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Abstract

The ability to automatically build 3D digital twins of
plants from images has countless applications in agri-
culture, environmental science, robotics, and other fields.
However, current 3D reconstruction methods fail to recover
complete shapes of plants due to heavy occlusion and com-
plex geometries. In this work, we present a novel method
for 3D modeling of agricultural crops based on optimizing
a parametric model of plant morphology via inverse pro-
cedural modeling. Our method first estimates depth maps
by fitting a neural radiance field and then optimizes a spe-
cialized loss to estimate morphological parameters that re-
sult in consistent depth renderings. The resulting 3D model
is complete and biologically plausible. We validate our
method on a dataset of real images of agricultural fields,
and demonstrate that the reconstructed canopies can be
used for a variety of monitoring and simulation applica-
tions. Project page: hitps://ajzhai.github.io/ Crop Craft

1. Introduction

Plants are ubiquitous objects that appear all around the
world and serve as the foundation for agriculture, which
underpins our civilization’s growth and survival. The abil-
ity to automatically build 3D digital twins of plants from
images has countless applications in agriculture, environ-
mental science, robotics, and other fields. In particular, the
development of such methods in the context of agriculture
will enable automatic, large-scale monitoring of crops. The
collected data can provide decision support for farmers, aid
carbon budgeting for decision-makers, support the devel-
opment of new agricultural techniques, and inform the de-
sign of new genotypes [10, 48, 66]. All of these advances
will contribute to increasing crop productivity, alleviating
the rising food crisis of today’s world [4, 36].

However, 3D reconstruction of plants remains to be a
challenging vision problem. Many plants, including most
of those found in agriculture, are composed of complex ar-
rangements of thin leaves and branches that heavily occlude
one another. These low visibility conditions cause exist-
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Figure 1. Occlusion makes complete plant reconstruction chal-
lenging. Current 3D reconstruction methods (e.g. VGGT [56])
miss a large portion of the crop canopy due to heavy occlusion,
making them unsuitable for monitoring and analysis applications.
We propose a novel method that combines neural rendering and
procedural modeling to output a complete, interpretable, and bio-
logically plausible 3D mesh model of the crop canopy.

ing reconstruction pipelines to fall short. Multi-view re-
construction methods such as those based on neural render-
ing [27, 34, 53, 57, 62] or multi-view stereo [46, 58, 61, 65]
do not reconstruct the invisible regions of the scene, lead-
ing to incomplete plant shapes and extraneous geometry.
Learning-based methods [13, 17, 29] can overcome this is-
sue but require large amounts of ground-truth 3D data for
training, which is extremely difficult to collect for dense
vegetation due to the same occlusion reasons.

On the other hand, there is a large body of work that has
found success in modeling 3D plant shapes via procedural
generation [25, 31, 40, 41, 50, 51]. These procedural mod-
els are grounded in scientific knowledge and are carefully
designed to produce biologically plausible plant shapes that
consist of anatomically complete arrangements of plant or-
gans with realistic shapes. However, these models generally
require human input to set their parameters, and the task
of automatically generating plants that accurately represent
plant instances observed in the real world (“inverse proce-
dural modeling”) remains to be difficult.

In this work, we present a novel method for 3D model-
ing of agricultural crops based on optimizing the parame-
ters of a procedural plant morphology model. Our method
combines the flexibility of data-driven neural reconstruction
methods with the robust foundational knowledge in proce-
dural models. To this end, we first use neural radiance field


https://ajzhai.github.io/CropCraft

(NeRF) techniques [34, 53] to estimate the geometry of the
visible surfaces in the scene. We then apply heuristics to
localize the planting rows and calculate a row-aligned cam-
era pose from which to render depth maps. Next, we render
depth maps from both the NeRF and a virtual scene gener-
ated by our procedural model, and use Bayesian optimiza-
tion to minimize a specially designed loss function with re-
spect to the procedural model’s parameters.

