
IMPACT: Irregular Multi-Patch Adversarial
Composition Based on Two-Phase Optimization

Zenghui Yang1,5, Xingquan Zuo2,5∗, Hai Huang2,5, Gang Chen3,
Xinchao Zhao4, Tianle Zhang1,5

1Shool of Cyberspace Security, Beijing University of Posts and Telecommunications
2School of Computer Science, Beijing University of Posts and Telecommunications

3School of Engineering and Computer Science, Victoria University of Wellington
4School of Science, Beijing University of Posts and Telecommunications

5Key Laboratory of Trustworthy Distributed Computing and Service
{yangzh,zuoxq,hhuang,zhaoxc,tlezhang}@bupt.edu.cn

aaron.chen@ecs.vuw.ac.nz

Abstract

Deep neural networks have become foundational in various applications but remain
vulnerable to adversarial patch attacks. Crafting effective adversarial patches is
inherently challenging due to the combinatorial complexity involved in jointly
optimizing critical factors such as patch shape, location, number, and content.
Existing approaches often simplify this optimization by addressing each factor
independently, which limits their effectiveness. To tackle this significant challenge,
we introduce a novel and flexible adversarial attack framework termed IMPACT
(Irregular Multi-Patch Adversarial Composition based on Two-phase optimization).
IMPACT uniquely enables comprehensive optimization of all essential patch fac-
tors using gradient-free methods. Specifically, we propose a novel dimensionality
reduction encoding scheme that substantially lowers computational complexity
while preserving expressive power. Leveraging this encoding, we further develop
a two-phase optimization framework: phase 1 employs differential evolution for
joint optimization of patch mask and content, while phase 2 refines patch content
using an evolutionary strategy for enhanced precision. Additionally, we introduce
a new aggregation algorithm explicitly designed to produce contiguous, irregular
patches by merging localized regions, ensuring physical applicability. Exten-
sive experiments demonstrate that our method significantly outperforms several
state-of-the-art approaches, highlighting the critical benefit of jointly optimizing
all patch factors in adversarial patch attacks. Our source code is available at
https://yangzh216.github.io/IMPACT.

1 Introduction

Deep Neural Networks (DNNs) have become one of the core technologies in modern artificial intelli-
gence. With their exceptional learning ability, DNNs have demonstrated outstanding performance in
fields such as image classification [21], object detection [3], and natural language processing [34],
driving the rapid advancement of numerous real-world applications. However, recent studies demon-
strate a concerning vulnerability: DNNs are susceptible to adversarial attacks [35], where minor,
specifically designed perturbations to input images can significantly degrade their performance [4].
While early adversarial attack methods primarily relied on global perturbations [35, 15, 4] constrained
by ℓ2 or ℓ∞ norms and sparse perturbations [7, 24, 8] constrained by ℓ0 norm, recent approaches have

∗corresponding authors: zuoxq@bupt.edu.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

shifted focus towards localized perturbations, known as adversarial patches [12, 42, 16]. While being
more visually conspicuous, they have greater practical applicability and effectiveness [2, 40, 25].

Adversarial patches, characterized by distinct shapes, locations, number, and content, significantly
complicate the attack optimization process due to their high-dimensional and combinational nature.
Previous studies typically simplify this complex problem by independently optimizing patch con-
tent [20] or location [28, 41], often assuming fixed shapes and limiting patches to single or basic
geometric forms [45, 27]. This simplification, however, considerably restricts the adversarial potential
and practicality of these attacks, leaving open a critical research gap: the joint optimization of
multiple essential patch factors, including shapes, locations, number, and content.

Motivated by this critical challenge, we propose IMPACT (Irregular Multi-Patch Adversarial Com-
position Based on Two-Phase Optimization), a flexible and novel adversarial attack framework
specifically designed to support comprehensive optimization of multiple adversarial patch factors.
The IMPACT framework is inherently versatile, allowing the integration of any gradient-free opti-
mization algorithms tailored to specific adversarial objectives or constraints. To demonstrate the
effectiveness and practicality of IMPACT, we present one concrete implementation leveraging evolu-
tionary algorithms (EAs), renowned for their efficacy in black-box optimization tasks lacking gradient
information. Our EA-based implementation of IMPACT introduces a two-phase optimization scheme:

Joint Optimization Phase: This phase jointly optimizes patch masks (defining shape and location)
and patch content. To overcome the curse of dimensionality, we introduce a novel dimensionality
reduction encoding scheme, reducing computational complexity while maintaining solution expres-
siveness. Additionally, we develop a random aggregation algorithm that plays a crucial role in
generating practical adversarial patches. Unlike methods relying on fixed shapes [43, 36, 27], our
algorithm produces diverse, irregular patch geometries by merging local regions. This ensures each
patch is locally well formed, making them suitable for physical application. The irregularity further
enhances their adversarial potential. This phase is implemented with differential evolution (DE).

Refinement Phase: This phase precisely refines patch content at the pixel level, transitioning from
global exploration in phase 1 to targeted local exploitation, thus further optimizing attack effectiveness.
In our implementation, this phase uses (1+1)-ES to balance computational cost and attack efficacy.

Phase One Phase Two White-Box

Figure 1: Adversarial patches by IMPACT. Phase One: DE-optimized block content. Phase Two:
(1+1)-ES refined pixel content. White-Box: IMPACT mask with gradient-optimized content. Exam-
ples show diverse shapes, locations, and content.

Extensive experiments conducted on widely-used benchmark models (ResNet50 [17], VGG16 [32],
ViT-B [11]) confirm that IMPACT outperforms multiple state-of-the-art patch attack methods in
black-box scenarios. Our results underline the importance of jointly considering all key patch factors,
demonstrating that IMPACT can significantly improve adversarial effectiveness. Figure 1 presents
examples of adversarial patches generated by IMPACT. These patches exhibit locally coherent
structures, making them physically printable and suitable for real-world deployment. Their irregular,
optimized designs further enhance adversarial effectiveness by increasing the perturbation diversity
and expressiveness. Our main contributions are summarized as follows:

• We introduce IMPACT, a flexible framework for adversarial patch attacks that allows
seamless integration of diverse gradient-free optimization algorithms. The presented EA-

2

based implementation showcases the framework’s capability for joint optimization of all
critical adversarial patch factors.

• In line with the IMPACT framework, we propose a novel dimensionality reduction encoding
scheme, simplifying the high-dimensional solution space while preserving the solution’s
diversity and quality. We further develop a new aggregation algorithm that merges scattered
patch elements into locally coherent and irregular shapes, enabling physically printable
adversarial patches.

• Through comprehensive evaluations against state-of-the-art methods, we demonstrate the
superior effectiveness and efficiency of our IMPACT implementation. This systematic
analysis provides valuable insights into how jointly optimizing multiple patch factors can
substantially enhance adversarial attack success rates.

2 Related Work

This section provides an overview of two related research directions: Adversarial patch attacks, which
craft localized, visible perturbations, and EA-based methods for black-box adversarial attacks.

2.1 Adversarial Patch Attacks

Depending on the level of knowledge an attacker has about the target model, adversarial patches can
be categorized into white-box attacks and black-box attacks.

For the white-box attack, most studies focus primarily on optimizing patch content through gradient-
based techniques. Brown et al. [2] proposed a universal adversarial patch for real-world targeted
attacks. Karmon et al. [20] introduced LaVAN for generating visible localized noise patches. Their
work focused on adversarial attacks in the digital domain, where modifications are made directly
to the pixel values of digital images in a dataset. This approach enabled successful attacks using
significantly smaller visible perturbations. Unlike earlier studies on universal patches designed
to work across various images, Rao et al. [28] showed that image-specific patches, optimized for
individual images, offer a more powerful alternative by leveraging the unique characteristics of each
image. They emphasized the importance of patch location, proposing an optimization algorithm to
determine the most effective location for the patch. Chen et al. [5] recognized that the patch shape
is an equally critical factor. Building on this insight, they proposed the deformable patch attack.
However, their approach was limited to generating a single patch. In the context of multi-patch
attacks, Fu et al. [14] introduced PATCH-FOOL, which leverages an attention-aware patch selection
mechanism to generate multiple patches simultaneously. Sharma et al. [31] further explored multi-
patch attacks, demonstrating the advantages of using multiple patches over single-patch attacks. In
addition, Huang et al. [19] proposed a multi-mini-patch adversarial attack for remote sensing image
classification. However, these multi-patch schemes are restricted to rectangular shaped patches.

