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ABSTRACT

Selective classification enhances the reliability of predictive models by allowing
them to abstain from making uncertain predictions. In this work, we revisit the
design of optimal selection functions through the lens of the Neyman–Pearson
lemma, a classical result in statistics that characterizes the optimal rejection rule as
a likelihood ratio test. We show that this perspective not only unifies the behavior of
several post-hoc selection baselines, but also motivates new approaches to selective
classification which we propose here. A central focus of our work is the setting
of covariate shift, where the input distribution at test time differs from that at
training. This realistic and challenging scenario remains relatively underexplored
in the context of selective classification. We evaluate our proposed methods
across a range of vision and language tasks, including both supervised learning
and vision-language models. Our experiments demonstrate that our Neyman–
Pearson-informed methods consistently outperform existing baselines, indicating
that likelihood ratio-based selection offers a robust mechanism for improving
selective classification under covariate shifts. Our code is publicly available at
https://github.com/clear-nus/sc-likelihood-ratios.

1 INTRODUCTION

Machine learning models are inherently fallible and can make erroneous predictions. Unlike humans,
who can abstain from answering when uncertain, e.g., by saying “I don’t know”, predictive models
typically produce a prediction for every input regardless of confidence. Selective classification aims
to address this limitation by enabling models to abstain on uncertain inputs, thereby improving overall
performance and robustness, for instance by deferring ambiguous cases to human experts.

A wide range of methods have been proposed to determine whether a model should accept or reject
an input. Common post-hoc approaches rely on heuristic confidence estimates, such as the maximum
softmax probability (Geifman & El-Yaniv, 2017; Hendrycks & Gimpel, 2017), logit margins (Liang
et al., 2024), or Monte Carlo dropout (Geifman & El-Yaniv, 2017; Gal & Ghahramani, 2016). Other
techniques assess a sample’s proximity to the training distribution (Lee et al., 2018; Sun et al., 2022),
under the assumption that samples farther from the data manifold are more likely to be misclassified.
A separate line of work trains models with explicit abstention mechanisms, such as a rejection logit
or head (Geifman & El-Yaniv, 2019; Liu et al., 2019; Huang et al., 2020). In this work we focus on
post-hoc methods, which are model-agnostic and do not require specialized training.

Despite the rich literature, two important gaps remain. First, while foundational results (such as Chow
(1970); Geifman & El-Yaniv (2017)) provide theoretical underpinnings for selective classification,
there is a lack of general, principled guidance for designing effective selector functions in the context
of modern deep networks. Second, most evaluations are conducted in the i.i.d. setting, where test data
is assumed to follow the training distribution. Few works have begun exploring selective classification
under distribution shifts (Xia & Bouganis, 2022; Narasimhan et al., 2024), but focus on the common
semantic shifts, neglecting the covariate shift setting that is becoming increasingly relevant.

To address these challenges, we propose a new perspective rooted in the Neyman–Pearson lemma, a
classical result from statistics that defines the optimal hypothesis test in terms of a likelihood ratio.
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We show that existing selectors can be interpreted as approximations to this test, and we use this
insight to derive two new selectors, ∆-MDS and ∆-KNN, as well as a simple linear combination
strategy. We evaluate our methods on a comprehensive suite of vision and language benchmarks under
covariate shift, where the input distribution changes while the label space remains fixed. We focus on
covariate shift for two key reasons: first, it is underexplored relative to semantic shifts (Heng & Soh,
2025) (which is well studied in the context of out-of-distribution detection (Hendrycks & Gimpel,
2017; Ming et al., 2022; Lee et al., 2018; Heng et al., 2024)); second, it is increasingly relevant
in modern applications such as vision-language models (VLMs), where the label set is large and
variable, rendering most practical shifts in deployment covariate in nature. Our results demonstrate
that the proposed selectors outperform existing baselines and provide robust performance across
distribution shifts, including on powerful VLMs like CLIP.

In summary, our key contributions are:

1. We introduce for the first time a Neyman–Pearson-based framework for defining optimality
in selective classification via likelihood ratio tests.

2. We unify several existing selector methods and propose two new selectors and a linear
combination approach under this framework.

3. We conduct a thorough evaluation under distribution shifts, both covariate and semantic,
across vision and language tasks and demonstrate superior performance across both VLMs
and traditional supervised models.

2 BACKGROUND

Selective Classification. Consider a standard classification problem with input space X ⊆ Rd,
label space Y = {1, ...,K}, and data distribution DX ,Y over X × Y . A selective classifier is a
pair (f, g), where f : X → RK is a base classifier, and g : X → {0, 1} is a selector function that
determines whether to make a prediction or abstain. Formally,

(f, g)(x) ≜

{
f(x) if g(x) = 1,

abstain if g(x) = 0.
(1)

That is, the model abstains on input x when g(x) = 0. In practice, g is typically implemented by
thresholding a real-valued confidence score:

gs,γ(x) = 1[s(x) > γ], (2)

where s : X → R is a confidence scoring function (often adapted from OOD detection methods; see
below), and γ is a tunable threshold. The performance of a selective classifier is typically evaluated
using two metrics:

Coverage: ϕs,γ = Ex∼DX ,Y [gs,γ(x)], (3)

Selective Risk: Rs,γ =
E(x,y)∼DX ,Y [ℓ(f(x), y) · gs,γ(x)]

ϕs,γ
, (4)

where ℓ(f(x), y) is the 0/1 loss (Geifman & El-Yaniv, 2017). Selective classification aims to
optimize the tradeoff between selective risk and coverage by ideally reducing risk while maintaining
high coverage. Improvements can stem from enhancing the base classifier f , or from refining the
selector g to better identify error-prone inputs. In this work, we fix f to be a strong pretrained model
and focus on designing more effective selector functions g.

Covariate Shift. Covariate shift refers to a scenario where the marginal distribution over inputs,
p(x), changes between training and testing, while the label distribution p(y) remains unchanged.
For example, a model trained on photographs of cats may face a covariate shift when evaluated on
paintings of cats, as the input appearance changes but the semantic categories are preserved. This is
in contrast to semantic shift, where both p(x) and p(y) change, typically due to the introduction of
unseen classes. In this work, we focus on covariate shifts, which are increasingly relevant in modern
applications such as VLMs, where the label set is large and can be adjusted to suit a given task. In
such settings, distributional changes primarily manifest as covariate shifts, making them a critical yet
underexplored challenge for robust selective classification.
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Out-of-Distribution (OOD) Detection. OOD detection is closely related to selective classification,
as many selector functions s(x) are derived from or inspired by OOD scoring methods. Given an
in-distribution (ID) data distribution pID, the goal of OOD detection is to construct a scoring function
s : X → R such that s(x) indicates the likelihood that x originates from pID. A higher s(x)
corresponds to higher confidence that x is in-distribution. In selective classification, these scores are
thresholded to determine whether to accept or abstain on a given input, as formalized in Eq. 2.

3 SELECTIVE CLASSIFICATION VIA THE NEYMAN–PEARSON LEMMA

We begin by framing selective classification within the paradigm of hypothesis testing. LetH0 : C
denote the hypothesis that the classifier makes a correct prediction, and H1 : ¬C that it makes an
incorrect one. Selective classification then reduces to deciding, for each input, whether to acceptH0 or
reject in favor ofH1, i.e., a binary decision problem. This perspective is a natural fit for a foundational
result from statistics: the Neyman–Pearson (NP) lemma (Neyman & Pearson, 1933; Lehmann et al.,
1986), which characterizes the optimal decision rule between two competing hypotheses.
Lemma 1 (Neyman–Pearson (Neyman & Pearson, 1933; Lehmann et al., 1986)). Let Z ∈ Rd be a
random variable, and consider the hypotheses::

H0 : Z ∼ P0 vs. H1 : Z ∼ P1,

where P0 and P1 have densities p0 and p1 that are strictly positive on a shared support Z ⊂ Rd.
For any measurable acceptance region A ⊂ Z underH0, define the type I error (false rejection) as
α(A) = P0(Z /∈ A), and type II error (false acceptance) as β(A) = P1(Z ∈ A).