The design of the loss function and the parameteriza-
tion of the procedural model are crucial for obtaining a
3D canopy model that is useful for field-level analysis ap-
plications. Importantly, for such applications, the fine-
grained positions of each individual leaf are mostly irrel-
evant, as long as the aggregate shape characteristics of the
crop canopy are faithful. We thus define our loss on his-
togram statistics of the depth map and optimize a highly
compact set of parameters to ensure that the key canopy
characteristics for determining crop productivity are accu-
rately captured without being distracted by fitting irrelevant
details. Thanks to the strong priors imposed by the procedu-
ral model, this process jointly optimizes the complete plant
shape, including portions not visible in the input images.

To validate our approach, we collect a multi-view dataset
of real soybean and maize fields, paired with manual mea-
surements of leaf area and leaf angle. We show that the
proposed method can successfully reconstruct realistic crop
canopies across different growth stages and estimate key
canopy structure variables more accurately than baselines.
These variables are tightly linked to crop yield and are used
extensively in crop science. We also show that the recon-
structed 3D canopies can be directly fed into radiative trans-
fer modeling software to provide accurate predictions of
photosynthesis rates. The results highlight the potential for
monitoring crop productivity directly from camera images
instead of costly flux tower equipment. Our contributions
are summarized below:

* We present a novel approach for reconstructing complete
3D morphological models of large-scale crop plant fields
from a collection of images.

* We provide a framework for image-based growth and
photosynthesis quantification, paving the way for scalable
yield prediction and carbon exchange monitoring.

2. Related Work

3D Reconstruction. The task of reconstructing the 3D
geometry of a scene given images is a longstanding prob-
lem in computer vision. Most reconstruction pipelines start
from Structure-from-Motion (SfM), which infers camera
parameters for the input images through joint optimization
with detected keypoints [45, 54]. Afterwards, 3D geometry
can be estimated based on photometric consistency across
input views. Multi-view stereo (MVS) methods attempt to
match correspondences across images and then triangulate

the 3D coordinates of the points [46, 58, 61, 65]. Another
approach for 3D reconstruction is based on fitting a neural
radiance field (NeRF) to the scene [27, 28, 34, 53, 57, 62,
63]. NeRF is a high-fidelity and compact 3D scene repre-
sentation that consists of a color field and a density field,
both parameterized by neural networks and fitted to the in-
put images via differentiable volume rendering [34]. Af-
ter training, depth maps can be obtained by volume render-
ing with the density field. NeRF-based methods can model
view-dependent effects and tend to give better surface ge-
ometry than MVS. More recently, new methods based on
3D Gaussians have been proposed [14, 19, 24], achieving
higher visual fidelity and efficiency than NeRF, but often
with less accurate geometry. In our approach, we use an off-
the-shelf NeRF [53] to reconstruct visible surfaces of plants,
which has been explored before [2, 18, 43, 49]. Howeyver,
due to the inevitable occlusion in agricultural scenes, this is
inadequate for full canopy reconstruction. To solve this is-
sue, we turn to procedural models, which incorporate scien-
tific knowledge and define a space of complete plant shapes
that we can constrain our solution to.

Inverse Procedural Modeling. Inverse procedural mod-
eling (IPM) refers to the problem of finding a procedure
for generating a 3D representation of a given object or
scene. The key design choices for IPM pipelines are the
choice of procedural model and the method for optimiz-
ing the parameters of the model. IPM has been applied
for various input categories, with works focusing on build-
ing interiors [5, 11, 20, 21, 32], facades [8, 33, 59], driving
scenes [7, 22], and forestry [15, 25, 26, 30, 35, 51]. The pro-
cedural models range from scene grammars [12, 21, 22] to
constructive solid geometry trees [64] to L-systems [37, 40],
which are especially popular for modeling botanical trees.
To fit the model, a structural similarity measure is defined
based on geometric and or semantic agreement. Depending
on the type of model, which may require estimating pro-
cedural rules and or parameters [1], various search-based
or dynamic programming-based optimization methods may
be used to maximize the similarity measure. Unlike the re-
construction methods described above, inverse procedural
modeling methods tend to focus less on photometrically ex-
act reconstructions, aiming to obtain structurally similar ap-
proximations useful for simulation applications.

