t \leftarrow \text{Aggregation}(U_t, k)$
- 7: $F_t \leftarrow \text{Fitness}(U_t, f, x, y)$
- 8: $P_t, F_t \leftarrow \text{Selection}(P_{t-1}, F_{t-1}, U_t, F_t)$
- 9: $p^* \leftarrow \text{SelectBest}(P_t, F_t)$
- 10: Construct patches $(\delta, M) = \text{BuildPatch}(p^*)$
- 11: Generate \hat{x} using (δ, M) according to Eq. (1)
- 12: **if** $f(\hat{x}) \neq y$ **then**
- 13: successful = True
- 14: **break**
- 15: **end if**
- 16: **end for**

// Phase 2: (1+1)-ES for Content Refinement

- 17: **for** $t = 1, \dots, T_e$ **do**
- 18: **if** successful = True **then**
- 19: **break**
- 20: **end if**
- 21: Add Gaussian noise δ_{noise} : $\delta' = \delta + \delta_{\text{noise}}$
- 22: Generate \hat{x}' using (δ', M)
- 23: **if** fitness(\hat{x}') > fitness(\hat{x}) **then**
- 24: Update $\delta = \delta'$, $\hat{x} = \hat{x}'$
- 25: **end if**
- 26: **if** $f(\hat{x}) \neq y$ **then**
- 27: successful = True
- 28: **end if**
- 29: **end for**
- 30: **return** Adversarial example \hat{x}

3.1 Problem Formulation

Given an original example $x \in \mathcal{R}^{c \times h \times w}$, the objective of adversarial patch attacks is to create an adversarial example $\hat{x} \in \mathcal{R}^{c \times h \times w}$ that can mislead the model into making incorrect predictions [35]. Here, c , h , and w correspond to the number of channels, height, and width of the example, respectively. An adversarial patch consists of two components: a mask $M \in \{0, 1\}^{c \times h \times w}$, which determines the shape and location of the patch, and a perturbation $\delta \in \mathcal{R}^{c \times h \times w}$, which defines the patch content. By combining x , M , and δ , the adversarial example \hat{x} can be defined as follows:

$$\hat{x} = x \odot (1 - M) + \delta \odot M, \quad (1)$$

where \odot is the element-wise Hadamard product. As a result, the perturbation is applied in regions with $M_{ij} = 1$, while regions with $M_{ij} = 0$ retain the original image content.

Performing adversarial patch attacks requires solving the following optimization problem [27]:

$$\arg \min_{\delta, M} \mathcal{L}(f(x \odot (1 - M) + \delta \odot M), \hat{y}), \text{ s.t. } \|M\|_0 < \epsilon, \quad (2)$$

where f denotes the image classification model, \mathcal{L} is its loss function, and $\|M\|_0 < \epsilon$ imposes an ℓ_0 -norm constraint to limit the patch area. For the untargeted attack, \hat{y} can be any label other than the original label y . For the targeted attack, \hat{y} is set to the target label y_t .

The problem defined in Equation (2) is a joint optimization problem where M and δ jointly define the optimization solution space. Many existing adversarial patch attack methods simplify the problem by decoupling these two components [20, 42]. Methods that pursue a truly joint optimization of both mask and perturbation remain conspicuously absent.

3.2 Phase 1: Joint Optimization

Phase 1 of IMPACT tackles the challenging problem of jointly optimizing the patch mask and content, which defines a complex and high-dimensional search space [36]. Direct pixel-level optimization is computationally prohibitive due to the sheer number of variables involved. Additionally, the binary nature of the mask often leads to fragmented, incoherent shapes that are not physically realizable [42]. To overcome these challenges, we introduce two key innovations: a dimensionality reduction encoding scheme to compress the solution space, and a new aggregation algorithm to ensure locally coherent and contiguous patch shapes. Within this framework, we employ DE as the core optimization engine, leveraging its proven effectiveness in black-box adversarial settings for efficiently exploring complex solution spaces [36, 6].

3.2.1 Dimensionality Reduction Encoding

We develop a novel dimensionality reduction method that significantly reduces the encoding length while addressing limitations in existing approaches. Unlike traditional methods [43, 36], our encoding method supports the first time joint optimization of all critical patch factors. Such individual representation not only enhances optimization efficiency but also enables a more comprehensive and effective exploration of the adversarial patch design space.

In our framework, the first phase of optimization utilizes DE, which is a population-based algorithm. This means it maintains a population, which is a set of candidate solutions. We use p_i to represent the i -th individual in the population, where $i \in [1, N]$ and N denotes the population size. Each individual p_i in the population represents a candidate solution that encodes all the necessary information to generate the patches. Concretely, each individual p_i is encoded into two parts: $p_i = (\mathbf{m}_i, \mathbf{r}_i)$. The first component \mathbf{m}_i represents the mask M , and the second part \mathbf{r}_i represents the perturbation δ . The binary array $\mathbf{m} = [b_1, b_2, \dots, b_l]$ is used to encode the mask M , where $b_i \in \{0, 1\}$ and l is the encoding length of

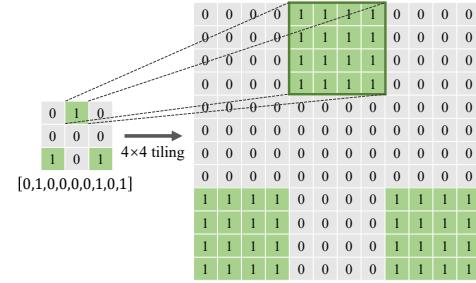


Figure 2: Example of mask encoding. A 9-element binary array $[0, 1, 0, 0, 0, 0, 1, 0, 1]$ can represent a 12×12 mask.

\mathbf{m} , depending on the size $h \times w$ of the original mask. When we set $l = (h/4) \times (w/4)$, each element in \mathbf{m} corresponds to a 4×4 block in the mask M . We can use a method called “ 4×4 tiling” to reconstruct \mathbf{m} back to the original size of the mask. An example of this encoding method is shown in Figure 2. This method significantly compresses the optimization search space and reduces its complexity. For the 224×224 images in the ImageNet dataset, the mask M can be reduced to a size of 56×56 . For the encoding of the perturbation δ , we use a three-channel matrix $\mathbf{r} \in \mathcal{R}^{3 \times n}$, where n is the number of one-valued elements in \mathbf{m} and \mathcal{R} is constrained to $[0, 255]$. This design exploits the fact that the perturbation is applied only at positions where $M_{ij} = 1$ according to Equation (1). Hence optimization is restricted to those specific pixel locations. Notably, each element in \mathbf{m} represents a 4×4 mini-patch, and each three-channel pixel in \mathbf{r} encodes the color information of the corresponding 4×4 patch.

3.2.2 Random Aggregation

After defining our encoding scheme, the resulting encoded mask $\mathbf{m} \in \{0, 1\}^l$ will contain n active elements. However, these elements may be spatially dispersed. To address this issue, we propose a new aggregation algorithm to transform \mathbf{m} into a new mask $\hat{\mathbf{m}}$ where these n active elements are consolidated into k locally connected, and irregular patches. The algorithm proceeds as follows:

The 1D input mask encoding $\mathbf{m} \in \{0, 1\}^l$ is first reshaped into a 2D binary matrix $M' \in \{0, 1\}^{\sqrt{l} \times \sqrt{l}}$ for spatial processing. The set of coordinates of the n active elements in M' is extracted:

$$\mathcal{X} = \{\mathbf{p}_j = (x_j, y_j) \mid M'[\mathbf{p}_j] = 1, j = 1, \dots, n\}. \quad (3)$$

These coordinates \mathcal{X} are then partitioned into k clusters using the K-Means algorithm:

$$\mathcal{C} = \{C_1, C_2, \dots, C_k\} = \text{KMeans}(\mathcal{X}, k). \quad (4)$$

The aggregation process aims to form a single connected shape using the elements assigned to C_i . For each cluster, we randomly select a point within the cluster as the aggregation center. For each point in a cluster, we select a target point uniformly at random from the aggregation center’s 8-neighborhood and move the point toward that target point, repeating this process until the point becomes adjacent to the existing connected component. During each move, we randomly choose whether to prioritize a horizontal or vertical move. The randomness in selecting aggregation center, the target point, and the order of move attempts contributes to the diversity of the resulting aggregated shapes. A detailed description of the random aggregation algorithm (Algorithm 2) along with visual explanation can be found in Appendix B.