Fix a type I error tolerance α0 ∈ [0, 1]. Let γ(α0) be the threshold such that

A∗(α0) :=

{
z ∈ Z :

p0(z)

p1(z)
≥ γ(α0)

}
satisfies α(A∗) = α0. Then A∗(α0) minimizes the type II error:

β(A∗(α0)) = min
A:α(A)=α0

β(A).

In other words, among all decision rules with the same false rejection rate, the likelihood ratio test
minimizes the false acceptance rate.

Applied to selective classification, Lemma 1 implies the optimal selection score is a likelihood ratio:

s(x) =
pc(x)

pw(x)
,

where pc(x) and pw(x) denote the probability densities of the classifier making a correct and wrong
prediction respectively. Thresholding this score yields the lowest possible selective risk for any given
coverage level.
Corollary 1 (Informal). Any selector score s(x) that is a monotonic transformation of the likelihood
ratio p0(x)

p1(x)
is also optimal under the Neyman–Pearson criterion.

Corollary 1 follows directly from the lemma, since monotonic transformations (e.g., logarithmic or
affine maps) preserve the ordering of scores and hence do not alter the resulting acceptance region.
We define a score function s(x) to be Neyman–Pearson optimal if it is a monotonic transformation
of the likelihood ratio pc(x)/pw(x). In practice, the true likelihood ratio is not accessible, so we
approximate it or construct a monotonic proxy that captures the posterior odds of a correct versus
incorrect prediction for a given input.

Note that pc(x) and pw(x) are general and naturally accounts for distribution shifts; pc(x) (pw(x))
includes all samples that the classifier classifies correctly (wrongly), regardless of whether they are
ID or a distribution shift. Therefore, this simplifies our framework compared to prior works that
consider ID and OOD distributions separately (Xia & Bouganis, 2022; Narasimhan et al., 2024).

In what follows, we first reinterpret existing selection scores from the literature as implicit approxima-
tions to this likelihood ratio and show conditions under which they are NP optimal. We then introduce
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two new distance-based selection functions inspired by the NP framework. Finally, we propose
a hybrid score that linearly combines multiple selectors which we find performs well in practice.
Throughout, the assumptions used in our theoretical results are meant to clarify the connection to
NP optimality and the structure of an optimal selector, rather than to prescribe conditions that must
hold in practice. Introduction and brief details of the scores discussed in this section are provided in
Appendix A.

3.1 LOGIT-BASED SCORES AS APPROXIMATIONS TO LIKELIHOOD RATIOS

We consider two popular confidence scores, Maximum Softmax Probability (MSP) (Hendrycks &
Gimpel, 2017) and Raw Logits (RLog) (Liang et al., 2024), and interpret them as approximations
to likelihood ratio tests in the NP sense. This provides theoretical justification for their empirical
success as selector scores in selective classification.

Let l(1) ≥ l(2) ≥ · · · ≥ l(K) denote the logits output by a classifier for a sample x, sorted in
descending order. Define the corresponding softmax probabilities d(i) = softmax(l(i)). The MSP
score is given by sMSP(x) = d(1), while the RLog score is defined as sRLog(x) = l(1) − l(2).
MSP has become a standard baseline for OOD detection and selective classification (Hendrycks &
Gimpel, 2017; Geifman & El-Yaniv, 2017), and RLog has been recently proposed as a strong score
for selective classification (Liang et al., 2024).

Theorem 1. Assume the classifier is calibrated in the sense that P (Y = k | pθ(y = k | x) = p̂) =
p̂ (Guo et al., 2017). Then MSP is Neyman–Pearson optimal for selective classification. Moreover,
under the additional assumption that the softmax distribution is concentrated on the top two classes,
i.e., L :=

∑
i≥3 d

(i) ≪ d(2), the RLog score is also Neyman–Pearson optimal.

The proof provided in Appendix B shows that under these assumptions, both MSP and RLog are
monotonic transformations of the likelihood ratio pc/pw, and therefore is NP optimal by Corollary 1.
Of course, these assumptions are not always satisfied in practice. Prior work (Guo et al., 2017)
has shown that modern neural classifiers tend to be poorly calibrated, and has proposed post-hoc
calibration methods such as temperature scaling. Notably, RLog has been shown to be invariant to
temperature scaling (Liang et al., 2024), making it robust to miscalibration and a compelling choice
in practice. This aligns with our empirical findings in Sec. 5, where RLog generally outperforms
MSP (which corresponds to temperature scaling with T = 1). While the effect of calibration is an
important factor in logit-based methods (Cattelan & Silva, 2023; Fisch et al., 2022), it lies beyond the
scope of this work.

3.2 NEYMAN–PEARSON OPTIMAL DISTANCE SCORES

The logit-based scores discussed in the previous section rely on classifier logit calibration, a condition
often violated in practice (Guo et al., 2017). To avoid this dependency, we consider distance-based
methods that make alternative assumptions independent of calibration. As we show below, these
methods approximate the likelihood ratio pc/pw by leveraging spatial relationships in feature space.

Two distance methods widely used in OOD detection are the Mahalanobis distance (MDS) (Lee
et al., 2018) and k-Nearest Neighbors (KNN) (Sun et al., 2022). Both rely on computing distances
between a test sample and training features (see Appendix A for details). Briefly, MDS is defined
as sMDS(x) = maxi−(ϕ(x)− µi)

⊤Σ−1(ϕ(x)− µi), where ϕ(x) denotes the extracted feature of
x, typically from the penultimate or final layer of a trained deep network, µi is the empirical mean
feature of class i, and Σ is a shared covariance matrix. In contrast, KNN scores inputs by the negative
distance to the k-th nearest training feature vector. We introduce ∆-MDS and ∆-KNN, which are
modified versions of these scores that explicitly incorporate insights from the NP lemma by estimating
separate distributions for correctly and incorrectly classified training samples. Figure 1 gives an
overview of our approach, and we provide pseudocode for our proposed methods in Appendix D.

∆-MDS. Instead of estimating a single distribution per class, we maintain two sets of statistics per
class: {µc

i ,Σ
c}Ki=1 and {µw

i ,Σ
w}Ki=1, corresponding to the mean and shared covariance of features

for training samples that the classifier predicts correctly and wrongly, respectively. These quantities
are easily estimated as the true labels are known. We then define the ∆-MDS score as the difference
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Figure 1: Illustration of our proposed Neyman–Pearson optimal distance-based selective classification
methods. We estimate the likelihoods of correct and incorrect predictions (pc and pw) as a function
of distances to training sets consisting of correctly and incorrectly classified samples: s(x) =
f(Dc(x), Dw(x)), where f here denotes a function. For example, x1 is “closer” to pc and “farther”
from pw than x2, and should therefore receive a higher score.

in Mahalanobis distances between the two distributions:

s∆-MDS(x) = DMDS(x;µ
c
i ,Σ

c)−DMDS(x;µ
w
i ,Σ

w) (5)

where DMDS(x;µi,Σ) = maxi−(ϕ(x)− µi)
⊤Σ−1(ϕ(x)− µi) is the standard Mahalanobis score.

The score intuitively increases when the input is closer (in Mahalanobis sense) to the “correctly
classified” region and farther from the “wrongly classified” region in feature space. We now formalize
this intuition:
Theorem 2. Let Z = ϕ(x) ∈ Rd be the feature representation of input x. Let C be the event the
classifier makes a correct prediction and ¬C its negation. Assume Z|C ∼ pc = N (µc

i ,Σ
c) and

Z|¬C ∼ pw = N (µw
i ,Σ

w). Then the ∆-MDS score s∆-MDS(x) is Neyman–Pearson optimal for
selective classification.

The proof is provided in Appendix B, which shows that s∆-MDS is a monotonic transformation of the
likelihood ratio pc/pw, and thus is NP optimal as per Corollary 1. The Gaussian assumption on feature
representations is supported both empirically and theoretically via connections between Gaussian
Discriminant Analysis and softmax classifiers (Lee et al., 2018), making ∆-MDS well-suited for
modern deep classifiers trained on standard supervised learning objectives.