To the best of our knowledge, our work is the first to use
IPM to reconstruct agricultural crops in the field and the
first to integrate NeRFs into the IPM pipeline. Compared
to individual plants [30, 66], modeling dense crop canopies
poses a new set of challenges due to the high levels of oc-
clusion. IPM methods for trees [26, 51] are inspirational but
do not adequately constrain the plant topology for smaller
crops. We propose a specialized IPM approach to estimate
3D crop meshes that can be used for plant phenotyping, vi-
sualization, and simulation of biophysical processes.
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Figure 2. Overview of our method. We aim to estimate the parameters for a procedural generation model to generate a shape that matches
the observed images. First, we use standard structure-from-motion and neural radiance field (NeRF) techniques to reconstruct the visible
geometry of the scene. We then apply geometric heuristics to calculate a camera pose aligned with the planting rows of the crops. This
pose is used to render depth maps from both the NeRF and the procedural model. We define a specialized loss function based on histogram
statistics of the depth maps and minimize it with respect to the morphological parameters using Bayesian optimization.

3. Inverse Procedural Modeling for Crops

Our proposed method takes as input a set of images of a field
of crops, and outputs a set of parameters that can be fed into
a procedural generation model to produce a 3D mesh of the
crops in the images. An overview of our method is provided
in Fig. 2. By constraining the space of possible 3D shapes to
the output space of the procedural model, we can ensure that
the reconstructed plants are complete and have realistic leaf
shapes and branch topology. Of course, we also need our
reconstruction to match what we can observe in the input
images. We achieve this by searching for parameters that
minimize a specialized loss function based on depth maps
estimated from the input images and corresponding depth
maps rendered from the reconstruction.

The layout for the rest of this section as follows. In
Sec. 3.1, we describe the procedural generation models we
use for plant morphology. In Sec. 3.2, we describe how
we use a neural radiance field (NeRF) [34] and geometric
heuristics to obtain row-aligned depth maps from the input
images. In Sec. 3.3, we describe our loss function and in
Sec. 3.4, we describe our optimization algorithm.

3.1. Procedural Morphology Model

At the core of our method is a procedural morphology
model that defines a primitive for the leaf shape and the
possible topologies for the plant structure. Since this varies
drastically across different species, these models should
be species-dependent. In this work, we focus on soybean
(Glycine max) and maize (Zea mays), the two most-grown
crops in the United States [55].

Accurate crop modeling requires appropriate species-
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Figure 3. Procedural plant morphology models. We adopt pro-
cedural generation models from existing soybean morphology [50]
and maize morphology [41] models. This (stylized) illustration
shows the parameters that we allow to be optimized to model vari-
ations across individual instances of each species.

based shape constraints. Our procedural generation models
are heavily based on existing work in the crop morphology
literature. For soybean, we build upon the mCanopy model
by Song et al. [50], and for maize, we build upon the cou-
pled maize model by Qian et al. [41]. The mCanopy model
consists of nodes of trifoliate leaves attached via a petiole
to either the main plant stem or a branch stem. The maize
model consists of large curved leaves growing from a sin-
gle main stem. We introduce our own parameterization for
each model, as illustrated in Fig. 3. The parameterization is
designed to be flexible enough to capture the primary shape
variations across instances of each species while remaining
as low-dimensional as possible (5 parameters for soybean,
4 for maize). Note that the procedural generation process
is in general stochastic; e.g. the model samples leaf angles
according to a probability distribution. We refer readers to
the supplementary for additional details about each model.



3.2. Pose Alignment for Depth Rendering

The procedural generation model defines a space of 3D
shapes that can represent plants of various stages of ma-
turity, growing conditions, and cultivars. In order to search
within this space for the shape that best matches the plants
in input observations, we define a specialized loss function
based on depth maps estimated from the input images and
depth maps rendered using the proposed shape.

Note that, in order to properly compare depth maps be-
tween the real scene and the procedurally generated scene,
the procedural plants should be placed in the same positions
and orientations (relative to the camera) as in the real scene.
However, it is practically impossible to determine the pre-
cise base position of every individual plant under heavy oc-
clusion. Fortunately, it is also unnecessary to do so, since
our applications demand characterizing the canopy overall,
not each individual plant. Thus, we handle pose alignment
by using geometric heuristics to estimate plant row loca-
tions, while carefully designing our loss function to be in-
variant to individual plant locations within each row.