Powered by the newly developed encoding scheme and the random aggregation algorithm, we further adopt DE to optimize the patch mask and content in phase 1. The detailed design of our DE algorithm is provided in Appendix C.

3.3 Phase 2: Content Refinement

Phase 2 aims to further improve attack effectiveness through pixel-level refinement of the patch content, using the mask and initial content established in Phase 1. This refinement is particularly important when phase 1 does not yield a successful attack. The solution candidate in this phase is represented by the full-resolution perturbation δ , which has dimensions $3 \times h \times w$, matching the input image resolution. We employ the (1+1) -ES for fine-grained content refinement in this phase, because it is notably simple to implement, and computationally efficient due to evaluating only one candidate solution per iteration. **Note that the IMPACT framework is flexible, and any black-box optimizers could be employed for both phases.**

The initial δ are inherited from phase 1. In phase 2, M remains fixed while δ is refined through iterative application of Gaussian noises. At each iteration, noise δ_{noise} sampled from $\mathcal{N}(0, \sigma^2)$, where σ controls the perturbation magnitude, is added to the current δ . The updated perturbation is then applied to the input image using the fixed mask M to generate a new adversarial example. If the new perturbation improves fitness, it replaces the current best solution. This process continues until a successful attack is achieved or the maximum number of iterations is reached. By transitioning from block-wise to pixel-level optimization, phase 2 overcomes the limitations of using coarse 4×4 perturbations, enabling precise adjustments that significantly enhance the attack’s effectiveness.

4 Experiments

In this section, we conduct experimental evaluation to assess the effectiveness of our proposed IMPACT method. Section 4.1 provides a detailed overview of the experimental setup. Section 4.2 presents a comparative analysis of IMPACT against state-of-the-art patch-based attack methods. Section 4.3 offers ablation studies to analyze the contribution of key components. Finally, Section 4.4 explores the significance and interplay of various hyperparameters in our method.

4.1 Experimental Setup

Dataset and Models: Following previous works [8, 43, 27], we use ImageNet [9] for evaluation due to its diverse object categories and real-world scenarios, enabling a comprehensive assessment of our method’s effectiveness. Additional experiments on more datasets are provided in Appendix E.5. Following the same setup as Patch-RS [8], we randomly select a subset of 500 images from the validation set of ImageNet for our experiments. For the victim models, we employ three widely adopted architectures: ResNet50 [17], VGG16 [32], and ViT-B [11]. These models encompass diverse architectural designs, enabling a comprehensive evaluation of IMPACT’s effectiveness across varying network architectures. All input images are resized to a standard size of 224×224 , consistent with the requirements of the experimented models. The models are officially pre-trained on the full ImageNet training set, ensuring a robust and reliable baseline for evaluation. All experiments were conducted on a system equipped with an NVIDIA GeForce RTX 4090 GPU. The detail parameter settings are provided in Appendix E.1.

Evaluation Metrics: We use the attack success rate (ASR) as the evaluation metric, considering only input images the deep model classifies correctly in the absence of any attack. For untargeted attacks, ASR measures the proportion of such images where the adversarial patch successfully causes the model to misclassify them. For targeted attacks, ASR evaluates the percentage of input images where the adversarial patch forces the model to classify the input into a specific, pre-defined target class. For query efficiency, we utilize the average query count (AQ) to measure the average number of queries the attack algorithm requires to successfully craft adversarial patches. Definitions of these performance metrics are presented in Appendix E.2. In addition, due to the stochastic nature of IMPACT, we use the same group of random seeds for evaluations to ensure reproducibility. The influence of multiple seeds is further discussed in Appendix E.3.

4.2 Performance Comparison

To evaluate our proposed IMPACT method, we conduct comparisons with state-of-the-art adversarial patch attack methods, including Patch-RS [8], TPA [45], Patch-Fool [14]. Our primary evaluation focuses on IMPACT’s performance in challenging black-box scenarios. Additionally, Appendix E.4 presents a comparison between the white-box variant of IMPACT and Patch-Fool. Furthermore, to assess its robustness, IMPACT’s effectiveness against various common defense mechanisms is evaluated in Appendix E.6. Appendix E.7 provides the results of physical-world experiments, further demonstrating the practicality of IMPACT. Appendix E.8 reports a detailed runtime analysis. Below, we present a detailed analysis of our experimental comparison results.

For the black-box comparison, Table 1 presents the statistical results of adversarial attacks conducted on various ImageNet classification models. Here, The Query represents the query budgets, and 1%, 2% are the percentages of perturbation areas. The ASR is expressed as a percentage, and for simplicity, we have omitted the unit in the Table 1. We select Patch-RS and TPA as baselines, as they focus on optimizing patch content and location, although their shapes remain fixed as rectangles.

The experimental results consistently demonstrate the superiority of our IMPACT method, which achieves higher ASR and generally lower AQ compared to the baselines across different models and settings. As shown in Table 1, IMPACT exhibits strong performance in untargeted scenarios. For instance, when attacking ResNet50 with a query budget of 10,000 and a 2% perturbation area, our method achieves a maximum ASR of 96.4%, while Patch-RS achieves 93.6%. Additionally, our AQ is 1044, which is better than Patch-RS’s 1408. For targeted attacks, our method demonstrates even greater advantages. On the ResNet50 model, we achieve a maximum targeted ASR of 57.8%, whereas Patch-RS only reaches 20.0%. Moreover, our AQ is 7148, which is significantly smaller than Patch-RS’s 8885. We attribute IMPACT’s enhanced effectiveness primarily to its joint optimization

Table 1: Performance comparison for black-box adversarial patch attacks.

Model	Query	Method	Untargeted Attack				Targeted Attack			
			1%		2%		1%		2%	
			ASR	AQ	ASR	AQ	ASR	AQ	ASR	AQ
ResNet50	5000	IMPACT	87.2	1236	94.2	676	24.6	4379	38.4	4126
		Patch-RS	82.4	1360	89.8	982	7.6	4790	12.2	4711
		TPA	38.0	3519	51.0	2807	4.3	4888	7.8	4781
	10000	IMPACT	90.0	1518	96.4	1044	38.4	8239	57.8	7148
		Patch-RS	88.2	1990	93.6	1408	10.8	9359	20.0	8885
		TPA	51.0	5705	57.0	5091	7.6	9730	15.4	9479
VGG16	5000	IMPACT	92.8	862	94.2	841	16.2	4635	34.6	4327
		Patch-RS	88.6	1114	92.8	832	10.8	4704	15.6	4640
		TPA	42.2	3416	53.6	2686	5.6	4880	8.2	4805
	10000	IMPACT	94.6	1310	95.2	1069	27.6	8893	35.4	8295
		Patch-RS	92.4	1562	94.4	1191	16.6	9073	30.8	8425
		TPA	56.2	5204	59.8	4777	9.4	9598	16.8	9321
ViT-B	5000	IMPACT	85.6	1315	92.8	880	18.4	4552	30.2	4311
		Patch-RS	80.2	1457	87.4	1052	6.2	4825	10.6	4786
		TPA	35.6	3607	48.2	2956	3.8	4942	6.2	4855
	10000	IMPACT	88.4	1652	95.0	1157	30.6	8553	48.2	7552
		Patch-RS	86.2	2175	91.8	1524	9.2	9456	17.8	9057
		TPA	48.4	5854	55.2	5237	6.8	9828	13.6	9553

of multiple patch factors, including irregular shapes, locations, number, and content. This holistic approach allows IMPACT to explore a more expressive solution space, enabling the discovery of more potent adversarial patches. For a deeper understanding of how IMPACT achieves this by influencing the model’s internal mechanisms, we provide an effectiveness analysis in Appendix D.

4.3 Ablation Study

To assess IMPACT’s key components, we perform ablations on DE, (1+1)-ES, and dimensionality reduction encoding. Note that we do not ablate the random aggregation algorithm because it is essential for transforming sparse modifications into patch-shaped perturbations, and removing it would change the attack type. However, to validate its design, we investigate the impact of the stochastic elements within this algorithm itself in Appendix E.9. All ablation experiments were performed on the ImageNet against the ResNet50 model under a total query budget of 5000, with a 2% patch area distributed across 3 patches. Similar trends were observed on other model architectures.

Table 2: Ablation study on components of IMPACT.

