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ABSTRACT

Recent advances in text-to-video (T2V) generation have enabled visually com-
pelling outputs, but models still struggle with everyday physical commonsense,
often producing videos that violate intuitive expectations of causality, object be-
havior, and tool use. We introduce PhysVidBench, a human-validated benchmark
for assessing physical reasoning in T2V models. It comprises carefully curated
prompts spanning seven dimensions of physical interaction, from material transfor-
mation to temporal dynamics, offering broad, multi-faceted coverage of scenarios
where physical plausibility is critical. For each prompt, we generate videos using
diverse state-of-the-art models, and evaluate them through a three-stage pipeline:
grounded physics questions are derived from each prompt, generated videos are
captioned with a vision–language model, and a language model answers the ques-
tions using only the captions. This strategy mitigates hallucination and produces
scores that align closely with human judgments. Beyond evaluation, PhysVidBench
also serves as a diagnostic tool, enabling feedback-driven refinement of model
outputs. By emphasizing affordances and tool-mediated actions, areas often over-
looked in existing benchmarks, PhysVidBench provides a structured, interpretable
framework for assessing and improving everyday physical commonsense in T2V
models.

1 INTRODUCTION

Text-to-video (T2V) generation has recently made striking progress in visual quality, temporal
coherence, and prompt alignment (Agarwal et al., 2025; Kong et al., 2024; Yang et al., 2025; Chen
et al., 2024; Wang et al., 2025a; Kuaishou Team, 2024; Runway Team, 2024; Google DeepMind,
2025c). These models are increasingly positioned as world video models that could support robotics,
embodied AI, and simulation-based learning (He et al., 2025; Hu et al., 2025; Wang et al., 2024;
Hu et al., 2023; Liu et al., 2024c; Agarwal et al., 2025), where understanding physical interactions
is crucial. Yet, despite impressive realism, current models frequently violate everyday physical
commonsense: objects float unnaturally, tools are misused, and causal sequences break down.

Several recent benchmarks have aimed to quantify physical reasoning in video generation. Phy-
GenBench (Meng et al., 2024) tests isolated laws such as buoyancy and friction, which limits its
applicability to more complex interactions. VideoPhy 2 (Bansal et al., 2025) focuses on motion plau-
sibility and physics violations but omits affordances and tool use, while relying on vision-language
model (VLM) scoring that is prone to hallucinations. VBench-2.0 (Zheng et al., 2025) evaluates tem-
poral consistency and state changes but depends on predefined reasoning classes and multi-question
VLM pipelines that may lack strong grounding. While valuable, these efforts leave gaps in assessing
richer, tool-mediated interactions and intuitive physical understanding. To address this, we introduce
PhysVidBench, a benchmark designed to assess everyday physical reasoning in T2V models through
real-world tasks that require understanding of object functionality and tool-mediated interactions.
A structured comparison with prior benchmarks is shown in Table 1.

PhysVidBench comprises 383 prompts adapted from the PIQA dataset (Bisk et al., 2019), which
focuses on everyday physical scenarios. Unlike synthetic setups, our prompts reflect routine activities
such as manipulating tools, transferring materials, or executing household tasks. Figure 1 illustrates
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Table 1: Comparison of PhysVidBench with prior physical commonsense video benchmarks.
PhysVidBench uniquely emphasizes tool use and affordances, introduces upsampled prompts for
causal specificity, and employs a caption-based Yes/No QA evaluator aligned with human judgments.

Feature PhyGenBench (Meng et al., 2024) Vbench-2.0 (Zheng et al., 2025) VideoPhy-2 (Bansal et al., 2025) PhysVidBench (Ours)

# of Prompts 160 1013 3940 383
Tool & Affordance Focus ✗ ✗ ✗ ✓

Human Alignment Study ✓ ✓ ✓ ✓

Upsampled Prompt Comparison ✓ ✗ ✓ ✓

Hard Subset ✗ ✗ ✓ ✓

Automatic Evaluation ✓ ✓ ✓ ✓

Human Feedback Type Rating Pairwise Rating (0-1) Yes/No QA

Hands squeeze an empty plastic water bottle, place the opening over an egg yolk in a bowl, and release 
the squeeze, sucking the yolk into the bottle, leaving the white behind.
Tested concepts: fundamental physics (       ), object properties & affordances (      ), spatial reasoning (     ), 
action & procedural understanding (     ) force and motion (     ) 