We assume that our crop plants are planted in rows with a
known planting density (typically true). To estimate the row
locations, we first use an off-the-shelf NeRF (Nerfacto [53])
to obtain a 3D point cloud of the visible surfaces. We ren-
der the depth for each input view and unproject each pixel
to a 3D point. Then, we randomly sample a fixed number
of points within a bounding box for the scene and perform
voxel downsampling. Next, we segment the points into
ground/plant using a threshold on their color in LAB space.
We fit a plane to the ground points using RANSAC [44] and
take an upper slice of the plant points based on their dis-
tance to the ground plane. Finally, we fit a line to each row
by sequentially running RANSAC and removing the inliers
for each fitted line. Additional details for the row-fitting
procedure are provided in the supplementary.

Given the ground plane and rows, we define a standard-
ized camera to render from at a predetermined height above
the center of the row with the most inliers, facing straight
downwards with its x-axis aligned with the row. This de-
sign will allow our loss to be invariant to the exact place-
ment of plants along the z-axis. The camera is used to
render both the observation depth map I, from the NeRF
and the depth map I,.q induced by the procedurally gener-
ated scene. Note that depth estimators such as VGGT [56]
are unsuitable here since we are rendering depth from a
novel (non-input) view. We also use a color threshold and
a bounding box to acquire foreground (plant) masks Mgy
and M,,q corresponding to each depth map.

3.3. Loss Function

One of the key motivations for estimating the 3D structure
of agricultural crops is to enable photosynthesis simulations
that provide accurate predictions of primary productivity

and other ecological variables. Recall that we are interested
in these variables at a large scale, at the level of patches or
fields, not at the level of individual plants. Thus, the recon-
struction of individual leaf locations is not necessary as long
as certain statistics of the aggregated crop canopy are accu-
rate. With this in mind, we design a loss function around
histogram statistics of the rendered depth maps, aiming to
recover the key shape properties necessary for photosyn-
thesis simulation while avoiding overfitting to irrelevant as-
pects of the scene geometry.

Depth Profile Term. The first term of the loss function
is the L2 distance between histograms of foreground depth
values in the observed and predicted depth maps. Formally,

Ldeplh = Hhobs - hpred”%; (1)
where hgps and hpq are histograms of the foreground depth
values in Ly and I,q respectively. Unlike the depth maps
themselves, the histograms are invariant to translation along

the ground plane, while still containing information about
the crop height.

Lateral Profile Term. The lateral profile term Ljyery iS
essentially the same as the depth profile term but for y-
coordinate absolute values instead of z-coordinates. This
term helps to constrain the extent to which the canopy
spreads out on the ground, which the depth profile is mostly
invariant to. We do not include another term for the z-
coordinate because the x-axis is aligned with the planting
rows, making the distribution close to uniform.

Depth Derivative Term. To capture more information
about surface normals, we include another L2 10ss Lggpe
on (histograms of) magnitudes of Sobel derivatives of the
depth maps. We sum absolute values of the Sobel deriva-
tives in both directions with a kernel size of 3.

Mask Area Term. The final term is a squared-error on the
foreground mask area:

Lmask: (||M0bs||1 - |‘Mpred||1)2~ (2)
Our final loss is a weighted combination of the above terms:
L= Ldepth + )\lateralLlateral + AsobelLsobel + )\maskLmask' (3)

3.4. Bayesian Optimization

Since the procedural generation model directly adds new
mesh faces to create plants with different topology, the
transformation from parameters to generated shape is not
differentiable. Thus, it is difficult to minimize the loss func-
tion with respect to the parameters using gradient-based
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Figure 4. Qualitative reconstruction results (soybean). We validate the reconstruction quality of our method on images from real
agricultural fields. From left to right: example images from the multi-view data, row-aligned NeRF-rendered depth, procedural model
depth, rendered visualization of the procedural mesh. By matching statistics of the depth, our method is able to estimate the key shape
parameters needed to characterize the growth of the plants throughout the growing season, consistently producing realistic reconstructions.