Method	Phase 1	Phase 2	ASR	AQ
IMPACT	DE	(1+1)-ES	94.2	676
<i>Effectiveness of DE in Phase 1:</i>				
(1+1)-ES-only	None	(1+1)-ES	60.9	2269.82
RS + (1+1)-ES	RS	(1+1)-ES	78.4	1698.7
GA + (1+1)-ES	GA	(1+1)-ES	81.8	1523.8
<i>Effectiveness of (1+1)-ES in Phase 2:</i>				
DE-Only	DE	None	90.2	748
DE + RS	DE	RS	92.3	842.1

Table 2 presents the results comparing our full IMPACT framework against several variants designed to assess the roles of its constituent optimizers and the two-phase structure. To validate the choice of DE, we compared IMPACT against variants where DE was replaced by Random Search (RS) and Genetic Algorithm (GA). These results underscore the superior exploratory capabilities of DE in navigating the complex, high-dimensional search space of joint mask and content optimization. To demonstrate the necessity of the second refinement phase, we compare IMPACT with a DE-Only variant and DE+RS. In DE-Only, the entire 5000 query budget is allocated to the DE algorithm for

Table 3: Encoding granularity ablation. For each tile size $t \times t$, the number of mini-patches was adjusted to maintain the total patch area fixed at 2% of the image.

Tile Size	Mini-Patch	ASR	AQ
1×1	1024	87.1	751.5
2×2	256	89.2	691
4×4	64	94.2	676
8×8	16	86.3	822.5
16×16	4	80.5	1099.5
32×32	1	57.2	1824

joint mask and content optimization, omitting the (1+1)-ES refinement. As shown, IMPACT achieves an ASR of 94.2% with 676 AQ, whereas DE-Only only reaches 90.2% ASR with 748 AQ. This improvement highlights that the fine-grained adjustments performed by (1+1)-ES in Phase 2 are crucial for converting near-successful patches into effective adversarial examples.

Furthermore, IMPACT employs a 4×4 tiling strategy as the default for its dimensionality reduction encoding scheme. To validate this choice and understand the impact of different encoding granularities, we conducted an encoding granularity ablation by varying the tile size. The results are presented in Table 3. Using smaller tiles resulted in a higher-dimensional search space. While offering finer granularity, this increased complexity led to slightly lower ASR. Moreover, excessively small tile sizes incur prohibitively long optimization times. Using larger tiles can significantly reduce the dimensionality. However, this led to a marked decrease in ASR. This indicates that the coarse granularity severely limited the ability to form effective adversarial patches. These findings confirm that the 4×4 tiling offers an effective balance between dimensionality and spatial resolution to construct diverse and potent irregular adversarial patches.

4.4 Parameter Sensitivity Analysis

Our method involves five important parameters that can be adjusted: n , k , N , T_d , and T_e . Here n is the number of 4×4 mini-patches in the mask, controlling the perturbation area. k denotes the number of patches. N represents the population size. T_d and T_e refer to the iterations of the DE and (1+1)-ES algorithm, respectively. Different parameter settings can lead to varying attack effectiveness.

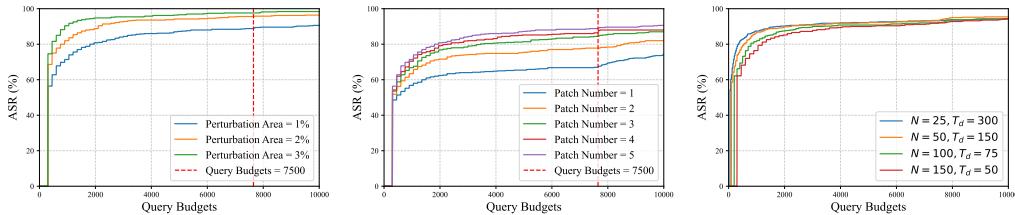


Figure 3: ASR vs query budgets. Effect of perturbation areas (Left). Effect of patch number (Center). Effect of N and T_d (Right).

To better illustrate the impact of different parameters, we plot the variation curves of success rates under different query budgets in Figure 3. The results demonstrate that a larger perturbation area and a greater number of patches contribute to higher ASR. Moreover, while different combinations of N and T_e show similar performance under high query budgets, smaller populations with more iterations excel under lower budgets. This suggests that prioritizing iteration count over population size can improve efficiency, especially with limited query resources. In addition to these primary analyses, we conducted further parameter experiments, including an investigation into the impact of DE’s mutation factor and crossover probability. These results demonstrate the relative robustness of IMPACT to these parameters. Detailed experimental data for those studies can be found in Appendix E.10.

Our IMPACT supports generating multiple patches simultaneously. To demonstrate the improvement in attack effectiveness achieved by using multiple patches, we conduct an experiment to assess the impact of varying the number of patches. As depicted in Figure 4, across all tested total perturbation areas, increasing the number of patches generally leads to a noticeable improvement in ASR. This trend highlights a key advantage of multi-patch strategies: by distributing adversarial perturbations across multiple smaller, strategically placed regions, IMPACT is able to degrade model accuracy more effectively than using a single concentrated patch. This ability to alter diverse local regions within the image significantly enhances the overall attack effectiveness.

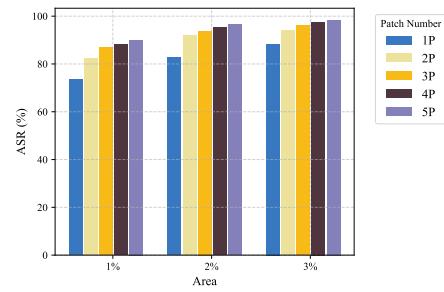


Figure 4: Impact of the number of patches (k) on ASR for different total perturbation areas (1%, 2%, 3%). Experiments were conducted on ResNet50 with $N = 150$, $T_d = 50$, $T_e = 2500$.

5 Conclusion

In this paper, we introduced a novel irregular multi-patch adversarial attack framework that supports simultaneously optimizing all critical patch factors, including shape, location, number, and content. Under our IMPACT framework, DE was used first to jointly optimize the patch mask and content, supported by a unique dimensionality reduction encoding scheme. Secondly, (1+1)-ES further refined the patch content for improved precision. Additionally, we proposed a random aggregation algorithm to generate diverse, irregular patch designs for practical use. Extensive experiments demonstrated that our method outperformed state-of-the-art approaches, significantly enhancing attack success rates. This work provides valuable insights into adversarial patch design and optimization, paving the way for practical methodologies in this domain.

Limitations: This work focuses on score-based black-box attacks, where access to the model’s output probabilities enables effective guidance of the evolutionary optimization. In contrast, decision-based black-box attacks, which provide only the model’s top-1 predicted label, pose a fundamentally different and more restrictive challenge. The absence of probability scores makes it significantly harder to infer meaningful search directions, especially when jointly optimizing multiple patch factors. Addressing this setting would require substantially different algorithmic designs and is therefore beyond the scope of this paper. Nevertheless, extending IMPACT to support decision-based attacks remains an important direction for future research. Moreover, as IMPACT is primarily an empirical approach, a more rigorous theoretical analysis of its underlying mechanisms constitutes an important direction for future research.

Ethics Statement: This work introduces IMPACT, a framework for crafting irregular multi-patch adversarial attacks to uncover vulnerabilities in deep vision models. While these attacks are essential for developing stronger defenses and improving model robustness, they also carry the risk of malicious misuse. We advocate for the responsible and ethical application of such technologies, emphasizing their use as tools for the advancement of trustworthy AI, rather than for purposes that could cause harm or compromise system integrity.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No.62272117 and No.62476030).

References

- [1] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui Hsieh, and Mani B Srivastava. Genattack: Practical black-box attacks with gradient-free optimization. In *Proceedings of the Genetic and Evolutionary Computation Conference*, pages 1111–1119. Association for Computing Machinery, 2019.
- [2] Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer. Adversarial patch. *arXiv preprint arXiv:1712.09665*, 2017.
- [3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In *European Conference on Computer Vision*, pages 213–229. Springer, 2020.
- [4] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017 IEEE Symposium on Security and Privacy (SP)*, pages 39–57. IEEE, 2017.
- [5] Zhaoyu Chen, Bo Li, Shuang Wu, Jianghe Xu, Shouhong Ding, and Wenqiang Zhang. Shape matters: deformable patch attack. In *European Conference on Computer Vision*, pages 529–548. Springer, 2022.
- [6] Zhaoyu Chen, Bo Li, Shuang Wu, Shouhong Ding, and Wenqiang Zhang. Query-Efficient Decision-Based Black-Box Patch Attack. *IEEE Transactions on Information Forensics and Security*, 18:5522–5536, 2023. ISSN 1556-6013, 1556-6021.
- [7] Francesco Croce and Matthias Hein. Sparse and imperceptible adversarial attacks. In *IEEE International Conference on Computer Vision*, pages 4724–4732. IEEE, 2019.
- [8] Francesco Croce, Maksym Andriushchenko, Naman D Singh, Nicolas Flammarion, and Matthias Hein. Sparse-rs: a versatile framework for query-efficient sparse black-box adversarial attacks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 6437–6445. AAAI Press, 2022.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pages 248–255. IEEE, 2009.