∆-KNN. Next we introduce ∆-KNN, a non-parametric distance-based score inspired by the
NP framework. Let Ac = {ϕc(x1), . . . , ϕc(xNc

)} and Aw = {ϕw(x1), . . . , ϕw(xNw
)} denote

the feature representations of training samples that the classifier predicted correctly and wrongly
respectively, and Nc = |Ac| and Nw = |Aw|. Let z = ϕ(x) be the feature vector of a test input x.
Define uk(z) and vk(z) as the Euclidean distances from z to its k-th nearest neighbors in Ac and
Aw. We define the ∆-KNN score as the difference in log-distances:

s∆-KNN(x) = DKNN(x;Ac)−DKNN(x;Aw) (6)

where DKNN(x;Ac) = − log[uk(ϕ(x))] and DKNN(x;Aw) = − log[vk(ϕ(x))]. This score measures
how much closer a test point is to the region of correctly classified samples compared to incorrectly
classified ones. We now show that ∆-KNN is asymptotically NP optimal:
Theorem 3. Let Z = ϕ(x) ∈ Rd be the feature representation of input x, and let C denote the event
that the classifier makes a correct prediction. Suppose Z | C ∼ pc and Z | ¬C ∼ pw are arbitrary
continuous densities bounded away from zero. Let Nc = |Ac| and Nw = |Aw|. If k → ∞ while
k/Nc → 0 and k/Nw → 0 as Nc, Nw →∞, then s∆-KNN(x) is a Neyman–Pearson optimal selector.

The proof is provided in Appendix B. As in previous cases, it relies on showing that s∆-KNN is a
monotonic transformation of the likelihood ratio pc/pw. Importantly, this result does not require
parametric assumptions on the form of pc or pw, unlike ∆-MDS. However, it does depend on
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asymptotic properties of the k-nearest neighbor density estimator, and the required conditions on k,
Nc, and Nw may be difficult to satisfy in finite-sample settings. As such, both methods have their
tradeoffs in terms of modeling assumptions.

In practice, we replace the single k-th neighbor distance with the average log-distance to the top
k neighbors. Specifically, we use: DKNN(x;Ac) = − 1

k

∑k
i=1 log[ui(ϕ(x))] and DKNN(x;Aw) =

− 1
k

∑k
i=1 log[vi(ϕ(x))]. We find that this smoother version improves empirical performance, as

shown in our ablation studies in Sec. 5.3. While this modification deviates from the form in Theorem 3,
we include a discussion in Appendix C suggesting NP optimality holds for the averaged log-distance
formulation under standard assumptions.

3.3 LINEAR COMBINATIONS OF DISTANCE AND LOGIT-BASED SCORES

The selector scores we discussed rely on different modeling assumptions and exhibit complementary
strengths, as discussed in Wang et al. (2022). Logit-based scores utilize the classifier’s learned
boundaries, while distance-based methods depend on geometric structures in feature space defined
by training samples. We are thus motivated to leverage their respective advantages by proposing a
simple yet effective solution: linearly combining selector scores. Intuitively, this allows each score to
compensate for the limitations of the other. The following lemma formalizes the NP optimality of
such a linear combination:
Lemma 2. Let s1(x) ∈ R and s2(x) ∈ R be two selector scores. Assume both are Neyman–Pearson
optimal; that is, s1(x) is a monotone transform of p(1)c /p

(1)
w and s2(x) is a monotone transform of

p
(2)
c /p

(2)
w . Then for any scalar λ ∈ R, t(x) = s1(x) + λs2(x) is a monotonic transformation of

p
(1)
c (p

(2)
c )λ/p

(1)
w (p

(2)
w )λ.

The proof provided in Appendix B follows by expressing t(x) as a log-product of likelihood ratios.
Thus, t(x) remains NP optimal under the assumption that the density for each hypothesis takes the
form of a multiplicative (or “tilted”) product: p(1)c (p

(2)
c )λ/Zc and similarly for pw, where Zc is a

normalization constant. In practice, we find that combining a distance-based score (e.g., ∆-MDS)
with a logit-based score (e.g., RLog) leads to the best performance. We refer to such combinations by
concatenating their names, e.g., ∆-MDS-RLog. We discuss fitting parameters like λ in Sec. 5.

4 RELATED WORKS

The study of classification with a reject option has a long history, beginning with cost-based formula-
tions (Chow, 1970) and extensions to classical models like SVMs (Fumera & Roli, 2002; Bartlett &
Wegkamp, 2008) and nearest neighbors (Hellman, 1970). In deep learning, LeCun et al. (1989) ex-
plored rejection via top logit activations. Later, the risk–coverage and classifier–selector frameworks
were formalized (El-Yaniv et al., 2010; Geifman & El-Yaniv, 2017), with methods like MSP and
Monte Carlo dropout proposed to provide confidence-based selection (Gal & Ghahramani, 2016).

Subsequent works have extended this direction by studying popular logit and distance-based scores,
many originally developed for OOD detection. Examples include MSP (Hendrycks & Gimpel, 2017),
MaxLogit (Hendrycks et al., 2019), Energy (Liu et al., 2020), MDS (Lee et al., 2018), and KNN (Sun
et al., 2022). A limitation of logit-based methods is their reliance on classifier calibration. Although
calibration is not the focus of our work, several studies have examined its impact on selective
classification performance (Cattelan & Silva, 2023; Galil et al., 2023). An alternative line of research
uses conformal prediction to construct calibrated prediction sets with formal guarantees (Vovk et al.,
2005; Angelopoulos & Bates, 2021; Bates et al., 2021; Angelopoulos et al., 2024). While such
methods could be adapted for selective classification, they differ fundamentally from our goal of
designing scoring functions optimized for selective risk. Jiang et al. (2018) proposes a trust score by
comparing the model’s prediction with class-conditional KNN distances to estimate if a sample will
be correctly classified, but it was shown to be ineffective on high-dimensional images.

Some methods incorporate rejection directly into training. For instance, SelectiveNet (Geifman
& El-Yaniv, 2019) adds a dedicated rejection head, while Deep Gamblers (Liu et al., 2019) and
Self-Adaptive Training (Huang et al., 2020) introduce a reject class and train the model to abstain.
These methods require architectural modifications and joint training. In contrast, our work focuses on
post-hoc methods that can be applied to pretrained classifiers without retraining.
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Table 1: DFN CLIP AURC (A) and NAURC (N) results on ImageNet and its covariate shifted variants
at full coverage. Lower is better. AURC results are on the 10−2 scale. Bold and underline denotes
the best and second best result respectively. “Avg (1K)" denotes average results over datasets with
full 1K-class coverage, while “Avg (all)" is the average result over all datasets.

Im-1K Im-R Im-A ON Im-V2 Im-S Im-C Avg (1K) Avg (all)

Method A N A N A N A N A N A N A N A N A N

MSP 9.08 0.542 2.00 0.344 2.29 0.179 8.87 0.268 9.39 0.521 12.3 0.524 15.1 0.328 11.5 0.479 8.43 0.387
MaxLogit 9.08 0.542 2.21 0.385 2.96 0.249 12.4 0.437 9.35 0.518 12.3 0.525 17.7 0.423 13.9 0.502 11.3 0.440

Energy 14.2 0.901 5.81 1.06 12.2 1.2 33.3 1.43 14.9 0.882 20.8 0.975 49.2 1.59 24.8 1.09 21.5 1.15
MDS 11.3 0.699 3.41 0.608 3.21 0.274 16.4 0.624 11.7 0.672 15.2 0.68 17.6 0.426 13.9 0.619 11.3 0.569
KNN 10.5 0.643 2.51 0.439 2.67 0.219 11.4 0.390 10.9 0.618 14.1 0.619 16.7 0.389 13.1 0.567 9.83 0.474
RLog 4.83 0.246 0.808 0.122 1.59 0.108 7.73 0.214 5.27 0.250 6.84 0.234 12.6 0.226 7.39 0.239 5.67 0.200
SIRC 16.3 1.04 3.90 0.701 8.48 0.817 15.1 0.564 17.1 1.03 20.7 0.968 22.1 0.612 19.05 0.913 14.8 0.819

∆-MDS 5.00 0.257 2.19 0.380 2.43 0.194 9.63 0.304 5.43 0.260 8.28 0.311 12.5 0.224 7.81 0.263 6.50 0.276
∆-KNN 4.60 0.230 1.42 0.237 1.99 0.149 8.52 0.252 4.99 0.231 7.55 0.272 12.1 0.207 7.32 0.235 5.89 0.225

∆-MDS-RLog 4.13 0.197 1.09 0.175 1.60 0.109 7.13 0.185 4.52 0.200 6.27 0.204 11.1 0.170 6.51 0.193 5.12 0.177
∆-KNN-RLog 3.98 0.187 0.770 0.115 1.45 0.093 7.14 0.186 4.36 0.190 6.13 0.196 11.3 0.175 6.43 0.187 5.01 0.163

Related to our work are approaches that combine selective classification and OOD detection, termed
SCOD (Xia & Bouganis, 2022; Narasimhan et al., 2024). Such methods consider the ID classification
and OOD distributions separately and seek to combine them into a single score function. These
approaches are typically designed for semantic shifts and need adaptation for covariate shift. Our
formulation avoids this by representing all distribution shifts through the general pair (pc, pw), which
does not require distinguishing between shift types.