optimization methods. Instead, we employ Bayesian op-
timization, a black-box optimization method that is com-
monly used for hyperparameter tuning [47]. Bayesian op-
timization creates a surrogate for the objective function us-
ing Gaussian process regression, and then decides where to
sample next by optimizing an acquisition function that com-
bines uncertainty and the expected objective value [9]. We
perform Bayesian optimization with a Matern kernel and
the simple expected-improvement (EI) acquisition func-
tion [9] to estimate the procedural generation parameters
that minimize our loss function. We find that, in many
scenes, there may be multiple solutions with similar loss
values. In order to make our method more robust to differ-
ent random initialization seeds, we run the optimization 10
times (in parallel) and average the solutions, although this
is not strictly necessary. An analysis of the distribution of
the optimization results is provided in the supplementary.

4. Experiments

Dataset. To validate our approach, we collected a dataset
of multi-view images in real crop fields in the U.S. Mid-
west, paired with manual measurements of key morpholog-
ical variables. For soybean, we collected at 3 geographical
locations at 6 different time points throughout the growing
season, for a total of 18 scenes. The images were captured
covering a 2 mXx 2 m area using the Polycam app on an iPad
Pro, around 50 per scene. The paired manual measurements
consist of leaf areas and leaf angles (angle between surface
normal and zenith direction). Leaf area was measured using
a LAI-2200 scanner, and leaf angle was measured using a
protractor. For maize, we collected 5 different time points
in one location, with each scene containing around 500 im-
ages from a DJI Mavic UAV flying at a height of 13 m. The
images were aligned using Agisoft Metashape. Here, only
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Figure 5. Qualitative reconstruction results (maize). We show that our method can be applied to model maize as well as soybean. From
left to right: example images from the drone-captured multi-view data, row-aligned NeRF-rendered depth, procedural model depth, ren-
dered visualization of the procedural mesh. The resulting reconstructions are complete and anatomically realistic despite heavy occlusion.

leaf area was measured, not leaf angles. Both the soybean
and maize data are available through our project page.

Metrics. Our evaluation metrics (and field measurements)
are centered around the commonly considered canopy struc-
ture variables of leaf area index (LAI) and the leaf angle dis-
tribution. LAI is defined to be the total surface area of leaves
per unit of ground area and is widely used in productivity
models, climate models, and methods to estimate other veg-
etative surface properties [38]. Similarly, leaf angle is re-
garded as a key component of plant ecological strategy with
significant impact on land surface properties such as car-
bon flux, surface temperature and spectral signature [60].
To assess how accurately our reconstructions capture these
key traits, we consider the following metrics: LAI Error
(LAIE) is the root mean squared error (RMSE) between
the predicted and ground-truth (manually measured) LAIL
LAI Percent Error (LAIPE) is the absolute percent error
between the predicted and ground-truth LAI. Angle Mean
Error (AME) is the RMSE between the mean of the pre-
dicted leaf angles and the mean of the ground-truth leaf
angles. Angle Standard Deviation Error (ASDE) is the
RMSE between the standard deviation of the predicted leaf
angles and that of the ground-truth leaf angles. We also
evaluate the accuracy of the estimated stem structure and
topology in the supplementary, using synthetic scenes in-
stead of real scenes due to the difficulty of obtaining corre-
sponding ground-truth measurements.

Baselines. We compare our reconstruction method with a
variety of baselines: Poisson refers to applying Poisson sur-
face reconstruction [23] on the point cloud extracted from
NeRF, and then thresholding in 3D to remove the back-
ground geometry. All of the remaining mesh faces are then

considered as leaf faces. MLP refers to using a learned
multilayer perceptron (MLP) to predict procedural genera-
tion parameters given the histograms, mask area, and view
height of the observation depth map. The MLP is trained
on 20K pairs of histogram statistics and model parameters,
synthesized by running the procedural generation model
and rendering depth maps. Trust-Region is the same as
our proposed method but uses a (constrained) trust-region
method [6] for optimization instead of Bayesian optimiza-
tion. This requires an estimate of the gradient of the loss
function, which is obtained via 2-point finite difference es-
timation [52]. Random refers to uniformly randomly sam-
pling values for the procedural generation parameters.