[10] Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and Jun Zhu. Efficient decision-based black-box adversarial attacks on face recognition. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 7714–7722. IEEE, 2019.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *9th International Conference on Learning Representations*. OpenReview.net, 2021.

[12] Kevin Eykholt, Ivan Evtimov, Earlene Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning visual classification. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 1625–1634. IEEE, 2018.

[13] Alhussein Fawzi and Pascal Frossard. Measuring the effect of nuisance variables on classifiers. In *Proceedings of the British Machine Vision Conference*, pages 137–1. BMVA Press, 2016.

[14] Yonggan Fu, Shunyao Zhang, Shang Wu, Cheng Wan, and Yingyan Lin. Patch-fool: Are vision transformers always robust against adversarial perturbations? In *The Tenth International Conference on Learning Representations*. OpenReview.net, 2022.

[15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014.

[16] Chaoxiang He, Xiaojing Ma, Bin B. Zhu, Yimiao Zeng, Hanqing Hu, Xiaofan Bai, Hai Jin, and Dongmei Zhang. Dorpatch: Distributed and occlusion-robust adversarial patch to evade certifiable defenses. In *31st Annual Network and Distributed System Security Symposium*. The Internet Society, 2024.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 770–778. IEEE, 2016.

[18] Chengyin Hu, Weiwen Shi, Tingsong Jiang, Wen Yao, Ling Tian, Xiaoqian Chen, Jingzhi Zhou, and Wen Li. Adversarial infrared blocks: A multi-view black-box attack to thermal infrared detectors in physical world. *Neural Networks*, 175:106310, 2024.

[19] Jun-Jie Huang, Ziyue Wang, Tianrui Liu, Wenhan Luo, Zihan Chen, Wentao Zhao, and Meng Wang. Dempaa: Deployable multi-mini-patch adversarial attack for remote sensing image classification. *IEEE Transactions on Geoscience and Remote Sensing*, 62:1–13, 2024.

[20] Danny Karmon, Daniel Zoran, and Yoav Goldberg. Lavan: Localized and visible adversarial noise. In *International Conference on Machine Learning*, pages 2507–2515. PMLR, 2018.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in Neural Information Processing Systems*, volume 25, pages 1106–1114. Curran Associates, Inc., 2012.

[22] Chao Li, Handing Wang, Jun Zhang, Wen Yao, and Tingsong Jiang. An approximated gradient sign method using differential evolution for black-box adversarial attack. *IEEE Trans. Evol. Comput.*, 26(5):976–990, 2022.

[23] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In *6th International Conference on Learning Representations*. OpenReview.net, 2018.

[24] Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: a few pixels make a big difference. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 9087–9096. IEEE, 2019.

[25] Kien Nguyen, Tharindu Fernando, Clinton Fookes, and Sridha Sridharan. Physical adversarial attacks for surveillance: A survey. *IEEE Trans. Neural Networks Learn. Syst.*, 35(12):17036–17056, 2024.

[26] Hao Qiu, Leonardo Lucio Custode, and Giovanni Iacca. Black-box adversarial attacks using evolution strategies. In *Proceedings of the Genetic and Evolutionary Computation Conference Companion*, pages 1827–1833. Association for Computing Machinery, 2021.

[27] Yu Ran, Weijia Wang, Mingjie Li, Lin-Cheng Li, Yuan-Gen Wang, and Jin Li. Cross-shaped adversarial patch attack. *IEEE Transactions on Circuits and Systems for Video Technology*, 34(4):2289–2303, 2023.

[28] Sukrut Rao, David Stutz, and Bernt Schiele. Adversarial training against location-optimized adversarial patches. In *European Conference on Computer Vision*, pages 429–448. Springer, 2020.

[29] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversarially robust imagenet models transfer better? In *Advances in Neural Information Processing Systems*, 2020.

[30] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In *IEEE International Conference on Computer Vision*, pages 618–626. IEEE Computer Society, 2017.

[31] Abhijith Sharma, Yijun Bian, Vatsal Nanda, Phil Munz, and Apurva Narayan. Vulnerability of cnns against multi-patch attacks. In *Proceedings of the 2023 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems*, pages 23–32. ACM, 2023.

[32] Karen Simonyan. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.

[33] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep neural networks. *IEEE Transactions on Evolutionary Computation*, 23(5):828–841, 2019.

[34] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. In *Advances in Neural Information Processing Systems*, pages 3104–3112. Curran Associates, Inc., 2014.

[35] C Szegedy. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

[36] Guijian Tang, Wen Yao, Chao Li, Tingsong Jiang, and Shaowu Yang. Black-box adversarial patch attacks using differential evolution against aerial imagery object detectors. *Eng. Appl. Artif. Intell.*, 137:109141, 2024.

[37] Ye Tian, Jingwen Pan, Shangshang Yang, Xingyi Zhang, Shuping He, and Yaochu Jin. Imperceptible and sparse adversarial attacks via a dual-population-based constrained evolutionary algorithm. *IEEE Trans. Artif. Intell.*, 4(2):268–281, 2023.

[38] Viet Quoc Vo, Ehsan Abbasnejad, and Damith Ranasinghe. Query efficient decision based sparse attacks against black-box deep learning models. In *The Tenth International Conference on Learning Representations*. OpenReview.net, 2022.

[39] Yichen Wang, Yuxuan Chou, Ziqi Zhou, Hangtao Zhang, Wei Wan, Shengshan Hu, and Minghui Li. Breaking barriers in physical-world adversarial examples: Improving robustness and transferability via robust feature. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 8069–8077. AAAI Press, 2025.

[40] Hui Wei, Hao Tang, Xuemei Jia, Zhixiang Wang, Hanxun Yu, Zhubo Li, Shin’ichi Satoh, Luc Van Gool, and Zheng Wang. Physical adversarial attack meets computer vision: A decade survey. *IEEE Trans. Pattern Anal. Mach. Intell.*, 46(12):9797–9817, 2024.

[41] Xingxing Wei, Ying Guo, Jie Yu, and Bo Zhang. Simultaneously optimizing perturbations and positions for black-box adversarial patch attacks. *IEEE transactions on pattern analysis and machine intelligence*, 45(7):9041–9054, 2022.

[42] Xingxing Wei, Jie Yu, and Yao Huang. Physically adversarial infrared patches with learnable shapes and locations. In *IEEE Conference on Computer Vision and Pattern Recognition*, pages 12334–12342. IEEE, 2023.

[43] Phoenix Williams and Ke Li. Camopatch: An evolutionary strategy for generating camouflaged adversarial patches. In *Advances in Neural Information Processing Systems*, volume 36, pages 67269–67283. Curran Associates, Inc., 2023.

[44] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and Prateek Mittal. Patchguard: A provably robust defense against adversarial patches via small receptive fields and masking. In *30th USENIX Security Symposium*, pages 2237–2254. USENIX Association, 2021.

[45] Chenglin Yang, Adam Kortylewski, Cihang Xie, Yinzhi Cao, and Alan L. Yuille. Patchattack: A black-box texture-based attack with reinforcement learning. In *European Conference on Computer Vision*, volume 12371, pages 681–698. Springer, 2020.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The abstract and introduction clearly articulate the contributions of this paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: We discuss the limitations of this work in the Conclusion section.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[NA\]](#)

Justification: This work focuses on empirical algorithm design and evaluation and does not present formal theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: This paper provides detailed parameters, configurations, and source code for our experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: This paper provides open access to the data and code anonymously.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: All parameters and settings are included in our paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: We initialized the random seed and conducted multiple experiments to average results in experiments involving randomness.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: We provide sufficient information of the computational resources in the paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: Our work adheres to the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: Our work advances understanding of model vulnerabilities by generating irregular adversarial patches, which can be used to improve defense mechanisms via robustness evaluation.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We mention the assets used and adhere to their respective licenses and terms of use.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: **[Yes]**

Justification: This paper releases the source code.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: **[NA]**

Justification: This work does not involve crowdsourcing experiments or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: **[NA]**

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

Appendix

A Function Explanation

To provide additional clarity, we summarize the functions used in Algorithm 1. Each function plays a specific role in the EA-based optimization framework of IMPACT.