Finally, most closely related to our work is Liang et al. (2024), who study selective classification
under both semantic and covariate shifts and introduce the Raw Logit (RLog) score. Our work differs
in several ways: 1) we focus on covariate shifts, which we argue is more relevant in modern settings
where large and variable label sets (e.g., from vision-language models) mitigate label drift; 2) we
introduce a unified theoretical framework grounded in the Neyman–Pearson lemma, from which we
derive new selector scores with formal optimality guarantees; and 3) we evaluate our methods on a
broader class of models, including VLMs, whereas Liang et al. (2024) focus exclusively on standard
supervised learning paradigms.

5 EXPERIMENTS

Datasets. We evaluate our methods across vision and language domains, with a primary focus on
the former. For vision tasks, we use ImageNet-1K (Im-1K) and a suite of covariate-shifted variants:
1) ImageNet-Rendition (Im-R) (Hendrycks et al., 2020), 2) ImageNet-A (Im-A) (Hendrycks et al.,
2021), 3) ObjectNet (ON) (Barbu et al., 2019), 4) ImageNetV2 (Im-V2) (Recht et al., 2019), 5)
ImageNet-Sketch (Im-S) (Wang et al., 2019), and 6) ImageNet-C (Im-C) (Hendrycks & Dietterich,
2019). We group these datasets based on label coverage: full 1000-class coverage (Im-1K, Im-V2, Im-
S, Im-C) and subsets of classes (Im-R, Im-A, ON). For language tasks, we evaluate on the Amazon
Reviews dataset (Ni et al., 2019; Koh et al., 2021). To simulate realistic deployment scenarios
involving distribution shift, following Liang et al. (2024) we evaluate on mixed test sets that combine
in-distribution and covariate-shifted samples. For example, results reported on Im-C are computed on
a combined test set of Im-1K and Im-C.

Classifiers and Baseline Selector Scores. We consider two families of classifiers for vision exper-
iments, namely CLIP zero-shot VLMs (Radford et al., 2021) and supervised classifiers. Specifically,
we use the CLIP model from Data Filtering Networks (DFN) (Fang et al., 2024) and EVA (Fang
et al., 2023) for supervised learning, chosen for their state-of-the-art accuracy on ImageNet. Our
focus is not on model training but on evaluating selector scores applied post-hoc. Note that for EVA,
we restrict evaluation to datasets with full 1K class coverage as the model is trained on the complete
ImageNet label set only. In contrast, CLIP can be adapted at inference time to arbitrary label subsets,
so we evaluate it across all datasets. For language tasks, we fine-tune a DistilBERT (Sanh et al.,
2019) model using LISA (Yao et al., 2022) on the Amazon Reviews training set and evaluate selective
classification performance on the full test set.
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Table 3: Supervised learning AURC (A) and NAURC (N) results with the EVA model at full coverage.
Lower is better. AURC results are on the 10−2 scale. Bold and underline denotes the best and second
best result respectively.

Im-1K Im-V2 Im-S Im-C Avg (1K)

Method A N A N A N A N A N

MSP 3.32 0.256 3.85 0.266 8.15 0.319 6.41 0.215 5.43 0.264
MaxLogit 4.53 0.371 5.16 0.379 10.3 0.437 7.98 0.301 6.99 0.372

Energy 6.82 0.590 7.58 0.589 14.0 0.641 11.1 0.474 9.89 0.573
MDS 4.01 0.322 4.32 0.307 7.26 0.271 6.80 0.236 5.60 0.284
KNN 4.00 0.321 4.31 0.306 7.15 0.265 6.77 0.234 5.56 0.282
RLog 2.33 0.161 2.72 0.168 5.90 0.197 5.50 0.163 4.11 0.172
SIRC 3.68 0.290 4.23 0.299 8.71 0.350 6.84 0.240 5.87 0.295

∆-MDS 2.56 0.183 2.90 0.183 5.76 0.189 5.50 0.164 4.18 0.180
∆-KNN 2.60 0.187 2.99 0.191 5.91 0.197 5.74 0.177 4.31 0.188

∆-MDS-RLog 2.26 0.155 2.61 0.158 5.45 0.172 5.12 0.143 3.86 0.157
∆-KNN-RLog 2.31 0.159 2.69 0.165 5.63 0.182 5.38 0.157 4.00 0.166

For baseline scores, we compare our proposed ∆-MDS, ∆-KNN, and their linear combinations with
common OOD detection and uncertainty-based scores: MSP (Hendrycks & Gimpel, 2017), MCM
(for CLIP), MaxLogit (Hendrycks et al., 2019), Energy (Liu et al., 2020), MDS (Lee et al., 2018),
KNN (Sun et al., 2022), and RLog (Liang et al., 2024) as well as SIRC (Xia & Bouganis, 2022). As
they are functionally similar, we abbreviate MCM as MSP when presenting CLIP results. Details of
the baseline are provided in Appendix A.

Evaluation Metrics. We evaluate performance using two metrics: the Area Under the Risk-
Coverage Curve (AURC) and the Normalized AURC (NAURC) (Cattelan & Silva, 2023). The
AURC captures the joint performance of the classifier and selector across coverage levels. NAURC
normalizes AURC to account for the classifier’s base error rate, providing a fairer comparison across
models with different accuracies. Formally, NAURC is defined as:

NAURC(f, g) =
AURC(f, g)− AURC(f, g∗)

R(f)− AURC(f, g∗)
, (7)

where g∗ denotes an oracle confidence function achieving optimal AURC, and R(f) is the risk of f .
The oracle can be computed in practice using the ground-truth labels of the evaluation set. Intuitively,
NAURC measures how close the selector g gets to the optimal, normalized by the classifier’s total
error. Thus, while AURC is useful for understanding overall performance in the context of a specific
model, NAURC enables fair selector comparisons across models by factoring out baseline classifier
accuracy.

Table 2: Results on Amazon Reviews
and its covariate shifted test set at
full coverage using DistilBERT trained
with LISA.

In-D Cov Shift

Method A N A N

MSP 12.2 0.368 13.9 0.401
MaxLogit 12.6 0.384 14.3 0.416

Energy 12.89 0.397 14.6 0.428
MDS 20.6 0.739 22.2 0.750
KNN 19.4 0.686 21.3 0.711
RLog 12.4 0.376 14.1 0.410
SIRC 12.3 0.370 14.0 0.403

∆-MDS 12.7 0.389 14.4 0.422
∆-KNN 12.4 0.374 14.2 0.412

∆-MDS-RLog 12.2 0.368 13.9 0.401
∆-KNN-RLog 12.0 0.358 13.8 0.394
∆-MDS-MSP 11.9 0.354 13.6 0.387
∆-KNN-MSP 12.0 0.359 13.8 0.396

Selecting λ and k. Both λ and k can be selected on a
validation set. We found that the simplest recipe to fitting
λ is to balance the magnitudes of s1(x) and s2(x), so that
neither overpowers the other. For k in KNN-based scores,
we find that k ∈ [25, 50] is a sweet spot. Full experimental
settings are provided in Appendix E, and hyperparameter
sensitivity analysis for λ and k is presented in appendix
Fig. 2.