Real-World Videos Synthetically Generated Videos

A toothpick drags through drizzled sauce on top of frosting, creating wavy lines.
Tested concepts: object properties & affordances (      ), spatial reasoning (     ), material interaction & 
transformation (     ), force and motion (     )

Figure 1: Understanding Physical Commonsense in Video Generation Models. Humans intuitively
grasp how everyday interactions unfold; how objects respond to forces, how tools function, and how
materials behave under manipulation. To test whether T2V models have this capability, we present
PhysVidBench, a benchmark for evaluating key dimensions of physical commonsense. The figure
shows two examples comparing real-world and model-generated videos: one involving suction via
a squeezed bottle to separate an egg yolk, and another showing a toothpick dragging sauce across
frosting to create patterns. Each case tests multiple concepts, such as fundamental physics, object
affordances, spatial reasoning, and material transformations. Despite visual realism, current models
often violate basic physical expectations, revealing persistent gaps in physical reasoning.

two representative scenarios drawn from the real-world physical interactions underlying our prompts,
shown side-by-side with their model-generated counterparts. This contrast highlights how simple,
everyday physical interactions that humans perform remain challenging for state-of-the-art T2V
models. Each prompt has an upsampled variant that enriches causal and material detail, stressing
model understanding. The benchmark is structured around seven core reasoning dimensions, including
force and motion, object affordance, spatial reasoning, and material interaction (Fig. 2).

To evaluate generated videos, we introduce a caption-based question-answering pipeline. From
each prompt, grounded yes/no physics questions are derived; videos are captioned by a VLM;
and a large language model (LLM) answers the questions using only the captions. This design
avoids pitfalls of direct VLM scoring, which are prone to hallucination and often lack grounded
physical understanding (Huang et al., 2024a; Chow et al., 2025). All generated questions are
manually validated, and the resulting evaluator aligns strongly with human judgments, substantially
outperforming direct VLM baselines as demonstrated in our experiments. Beyond evaluation,
PhysVidBench provides diagnostic feedback. Following the iterative self-refinement paradigm of
PhyT2V (Xue et al., 2025a), our benchmark supports a lightweight refinement loop: models guided
by PhysVidBench improve their accuracy over baseline outputs, without retraining.

Our contributions include: (i) PhysVidBench, a new benchmark and dataset derived from 383
PIQA prompts, designed to evaluate physical commonsense in T2V models with a focus on tool
use and object affordance; (ii) a modular and interpretable evaluation pipeline that avoids direct
VLM-based reasoning and leverages caption-based LLM judgments for physical commonsense; and
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PhysVidBench Material Interaction and 
Transformation

White carnations sit in a clear vase of water 
as drops of blue food coloring are added, 

tinting the water.

Spatial Reasoning

A toothbrush is brushed against a dog 
deshedder’s metal teeth, pulling clumps of 

fur off the tool and on its  bristles.

Action and Procedural 
Understanding

A screwdriver tip is placed on the lid of a 
metal can, and a hammer taps the 

screwdriver handle, puncturing the lid.

Force and Motion

A piece of raw meat inside a sealed ziploc 
bag is repeatedly struck and flattened by a 

metal meat mallet.

Object Properties and 
Affordances

A black metal binder clip is squeezed open 
and placed over the blades of a razor head, 

covering them.

Fundamental Physics

A cup of water sits inside a running 
microwave, steam visibly forming on the 

interior walls.

Temporal Dynamics

Hands lift the lid off a toilet tank and 
carefully lower a red brick into the water 

inside.

Figure 2: Physical commonsense dimensions tested in PhysVidBench, each illustrated with a
video generated by Cosmos-14B. Prompts are designed to probe specific categories such as force and
motion, object affordance, spatial containment, temporal progression, and material interaction. Each
row shows sampled frames from one generated video paired with its corresponding prompt.

(iii) an empirical analysis across a wide range of T2V models that reveals persistent gaps in physical
reasoning capabilities, while demonstrating PhysVidBench’s utility as a diagnostic tool for guiding
model refinement. We release the dataset and evaluation code.