For the black-box attack, random search is the dominating approach for optimizing patch content.
Fawzi et al. [13] were among the first to explore patch-based black-box attacks. Their method can
generate rectangular, monochromatic patches with optimized shape and placement. Unfortunately,
the attack’s effectiveness was limited due to the simplicity of the patch content. To address this
issue, Yang et al. [45] proposed TPA, where reinforcement learning was employed to optimize both
the position and texture parameters of each patch. Croce et al. [8] introduced a robust adversarial
attack framework Patch-RS based on random search. However, the patches were limited to fixed
square shapes. To investigate the impact of different shapes, Ran et al. [27] proposed a cross-shaped
adversarial patch, consisting of two intersecting line segments extending toward the corners of the
input image. Using random search to optimize position and content, the method achieved high
attack success rate. However, the global perturbation structure caused the line segments to become
excessively thin, rendering it challenging to apply in the physical world.

In summary, existing adversarial patch attack methods predominantly focused on optimizing one
or two factors, such as patch shape, location, or content, while neglecting a comprehensive, joint
optimization of all critical factors. This narrow focus restricts their capacity to fully leverage the
optimization space, highlighting the potential for more comprehensive and effective approaches.

3

2.2 Adversarial Attacks Based on EAs

In the field of adversarial attacks, EAs have demonstrated its unique strength of effectively optimizing
arbitrary target models without using gradient information [10, 43, 36, 22]. Several studies [1, 26, 22]
have investigated the application of EA to generate adversarial examples under ℓ2 and ℓ∞ constraints.
Other works [33, 38, 37] have focused on sparse adversarial attacks under ℓ0 constraints.

Very recently, EAs have been increasingly used to generate adversarial patches; however, existing
encoding schemes in these approaches do not support full optimization across all patch factors. For
example, Williams et al. [43] introduced CamoPatch as an EA approach to generate camouflaged
adversarial patches. Unlike traditional adversarial patches, this approach focuses on reducing the
patch’s visibility. Hu et al. [18] proposed AdvIB, leveraging DE to create adversarial patches
deployable in the physical world. However, due to the limitations of their encoding scheme, their
method only supports rectangular patch shapes and monochromatic patch content. Tang et al. [36]
introduced a dimensionality reduction strategy focused on patch content, leveraging duplicating and
tiling to upscale decision variables from a low-dimensional space to a higher-dimensional space.
While this approach enhances the optimization process for patch content, their encoding scheme
has notable limitations. Specifically, it only addresses patch content optimization while ignoring the
patch mask, which remains in fixed square shapes.

Overall, most existing methods remain focused on designing encoding schemes to optimize patch
content, while a comprehensive approach that integrates patch shape, location, number, and content
into the encoding process is still lacking. This gap motivated us to develop a novel encoding scheme
that supports joint optimization across all these critical patch factors.

3 Proposed Method

We present IMPACT, a framework that simultaneously optimizes both the patch mask and its content.
Specifically, the IMPACT framework comprises two optimization phases. In phase 1, IMPACT
operates at a block-level to simultaneously optimize the patch mask and the patch content. This
phase aims for broad exploration of the solution space to identify promising patch configurations.
Following phase 1, phase 2 focuses on meticulous, pixel-level optimization of the patch content. In
this section, we first formulate the problem of adversarial patch attacks. Subsequently, we present the
detailed EA-based implementation of IMPACT. Algorithm 1 outlines the overall procedure of using
EA-based IMPACT for black-box adversarial patch attacks. Descriptions of the key functions within
Algorithm 1 are provided in Appendix A.

Algorithm 1 Irregular Multi-Patch Adversarial Attack Based on Two-Phase Optimization

Input: Model f , original example x, true label y, num-
ber of mini-patches n, number of patches k, pop-
ulation size N , DE iterations Td, (1+1)-ES itera-
tions Te

Output: Adversarial example x̂
// Phase 1: DE for Joint Optimization

1: Initialize population P0 ← PopInit(n, k,N)
2: Compute initial fitness F0 ← Fitness(P0, f, x, y)
3: for t = 1, . . . , Td do
4: Vt ← Mutation(Pt−1)
5: Ut ← Crossover(Pt−1, Vt)
6: Ut ← Aggregation(Ut, k)
7: Fu ← Fitness(Ut, f, x, y)
8: Pt, Ft ← Selection(Pt−1, Ft−1, Ut, Fu)
9: p∗ ← SelectBest(Pt, Ft)

10: Construct patches (δ,M) = BuildPatch(p∗)
11: Generate x̂ using (δ,M) according to Eq. (1)
12: if f(x̂) ̸= y then
13: successful = True

14: break
15: end if
16: end for

// Phase 2: (1+1)-ES for Content Refinement
17: for t = 1, . . . , Te do
18: if successful = True then
19: break
20: end if
21: Add Gaussian noise δnoise: δ′ = δ + δnoise
22: Generate x̂′ using (δ′,M)
23: if fitness(x̂′) > fitness(x̂) then
24: Update δ = δ′, x̂ = x̂′

25: end if
26: if f(x̂) ̸= y then
27: successful = True
28: end if
29: end for
30: return Adversarial example x̂

4

3.1 Problem Formulation

Given an original example x ∈ Rc×h×w, the objective of adversarial patch attacks is to create an
adversarial example x̂ ∈ Rc×h×w that can mislead the model into making incorrect predictions [35].
Here, c, h, and w correspond to the number of channels, height, and width of the example, respectively.
An adversarial patch consists of two components: a mask M ∈ {0, 1}c×h×w, which determines the
shape and location of the patch, and a perturbation δ ∈ Rc×h×w, which defines the patch content. By
combining x, M , and δ, the adversarial example x̂ can be defined as follows:

x̂ = x⊙ (1−M) + δ ⊙M, (1)

where ⊙ is the element-wise Hadamard product. As a result, the perturbation is applied in regions
with Mij = 1, while regions with Mij = 0 retain the original image content.

Performing adversarial patch attacks requires solving the following optimization problem [27]:

argmin
δ,M
L(f(x⊙ (1−M) + δ ⊙M), ŷ), s.t.∥M∥0 < ϵ, (2)

where f denotes the image classification model, L is its loss function, and ∥M∥0 < ϵ imposes an
ℓ0-norm constraint to limit the patch area. For the untargeted attack, ŷ can be any label other than the
original label y. For the targeted attack, ŷ is set to the target label yt.

The problem defined in Equation (2) is a joint optimization problem where M and δ jointly define the
optimization solution space. Many existing adversarial patch attack methods simplify the problem by
decoupling these two components [20, 42]. Methods that pursue a truly joint optimization of both
mask and perturbation remain conspicuously absent.

3.2 Phase 1: Joint Optimization

Phase 1 of IMPACT tackles the challenging problem of jointly optimizing the patch mask and content,
which defines a complex and high-dimensional search space [36]. Direct pixel-level optimization
is computationally prohibitive due to the sheer number of variables involved. Additionally, the
binary nature of the mask often leads to fragmented, incoherent shapes that are not physically
realizable [42]. To overcome these challenges, we introduce two key innovations: a dimensionality
reduction encoding scheme to compress the solution space, and a new aggregation algorithm to
ensure locally coherent and contiguous patch shapes. Within this framework, we employ DE as the
core optimization engine, leveraging its proven effectiveness in black-box adversarial settings for
efficiently exploring complex solution spaces [36, 6].

3.2.1 Dimensionality Reduction Encoding

We develop a novel dimensionality reduction method that significantly reduces the encoding length
while addressing limitations in existing approaches. Unlike traditional methods [43, 36], our encoding
method supports the first time joint optimization of all critical patch factors. Such individual
representation not only enhances optimization efficiency but also enables a more comprehensive and
effective exploration of the adversarial patch design space.

0 1 0

0 0 0

1 0 1

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 1 1 1 1

0,1,0,0,0,0,1,0,1

4×4 tiling

Figure 2: Example of mask encoding. A 9-
element binary array [0, 1, 0, 0, 0, 0, 1, 0, 1] can
represent a 12× 12 mask.

In our framework, the first phase of optimization
utilizes DE, which is a population-based algorithm.
This means it maintains a population, which is a
set of candidate solutions. We use pi to repre-
sent the i-th individual in the population, where
i ∈ [1, N] and N denotes the population size.
Each individual pi in the population represents
a candidate solution that encodes all the neces-
sary information to generate the patches. Con-
cretely, each individual pi is encoded into two
parts: pi = (mi, ri). The first component mi

represents the mask M , and the second part ri
represents the perturbation δ. The binary array
m = [b1, b2, ..., bl] is used to encode the mask M ,
where bi ∈ {0, 1} and l is the encoding length of

5

m, depending on the size h×w of the original mask. When we set l = (h/4)× (w/4), each element
in m corresponds to a 4 × 4 block in the mask M . We can use a method called “4 × 4 tiling” to
reconstruct m back to the original size of the mask. An example of this encoding method is shown
in Figure 2. This method significantly compresses the optimization search space and reduces its
complexity. For the 224× 224 images in the ImageNet dataset, the mask M can be reduced to a size
of 56× 56. For the encoding of the perturbation δ, we use a three-channel matrix r ∈ R3×n, where
n is the number of one-valued elements in m andR is constrained to [0, 255]. This design exploits
the fact that the perturbation is applied only at positions where Mij = 1 according to Equation
(1). Hence optimization is restricted to those specific pixel locations. Notably, each element in m
represents a 4× 4 mini-patch, and each three-channel pixel in r encodes the color information of the
corresponding 4× 4 patch.