5.1 IMAGE EXPERIMENTS

We report full selective classification results for CLIP and
EVA models in Table 1 and Table 3, respectively. First, let
us consider CLIP results. We see that going from MDS
and KNN to their NP-informed variants, ∆-MDS and ∆-
KNN, leads to roughly 50% reduction in average AURC
and NAURC, showing that the assumptions made in the NP-
optimality theory hold well in practice. The best average
performance is achieved by the linear combinations ∆-KNN-
RLog and ∆-MDS-RLog, with ∆-KNN-RLog leading overall in both AURC and NAURC. RLog
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Table 4: Ablations experiments on DFN CLIP.

Im-1K Im-R Im-A ON Im-V2 Im-S Im-C Avg (1K) Avg (all)

Method A N A N A N A N A N A N A N A N A N

Ablations on ∆-KNN

∆-KNN no avg 4.66 0.234 1.40 0.234 2.16 0.167 8.87 0.268 5.11 0.239 7.63 0.276 12.4 0.216 7.45 0.241 6.03 0.233
∆-KNN w/ avg 4.60 0.230 1.42 0.237 1.99 0.149 8.52 0.252 4.99 0.231 7.55 0.272 12.1 0.207 7.32 0.235 5.89 0.225

Ablations on linear combinations

∆-MDS-∆-KNN 4.68 0.235 1.98 0.237 2.26 0.149 9.06 0.252 5.11 0.231 7.90 0.272 12.2 0.207 7.46 0.235 6.16 0.225
MSP-RLog 4.82 0.245 0.800 0.120 1.56 0.105 7.51 0.204 5.26 0.249 6.81 0.232 12.5 0.222 7.35 0.237 5.61 0.197

∆-KNN-MSP 4.57 0.228 1.22 0.199 1.82 0.131 7.58 0.207 4.94 0.228 7.40 0.264 11.8 0.210 7.18 0.244 5.62 0.253
∆-KNN-RLog 3.98 0.187 0.770 0.115 1.49 0.093 7.14 0.186 4.36 0.190 6.13 0.196 11.3 0.175 6.43 0.187 5.01 0.163

score ranks third on average, highlighting its strength as a standalone logit-based selector. Motivated
by this strong performance, we use RLog in combination with our distance-based scores. We plot the
risk-coverage curves for selected datasets in Fig. 3 of the appendix, showing our methods consistently
demonstrates the most favorable trade-off across all coverage levels, remaining stable even at low
coverage.

For practitioners aiming to identify the best overall selective classification setup that considers
both the base classifier and the selector, one approach is to compare performance using the AURC
metric. On the 1K-class datasets, EVA paired with ∆-MDS-RLog achieves an AURC of 3.86,
outperforming the DFN CLIP model with ∆-KNN-RLog at 5.01. Despite similar NAURC values,
EVA’s higher Im-1K base accuracy (84.33% vs. DFN CLIP’s 80.39%) makes it the preferred choice
when considering both components. Intuitively, the optimal setup involves pairing the best selector
(here, ∆-MDS-RLog) with the most accurate base classifier.

For EVA, the ranking is reversed: ∆-MDS-RLog achieves the best overall performance, followed by
∆-KNN-RLog. This supports our hypothesis that MDS-based methods are particularly effective for
supervised models due to the close connection between softmax classifiers and Gaussian Discriminant
Analysis (Lee et al., 2018), which justifies the Gaussian assumptions used in MDS. In contrast, CLIP
models trained with contrastive learning (Radford et al., 2021) do not satisfy these assumptions,
making the nonparametric ∆-KNN combination more suitable. The bottom row of Fig. 3 of the
appendix confirms that ∆-MDS-RLog yields the best risk-coverage behavior for supervised learning
across all coverage levels. Comparing average NAURC on the full 1K-class datasets, ∆-MDS-RLog
with EVA is the top performing selector score, with a slightly better score (0.157) than the best
performer on CLIP (0.163).

To verify that the performance gains of our methods stem from actual algorithmic improvements,
rather than large-scale pretraining of CLIP or EVA potentially mitigating distribution shifts, we also
evaluate on ResNet50 trained solely on ImageNet-1K. The results in appendix Table 7 show that our
methods perform the best, consistent with earlier findings.

Semantic Shift Experiments. For completeness, we also report results for experiments on datasets
that are semantic shifts to ImageNet-1K in Appendix Table 8. In agreement with the covariate shift
experiments, our proposed methods achieve the best performance on this benchmark.

5.2 LANGUAGE EXPERIMENTS

Table 2 presents results on the Amazon Reviews dataset. Unlike the vision tasks, the best-performing
method is ∆-MDS-MSP, followed closely by ∆-MDS-RLog and ∆-KNN-MSP. Since LISA (Yao
et al., 2022) uses a softmax classification objective, the superiority of MDS-based selectors supports
our hypothesis about their suitability for supervised models. Interestingly, MSP outperforms RLog in
this domain, resulting in better performance when combined with ∆-MDS. This highlights another
important practical insight that the best linear combination often involves pairing the top-performing
standalone distance-based and logit-based score.
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Table 5: Ablation results using DFN-CLIP on ImageNet-1K where the fraction of labeled samples
used in feature computation for our proposed methods are varied.

0.1% 1% 10% 50% 100%

Method A N A N A N A N A N

∆-MDS-RLog - - 10.5 0.638 4.19 0.202 4.14 0.198 4.13 0.197
∆-KNN-RLog 4.81 0.245 4.58 0.229 4.17 0.200 3.98 0.188 3.98 0.187

5.3 ABLATIONS

Design Choices. Table 4 summarizes several ablation experiments on the design choices of our
proposed methods. First, we justify averaging the top-k nearest neighbor distances in ∆-KNN
rather than using the k-th distance alone. This modification yields measurable gains, where average
AURC improves from 6.03 to 5.89 and NAURC improves from 0.233 to 0.225. We also investigate
various combinations of selector scores. For CLIP, ∆-KNN-RLog remains the best across all
configurations, outperforming both double-distance combinations (e.g., ∆-MDS-∆-KNN) and double-
logit combinations (e.g., MSP-RLog). Notably, pairing ∆-KNN with RLog significantly outperforms
pairing it with MSP, further validating RLog’s role as a strong logit-based complement.

Sample Efficiency. Although our methods require a one-time feature computation step, this cost
is amortized over all future inference runs as the resulting features can be cached. Nevertheless,
to evaluate performance in low-data or low-computation resource regimes, we conducted ablations
limiting the amount of labeled samples used. The results in Table 5 show that both methods are
surprisingly stable. ∆-KNN is especially robust, maintaining strong performance with as little
as 0.1% of labeled data. As expected, ∆-MDS degrades at the 1% level due to the difficulty of
estimating per-class statistics with so few samples, and is not applicable at 0.1% (roughly 1 image
per class). Importantly, ∆-KNN-RLog continues to outperform RLog at 1% and matches it at 0.1%
(see Table 1), indicating that our method is still preferable whenever even a small amount of labeled
data is accessible.

6 CONCLUSION

We presented a framework for designing selector functions for selective classification, grounded in the
Neyman–Pearson lemma. This reveals that the optimal selection score is a monotonic transformation
of a likelihood ratio, which unifies several existing methods. We proposed two novel distance-based
scores and their linear combinations with logit-based baselines. Experiments across vision and
language demonstrate that our methods achieve state-of-the-art performance across diverse settings.

Limitations and Future Work. While our focus has been on classification, the Neyman–Pearson
framework is general and broadly applicable to other predictive tasks. Exploring selective prediction
in settings where uncertainty plays a critical role, such as semantic segmentation and time series
forecasting, presents promising future directions. Additionally, extending these ideas to generative
models such as LLMs is another exciting avenue for future work.
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Appendix for “Know When to Abstain: Optimal Selective
Classification with Likelihood Ratios”

A DESCRIPTION OF BASELINES

In this section we provide a brief description of each baseline considered in this work.