Implementation Details. For soybean, we train Ner-
facto [53] with default parameters for 20K iterations. For
maize, we set the near-plane and far-plane to 0.05 and 6.0
respectively, the MLP width to 128, and the orientation
method to “vertical”. We defer details about the RANSAC
row-fitting and depth rendering to the supplementary. For
our loss function, we use Ajeral = 2, Asobel = 4, Amask = 1
for soybean and Ajyeerat = 1, Asobel = 0, Amask = 1 for maize.
This is because the low NeRF quality in the maize scenes
makes the depth derivatives unreliable. For Bayesian opti-
mization, we use scikit-optimize [16] and run for 500 itera-
tions, with 200 iterations for random initialization. Details
about histogram bins and baseline implementations can be
found in the supplementary.

4.1. Canopy Shape Modeling

Qualitative Results. We show example results at differ-
ent stages of soybean growth for the same geographic lo-
cation in Fig. 4. We observe that our method produces



Table 1. Canopy reconstruction results. We highlight the ' best and second best values.

Soybean Maize
LAIE(}) LAIPE(]) AME(}) ASDE(|) | LAIE()) LAIPE(})
Poisson 111 0.57 31.60 4.10 1.63 0.42
MLP 0.92 0.24 29.79 3.91 2.79 0.88
Trust-Region 1.37 0.28 10.34 7.10 1.71 0.53
Random 3.38 2.84 27.92 11.83 242 0.75
Ours | 0.69 0.15 12.07 739|097 0.26
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Figure 6. Leaf-level optimization does not improve overall
structure accuracy. We experiment with using differentiable ren-
dering to directly optimize mesh vertices with respect to the MSE
between the rendered and observed depth. Although the depth
MSE decreases, the induced LAI becomes increasingly inaccurate,
demonstrating the unsuitability of such vertex-level optimization.

complete reconstructions that capture how the shape of the
canopy evolves over time, from small seedlings to large
bushes. Unlike most existing reconstruction methods, our
method is able to estimate the invisible (occluded) portions
of the plants as well as the visible portions. The final mesh
is also easily decomposable (at both the plant-level and part-
level) and is guaranteed to be biologically reasonable thanks
to the constraints imposed by the procedural model.

We also show example results for maize in Fig. 5. Due to
windy conditions, larger scene scale, and noisy camera pose
estimation, the quality of the NeRF is significantly lower in
the maize data compared to soybean. However, our method
is still able to produce reasonable canopy reconstructions
using those observations.

Quantitative Results. We provide quantitative results for
the canopy reconstruction in Tab. 1. In all metrics except
ASDE, we find that our proposed method achieves the high-
est performance. The angle standard deviation may be es-

timated less accurately than the other variables because it
does not have as strong of an impact on the loss function.
The Poisson reconstruction fails because it completely
ignores occluded regions and also frequently stitches nearby
leaves together, creating extraneous faces. The MLP gives
reasonable predictions in terms of soybean leaf area, but
tends to give highly erroneous leaf angles as a result of the
domain gap between the synthetic histograms it was trained
on and the actual histograms from the NeRF depth maps.
This is exacerbated with the maize data, where the NeRF
renderings are blurrier. The trust-region optimization pro-
duces leaf angles comparable with our (Bayesian optimiza-
tion) method, but does not perform as well for leaf area,
most likely falling into local minima or making erroneous
steps due to the stochasticity of the procedural model.

Naive geometric optimization. We emphasize that our
goal is not exact leaf-level reconstruction of the crop
canopy. Instead, our task demands complete crop canopies
that capture key shape statistics of the actual leaf distribu-
tion, such that downstream applications like growth moni-
toring or photosynthesis prediction can be conducted accu-
rately. Our model parameterizations and loss function terms
are designed to capture precisely these key shape variations,
and not overfit to irrelevant geometric details of the input
observations. To illustrate this point, we conduct an experi-
ment using differentiable rendering to directly optimize the
vertices of our output mesh to further fit the observed depth
map. The optimization is done in PyTorch3D [42] using
SGD with learning rate 0.01 and momentum 0.9 on an MSE
loss. The results are shown in Fig. 6. Although the pixel-
wise depth error can be made very low, important variables
such as the total leaf area become less accurate, which is
reflected in the LAI [38]. This justifies the need for shape
constraints and distribution-level optimization.