3.2.2 Random Aggregation

After defining our encoding scheme, the resulting encoded mask m ∈ {0, 1}l will contain n active
elements. However, these elements may be spatially dispersed. To address this issue, we propose a
new aggregation algorithm to transform m into a new mask m̂ where these n active elements are
consolidated into k locally connected, and irregular patches. The algorithm proceeds as follows:

The 1D input mask encoding m ∈ {0, 1}l is first reshaped into a 2D binary matrix M ′ ∈ {0, 1}
√
l×

√
l

for spatial processing. The set of coordinates of the n active elements in M ′ is extracted:

X = {pj = (xj , yj) |M ′[pj] = 1, j = 1, . . . , n}. (3)

These coordinates X are then partitioned into k clusters using the K-Means algorithm:

C = {C1, C2, . . . , Ck} = KMeans(X , k). (4)

The aggregation process aims to form a single connected shape using the elements assigned to Ci. For
each cluster, we randomly select a point within the cluster as the aggregation center. For each point in
a cluster, we select a target point uniformly at random from the aggregation center’s 8-neighborhood
and move the point toward that target point, repeating this process until the point becomes adjacent to
the existing connected component. During each move, we randomly choose whether to prioritize a
horizontal or vertical move. The randomness in selecting aggregation center, the target point, and the
order of move attempts contributes to the diversity of the resulting aggregated shapes. A detailed
description of the random aggregation algorithm (Algorithm 2) along with visual explanation can be
found in Appendix B.

Powered by the newly developed encoding scheme and the random aggregation algorithm, we further
adopt DE to optimize the patch mask and content in phase 1. The detailed design of our DE algorithm
is provided in Appendix C.

3.3 Phase 2: Content Refinement

Phase 2 aims to further improve attack effectiveness through pixel-level refinement of the patch
content, using the mask and initial content established in Phase 1. This refinement is particularly
important when phase 1 does not yield a successful attack. The solution candidate in this phase is
represented by the full-resolution perturbation δ, which has dimensions 3 × h × w, matching the
input image resolution. We employ the (1+1) -ES for fine-grained content refinement in this phase,
because it is notably simple to implement, and computationally efficient due to evaluating only one
candidate solution per iteration. Note that the IMPACT framework is flexible, and any black-box
optimizers could be employed for both phases.

The initial δ are inherited from phase 1. In phase 2, M remains fixed while δ is refined through
iterative application of Gaussian noises. At each iteration, noise δnoise sampled fromN (0, σ2), where
σ controls the perturbation magnitude, is added to the current δ. The updated perturbation is then
applied to the input image using the fixed mask M to generate a new adversarial example. If the
new perturbation improves fitness, it replaces the current best solution. This process continues until
a successful attack is achieved or the maximum number of iterations is reached. By transitioning
from block-wise to pixel-level optimization, phase 2 overcomes the limitations of using coarse 4× 4
perturbations, enabling precise adjustments that significantly enhance the attack’s effectiveness.

6

4 Experiments

In this section, we conduct experimental evaluation to assess the effectiveness of our proposed
IMPACT method. Section 4.1 provides a detailed overview of the experimental setup. Section 4.2
presents a comparative analysis of IMPACT against state-of-the-art patch-based attack methods.
Section 4.3 offers ablation studies to analyze the contribution of key components. Finally, Section
4.4 explores the significance and interplay of various hyperparameters in our method.

4.1 Experimental Setup

Dataset and Models: Following previous works [8, 43, 27], we use ImageNet [9] for evaluation
due to its diverse object categories and real-world scenarios, enabling a comprehensive assessment
of our method’s effectiveness. Additional experiments on more datasets are provided in Appendix
E.5. Following the same setup as Patch-RS [8], we randomly select a subset of 500 images from
the validation set of ImageNet for our experiments. For the victim models, we employ three widely
adopted architectures: ResNet50 [17], VGG16 [32], and ViT-B [11]. These models encompass
diverse architectural designs, enabling a comprehensive evaluation of IMPACT’s effectiveness across
varying network architectures. All input images are resized to a standard size of 224×224, consistent
with the requirements of the experimented models. The models are officially pre-trained on the full
ImageNet training set, ensuring a robust and reliable baseline for evaluation. All experiments were
conducted on a system equipped with an NVIDIA GeForce RTX 4090 GPU. The detail parameter
settings are provided in Appendix E.1.

Evaluation Metrics: We use the attack success rate (ASR) as the evaluation metric, considering
only input images the deep model classifies correctly in the absence of any attack. For untargeted
attacks, ASR measures the proportion of such images where the adversarial patch successfully causes
the model to misclassify them. For targeted attacks, ASR evaluates the percentage of input images
where the adversarial patch forces the model to classify the input into a specific, pre-defined target
class. For query efficiency, we utilize the average query count (AQ) to measure the average number
of queries the attack algorithm requires to successfully craft adversarial patches. Definitions of these
performance metrics are presented in Appendix E.2. In addition, due to the stochastic nature of
IMPACT, we use the same group of random seeds for evaluations to ensure reproducibility. The
influence of multiple seeds is further discussed in Appendix E.3.

4.2 Performance Comparison

To evaluate our proposed IMPACT method, we conduct comparisons with state-of-the-art adversarial
patch attack methods, including Patch-RS [8], TPA [45], Patch-Fool [14]. Our primary evaluation
focuses on IMPACT’s performance in challenging black-box scenarios. Additionally, Appendix E.4
presents a comparison between the white-box variant of IMPACT and Patch-Fool. Furthermore,
to assess its robustness, IMPACT’s effectiveness against various common defense mechanisms is
evaluated in Appendix E.6. Appendix E.7 provides the results of physical-world experiments, further
demonstrating the practicality of IMPACT. Appendix E.8 reports a detailed runtime analysis. Below,
we present a detailed analysis of our experimental comparison results.

For the black-box comparison, Table 1 presents the statistical results of adversarial attacks conducted
on various ImageNet classification models. Here, The Query represents the query budgets, and
1%, 2% are the percentages of perturbation areas. The ASR is expressed as a percentage, and for
simplicity, we have omitted the unit in the Table 1. We select Patch-RS and TPA as baselines, as they
focus on optimizing patch content and location, although their shapes remain fixed as rectangles.

The experimental results consistently demonstrate the superiority of our IMPACT method, which
achieves higher ASR and generally lower AQ compared to the baselines across different models and
settings. As shown in Table 1, IMPACT exhibits strong performance in untargeted scenarios. For
instance, when attacking ResNet50 with a query budget of 10,000 and a 2% perturbation area, our
method achieves a maximum ASR of 96.4%, while Patch-RS achieves 93.6%. Additionally, our
AQ is 1044, which is better than Patch-RS’s 1408. For targeted attacks, our method demonstrates
even greater advantages. On the ResNet50 model, we achieve a maximum targeted ASR of 57.8%,
whereas Patch-RS only reaches 20.0%. Moreover, our AQ is 7148, which is significantly smaller than
Patch-RS’s 8885. We attribute IMPACT’s enhanced effectiveness primarily to its joint optimization

7

Table 1: Performance comparison for black-box adversarial patch attacks.

Model Query Method
Untargeted Attack Targeted Attack

1% 2% 1% 2%

ASR AQ ASR AQ ASR AQ ASR AQ

ResNet50

5000
IMPACT 87.2 1236 94.2 676 24.6 4379 38.4 4126
Patch-RS 82.4 1360 89.8 982 7.6 4790 12.2 4711

TPA 38.0 3519 51.0 2807 4.3 4888 7.8 4781

10000
IMPACT 90.0 1518 96.4 1044 38.4 8239 57.8 7148
Patch-RS 88.2 1990 93.6 1408 10.8 9359 20.0 8885

TPA 51.0 5705 57.0 5091 7.6 9730 15.4 9479

VGG16

5000
IMPACT 92.8 862 94.2 841 16.2 4635 34.6 4327
Patch-RS 88.6 1114 92.8 832 10.8 4704 15.6 4640

TPA 42.2 3416 53.6 2686 5.6 4880 8.2 4805

10000
IMPACT 94.6 1310 95.2 1069 27.6 8893 35.4 8295
Patch-RS 92.4 1562 94.4 1191 16.6 9073 30.8 8425

TPA 56.2 5204 59.8 4777 9.4 9598 16.8 9321

ViT-B

5000
IMPACT 85.6 1315 92.8 880 18.4 4552 30.2 4311
Patch-RS 80.2 1457 87.4 1052 6.2 4825 10.6 4786

TPA 35.6 3607 48.2 2956 3.8 4942 6.2 4855

10000
IMPACT 88.4 1652 95.0 1157 30.6 8553 48.2 7552
Patch-RS 86.2 2175 91.8 1524 9.2 9456 17.8 9057

TPA 48.4 5854 55.2 5237 6.8 9828 13.6 9553

of multiple patch factors, including irregular shapes, locations, number, and content. This holistic
approach allows IMPACT to explore a more expressive solution space, enabling the discovery of more
potent adversarial patches. For a deeper understanding of how IMPACT achieves this by influencing
the model’s internal mechanisms, we provide an effectiveness analysis in Appendix D.