PopInit: This function initializes a population P_0 of N individuals to ensure diverse starting points for the search process. Each individual is structured according to our encoding scheme, consisting of two components: a binary encoded mask \mathbf{m} and a continuous encoded content \mathbf{r} .

Mutation: This core DE function creates a mutant vector v_i for each individual p_i by differential combination of other population members. This process introduces new variations into the search.

Crossover: This function mixes the components of the parent individual p_i and its corresponding mutant vector v_i to create a new trial individual u_i . This enhances population diversity.

Aggregation: This is a component of our framework. It takes the sparse binary mask m from a trial individual and transforms its scattered active elements into k physically contiguous, irregular patches.

Fitness: This function evaluates the quality of a trial individual. It reconstructs the full patch, applies it to the image, and calculates the model’s cross-entropy loss.

Selection: This function compares the fitness of the trial individual u_i with the parent p_i . The one with the better fitness score survives into the next generation’s population.

SelectBest: This is a simple function that iterates through the final population and returns the single individual with the best fitness score found during the optimization.

B Random Aggregation Details

To provide a more detailed exposition of our random aggregation algorithm, we present it in Algorithm 2. This algorithm is a crucial component of our IMPACT framework, responsible for transforming the spatially dispersed active mini-patches into coherent, irregular patch structures.

Algorithm 2 Random Aggregation Algorithm

Input: Mask encoding $\mathbf{m} \in \{0, 1\}^l$, patch number k

Output: Aggregated mask encoding $\hat{\mathbf{m}}$

```

1: Reshape  $\mathbf{m}$  into a 2D binary matrix  $\hat{M} \in \{0, 1\}^{\sqrt{l} \times \sqrt{l}}$ .
2: Extract coordinates of one-valued elements:  $\mathcal{X} = \{(a, b) \mid \hat{M}[a, b] = 1\}$ .
3: Perform clustering:  $\mathcal{C} = KMeans(\mathcal{X}, k)$ , where  $\mathcal{C} = \{C_1, C_2, \dots, C_k\}$ .
4: for each  $C_i \in \mathcal{C}$  do
5:   Select  $s_{center} \in C_i$  uniformly at random.
6:   Create aggregated region  $A(s_{center})$ .
7:   for each  $s \in C_i \setminus \{s_{center}\}$  do
8:     Sample  $s_{target} \in Nb(s_{center})$ , where  $Nb(s_{center})$  is the neighborhood of  $s_{center}$ .
9:      $s_{new} \leftarrow Move(s, s_{target})$ .
10:    if  $s_{new} \in Nb(A(s_{center}))$  then
11:      Update  $A(s_{center}) \leftarrow A(s_{center}) \cup \{s_{new}\}$ .
12:      Update  $\hat{M}$ :  $\hat{M}[s] \leftarrow 0$ ,  $\hat{M}[s_{new}] \leftarrow 1$ .
13:    end if
14:   end for
15: end for
16: Flatten  $\hat{M}$  to  $\hat{\mathbf{m}} \in \{0, 1\}^l$ .
17: return  $\hat{\mathbf{m}}$ 

```

Furthermore, to visually illustrate the algorithm’s operation, Figure 5 depicts an example of the aggregation process. In this case, the initially scattered active elements are first partitioned into three distinct clusters by K-Means. Subsequently, our random aggregation algorithm processes each cluster, resulting in the formation of three distinct patches, each exhibiting an irregular and locally connected shape.

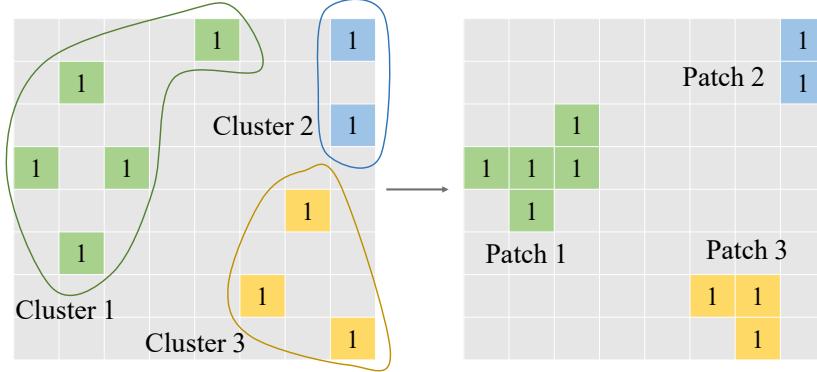


Figure 5: Example of random aggregation.

Figure 6 further demonstrates the practical outcome of this aggregation process. As can be seen, the algorithm effectively consolidates initially scattered units into locally connected, irregular shapes, thereby forming patches that are well-formed and readily applicable for adversarial attacks.

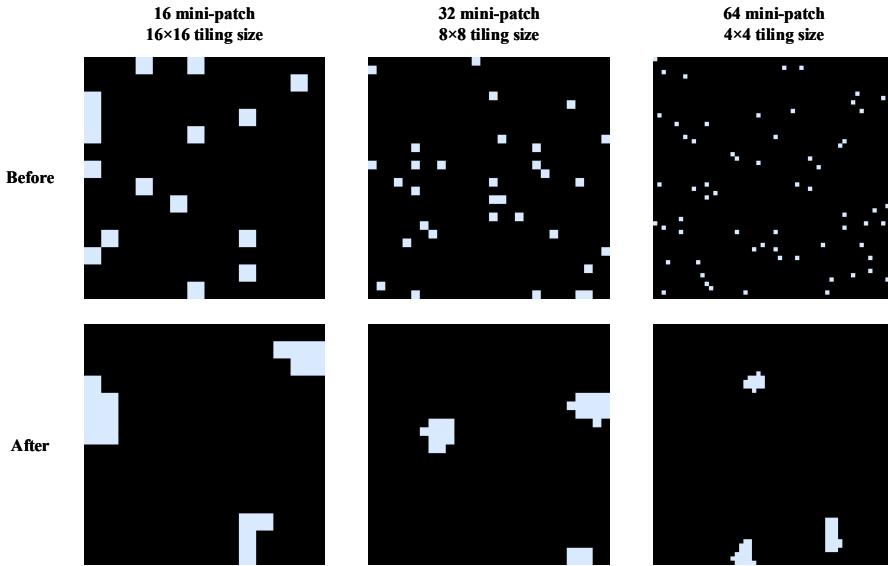


Figure 6: Visualization of the Random Aggregation algorithm’s effect. The top row shows the spatial distribution of active mini-patches before aggregation, for different total mini-patch counts and corresponding tiling sizes. The bottom row illustrates how these scattered mini-patches are consolidated into coherent, irregular patch structures by our aggregation algorithm. Each column represents a different configuration. Left: 16 mini-patches and 16x16 tiling size. Center: 32 mini-patches and 8x8 tiling size. Right: 64 mini-patches and 4x4 tiling size.

C DE Components

C.1 Initialization

The initial population P_0 for the DE algorithm, consisting of N individuals, is generated randomly to ensure diverse starting points for the search process. Each individual $p \in P_0$ is structured according to our dimensionality reduction encoding scheme, consisting of two components: a binary encoded mask \mathbf{m} and a continuous encoded content \mathbf{r} .

The mask \mathbf{m} is a binary vector of length l . To satisfy the constraint on the total number of active mini-patches, exactly n elements of \mathbf{m} are randomly selected and set to 1, while the remaining $l - n$

elements are set to 0. This ensures that every individual in the initial population adheres to the specified patch area from the beginning of the optimization.

The content component \mathbf{r} corresponds to the initial color information for the n active mini-patches in its associated mask \mathbf{m} . It is represented as a matrix of shape $3 \times n$. The values within this matrix are initialized by sampling uniformly at random from the valid pixel intensity range $[0, 255]$.

This random initialization process generates a diverse population $P_0 = \{p_1, \dots, p_N\}$ where each individual satisfies the patch area requirements and possesses varied initial content, providing a robust foundation for the subsequent evolutionary operations of mutation, crossover, and selection.