4.2. Ablation Studies

We conduct an ablation study on the components of our loss
function in Tab. 2. We observe that each of the compo-
nents contribute to producing a more accurate reconstruc-
tion, some significantly more than others. The depth deriva-
tive loss has a pronounced beneficial effect on the leaf area
metrics. This is because the other statistics may have trou-



Table 2. Loss function ablations. We highlight the 'best and second best values.

Loss Components Soybean
Ldepth Liyeral Liobel Linask LAIE (\L) LAIPE (\L) AME (J,) ASDE (\L)

v 1.62 0.52 17.00 9.26

v v v 0.67 0.19 12.08 6.81
v v v 0.71 0.16 10.37 7.69
v v v 1.94 0.49 9.73 8.15
v v v 0.78 0.19 12.30 8.03
v v v v 0.69 0.15 12.07 7.39
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Figure 7. Photosynthesis simulation results. We perform simu-
lations using Helios [3] on soybean canopies reconstructed by our
method. The left column shows a timeseries of the net photosyn-
thesis rate for the crop canopy over the course of a day, in units
of 1umolCO2/m?/s. The other columns show a mesh visualization
where leaf faces are colored by the rate of photosynthesis over that
face (brighter = higher rate). The results demonstrate the potential
of using our pipeline for monitoring crop productivity.

ble constraining the leaf size when the canopy has covered
most of the ground, while the depth derivative distribution
will be strongly shifted upwards with smaller leaves com-
pared to larger ones. We note that removing some of the
other terms one at a time does not actually significantly
harm the final performance. The hard constraints imposed
by the procedural model and the soft constraints imposed
by the remaining terms are able to force a similar solution.
We decide to include all the terms in our final method due
to the improved LAIPE, which we prefer over LAIE as it is
not biased towards the later time points with larger plants.

We also test our method with different procedural mod-
els to investigate the importance of having realistic shape
priors. The results can be found in the supplementary, along
with a discussion of limitations.

The outputs of our method can be directly used with radia-
tive transfer models to predict photosynthesis rates, which
directly impacts crop productivity. We showcase this using
Helios [3], a state-of-the-art biophysical modeling frame-
work. Helios can predict the net photosynthesis rate for
every leaf mesh face at any point in time given a set of en-
vironmental variables measured by a flux tower with sen-
sors for temperature, humidity, radiation, etc. We show vi-
sualizations of the per-face photosynthesis rate as well as
timeseries of the aggregate rate across the entire canopy in
Fig. 7. Ground-truth values for the photosynthesis rate are
usually calculated at a landscape-level using eddy covari-
ance data from a flux tower [39]. Since we do not have
paired flux tower measurements for our dataset (collected
in 2023), we use measurements from a soybean field in the
previous year (2022) with a similar location and climate.
The predictions appear to accurately represent the net
photosynthesis over time as well as its spatial variations
throughout the canopy, validating our pipeline’s potential
for facilitating large-scale monitoring of crop productivity.

5. Conclusion

We presented a novel method for 3D modeling of agricul-
tural crops that combines neural rendering with inverse pro-
cedural modeling to produce complete plant shapes despite
heavy occlusion. Our method first constructs a neural ra-
diance field (NeRF) and then optimizes a procedural model
to be consistent with the NeRF in a visibility-aware manner.
We validate our method on real-world agricultural fields and
show that it can reconstruct realistic crop canopies across a
variety of growth stages. We also show that it enables re-
alistic simulations of crop photosynthesis using a radiative
transfer model. The method could potentially be improved
in the future by incorporating plant growth priors for tempo-
ral consistency, or optimizing the model in a coarse-to-fine
manner to capture more shape details.
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