4.3 Ablation Study

To assess IMPACT’s key components, we perform ablations on DE, (1+1)-ES, and dimensionality
reduction encoding. Note that we do not ablate the random aggregation algorithm because it is
essential for transforming sparse modifications into patch-shaped perturbations, and removing it
would change the attack type. However, to validate its design, we investigate the impact of the
stochastic elements within this algorithm itself in Appendix E.9. All ablation experiments were
performed on the ImageNet against the ResNet50 model under a total query budget of 5000, with a 2%
patch area distributed across 3 patches. Similar trends were observed on other model architectures.

Table 2: Ablation study on components of IMPACT.

Method Phase 1 Phase 2 ASR AQ

IMPACT DE (1+1)-ES 94.2 676

Effectiveness of DE in Phase 1:
(1+1)-ES-only None (1+1)-ES 60.9 2269.82
RS + (1+1)-ES RS (1+1)-ES 78.4 1698.7
GA + (1+1)-ES GA (1+1)-ES 81.8 1523.8

Effectiveness of (1+1)-ES in Phase 2:
DE-Only DE None 90.2 748
DE + RS DE RS 92.3 842.1

Table 3: Encoding granularity ablation.
For each tile size t × t, the number of
mini-patches was adjusted to maintain the
total patch area fixed at 2% of the image.

Tile Size Mini-Patch ASR AQ

1× 1 1024 87.1 751.5
2× 2 256 89.2 691
4× 4 64 94.2 676
8× 8 16 86.3 822.5

16× 16 4 80.5 1099.5
32× 32 1 57.2 1824

Table 2 presents the results comparing our full IMPACT framework against several variants designed
to assess the roles of its constituent optimizers and the two-phase structure. To validate the choice of
DE, we compared IMPACT against variants where DE was replaced by Random Search (RS) and
Genetic Algorithm (GA). These results underscore the superior exploratory capabilities of DE in
navigating the complex, high-dimensional search space of joint mask and content optimization. To
demonstrate the necessity of the second refinement phase, we compare IMPACT with a DE-Only
variant and DE+RS. In DE-Only, the entire 5000 query budget is allocated to the DE algorithm for

8

joint mask and content optimization, omitting the (1+1)-ES refinement. As shown, IMPACT achieves
an ASR of 94.2% with 676 AQ, whereas DE-Only only reaches 90.2% ASR with 748 AQ. This
improvement highlights that the fine-grained adjustments performed by (1+1)-ES in Phase 2 are
crucial for converting near-successful patches into effective adversarial examples.

Furthermore, IMPACT employs a 4× 4 tiling strategy as the default for its dimensionality reduction
encoding scheme. To validate this choice and understand the impact of different encoding granulari-
ties, we conducted an encoding granularity ablation by varying the tile size. The results are presented
in Table 3. Using smaller tiles resulted in a higher-dimensional search space. While offering finer
granularity, this increased complexity led to slightly lower ASR. Moreover, excessively small tile
sizes incur prohibitively long optimization times. Using larger tiles can significantly reduce the
dimensionality. However, this led to a marked decrease in ASR. This indicates that the coarse granu-
larity severely limited the ability to form effective adversarial patches. These findings confirm that
the 4×4 tiling offers an effective balance between dimensionality and spatial resolution to construct
diverse and potent irregular adversarial patches.

4.4 Parameter Sensitivity Analysis

Our method involves five important parameters that can be adjusted: n, k, N , Td, and Te. Here n is
the number of 4×4 mini-patches in the mask, controlling the perturbation area. k denotes the number
of patches. N represents the population size. Td and Te refer to the iterations of the DE and (1+1)-ES
algorithm, respectively. Different parameter settings can lead to varying attack effectiveness.

0 2000 4000 6000 8000 10000

Query Budgets

0

20

40

60

80

100

A
SR

 (%
)

Perturbation Area = 1%
Perturbation Area = 2%
Perturbation Area = 3%
Query Budgets = 7500

0 2000 4000 6000 8000 10000

Query Budgets

0

20

40

60

80

100

A
SR

 (%
)

Patch Number = 1
Patch Number = 2
Patch Number = 3
Patch Number = 4
Patch Number = 5
Query Budgets = 7500

0 2000 4000 6000 8000 10000

Query Budgets

0

20

40

60

80

100

A
SR

 (%
)

N = 25, Td = 300
N = 50, Td = 150
N = 100, Td = 75
N = 150, Td = 50

Figure 3: ASR vs query budgets. Effect of perturbation areas (Left). Effect of patch number (Center).
Effect of N and Td (Right).

To better illustrate the impact of different parameters, we plot the variation curves of success rates
under different query budgets in Figure 3. The results demonstrate that a larger perturbation area and
a greater number of patches contribute to higher ASR. Moreover, while different combinations of N
and Te show similar performance under high query budgets, smaller populations with more iterations
excel under lower budgets. This suggests that prioritizing iteration count over population size can
improve efficiency, especially with limited query resources. In addition to these primary analyses, we
conducted further parameter experiments, including an investigation into the impact of DE’s mutation
factor and crossover probability. These results demonstrate the relative robustness of IMPACT to
these parameters. Detailed experimental data for those studies can be found in Appendix E.10.

1% 2% 3%
Area

0

20

40

60

80

100

A
SR

 (%
)

Patch Number
1P
2P
3P
4P
5P

Figure 4: Impact of the number of patches (k)
on ASR for different total perturbation areas
(1%, 2%, 3%). Experiments were conducted on
ResNet50 with N = 150, Td = 50, Te = 2500.

Our IMPACT supports generating multiple
patches simultaneously. To demonstrate the im-
provement in attack effectiveness achieved by us-
ing multiple patches, we conduct an experiment to
assess the impact of varying the number of patches.
As depicted in Figure 4, across all tested total per-
turbation areas, increasing the number of patches
generally leads to a noticeable improvement in
ASR. This trend highlights a key advantage of
multi-patch strategies: by distributing adversarial
perturbations across multiple smaller, strategically
placed regions, IMPACT is able to degrade model
accuracy more effectively than using a single con-
centrated patch. This ability to alter diverse local
regions within the image significantly enhances
the overall attack effectiveness.

9

5 Conclusion

In this paper, we introduced a novel irregular multi-patch adversarial attack framework that supports
simultaneously optimizing all critical patch factors, including shape, location, number, and content.
Under our IMPACT framework, DE was used first to jointly optimize the patch mask and content,
supported by a unique dimensionality reduction encoding scheme. Secondly, (1+1)-ES further refined
the patch content for improved precision. Additionally, we proposed a random aggregation algorithm
to generate diverse, irregular patch designs for practical use. Extensive experiments demonstrated
that our method outperformed state-of-the-art approaches, significantly enhancing attack success
rates. This work provides valuable insights into adversarial patch design and optimization, paving the
way for practical methodologies in this domain.

Limitations: This work focuses on score-based black-box attacks, where access to the model’s output
probabilities enables effective guidance of the evolutionary optimization. In contrast, decision-based
black-box attacks, which provide only the model’s top-1 predicted label, pose a fundamentally
different and more restrictive challenge. The absence of probability scores makes it significantly
harder to infer meaningful search directions, especially when jointly optimizing multiple patch factors.
Addressing this setting would require substantially different algorithmic designs and is therefore
beyond the scope of this paper. Nevertheless, extending IMPACT to support decision-based attacks
remains an important direction for future research. Moreover, as IMPACT is primarily an empirical
approach, a more rigorous theoretical analysis of its underlying mechanisms constitutes an important
direction for future research.

Ethics Statement: This work introduces IMPACT, a framework for crafting irregular multi-patch
adversarial attacks to uncover vulnerabilities in deep vision models. While these attacks are essential
for developing stronger defenses and improving model robustness, they also carry the risk of malicious
misuse. We advocate for the responsible and ethical application of such technologies, emphasizing
their use as tools for the advancement of trustworthy AI, rather than for purposes that could cause
harm or compromise system integrity.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No.62272117
and No.62476030).