Maximum Softmax Probability (MSP) (Hendrycks & Gimpel, 2017). Given an input x, let
the classifier output logits be {l(k)}Kk=1 and corresponding softmax probabilities pθ(y = k|x) =

softmax(l(k)). The MSP score is defined as

sMSP(x) = max
k∈{1,...,K}

pθ(y = k|x).

MSP is commonly used as an OOD/confidence score: larger values indicate the model places high
probability mass on a single class, and thus the input is treated as more “in-distribution” or “confident”.
For selective classification, we threshold this score (and subsequent scores) to form the selector
gs,γ(x) = 1[sMSP(x) > γ].

Maximum Logit (MaxLogit) (Hendrycks et al., 2019). The MaxLogit score is defined as

sMaxLogit(x) = max
k∈{1,...,K}

l(k)

Intuitively, larger values indicate that at least one class is assigned a large unnormalized score, and
thus the model is more confident in its prediction.

Energy (Liu et al., 2020). The energy score is defined from logits as the Helmholtz free energy

E(x) = −T log

K∑
k=1

exp
(
l(k)/T

)
,

where T > 0 is a temperature parameter (we set T = 1). For selective classification we use the
negative energy (so that larger values indicate more in-distribution-like inputs):

sEnergy(x) = log

K∑
k=1

exp
(
l(k)

)
.

Mahalanobis Distance (MDS) (Lee et al., 2018). Let z = ϕ(x) denote the feature representation
of x (e.g., penultimate features of a deep network). Using training data, we estimate the empirical
mean feature µi for each class i ∈ {1, . . . ,K} and a shared (tied) covariance matrix Σ across classes.
The MDS score is then

sMDS(x) = max
i∈{1,...,K}

−(z − µi)
⊤Σ−1(z − µi),

i.e., the negative squared Mahalanobis distance to the closest class centroid. Intuitively, sMDS(x)
is large when x lies in a high-density region of some class under the fitted Gaussian discriminant
model, and small when x is far from all class clusters.

k-Nearest Neighbors (KNN) (Sun et al., 2022). Let {zj}nj=1 denote the set of training features (we
normalize the features). Define rk(z) as the Euclidean distance from z to its k-th nearest neighbor
among {zj}. The KNN score is

sKNN(x) = − rk(z),

so that inputs lying in denser regions of the training feature manifold (smaller neighbor distances)
receive higher scores.
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Raw Logits (RLog) (Liang et al., 2024). RLog uses the confidence margin between the top two
logits as a scale-robust confidence score. Let l(1) ≥ l(2) ≥ · · · ≥ l(k) be the logits sorted in
descending order for a given input x. We define

sRLog(x) = l(1) − l(2)

Intuitively, sRLog(x) is large when there is a clear “winner” class, and small when the classifier is
uncertain between competing labels. Liang et al. (2024) argue that using a logit-space margin yields a
more robust score under classifier miscalibration and post-hoc logit transformations (e.g., temperature
scaling), since it depends only on the relative separation between the top classes.

Softmax Information Retaining Combination (SIRC) (Xia & Bouganis, 2022). Let S1(x) be a
primary softmax-derived confidence score, and let S2(x) be an auxiliary feature-based score. We
choose S1 to be MSP and S2 to be the L1 norm, in line with Xia & Bouganis (2022). SIRC combines
these via

sSIRC(x) = −
(
Smax
1 − S1(x)

)(
1 + exp

(
−b [S2(x)− a]

))
,

where Smax
1 is the maximum attainable value of S1 (e.g., Smax

1 = 1 for MSP), and a, b control
how strongly S2 influences the score. We follow Xia & Bouganis (2022) and set a and b using
in-distribution statistics of S2 (a = µS2

− 3σS2
and b = 1/σS2

).

B PROOFS

Theorem 1. Assume the classifier is calibrated in the sense that P (Y = k | pθ(y = k | x) = p̂) =
p̂ (Guo et al., 2017). Then MSP is Neyman–Pearson optimal for selective classification. Moreover,
under the additional assumption that the softmax distribution is concentrated on the top two classes,
i.e., L :=

∑
i≥3 d

(i) ≪ d(2), the RLog score is also Neyman–Pearson optimal.

Proof. Recall that we denote l(1), · · · , l(K) to be the raw logits predicted by a classifier for a
given sample x sorted in descending order and d(1), · · · , d(K) their values after softmax, then
sMSP(x) = d(1) and sRLog(x) = l(1) − l(2).

MSP Optimality. We begin the proof with showing optimality for MSP. By definition of a calibrated
model,

pc(x) = max
k

pθ(y = k|x) = d(1) = sMSP(x)

pw(x) = 1− sMSP(x).

We can see that

sMSP(x) =
pc(x)/pw(x)

1 + pc(x)/pw(x)
. (8)

Note that sMSP ∈ [0, 1) while pc(x)/pw(x) ∈ [0,∞). The mapping

h : [0,∞)→ [0, 1), h(z) =
z

1 + z

is strictly monotone increasing. The first derivative,

h′(z) =
1

(1 + z)2
> 0 ∀z ∈ [0,∞).

is positive everywhere in the domain and thus, h is strictly increasing on [0,∞). Thus we have shown
that MSP is a monotone transform of the likelihood ratio pc/pw, and Corollary 1 tells us that it is
Neyman–Pearson optimal.
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RLog Optimality. Next, we prove optimality of RLog. The RLog score can be expressed as the
logarithm of the ratio of the top two softmax values:

d(1)

d(2)
=

el
(1)

el(2)
= el

(1)−l(2) = esRLog(x)

thus sRLog(x) = log d(1)

d(2) . We want to connect this to log pc(x)
pw(x) = log d(1)

1−d(1) where we assume a
calibrated classifier. Observe that

d(1)

d(2)
=

d(1)

1− d(1)
× 1− d(1)

d(2)
=

d(1)

1− d(1)

(
1 +

L

d(2)

)
(9)

where L = 1− d(1) − d(2) ≥ 0. In the binary classification case L = 0, thus sRLog(x) = log pc(x)
pw(x)

exactly. In the multiclass case, the 1+L/d(2) factor varies across samples and may alter the ordering
of scores. If we assume that most of the probability mass is in the top logits as stated in the theorem,
which is empirically supported by high top-5 classification accuracies in prior works (Liu et al., 2021;
Brock et al., 2021), then L ≈ 0 and sRLog(x) ≈ log pc(x)

pw(x) . Since logarithm is strictly monotonically
increasing, RLog is Neyman–Pearson optimal by Corollary 1.

Theorem 2. Let Z = ϕ(x) ∈ Rd be the feature representation of input x. Let C be the event the
classifier makes a correct prediction and ¬C its negation. Assume Z|C ∼ pc = N (µc

i ,Σ
c) and

Z|¬C ∼ pw = N (µw
i ,Σ

w). Then the ∆-MDS score s∆-MDS(x) is Neyman–Pearson optimal for
selective classification.

Proof. The likelihood of a multivariate Gaussian in Rd is p(z;µ,Σ) =
(2π)d/2 det(Σ)−1/2 exp

(
− 1

2 (x− µ)⊤Σ−1(x− µ)
)
.

We see that the Mahalanobis distance D(z;µ,Σ) is proportional to the log-likelihood of the multi-
variate Gaussian. As such, assuming that the underlying pc and pw follow multivariate Gaussians of
the form N (µc

i ,Σ
c) and N (µw

i ,Σ
w) respectively,

s∆-MDS(x) = DMDS(x;µ
c
i ,Σ

c)−DMDS(x;µ
w
i ,Σ

w)

= 2 log
pc(z;µ

c
i ,Σ

c)

pw(z;µw
i ,Σ

w)
+ log

detΣc

detΣw
.

Therefore, s∆-MDS(x) is a monotone transform of pc/pw and is Neyman–Pearson optimal by Corol-
lary 1.

Theorem 3. Let Z = ϕ(x) ∈ Rd be the feature representation of input x, and let C denote the event
that the classifier makes a correct prediction. Suppose Z | C ∼ pc and Z | ¬C ∼ pw are arbitrary
continuous densities bounded away from zero. Let Nc = |Ac| and Nw = |Aw|. If k → ∞ while
k/Nc → 0 and k/Nw → 0 as Nc, Nw →∞, then s∆-KNN(x) is a Neyman–Pearson optimal selector.