C.2 Mutation

Building upon our dimensionality reduction encoding, we further tailor the core DE operators. In particular, mutation must be adapted to handle the distinct binary nature of the encoded mask and the continuous nature of the encoded content. We present these customized mutation procedures below.

For each individual p_i , we first randomly select three distinct individuals $p_a = (\mathbf{m}_a, \mathbf{r}_a)$, $p_b = (\mathbf{m}_b, \mathbf{r}_b)$, and $p_c = (\mathbf{m}_c, \mathbf{r}_c)$ from the population. These individuals serve as the basis for generating the mutated individual $v_i = (\tilde{\mathbf{m}}_i, \tilde{\mathbf{r}}_i)$, as detailed below. The mutation operation is applied separately to the two components of the individual.

For the mask component, we adopt a mutation strategy in the binary space. Using the selected mask components \mathbf{m}_a , \mathbf{m}_b , and \mathbf{m}_c of the chosen individuals, the mutated mask $\tilde{\mathbf{m}}$ is computed as follows:

$$\tilde{\mathbf{m}}_i = (\mathbf{m}_a + (\mathbf{m}_b - \mathbf{m}_c)) \bmod 2. \quad (5)$$

Here, the modulo operation ensures that the resulting $\tilde{\mathbf{m}}_i$ remains a valid binary vector.

For the perturbation component in the continuous space, using the selected perturbation components \mathbf{r}_a , \mathbf{r}_b , and \mathbf{r}_c , the mutated component $\tilde{\mathbf{r}}_i$ is calculated as:

$$\tilde{\mathbf{r}}_i = \mathbf{r}_a + F \cdot (\mathbf{r}_b - \mathbf{r}_c), \quad (6)$$

where F is a mutation factor. The crossover and selection mechanisms, which follow standard DE practices (e.g., binomial crossover and greedy selection), along with the detailed fitness function calculation, are described below.

C.3 Crossover

Each mutated individual v_i proceeds to the crossover operation, which is performed as follows:

$$u_{i,j} = \begin{cases} v_{i,j}, & \text{if } \text{rand}_j(0, 1) < CR \text{ or } j = j_{\text{rand}}, \\ p_{i,j}, & \text{otherwise} \end{cases}, \quad (7)$$

where $v_{i,j}$ is the j -th element of the mutant individual v_i . $p_{i,j}$ is the j -th element of the parent individual p_i . The crossover operation combines v_i and p_i to create a trial individual u_i . $CR \in [0, 1]$ is the crossover probability, which determines the likelihood of inheriting elements from the mutant individual. To ensure that at least one element is inherited from the mutant individual, j_{rand} is a randomly chosen index that guarantees $v_{i,j}$ is selected for the corresponding $j = j_{\text{rand}}$.

C.4 Repair

Following the mutation and crossover operations, the total number of elements with value 1 may deviate from the pre-defined constraint. We should repair the count of 1s to precisely match the target patch area. Let n denote the desired number of elements with value 1, and n_c denote the current number of 1s in \mathbf{m} . If $n_c > n$, we randomly select $n_c - n$ elements with value 1 and set them to 0. If $n_c < n$, we randomly select $n - n_c$ elements with value 0 and set them to 1. This procedure ensures that the total perturbation area of the patch remains constant.

C.5 Fitness Function

The fitness function evaluates the quality of each individual during the selection process, retaining those with higher fitness and discarding others. It is designed based on the cross-entropy loss \mathcal{L}_{CE} .

Specifically, pixel values from \mathbf{r} are extracted and mapped to positions where $\mathbf{m}[i] = 1$, forming a perturbation $\hat{\delta}$ with dimensions $3 \times \frac{h}{4} \times \frac{w}{4}$. Using 4×4 -tiling, \mathbf{m} and $\hat{\delta}$ are resized to match the original image dimensions, i.e., M and δ respectively. The perturbed example is then constructed using Equation (1) and fed into the target model. Subsequently, the cross-entropy loss regarding the model’s output is used to assess the perturbation’s impact. For untargeted attacks, the fitness function is $\mathcal{L}_{CE}(f(\hat{x}), y)$, where y is the true label. For targeted attacks, it is $-\mathcal{L}_{CE}(f(\hat{x}), y_t)$, where y_t is the target label.

C.6 Selection

The selection operator in our DE algorithm determines which individuals, between the current population and the newly generated trial vectors, will survive to form the population for the next generation. This process employs a one-to-one greedy selection strategy based on fitness values.

Let $P = \{p_1, \dots, p_N\}$ be the current population at generation t , where each individual $p_i = (\mathbf{m}_i, \mathbf{r}_i)$ consists of an encoded mask and content. Let $U = \{u_1, \dots, u_N\}$ be the population of trial vectors generated through mutation and crossover from P , where each $u_i = (\mathbf{m}'_i, \mathbf{r}'_i)$. Let $F(p)$ denote the fitness function, where a higher fitness value indicates a better solution.

For each pair of corresponding individuals, their fitness values are compared. The individual with the superior fitness is selected to be part of the population for the next generation.

$$p_i^{(t+1)} = \begin{cases} u_i^{(t)} & \text{if } F(u_i^{(t)}) > F(p_i^{(t)}) \\ p_i^{(t)} & \text{otherwise} \end{cases} \quad (8)$$

This elitist selection mechanism ensures that the fitness of the population is non-decreasing from one generation to the next, preserving good solutions found so far and driving the search towards more promising regions of the solution space.

D Effectiveness Analysis

To gain deeper insights into how IMPACT influence the model’s decision-making process, we employ class activation mapping (CAM) [30] to visualize the regions the model focuses on when making predictions. Figure 7 presents CAM visualizations for several examples from the ImageNet dataset, showing the model’s attention on both original images and their corresponding adversarial versions generated by IMPACT.

After applying the IMPACT-generated patches, a significant shift in the model’s attention is observed in the corresponding CAMs. The model’s focus is now often distracted or drawn towards the locations of our strategically placed irregular patches leading to a misclassification. This suggests that the patches introduce features that the model deems highly indicative of the incorrect class or sufficiently disruptive to confuse the features of the true class. The IMPACT method effectively manipulates the model’s learned saliency. The irregular, multi-patch design appears adept at either creating new, highly salient focal points or disrupting the existing saliency map of the true object. The distributed nature of the multi-patches allows for influencing model attention at several locations simultaneously, potentially being more effective than a single, larger patch in confusing the model’s global understanding of the scene.

The CAM results provide qualitative evidence for the effectiveness of our IMPACT. The patches do not need to be large or overtly cover the main object to be effective; instead, their carefully optimized content and placement, facilitated by our DE-based joint optimization and irregular shape generation, are sufficient to significantly alter the model’s feature interpretation and subsequent attention, leading to successful attacks.

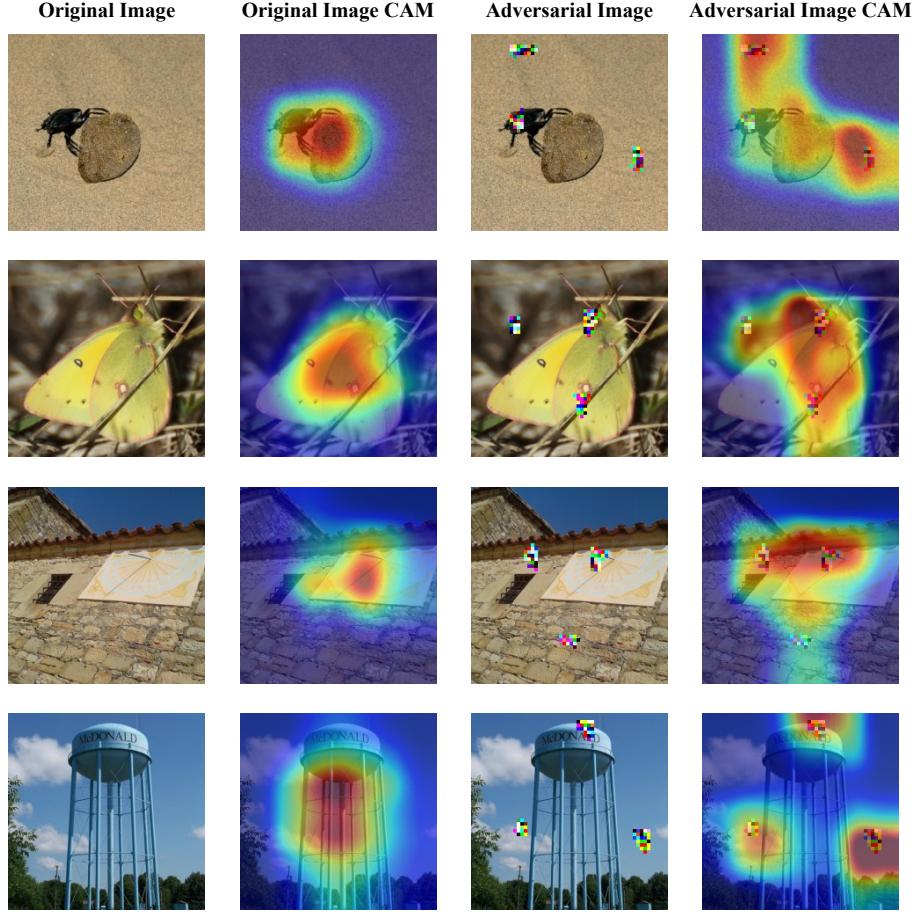


Figure 7: The figure is organized into four columns per example: (1) the original image, (2) the CAM for the original image correctly classified by the ResNet50 model, (3) the adversarial image generated by IMPACT, and (4) the CAM for the adversarial image, now misclassified by the model.