References
[1] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui Hsieh, and Mani B Srivastava.

Genattack: Practical black-box attacks with gradient-free optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1111–1119. Association for Computing Machinery, 2019.

[2] Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer. Adversarial patch. arXiv
preprint arXiv:1712.09665, 2017.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision,
pages 213–229. Springer, 2020.

[4] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 39–57. IEEE, 2017.

[5] Zhaoyu Chen, Bo Li, Shuang Wu, Jianghe Xu, Shouhong Ding, and Wenqiang Zhang. Shape matters:
deformable patch attack. In European Conference on Computer Vision, pages 529–548. Springer, 2022.

[6] Zhaoyu Chen, Bo Li, Shuang Wu, Shouhong Ding, and Wenqiang Zhang. Query-Efficient Decision-Based
Black-Box Patch Attack. IEEE Transactions on Information Forensics and Security, 18:5522–5536, 2023.
ISSN 1556-6013, 1556-6021.

[7] Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks. In IEEE International
Conference on Computer Vision, pages 4724–4732. IEEE, 2019.

[8] Francesco Croce, Maksym Andriushchenko, Naman D Singh, Nicolas Flammarion, and Matthias Hein.
Sparse-rs: a versatile framework for query-efficient sparse black-box adversarial attacks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pages 6437–6445. AAAI Press, 2022.

10

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pages 248–255. IEEE, 2009.

[10] Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and Jun Zhu. Efficient decision-
based black-box adversarial attacks on face recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 7714–7722. IEEE, 2019.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In 9th
International Conference on Learning Representations. OpenReview.net, 2021.

[12] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash,
Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning visual classification.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 1625–1634. IEEE, 2018.

[13] Alhussein Fawzi and Pascal Frossard. Measuring the effect of nuisance variables on classifiers. In
Proceedings of the British Machine Vision Conference, pages 137–1. BMVA Press, 2016.

[14] Yonggan Fu, Shunyao Zhang, Shang Wu, Cheng Wan, and Yingyan Lin. Patch-fool: Are vision transformers
always robust against adversarial perturbations? In The Tenth International Conference on Learning
Representations. OpenReview.net, 2022.

[15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[16] Chaoxiang He, Xiaojing Ma, Bin B. Zhu, Yimiao Zeng, Hanqing Hu, Xiaofan Bai, Hai Jin, and Dongmei
Zhang. Dorpatch: Distributed and occlusion-robust adversarial patch to evade certifiable defenses. In 31st
Annual Network and Distributed System Security Symposium. The Internet Society, 2024.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778. IEEE, 2016.

[18] Chengyin Hu, Weiwen Shi, Tingsong Jiang, Wen Yao, Ling Tian, Xiaoqian Chen, Jingzhi Zhou, and Wen
Li. Adversarial infrared blocks: A multi-view black-box attack to thermal infrared detectors in physical
world. Neural Networks, 175:106310, 2024.

[19] Jun-Jie Huang, Ziyue Wang, Tianrui Liu, Wenhan Luo, Zihan Chen, Wentao Zhao, and Meng Wang.
Dempaa: Deployable multi-mini-patch adversarial attack for remote sensing image classification. IEEE
Transactions on Geoscience and Remote Sensing, 62:1–13, 2024.

[20] Danny Karmon, Daniel Zoran, and Yoav Goldberg. Lavan: Localized and visible adversarial noise. In
International Conference on Machine Learning, pages 2507–2515. PMLR, 2018.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, volume 25, pages 1106–1114.
Curran Associates, Inc., 2012.

[22] Chao Li, Handing Wang, Jun Zhang, Wen Yao, and Tingsong Jiang. An approximated gradient sign method
using differential evolution for black-box adversarial attack. IEEE Trans. Evol. Comput., 26(5):976–990,
2022.

[23] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In 6th International Conference on Learning
Representations. OpenReview.net, 2018.

[24] Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: a few pixels make a
big difference. In IEEE Conference on Computer Vision and Pattern Recognition, pages 9087–9096. IEEE,
2019.

[25] Kien Nguyen, Tharindu Fernando, Clinton Fookes, and Sridha Sridharan. Physical adversarial attacks for
surveillance: A survey. IEEE Trans. Neural Networks Learn. Syst., 35(12):17036–17056, 2024.

[26] Hao Qiu, Leonardo Lucio Custode, and Giovanni Iacca. Black-box adversarial attacks using evolution
strategies. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages
1827–1833. Association for Computing Machinery, 2021.

11

[27] Yu Ran, Weijia Wang, Mingjie Li, Lin-Cheng Li, Yuan-Gen Wang, and Jin Li. Cross-shaped adversarial
patch attack. IEEE Transactions on Circuits and Systems for Video Technology, 34(4):2289–2303, 2023.

[28] Sukrut Rao, David Stutz, and Bernt Schiele. Adversarial training against location-optimized adversarial
patches. In European Conference on Computer Vision, pages 429–448. Springer, 2020.

[29] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversarially
robust imagenet models transfer better? In Advances in Neural Information Processing Systems, 2020.

[30] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In IEEE
International Conference on Computer Vision, pages 618–626. IEEE Computer Society, 2017.

[31] Abhijith Sharma, Yijun Bian, Vatsal Nanda, Phil Munz, and Apurva Narayan. Vulnerability of cnns against
multi-patch attacks. In Proceedings of the 2023 ACM Workshop on Secure and Trustworthy Cyber-Physical
Systems, pages 23–32. ACM, 2023.

[32] Karen Simonyan. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[33] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep neural
networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, 2019.

[34] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems, pages 3104–3112. Curran Associates, Inc., 2014.

[35] C Szegedy. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[36] Guijian Tang, Wen Yao, Chao Li, Tingsong Jiang, and Shaowu Yang. Black-box adversarial patch attacks
using differential evolution against aerial imagery object detectors. Eng. Appl. Artif. Intell., 137:109141,
2024.

[37] Ye Tian, Jingwen Pan, Shangshang Yang, Xingyi Zhang, Shuping He, and Yaochu Jin. Imperceptible and
sparse adversarial attacks via a dual-population-based constrained evolutionary algorithm. IEEE Trans.
Artif. Intell., 4(2):268–281, 2023.

[38] Viet Quoc Vo, Ehsan Abbasnejad, and Damith Ranasinghe. Query efficient decision based sparse attacks
against black-box deep learning models. In The Tenth International Conference on Learning Representa-
tions. OpenReview.net, 2022.

[39] Yichen Wang, Yuxuan Chou, Ziqi Zhou, Hangtao Zhang, Wei Wan, Shengshan Hu, and Minghui Li.
Breaking barriers in physical-world adversarial examples: Improving robustness and transferability via
robust feature. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages
8069–8077. AAAI Press, 2025.

[40] Hui Wei, Hao Tang, Xuemei Jia, Zhixiang Wang, Hanxun Yu, Zhubo Li, Shin’ichi Satoh, Luc Van Gool,
and Zheng Wang. Physical adversarial attack meets computer vision: A decade survey. IEEE Trans.
Pattern Anal. Mach. Intell., 46(12):9797–9817, 2024.

[41] Xingxing Wei, Ying Guo, Jie Yu, and Bo Zhang. Simultaneously optimizing perturbations and positions
for black-box adversarial patch attacks. IEEE transactions on pattern analysis and machine intelligence,
45(7):9041–9054, 2022.

[42] Xingxing Wei, Jie Yu, and Yao Huang. Physically adversarial infrared patches with learnable shapes and
locations. In IEEE Conference on Computer Vision and Pattern Recognition, pages 12334–12342. IEEE,
2023.

[43] Phoenix Williams and Ke Li. Camopatch: An evolutionary strategy for generating camoflauged adversarial
patches. In Advances in Neural Information Processing Systems, volume 36, pages 67269–67283. Curran
Associates, Inc., 2023.

[44] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and Prateek Mittal. Patchguard: A provably robust
defense against adversarial patches via small receptive fields and masking. In 30th USENIX Security
Symposium, pages 2237–2254. USENIX Association, 2021.

[45] Chenglin Yang, Adam Kortylewski, Cihang Xie, Yinzhi Cao, and Alan L. Yuille. Patchattack: A black-box
texture-based attack with reinforcement learning. In European Conference on Computer Vision, volume
12371, pages 681–698. Springer, 2020.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly articulate the contributions of this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of this work in the Conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

13

Justification: This work focuses on empirical algorithm design and evaluation and does not
present formal theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides detailed parameters, configurations, and source code for
our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper provides open access to the data and code anonymously.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All parameters and settings are included in our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We initialized the random seed and conducted multiple experiments to average
results in experiments involving randomness.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information of the computational resources in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work advances understanding of model vulnerabilities by generating irreg-
ular adversarial patches, which can be used to improve defense mechanisms via robustness
evaluation.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

16

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We mention the assets used and adhere to their respective licenses and terms
of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

17

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper releases the source code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

18

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

Appendix

A Function Explanation

To provide additional clarity, we summarizes the functions used in Algorithm 1. Each function plays
a specific role in the EA-based optimization framework of IMPACT.