Proof. The empirical likelihood of the KNN density estimator (Silverman, 2018; Zhao & Lai, 2022)
is given by

p̂c(z) =
k

NcVd(uk(z))d
, p̂w(z) =

k

NwVd(vk(z))d
, (10)

where k ≥ 2, uk(z) and vk(z) are the Euclidean distances from z to its k-th nearest neighbor from
Ac and Aw and Vd is the unit-ball volume in Rd. A classic result of non-parametric nearest neighbor
density estimation (Loftsgaarden & Quesenberry, 1965) states that as k → ∞ but k/Nc → 0,
k/Nw → 0, then p̂c(z) → pc(z) and p̂w(z) → pw(z) for every z. In other words, the empirical
KNN density estimator converges to the true density under the stated asymptotic conditions.

One can see that the difference in log-likelihoods is

log p̂c(z)− log p̂w(z)

= −d log uk(z) + d log vk(z) + log
Nw

Nc
. (11)
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Therefore

s∆-KNN(z) ≜ − log uk(z) + log vk(z)

=
1

d
log

p̂c(z)

p̂w(z)
− 1

d
log

Nw

Nc
. (12)

Since the last term is constant, s∆-KNN(z) is a monotone transform of p̂c(z)
p̂w(z) . Under the stated

conditions on k,Nc and Nw, the empirical likelihoods converge to the true likelihoods pc and pw,
thus s∆-KNN(z) is also Neyman–Pearson optimal.

Lemma 2. Let s1(x) ∈ R and s2(x) ∈ R be two selector scores. Assume both are Neyman–Pearson
optimal; that is, s1(x) is a monotone transform of p(1)c /p

(1)
w and s2(x) is a monotone transform of

p
(2)
c /p

(2)
w . Then for any scalar λ ∈ R, t(x) = s1(x) + λs2(x) is a monotonic transformation of

p
(1)
c (p

(2)
c )λ/p

(1)
w (p

(2)
w )λ.

Proof. Let

L1(x) =
p
(1)
c (x)

p
(1)
w (x)

, L2(x) =
p
(2)
c (x)

p
(2)
w (x)

. (13)

Since each score is already a strictly monotone transform of L(x), we are free to re-express the scores
in any other convenient monotone scale without affecting relative ordering and thus Neyman–Pearson
optimality. Without loss of generality, we will let si(x) = log

p(i)
c (x)

p
(i)
w (x)

, i = 1, 2, which are identical to

the original scores in terms of sample acceptance and rejection patterns. Given λ ∈ R,

t(x) = s1(x) + λs2(x) (14)
= logL1(x) + λ logL2(x) (15)

= log(L2(x)L2(x)
λ) (16)

= log
p
(1)
c (p

(2)
c )λ

p
(1)
w (p

(2)
w )λ

(17)

In other words, t(x) is a monotone transform of the tilted likelihood ratio p
(1)
c (p

(2)
c )λ/p

(1)
w (p

(2)
w )λ.

RecallH0 andH1 represent the hypotheses that the classifier will make a correct and wrong prediction
respectively. Assuming that the density of H0 takes the form of a tilted likelihood p

(1)
c (p

(2)
c )λ/Zc,

where Zc is a normalizing constant, and vice-versa forH1, then t(x) is Neyman–Pearson optimal by
Corollary 1.

C AVERAGE TOP k ∆-KNN MODIFICATION

Here we discuss how Neyman–Pearson optimality of the average log-distance formulation of ∆-KNN
can hold as described in the main text. Recall that we let DKNN(z;Ac) = − 1

k

∑k
i=1 log(ui(z)) and

vice-versa for Aw.

For concreteness, let us consider distances to the correct set; the derivation is identical for the wrong
set. In the asymptotic limit where Nc is large and k ≪ Nc, the ball centered at z that just encloses its
kth nearest neighbor (i.e., with volume Vd(uk(z))

d) is so small that the true density is essentially
constant over it, so the radii of the first k neighbors are conditionally i.i.d. uniform in the ball.

As such, let us define the normalized variable

Ui =

(
ui(z)

uk(z)

)d

, i = 1, ..., k. (18)

Note that Ui ∈ [0, 1] for all i. Since the joint distribution of Ui depends only on k, we know
from the i-th order statistics of k i.i.d. Uniform(0, 1) variables that each Ui is Beta-distributed,
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Ui ∼ Beta(i, k−i+1), 0 ≤ U1 ≤ · · · ≤ Uk = 1. With some algebra, ui(z) =
1
d logUi+log uk(z).

Then,
1

k

k∑
i=1

log(ui(z)) = log uk(z) +
1

kd

k∑
i=1

logUi (19)

The second term converges almost surely to

1

kd

k∑
i=1

logUi →
1

d

∫ 1

0

log x dx = −1

d
(20)

as k → ∞ as it is a sum of k i.i.d. Uniform(0, 1) random variables. In other words, in the
asymptotic limit the average log-distance is a monotone transform of the log-distance itself. By
substituting Eq. 19 back into Eq. 11 for distances to both correct and wrong sets, the modified ∆-KNN
formulation remains a monotone transform o pc/pw, thus suggesting Neyman-Pearson optimality
under Corollary 1.

D ALGORITHM PSEUDOCODE FOR PROPOSED SCORES

Pseudocode for Algorithms 1 (∆-MDS and its linear combination) and 2 (Scoring with ∆-KNN and
its linear combination) are shown on the next page.
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Algorithm 1 Scoring with ∆-MDS and its linear combination

Input: Trained classifier f , feature extractor ϕ (typically penultimate or final layer of f ), training
set Dtrain = {(xi, yi)}, test set Dtest = {xj}, optional logit-based score function slogit(x),
combination weight λ

Output: Selector scores s(x) for each x ∈ Dtest

1: Initialize A(i)
c ← ∅ and A(i)

w ← ∅ for i = 1 to K ▷ Class-wise correct and incorrect feature sets
2: for each (x, y) in Dtrain do
3: ŷ ← f(x)
4: z ← ϕ(x)
5: if ŷ = y then
6: Add z to A(y)

c

7: else
8: Add z to A(y)

w

9: end if
10: end for
11: Compute {µc

i ,Σ
c}Ki=1 and {µw

i ,Σ
w}Ki=1 from Ac and Aw

12: for each x in Dtest do
13: z ← ϕ(x)
14: dc ← maxi−(z − µc

i )
⊤(Σc)−1(z − µc

i )
15: dw ← maxi−(z − µw

i )
⊤(Σw)−1(z − µw

i )
16: s∆-MDS(x)← dc − dw
17: if using linear combination then
18: s(x)← s∆-MDS(x) + λ · slogit(x)
19: else
20: s(x)← s∆-MDS(x)
21: end if
22: end for
23: return {s(x)} for each x ∈ Dtest
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Algorithm 2 Scoring with ∆-KNN and its linear combination
Input: Trained classifier f , feature extractor ϕ (typically penultimate or final layer of f ), training set Dtrain =
{(xi, yi)}, test set Dtest = {xj}, number of neighbors k, optional logit-based score function slogit(x),
combination weight λ

Output: Selector scores s(x) for each x ∈ Dtest
1: Initialize Ac ← ∅, Aw ← ∅ ▷ Global sets of correct and incorrect features
2: for each (x, y) in Dtrain do
3: ŷ ← f(x)
4: z ← ϕ(x)
5: if ŷ = y then
6: Add z to Ac

7: else
8: Add z to Aw

9: end if
10: end for
11: for each x in Dtest do
12: z ← ϕ(x)
13: Compute {ui}ki=1 ← distances from z to k nearest neighbors in Ac

14: Compute {vi}ki=1 ← distances from z to k nearest neighbors in Aw

15: dc ← − 1
k

∑k
i=1 log(ui)

16: dw ← − 1
k

∑k
i=1 log(vi)

17: s∆-KNN(x)← dc − dw
18: if using linear combination then
19: s(x)← s∆-KNN(x) + λ · slogit(x)
20: else
21: s(x)← s∆-KNN(x)
22: end if
23: end for
24: return {s(x)} for each x ∈ Dtest
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E EXPERIMENTAL DETAILS

Image Experiments. This section outlines the models and datasets used in the vision experiments
in Section 5. For classifiers, we use the ViT-H/14 variant for DFN CLIP and the “Giant” variant of
EVA, both with patch size 14. Pretrained weights are obtained from the OpenCLIP1 (Cherti et al.,
2023) and timm2 libraries, respectively.