E Experimental Details

E.1 Parameter Settings

Black-box Comparison: We evaluate IMPACT under different perturbation areas, with parameters $n = 32, 64$ controlling perturbation areas of 1% and 2%, respectively. The remaining parameters of IMPACT are set as follows: $k = 3$, $N = 50$, $T_d = 150$, and $T_e = 2500$. For the comparison methods, since these methods also support the ImageNet dataset, we set the parameters to their recommended values as suggested in the respective papers.

White-box Comparison: The parameters of IMPACT are $N = 50$, $T_d = 150$, and $T_e = 2500$. For a perturbation area of 0.5%, we set $n = 16$ and $k = 1$. For a perturbation area of 1%, we set $n = 32$ and $k = 2$. For a perturbation area of 1.5%, we set $n = 48$ and $k = 3$. To ensure fairness in comparison, we align the patch number for Patch-Fool with that of IMPACT at different perturbation areas. Additionally, when optimizing patch content, both IMPACT and Patch-Fool use 250 iterations of PGD.

E.2 Evaluation Metrics

Here, we present the formulas for ASR and AQ. For the set of input images N_{clean} , which the model correctly classifies without any attack, the untargeted ASR is defined as:

$$\text{ASR}_{\text{untargeted}} = \frac{|N_{\text{misclassified}}|}{|N_{\text{clean}}|} \times 100\%$$

where $N_{\text{misclassified}}$ is the subset of N_{clean} that is misclassified after applying adversarial patches. $|\cdot|$ is the size of the set.

The targeted ASR is defined as:

$$\text{ASR}_{\text{targeted}} = \frac{|N_{\text{targeted}}|}{|N_{\text{clean}}|} \times 100\%$$

where N_{targeted} is the subset of N_{clean} where adversarial patches successfully causes the model to classify the images into a specific, pre-defined target class.

AQ measures the average number of queries required to successfully craft adversarial patches. For the set of input images N_{clean} , it is defined as:

$$\text{AQ} = \frac{\sum_{i \in N_{\text{clean}}} q_i}{|N_{\text{clean}}|}$$

where q_i is the number of queries required to successfully attack the i -th image. For unsuccessful attacks, q_i is set to the query limit Q_{max} .

E.3 Sensitivity of Random Seeds

Given the stochastic elements inherent in our IMPACT framework, we investigated the method’s sensitivity to random seed. We performed 10 independent runs for untargeted attacks with both 1% and 2% total perturbation areas against the ResNet50 model, each run utilizing a different random seed. The total query budget was fixed at 5000. Figures 8 illustrates the distribution of the ASR and AQ across seeds.

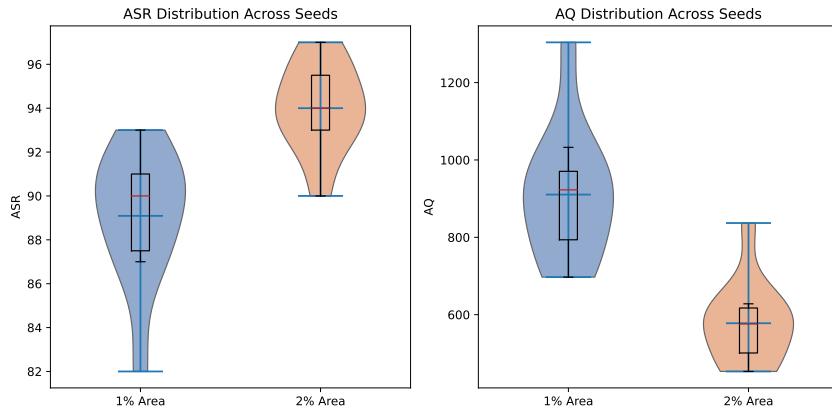


Figure 8: Violin plots of ASR and AQ across 10 random seeds for two patch budgets (1 % vs. 2 % of patch area). The shaded violins depict the full distribution density, the black boxes show the interquartile range with median lines, and the orange ticks mark the mean. Allowing a larger patch area (2 %) yields higher and more consistent ASR while reducing the number of queries needed.

The violin plots for both ASR and AQ demonstrate that our IMPACT method exhibits good robustness to initialization stochasticity. While some variation is expected in heuristic search algorithms, the results are largely consistent, especially at a 2% perturbation area where high success rates are reliably achieved with stable query efficiency. This indicates that IMPACT’s performance is not overly sensitive to the specific random seed chosen, making it a reliable method for generating adversarial patches.

E.4 Comparison of White-Box Attack Methods

We designed white-box experiment to evaluate the contribution of our patch mask generation strategy. To ensure a fair comparison, we create a white-box version of our IMPACT method, referred to

as IMPACT-W. Specifically, after obtaining the multi-patch mask M from DE, we use Projected Gradient Descent (PGD) [23] to optimize the patch content. Patch-Fool [14] is a state-of-the-art methods, and it has shown superior performance compared to other white box methods, such as LOAP [28], DPA [5]. Patch-Fool offers multiple strategies for selecting patch locations. We focus on two: saliency-based selection (Patch-Fool-S) and random selection (Patch-Fool-R). Table 4 presents the comparison with Patch-Fool, based on consistent perturbation areas and patch counts: 0.5% (1 patch), 1% (2 patches), and 1.5% (3 patches). The parameter settings of IMPACT-W and Patch-Fool are in Appendix E.1. Results show our method outperforms Patch-Fool, highlighting the advantage of optimizing patch shapes and demonstrating the superiority of our patch mask generation approach.

Table 4: Performance comparison of white-box methods.

Model	Method	ASR		
		0.5%	1%	1.5%
ResNet50	IMPACT-W	80.50	95.40	98.50
	Patch-Fool-S	76.00	93.40	97.40
	Patch-Fool-R	68.40	90.40	96.80

E.5 Evaluation on More Datasets

To further validate the generalization capability of IMPACT, we extended our experiments beyond ImageNet to include CIFAR-10 and CIFAR-100 using ResNet50 as the backbone model. Table 5 summarizes the results under both untargeted and targeted settings. Given the lower resolution of CIFAR images (32×32), we adjusted the encoding to employ a 1×1 tiling configuration. This modification ensures maximum granularity while maintaining a manageable search space, highlighting the flexibility of our encoding design.

Table 5: Performance on CIFAR-10 and CIFAR-100 datasets using ResNet50, with 5000 query budget and 5% perturbation area.

Dataset	Attack Type	Method	AQ \downarrow	ASR (%) \uparrow
CIFAR-10	Untargeted	Patch-RS	156.78	97.8
		IMPACT	113.98	99.2
	Targeted	Patch-RS	2155.47	85.3
		IMPACT	1634.36	92.7
CIFAR-100	Untargeted	Patch-RS	98.52	98.1
		IMPACT	72.81	99.3
	Targeted	Patch-RS	2310.80	82.5
		IMPACT	1556.17	90.1

As shown in Table 5, IMPACT achieves near-perfect ASRs exceeding 99% in untargeted attacks across both CIFAR-10 and CIFAR-100, outperforming the strong baseline Patch-RS. Moreover, even in the more challenging targeted setting, IMPACT maintains ASRs above 90%, significantly reducing the query cost compared to Patch-RS. These results demonstrate that IMPACT’s effectiveness is not limited to a particular data distribution such as ImageNet, but rather generalizes well to datasets with distinct statistical and visual characteristics.