PopInit: This function initializes a population P0 of N individuals to ensure diverse starting points
for the search process. Each individual is structured according to our encoding scheme, consisting of
two components: a binary encoded mask m and a continuous encoded content r.

Mutation: This core DE function creates a mutant vector vi for each individual pi by differential
combination of other population members. This process introduces new variations into the search.

Crossover: This function mixes the components of the parent individual pi and its corresponding
mutant vector vi to create a new trial individual ui. This enhances population diversity.

Aggregation: This is a component of our framework. It takes the sparse binary mask m from a trial
individual and transforms its scattered active elements into k physically contiguous, irregular patches.

Fitness: This function evaluates the quality of a trial individual. It reconstructs the full patch, applies
it to the image, and calculates the model’s cross-entropy loss.

Selection: This function compares the fitness of the trial individual ui with the parent pi. The one
with the better fitness score survives into the next generation’s population.

SelectBest: This is a simple function that iterates through the final population and returns the single
individual with the best fitness score found during the optimization.

B Random Aggregation Details

To provide a more detailed exposition of our random aggregation algorithm, we present it in Al-
gorithm 2. This algorithm is a crucial component of our IMPACT framework, responsible for
transforming the spatially dispersed active mini-patches into coherent, irregular patch structures.

Algorithm 2 Random Aggregation Algorithm
Input: Mask encoding m ∈ {0, 1}l, patch number k
Output: Aggregated mask encoding m̂

1: Reshape m into a 2D binary matrix M̂ ∈ {0, 1}
√
l×

√
l.

2: Extract coordinates of one-valued elements: X = {(a, b) | M̂ [a, b] = 1}.
3: Perform clustering: C = KMeans(X , k), where C = {C1, C2, . . . , Ck}.
4: for each Ci ∈ C do
5: Select scenter ∈ Ci uniformly at random.
6: Create aggregated region A(scenter).
7: for each s ∈ Ci \ {scenter} do
8: Sample starget ∈ Nb(scenter), where Nb(scenter) is the neighborhood of scenter.
9: snew ← Move(s, starget).

10: if snew ∈ Nb(A(scenter)) then
11: Update A(scenter)← A(scenter) ∪ {snew}.
12: Update M̂ : M̂ [s]← 0, M̂ [snew]← 1.
13: end if
14: end for
15: end for
16: Flatten M̂ to m̂ ∈ {0, 1}l.
17: return m̂

Furthermore, to visually illustrate the algorithm’s operation, Figure 5 depicts an example of the
aggregation process. In this case, the initially scattered active elements are first partitioned into three
distinct clusters by K-Means. Subsequently, our random aggregation algorithm processes each cluster,
resulting in the formation of three distinct patches, each exhibiting an irregular and locally connected
shape.

20

1 1

1

1

1 1

1

1

1

1

1

1

1

1 1 1

1

1 1

1
Cluster 1

Cluster 2

Cluster 3

Patch 1

Patch 2

Patch 3

Figure 5: Example of random aggregation.

Figure 6 further demonstrates the practical outcome of this aggregation process. As can be seen, the
algorithm effectively consolidates initially scattered units into locally connected, irregular shapes,
thereby forming patches that are well-formed and readily applicable for adversarial attacks.

Before

After

32 mini-patch

8×8 tiling size

64 mini-patch

4×4 tiling size

16 mini-patch

16×16 tiling size

Before

After

32 mini-patch

8×8 tiling size

64 mini-patch

4×4 tiling size

16 mini-patch

16×16 tiling size

Figure 6: Visualization of the Random Aggregation algorithm’s effect. The top row shows the
spatial distribution of active mini-patches before aggregation, for different total mini-patch counts
and corresponding tiling sizes. The bottom row illustrates how these scattered mini-patches are
consolidated into coherent, irregular patch structures by our aggregation algorithm. Each column
represents a different configuration. Left: 16 mini-patches and 16x16 tiling size. Center: 32 mini-
patches and 8x8 tiling size. Right: 64 mini-patches and 4x4 tiling size.

C DE Components

C.1 Initialization

The initial population P0 for the DE algorithm, consisting of N individuals, is generated randomly to
ensure diverse starting points for the search process. Each individual p ∈ P0 is structured according
to our dimensionality reduction encoding scheme, consisting of two components: a binary encoded
mask m and a continuous encoded content r.

The mask m is a binary vector of length l. To satisfy the constraint on the total number of active
mini-patches, exactly n elements of m are randomly selected and set to 1, while the remaining l − n

21

elements are set to 0. This ensures that every individual in the initial population adheres to the
specified patch area from the beginning of the optimization.

The content component r corresponds to the initial color information for the n active mini-patches in
its associated mask m. It is represented as a matrix of shape 3× n. The values within this matrix are
initialized by sampling uniformly at random from the valid pixel intensity range [0, 255].

This random initialization process generates a diverse population P0 = {p1, . . . , pN} where each
individual satisfies the patch area requirements and possesses varied initial content, providing a robust
foundation for the subsequent evolutionary operations of mutation, crossover, and selection.

C.2 Mutation

Building upon our dimensionality reduction encoding, we further tailor the core DE operators. In
particular, mutation must be adapted to handle the distinct binary nature of the encoded mask and the
continuous nature of the encoded content. We present these customized mutation procedures below.

For each individual pi, we first randomly select three distinct individuals pa = (ma, ra), pb =
(mb, rb), and pc = (mc, rc) from the population. These individuals serve as the basis for generating
the mutated individual vi = (m̃i, r̃i), as detailed below. The mutation operation is applied separately
to the two components of the individual.

For the mask component, we adopt a mutation strategy in the binary space. Using the selected mask
components ma, mb, and mc of the chosen individuals, the mutated mask m̃ is computed as follows:

m̃i = (ma + (mb −mc)) mod 2. (5)

Here, the modulo operation ensures that the resulting m̃i remains a valid binary vector.

For the perturbation component in the continuous space, using the selected perturbation components
ra, rb, and rc, the mutated component r̃i is calculated as:

r̃i = ra + F · (rb − rc), (6)

where F is a mutation factor. The crossover and selection mechanisms, which follow standard DE
practices (e.g., binomial crossover and greedy selection), along with the detailed fitness function
calculation, are described below.

C.3 Crossover

Each mutated individual vi proceeds to the crossover operation, which is performed as follows:

ui,j =

{
vi,j , if randj(0, 1) < CR or j = jrand

pi,j , otherwise
, (7)

where vi,j is the j-th element of the mutant individual vi. pi,j is the j-th element of the parent
individual pi. The crossover operation combines vi and pi to create a trial individual ui. CR ∈ [0, 1]
is the crossover probability, which determines the likelihood of inheriting elements from the mutant
individual. To ensure that at least one element is inherited from the mutant individual, jrand is a
randomly chosen index that guarantees vi,j is selected for the corresponding j = jrand.

C.4 Repair

Following the mutation and crossover operations, the total number of elements with value 1 may
deviate from the pre-defined constraint. We should repair the count of 1s to precisely match the target
patch area. Let n denote the desired number of elements with value 1, and nc denote the current
number of 1s in m. If nc > n, we randomly select nc − n elements with value 1 and set them to
0. If nc < n, we randomly select n− nc elements with value 0 and set them to 1. This procedure
ensures that the total perturbation area of the patch remains constant.

C.5 Fitness Function

The fitness function evaluates the quality of each individual during the selection process, retaining
those with higher fitness and discarding others. It is designed based on the cross-entropy loss LCE .

22

Specifically, pixel values from r are extracted and mapped to positions where m[i] = 1, forming a
perturbation δ̂ with dimensions 3 × h

4 ×
w
4 . Using 4 × 4-tiling, m and δ̂ are resized to match the

original image dimensions, i.e., M and δ respectively. The perturbed example is then constructed
using Equation (1) and fed into the target model. Subsequently, the cross-entropy loss regarding the
model’s output is used to assess the perturbation’s impact. For untargeted attacks, the fitness function
is LCE(f(x̂), y), where y is the true label. For targeted attacks, it is −LCE(f(x̂), yt), where yt is
the target label.

C.6 Selection

The selection operator in our DE algorithm determines which individuals, between the current
population and the newly generated trial vectors, will survive to form the population for the next
generation. This process employs a one-to-one greedy selection strategy based on fitness values.

Let P = {p1, . . . , pN} be the current population at generation t, where each individual pi = (mi, ri)
consists of an encoded mask and content. Let U = {u1, . . . , uN} be the population of trial vectors
generated through mutation and crossover from P , where each ui = (m′

i, r
′
i). Let F (p) denote the

fitness function, where a higher fitness value indicates a better solution.