ImageNet and its covariate-shifted variants are downloaded from their respective open-source repos-
itories3456789. For ImageNetV2, we use the MatchedFrequency test set to match the frequency
distribution of the original ImageNet. For ImageNet-C, we evaluate using corruption level 5 to
simulate the most challenging conditions. The dataset includes four corruption categories: 1) blur, 2)
digital, 3) noise, and 4) weather. Each category contains multiple corruption types (e.g., Gaussian,
impulse, and shot noise under the noise category). To ensure balanced evaluation, we first average
results within each category, then average across the four categories to give equal weight to each
corruption type.

For logit-based scores with CLIP, we are required to construct logits over class concepts by taking the
dot product between the text embedding Tθ(c) of class concepts c and the image embedding, ϕ(x),
where Tθ is the text encoder of CLIP. Given a class label y, we construct the class concept with the
template “a real, high-quality, clear and clean photo of a {y}” when computing the confidence scores
for logit-based selectors. We found this to improve scores slightly as opposed to using the default
template in the original work (Radford et al., 2021). We attribute this to the hypothesis that CLIP
should produce lower confidence scores when faced with covariate-shifted inputs, such as sketches or
corrupted images, as the error rate on covariate shifts are much higher (Heng & Soh, 2025) than on
Im-1K, which are generally clear and well-lit photographs.

Distance-based methods such as MDS, KNN, and our proposed variants compute distances in the
feature space. For CLIP, we use the output of the final layer of the vision encoder; for EVA, we use
the penultimate layer output.

The hyperparameters λ (for linear combinations) and k (for KNN-based scores) used in the experi-
ments reported in Table 1 and Table 3 are summarized in Table 6. All experiments are conducted on
a single NVIDIA A6000 GPU with 48GB of memory.

Language Experiments. For language experiments, we fine-tune a DistilBERT model on the
Amazon Reviews dataset using the training pipeline provided in the official LISA repository10, with
default hyperparameters. For distance-based selectors, we extract features from the penultimate layer
of DistilBERT, consistent with the EVA setting. The values of λ and k used in Table 2 are also listed
in Table 6. All language experiments are run on a single NVIDIA A6000 48GB GPU.

F ADDITIONAL RESULTS

The following provides additional experimental results showing risk-coverage trade-offs, hyperpa-
rameter sensitivity, and performance results on both semantic and covariance shift.

1https://github.com/mlfoundations/open_clip
2https://github.com/huggingface/pytorch-image-models
3https://www.image-net.org/
4https://github.com/hendrycks/imagenet-r
5https://github.com/hendrycks/natural-adv-examples
6https://objectnet.dev/
7https://imagenetv2.org/
8https://github.com/HaohanWang/ImageNet-Sketch
9https://github.com/hendrycks/robustness

10https://github.com/huaxiuyao/LISA
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Table 6: Values of λ and k for results reported in Sec. 5.

Method λ k

DFN CLIP

KNN - 50
∆-KNN - 25

∆-MDS-RLog 10000 -
∆-KNN-RLog 10 25

Eva

KNN - 50
∆-KNN - 25

∆-MDS-RLog 1000 -
∆-KNN-RLog 0.5 25

DistilBERT

KNN - 50
∆-KNN - 25

∆-MDS-RLog 1000 -
∆-KNN-RLog 0.05 25
∆-MDS-MSP 1000 -
∆-KNN-MSP 0.5 25
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Figure 2: Hyperparameter sensitivity plots for λ and k for ∆-KNN-RLog with DFN on ImageNet1K.
The results for this combination are not highly sensitive to λ, while for k results plateau at around
k = 25.
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Figure 3: Risk-coverage curves of various selector methods for CLIP (top row) and EVA (bottom
row). Our proposed methods consistently achieve the best risk-coverage tradeoff and remain stable at
low coverage levels.
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Table 7: Additional results under covariate shift using ResNet50 trained on ImageNet1K from the
official PyTorch repository. Consistent with the findings on larger models in the main text, our
proposed methods outperform all baselines. These results affirm that the gains stem from algorithmic
improvements in selective classification, rather than from large-scale pretraining potentially mitigating
distribution shifts.

Im-1K Im-V2 Im-S Im-C Avg (1K)

Method A N A N A N A N A N

MSP 9.67 0.248 10.32 0.257 23.4 0.196 22.6 0.203 16.5 0.226
MaxLogit 12.7 0.379 13.5 0.394 25.3 0.248 24.5 0.260 19.0 0.320

Energy 16.3 0.539 17.6 0.567 28.1 0.328 27.8 0.358 22.5 0.448
MDS 21.2 0.752 21.6 0.736 58.4 1.19 58.3 1.23 39.9 0.977
KNN 28.8 1.08 30.4 1.11 40.2 0.673 46.2 0.900 36.4 0.940
RLog 8.61 0.201 9.14 0.207 24.5 0.225 22.4 0.193 16.2 0.207
SIRC 18.9 0.648 19.6 0.652 46.2 0.844 40.5 0.729 31.3 0.718

∆-MDS 13.0 0.392 13.7 0.399 30.3 0.390 27.3 0.338 21.1 0.380
∆-KNN 15.3 0.493 16.2 0.509 36.0 0.552 33.9 0.529 25.3 0.521

∆-MDS-RLog 8.33 0.189 8.86 0.195 24.1 0.215 21.9 0.180 15.8 0.195
∆-KNN-RLog 8.48 0.195 9.02 0.202 24.3 0.221 22.2 0.189 16.0 0.202

Table 8: Additional results on semantic shift datasets, namely ImageNet-O, iNaturalist, SUN and
Places. The ID distribution is ImageNet-1K.

ImageNet-O iNaturalist SUN Places Avg

A N A N A N A N A N

DFN CLIP

MSP 9.70 0.459 11.7 0.273 12.2 0.293 12.8 0.319 11.6 0.336
MDS 11.8 0.584 14.1 0.370 14.8 0.398 15.2 0.414 14.0 0.442

MaxLogit 9.75 0.462 11.9 0.282 12.6 0.311 13.4 0.343 11.9 0.350
Energy 17.7 0.930 28.1 0.935 33.2 1.14 32.9 1.13 28.0 1.03
KNN 11.3 0.552 13.2 0.334 13.9 0.360 13.9 0.362 13.1 0.402
RLog 6.21 0.253 10.0 0.205 11.2 0.254 11.5 0.267 9.73 0.245
SIRC 18.2 0.958 32.7 1.12 30.2 1.02 32.3 1.11 28.4 1.05

∆-KNN 5.93 0.237 9.42 0.181 10.6 0.228 10.4 0.220 9.09 0.217
∆-KNN-RLog 5.20 0.194 8.60 0.148 9.69 0.192 9.76 0.195 8.31 0.182

EVA

MSP 4.94 0.285 8.46 0.214 9.29 0.251 10.1 0.289 8.20 0.260
MDS 4.58 0.258 6.64 0.133 7.41 0.167 7.78 0.184 6.60 0.186

MaxLogit 6.37 0.392 10.8 0.319 11.5 0.349 12.6 0.399 10.3 0.365
Energy 8.80 0.572 14.5 0.487 14.5 0.484 15.8 0.545 13.4 0.522
KNN 4.63 0.262 6.70 0.135 7.43 0.168 7.70 0.180 6.62 0.186
RLog 3.82 0.201 6.92 0.145 8.25 0.205 8.21 0.203 6.80 0.189
SIRC 18.2 0.958 32.7 1.12 30.2 1.02 32.3 1.11 28.4 1.05

∆-MDS 3.49 0.177 5.63 0.087 6.72 0.136 6.95 0.146 5.70 0.137
∆-MDS-RLog 3.37 0.202 5.64 0.130 6.90 0.187 7.08 0.186 5.75 0.176
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