E.6 Evaluation on Defense Models

To further assess the robustness of our IMPACT method, we evaluated its performance against several defense mechanisms. Similar to reference [43], we evaluate the effectiveness of our IMPACT method against adversarially trained models [29] and the PatchGuard defense [44].

Table 6 summarizes the ASR and AQ of our IMPACT method when attacking these defended models, compared to its performance against a standard, non-defended ResNet50 model. The results demonstrate that while defenses can impact performance, our IMPACT method exhibits considerable resilience, particularly against the tested adversarially trained models. Against the specialized

PatchGuard defense, IMPACT’s success rate, while reduced, remains significant, indicating its potential to overcome defenses specifically designed for patch attacks. The increased query cost in this scenario highlights the added difficulty imposed by such a defense.

Overall, these findings underscore the strength of IMPACT as a black-box patch attack. Its ability to jointly optimize diverse patch characteristics allows it to remain effective even when faced with common and specialized defense strategies, motivating further research into more comprehensive defense mechanisms.

Table 6: ASR and AQ of IMPACT against standard and defended models (Black-box, untargeted, 5000 queries, 2% area, 3 patches).

Target Model	ASR (%)	AQ
ResNet50 (No Defense)	94.2	676
AT-ResNet50-L2 ($\epsilon = 3.0$)	92.2	520.6
AT-ResNet50-Linf ($\epsilon = 4/255$)	93.8	508.1
bagnet17 with PatchGuard	83.4	1920.6

E.7 Physical-World Evaluation

To assess the real-world applicability of IMPACT, we conducted physical-world experiments following Wang et al. [39]. Specifically, we randomly selected 100 images with adversarial patches and printed each on a 10 cm \times 10 cm white paper. Using an iPhone 15, we photographed each printed image from different distances (10 cm, 15 cm, and 20 cm) and viewing angles (0°, 15°, and 30°). The captured photos were then resized to 224 \times 224 pixels for input to the ResNet50 model. All experiments were conducted under the targeted attack setting, where the goal was to force the model to predict a specific incorrect class.

Table 7: Physical-world performance of IMPACT. The targeted ASR (%) is reported across varying distances and viewing angles for ResNet50 model. “Digital ASR” denotes the corresponding performance in the digital domain for the same 100 images.

Model	Digital ASR	Angle	ASR@10cm	ASR@15cm	ASR@20cm
ResNet50	53.0	0°	41.0	37.0	32.0
		15°	35.0	31.0	26.0
		30°	28.0	25.0	21.0

As shown in Table 7, IMPACT remains effective in real-world settings. Even under challenging conditions (20 cm distance and 30° viewing angle), it achieves a 21.0% targeted ASR. The observed degradation from the digital to the physical domain is expected, as variations in distance and viewing angle inevitably diminish patch detail in captured images. Despite this, IMPACT retains meaningful attack performance, demonstrating its practical feasibility.

E.8 Consumption Time Analysis

To assess the computational overhead of IMPACT, we follow Williams et al. [43], measuring the average time required to successfully complete an attack on a single image. The experiments were conducted on a single NVIDIA RTX 4090 GPU under the untargeted attack setting against the ResNet50 model, with a query budget of 5000 and a perturbation area of 2%. The results are summarized in Table 8.

Table 8: Comparison of computational time under the untargeted attack setting on ResNet50.

Method	ASR (%) \uparrow	AQ \downarrow	Runtime (s) \downarrow
IMPACT	94.2	676	29.16
Patch-RS	89.8	982	1.78

As shown in Table 8, IMPACT requires more time per attack (29.16 s) than Patch-RS (1.78 s), primarily because it employs a population-based optimization algorithm that evaluates multiple

candidate solutions per generation. In contrast, Patch-RS relies on a simpler random sampling strategy with a lower per-iteration computational cost.

Despite the higher runtime, IMPACT significantly outperforms Patch-RS in the metrics that matter most in black-box attack scenarios. Specifically, it achieves a higher attack success rate (**94.2% vs. 89.8%**) and requires substantially fewer model queries (**676 vs. 982** on average). In real-world applications, each query can be expensive and increases the risk of detection, making query efficiency far more critical than raw computational time. Thus, while IMPACT incurs a higher runtime than Patch-RS, this is justified by its substantially better attack quality and query efficiency, and the overall runtime remains practical for real-world deployment.

E.9 Ablation Study on Random Aggregation

Our Random Aggregation algorithm incorporates stochasticity at several key junctures to foster diversity in the generated irregular patch shapes. Specifically, these include: (1) Random aggregation center. The center for aggregation within each K-Means cluster is chosen randomly from the cluster’s members. (2) Random target in neighborhood. When an element is being moved, the target towards which it moves is randomly selected from the neighborhood of the aforementioned aggregation center. (3) Random movement direction. If multiple directions (e.g., horizontal and vertical) would reduce an element’s distance to its target, one is chosen randomly. To understand contributions of these stochastic elements, we conducted an ablation study in Table 9.

Table 9: Ablation study on stochastic components within random aggregation.

Aggregation Variant	ASR (%)	AQ
Full random	94.2	676
No random aggregation center	89.5	782
No random target in neighborhood	92.1	727
No random movement direction	92.4	684

For no random aggregation center, instead of randomly selecting an aggregation center from within the cluster members, we deterministically use the centroid calculated by the K-Means algorithm as the aggregation center for each cluster. All other stochastic elements remain active. For no random target in neighborhood, elements are moved directly towards the aggregation center itself, rather than to a randomly chosen point within its neighborhood. For no random movement direction, the algorithm always attempts a horizontal move first, followed by a vertical move.

This ablation study highlights the importance of the stochastic elements within our Random Aggregation algorithm. The random selection of the aggregation center appears to be the most impactful, significantly contributing to both attack success and efficiency. Randomness in selecting the target within the center’s neighborhood also provides a noticeable benefit. While randomizing the movement direction has a smaller effect on the primary metrics, retaining all three sources of randomness likely contributes to the overall diversity and robustness of the patch generation process. These findings justify our design choices to incorporate these levels of stochasticity to enhance the exploration of diverse and effective irregular patch shapes.

E.10 Parameter Experiment Details

In our method, the number of queries is influenced by three parameters: N , T_d , and T_e . The total number of queries is calculated as $Q = N \times T_d + T_e$. To assess the impact of these parameters on optimization performance, we design experiments focusing on N and T_d . We set a total query budget of 10,000 while keeping n , k , and T_e constant. This approach resulted in various combinations of N and T_d . Table 10 illustrates the effect of these different combinations. It can be observed that the highest ASR 95.20% is achieved when $N = 50$ and $T_d = 150$. Under a fixed query budget, prioritizing a higher number of iterations over a larger population size leads to better optimization and more effective attacks.

We further investigate the sensitivity of the DE phase to its two core hyperparameters: the mutation factor F and the crossover probability CR . All experiments below use only Phase 1 optimization with $N = 50$, $T_d = 100$, and a fixed total query budget of $Q = 5000$. We sweep the two core DE

Table 10: The impact of different parameter combinations.

n	k	T_e	N	T_d	ASR(%)
64	3	2500	25	300	94.60
			50	150	95.20
			100	75	94.00
			150	50	93.80

hyperparameters: mutation factor F and crossover rate CR , while holding the total patch area at 2% and the number of patches $k = 3$ constant. Specifically, when evaluating CR , we fix $F = 2$, and when evaluating F , we fix $CR = 0.8$. The results are reported in Table 11 and Table 12, respectively.

Table 11: Effect of crossover rate CR .

CR	ASR (%)	AQ
0.2	90.4	835
0.4	88.2	840
0.6	89.2	785
0.8	90.8	748
1.0	89.4	727

Table 12: Effect of mutation factor F .

F	ASR (%)	AQ
0.5	85.4	1058
1.0	87.8	835
2.0	90.8	748
3.0	89.6	718
4.0	89.2	743

Our analysis of these hyperparameter sweeps reveals that IMPACT’s performance is relatively robust to variations in the mutation factor F and crossover rate CR within typical ranges. However, to optimize the balance between success rate and query efficiency, we identified $CR = 0.8$ and $F = 2.0$ as offering a marginally superior trade-off. Consequently, these values are adopted as defaults in other reported experiments.