For each pair of corresponding individuals, their fitness values are compared. The individual with the
superior fitness is selected to be part of the population for the next generation.

p
(t+1)
i =

{
u
(t)
i if F (u

(t)
i) > F (p

(t)
i)

p
(t)
i otherwise

(8)

This elitist selection mechanism ensures that the fitness of the population is non-decreasing from one
generation to the next, preserving good solutions found so far and driving the search towards more
promising regions of the solution space.

D Effectiveness Analysis

To gain deeper insights into how IMPACT influence the model’s decision-making process, we employ
class activation mapping (CAM) [30] to visualize the regions the model focuses on when making
predictions. Figure 7 presents CAM visualizations for several examples from the ImageNet dataset,
showing the model’s attention on both original images and their corresponding adversarial versions
generated by IMPACT.

After applying the IMPACT-generated patches, a significant shift in the model’s attention is observed
in the corresponding CAMs. The model’s focus is now often distracted or drawn towards the locations
of our strategically placed irregular patches leading to a misclassification. This suggests that the
patches introduce features that the model deems highly indicative of the incorrect class or sufficiently
disruptive to confuse the features of the true class. The IMPACT method effectively manipulates
the model’s learned saliency. The irregular, multi-patch design appears adept at either creating
new, highly salient focal points or disrupting the existing saliency map of the true object. The
distributed nature of the multi-patches allows for influencing model attention at several locations
simultaneously, potentially being more effective than a single, larger patch in confusing the model’s
global understanding of the scene.

The CAM results provide qualitative evidence for the effectiveness of our IMPACT. The patches do
not need to be large or overtly cover the main object to be effective; instead, their carefully optimized
content and placement, facilitated by our DE-based joint optimization and irregular shape generation,
are sufficient to significantly alter the model’s feature interpretation and subsequent attention, leading
to successful attacks.

23

Original Image Original Image CAM Adversarial Image Adversarial Image CAM

Figure 7: The figure is organized into four columns per example: (1) the original image, (2) the CAM
for the original image correctly classified by the ResNet50 model, (3) the adversarial image generated
by IMPACT, and (4) the CAM for the adversarial image, now misclassified by the model.

E Experimental Details

E.1 Parameter Settings

Black-box Comparison: We evaluate IMPACT under different perturbation areas, with parameters
n = 32, 64 controlling perturbation areas of 1% and 2%, respectively. The remaining parameters of
IMPACT are set as follows: k = 3, N = 50, Td = 150, and Te = 2500. For the comparison methods,
since these methods also support the ImageNet dataset, we set the parameters to their recommended
values as suggested in the respective papers.

White-box Comparison: The parameters of IMPACT are N = 50, Td = 150, and Te = 2500.
For a perturbation area of 0.5%, we set n = 16 and k = 1. For a perturbation area of 1%, we set
n = 32 and k = 2. For a perturbation area of 1.5%, we set n = 48 and k = 3. To ensure fairness in
comparison, we align the patch number for Patch-Fool with that of IMPACT at different perturbation
areas. Additionally, when optimizing patch content, both IMPACT and Patch-Fool use 250 iterations
of PGD.

E.2 Evaluation Metrics

Here, we present the formulas for ASR and AQ. For the set of input images Nclean, which the model
correctly classifies without any attack, the untargeted ASR is defined as:

24

ASRuntargeted =
|Nmisclassified|
|Nclean|

× 100%

where Nmisclassified is the subset of Nclean that is misclassified after applying adversarial patches. |·| is
the size of the set.

The targeted ASR is defined as:

ASRtargeted =
|Ntargeted|
|Nclean|

× 100%

where Ntargeted is the subset of Nclean where adversarial patches successfully causes the model to
classify the images into a specific, pre-defined target class.

AQ measures the average number of queries required to successfully craft adversarial patches. For
the set of input images Nclean, it is defined as:

AQ =

∑
i∈Nclean

qi

|Nclean|
where qi is the number of queries required to successfully attack the i-th image. For unsuccessful
attacks, qi is set to the query limit Qmax.

E.3 Sensitivity of Random Seeds

Given the stochastic elements inherent in our IMPACT framework, we investigated the method’s
sensitivity to random seed. We performed 10 independent runs for untargeted attacks with both 1%
and 2% total perturbation areas against the ResNet50 model, each run utilizing a different random
seed. The total query budget was fixed at 5000. Figures 8 illustrates the distribution of the ASR and
AQ across seeds.

1% Area 2% Area

82

84

86

88

90

92

94

96

AS
R

ASR Distribution Across Seeds

1% Area 2% Area

600

800

1000

1200

AQ

AQ Distribution Across Seeds

Figure 8: Violin plots of ASR and AQ across 10 random seeds for two patch budgets (1 % vs. 2
% of patch area). The shaded violins depict the full distribution density, the black boxes show the
interquartile range with median lines, and the orange ticks mark the mean. Allowing a larger patch
area (2 %) yields higher and more consistent ASR while reducing the number of queries needed.

The violin plots for both ASR and AQ demonstrate that our IMPACT method exhibits good robustness
to initialization stochasticity. While some variation is expected in heuristic search algorithms, the
results are largely consistent, especially at a 2% perturbation area where high success rates are
reliably achieved with stable query efficiency. This indicates that IMPACT’s performance is not
overly sensitive to the specific random seed chosen, making it a reliable method for generating
adversarial patches.

E.4 Comparison of White-Box Attack Methods

We designed white-box experiment to evaluate the contribution of our patch mask generation strategy.
To ensure a fair comparison, we create a white-box version of our IMPACT method, referred to

25

as IMPACT-W. Specifically, after obtaining the multi-patch mask M from DE, we use Projected
Gradient Descent (PGD) [23] to optimize the patch content. Patch-Fool [14] is a state-of-the-art
methods, and it has shown superior performance compared to other white box methods, such as
LOAP [28], DPA [5]. Patch-Fool offers multiple strategies for selecting patch locations. We focus on
two: saliency-based selection (Patch-Fool-S) and random selection (Patch-Fool-R). Table 4 presents
the comparison with Patch-Fool, based on consistent perturbation areas and patch counts: 0.5% (1
patch), 1% (2 patches), and 1.5% (3 patches). The parameter settings of IMPACT-W and Patch-Fool
are in Appendix E.1. Results show our method outperforms Patch-Fool, highlighting the advantage
of optimizing patch shapes and demonstrating the superiority of our patch mask generation approach.

Table 4: Performance comparison of white-box methods.

Model Method ASR

0.5% 1% 1.5%

ResNet50
IMPACT-W 80.50 95.40 98.50
Patch-Fool-S 76.00 93.40 97.40
Patch-Fool-R 68.40 90.40 96.80

E.5 Evaluation on More Datasets

To further validate the generalization capability of IMPACT, we extended our experiments beyond
ImageNet to include CIFAR-10 and CIFAR-100 using ResNet50 as the backbone model. Table
5 summarizes the results under both untargeted and targeted settings. Given the lower resolution
of CIFAR images (32 × 32), we adjusted the encoding to employ a 1 × 1 tiling configuration.
This modification ensures maximum granularity while maintaining a manageable search space,
highlighting the flexibility of our encoding design.

Table 5: Performance on CIFAR-10 and CIFAR-100 datasets using ResNet50, with 5000 query
budget and 5% perturbation area.

Dataset Attack Type Method AQ ↓ ASR (%) ↑

CIFAR-10
Untargeted Patch-RS 156.78 97.8

IMPACT 113.98 99.2

Targeted Patch-RS 2155.47 85.3
IMPACT 1634.36 92.7

CIFAR-100
Untargeted Patch-RS 98.52 98.1

IMPACT 72.81 99.3

Targeted Patch-RS 2310.80 82.5
IMPACT 1556.17 90.1

As shown in Table 5, IMPACT achieves near-perfect ASRs exceeding 99% in untargeted attacks
across both CIFAR-10 and CIFAR-100, outperforming the strong baseline Patch-RS. Moreover, even
in the more challenging targeted setting, IMPACT maintains ASRs above 90%, significantly reducing
the query cost compared to Patch-RS. These results demonstrate that IMPACT’s effectiveness is not
limited to a particular data distribution such as ImageNet, but rather generalizes well to datasets with
distinct statistical and visual characteristics.

E.6 Evaluation on Defense Models

To further assess the robustness of our IMPACT method, we evaluated its performance against several
defense mechanisms. Similar to reference [43], we evaluate the effectiveness of our IMPACT method
against adversarially trained models [29] and the PatchGuard defense [44].

Table 6 summarizes the ASR and AQ of our IMPACT method when attacking these defended
models, compared to its performance against a standard, non-defended ResNet50 model. The results
demonstrate that while defenses can impact performance, our IMPACT method exhibits considerable
resilience, particularly against the tested adversarially trained models. Against the specialized

26

PatchGuard defense, IMPACT’s success rate, while reduced, remains significant, indicating its
potential to overcome defenses specifically designed for patch attacks. The increased query cost in
this scenario highlights the added difficulty imposed by such a defense.

Overall, these findings underscore the strength of IMPACT as a black-box patch attack. Its ability
to jointly optimize diverse patch characteristics allows it to remain effective even when faced with
common and specialized defense strategies, motivating further research into more comprehensive
defense mechanisms.
Table 6: ASR and AQ of IMPACT against standard and defended models (Black-box, untargeted,
5000 queries, 2% area, 3 patches).

Target Model ASR (%) AQ

ResNet50 (No Defense) 94.2 676

AT-ResNet50-L2 (ϵ = 3.0) 92.2 520.6
AT-ResNet50-Linf (ϵ = 4/255) 93.8 508.1
bagnet17 with PatchGuard 83.4 1920.6

E.7 Physical-World Evaluation

To assess the real-world applicability of IMPACT, we conducted physical-world experiments follow-
ing Wang et al. [39]. Specifically, we randomly selected 100 images with adversarial patches and
printed each on a 10 cm × 10 cm white paper. Using an iPhone 15, we photographed each printed
image from different distances (10 cm, 15 cm, and 20 cm) and viewing angles (0°, 15°, and 30°).
The captured photos were then resized to 224 × 224 pixels for input to the ResNet50 model. All
experiments were conducted under the targeted attack setting, where the goal was to force the model
to predict a specific incorrect class.

Table 7: Physical-world performance of IMPACT. The targeted ASR (%) is reported across varying
distances and viewing angles for ResNet50 model. “Digital ASR” denotes the corresponding
performance in the digital domain for the same 100 images.

Model Digital ASR Angle ASR@10cm ASR@15cm ASR@20cm

ResNet50 53.0
0° 41.0 37.0 32.0

15° 35.0 31.0 26.0
30° 28.0 25.0 21.0

As shown in Table 7, IMPACT remains effective in real-world settings. Even under challenging
conditions (20 cm distance and 30° viewing angle), it achieves a 21.0% targeted ASR. The observed
degradation from the digital to the physical domain is expected, as variations in distance and viewing
angle inevitably diminish patch detail in captured images. Despite this, IMPACT retains meaningful
attack performance, demonstrating its practical feasibility.

E.8 Consumption Time Analysis

To assess the computational overhead of IMPACT, we follow Williams et al. [43], measuring the
average time required to successfully complete an attack on a single image. The experiments were
conducted on a single NVIDIA RTX 4090 GPU under the untargeted attack setting against the
ResNet50 model, with a query budget of 5000 and a perturbation area of 2%. The results are
summarized in Table 8.

Table 8: Comparison of computational time under the untargeted attack setting on ResNet50.

Method ASR (%) ↑ AQ ↓ Runtime (s) ↓
IMPACT 94.2 676 29.16
Patch-RS 89.8 982 1.78

As shown in Table 8, IMPACT requires more time per attack (29.16 s) than Patch-RS (1.78 s),
primarily because it employs a population-based optimization algorithm that evaluates multiple

27

candidate solutions per generation. In contrast, Patch-RS relies on a simpler random sampling
strategy with a lower per-iteration computational cost.

Despite the higher runtime, IMPACT significantly outperforms Patch-RS in the metrics that matter
most in black-box attack scenarios. Specifically, it achieves a higher attack success rate (94.2%
vs. 89.8%) and requires substantially fewer model queries (676 vs. 982 on average). In real-world
applications, each query can be expensive and increases the risk of detection, making query efficiency
far more critical than raw computational time. Thus, while IMPACT incurs a higher runtime than
Patch-RS, this is justified by its substantially better attack quality and query efficiency, and the overall
runtime remains practical for real-world deployment.

E.9 Ablation Study on Random Aggregation

Our Random Aggregation algorithm incorporates stochasticity at several key junctures to foster
diversity in the generated irregular patch shapes. Specifically, these include: (1) Random aggregation
center. The center for aggregation within each K-Means cluster is chosen randomly from the cluster’s
members. (2) Random target in neighborhood. When an element is being moved, the target towards
which it moves is randomly selected from the neighborhood of the aforementioned aggregation center.
(3) Random movement direction. If multiple directions (e.g., horizontal and vertical) would reduce
an element’s distance to its target, one is chosen randomly. To understand contributions of these
stochastic elements, we conducted an ablation study in Table 9.

Table 9: Ablation study on stochastic components within random aggregation.

Aggregation Variant ASR (%) AQ

Full random 94.2 676

No random aggregation center 89.5 782
No random target in neighborhood 92.1 727
No random movement direction 92.4 684

For no random aggregation center, instead of randomly selecting an aggregation center from within
the cluster members, we deterministically use the centroid calculated by the K-Means algorithm as
the aggregation center for each cluster. All other stochastic elements remain active. For no random
target in neighborhood, elements are moved directly towards the aggregation center itself, rather
than to a randomly chosen point within its neighborhood. For no random movement direction, the
algorithm always attempts a horizontal move first, followed by a vertical move.

This ablation study highlights the importance of the stochastic elements within our Random Aggre-
gation algorithm. The random selection of the aggregation center appears to be the most impactful,
significantly contributing to both attack success and efficiency. Randomness in selecting the target
within the center’s neighborhood also provides a noticeable benefit. While randomizing the movement
direction has a smaller effect on the primary metrics, retaining all three sources of randomness likely
contributes to the overall diversity and robustness of the patch generation process. These findings
justify our design choices to incorporate these levels of stochasticity to enhance the exploration of
diverse and effective irregular patch shapes.

E.10 Parameter Experiment Details

In our method, the number of queries is influenced by three parameters: N , Td, and Te. The total
number of queries is calculated as Q = N × Td + Te. To assess the impact of these parameters on
optimization performance, we design experiments focusing on N and Td. We set a total query budget
of 10,000 while keeping n, k, and Te constant. This approach resulted in various combinations of
N and Td. Table 10 illustrates the effect of these different combinations. It can be observed that
the highest ASR 95.20% is achieved when N = 50 and Td = 150. Under a fixed query budget,
prioritizing a higher number of iterations over a larger population size leads to better optimization
and more effective attacks.

We further investigate the sensitivity of the DE phase to its two core hyperparameters: the mutation
factor F and the crossover probability CR. All experiments below use only Phase 1 optimization
with N = 50, Td = 100, and a fixed total query budget of Q = 5000. We sweep the two core DE

28

Table 10: The impact of different parameter combinations.

n k Te N Td ASR(%)

64 3 2500

25 300 94.60
50 150 95.20

100 75 94.00
150 50 93.80

hyperparameters: mutation factor F and crossover rate CR, while holding the total patch area at 2%
and the number of patchesk = 3 constant. Specifically, when evaluating CR, we fix F = 2, and
when evaluating F , we fix CR = 0.8. The results are reported in Table 11 and Table 12, respectively.

Table 11: Effect of crossover rate CR.

CR ASR (%) AQ

0.2 90.4 835
0.4 88.2 840
0.6 89.2 785
0.8 90.8 748
1.0 89.4 727

Table 12: Effect of mutation factor F .

F ASR (%) AQ

0.5 85.4 1058
1.0 87.8 835
2.0 90.8 748
3.0 89.6 718
4.0 89.2 743

Our analysis of these hyperparameter sweeps reveals that IMPACT’s performance is relatively robust
to variations in the mutation factor F and crossover rate CR within typical ranges. However, to
optimize the balance between success rate and query efficiency, we identified CR = 0.8 and F = 2.0
as offering a marginally superior trade-off. Consequently, these values are adopted as defaults in
other reported experiments.

29

	Introduction
	Related Work
	Adversarial Patch Attacks
	Adversarial Attacks Based on EAs

	Proposed Method
	Problem Formulation
	Phase 1: Joint Optimization
	Dimensionality Reduction Encoding
	Random Aggregation

	Phase 2: Content Refinement

	Experiments
	Experimental Setup
	Performance Comparison
	Ablation Study
	Parameter Sensitivity Analysis

	Conclusion
	Function Explanation
	Random Aggregation Details
	DE Components
	Initialization
	Mutation
	Crossover
	Repair
	Fitness Function
	Selection

	Effectiveness Analysis
	Experimental Details
	Parameter Settings
	Evaluation Metrics
	Sensitivity of Random Seeds
	Comparison of White-Box Attack Methods
	Evaluation on More Datasets
	Evaluation on Defense Models
	Physical-World Evaluation
	Consumption Time Analysis
	Ablation Study on Random Aggregation
	Parameter Experiment Details