2 RELATED WORK

Video Generation Models. Recent years have seen rapid advances in text-to-video (T2V) gen-
eration. Models such as CogVideoX (Yang et al., 2025), HunyuanVideo (Kong et al., 2024),
and VideoCrafter2 (Chen et al., 2024) demonstrate strong temporal coherence and visual qual-
ity. MAGVIT (Yu et al., 2023) explores masked video transformers, while large-scale systems
like Cosmos (Agarwal et al., 2025) and Wan (Wang et al., 2025a) focus on scalability and prompt
alignment. Proprietary models such as Sora (Runway Team, 2024) and Veo-2 (Google DeepMind,
2025c) further push the limits of video fidelity and duration. Recent work also draws on world models
that aim to encode structured physical and causal dynamics. While visual realism has improved,
whether these systems possess a grounded understanding of physical interactions remains an open
challenge, one that our work directly addresses.

Metrics and Benchmarks for Video Generation. Early evaluation of T2V models relied on image-
based metrics like CLIP Score (Hessel et al., 2021), Fréchet Video Distance (FVD) (Unterthiner et al.,
2018), and Inception Score (IS) (Salimans et al., 2016). These metrics capture alignment, diversity,
or distributional similarity, but overlook temporal consistency, motion plausibility, and physical
validity, often misaligning with human judgment (Huang et al., 2024b). More recent benchmarks
improve granularity: VBench (Huang et al., 2024b) measures motion consistency and spatial stability,
EvalCrafter (Liu et al., 2024b) evaluates visual, content, and motion quality, and FETV (Liu et al.,
2023) organizes prompts by content and complexity to better match human ratings. Yet, these
benchmarks remain limited in their treatment of physical commonsense, motivating the need for
dedicated evaluations of real-world plausibility.

Benchmarks for Physical Commonsense. Several datasets explicitly probe physical reasoning
in video models. VBench-2.0 (Zheng et al., 2025) introduces dimensions such as state change,
geometry, and motion rationality to assess consistency and transformations. VideoPhy (Bansal et al.,
2024) and VideoPhy-2 (Bansal et al., 2025) adopt an action-centric approach, focusing on whether
videos of real-world activities adhere to physical commonsense. PhyGenBench (Meng et al., 2024)
emphasizes isolated physical laws such as buoyancy and friction, making it less applicable to complex
tool-mediated interactions. Physics-IQ (Motamed et al., 2025) evaluates generative models on fluid,
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optical, and electromagnetic phenomena, while Cosmos-Reason1 (Agarwal et al., 2025) benchmarks
reasoning across fundamental domains like space, time, and fundamental physics. Although these
efforts advance physical evaluation, they largely omit tool use and affordance reasoning, and rely
on predefined categories that may fail to capture the multi-faceted nature of everyday interactions.
PhysVidBench fills this gap by focusing on everyday physical commonsense, with prompts centered
on tool-mediated interactions and a human-aligned evaluation pipeline.

Improving Physical Consistency in Video Generation. Several recent works explicitly aim to im-
prove the physical plausibility of generated videos. PhyT2V (Xue et al., 2025a) uses an LLM-guided
self-refinement loop that rewrites prompts based on detected violations, while WISA (Wang et al.,
2025b) injects structured physical knowledge through a world-simulator assistant and specialized
attention mechanisms. VideoREPA (Zhang et al., 2025) aligns T2V diffusion models with video-
understanding foundation models by distilling spatio-temporal relational structure. Complementary
approaches incorporate physics constraints directly during training: PhysDiff (Yuan et al., 2023)
enforces Newtonian motion consistency in diffusion-based video prediction, and PhysGen (Liu et al.,
2024a) supervises generative models using differentiable physics rollouts to encourage realistic
trajectories and contacts. While these methods aim to improve physical consistency, PhysVidBench
offers a model-agnostic, human-aligned benchmark that tests whether these physics-aware techniques
genuinely improve everyday physical commonsense in tool-use and affordance-driven scenarios.

Physical Reasoning in LLMs and VLMs. Physical commonsense also remains a challenge for
LLMs and VLMs. PIQA dataset (Bisk et al., 2019) was introduced to assess models’ understanding of
everyday physical interactions, such as selecting appropriate tools for tasks. It consists of thousands
of human-authored commonsense questions framed as short goals, each paired with one correct and
one incorrect solution. While humans achieve near-perfect accuracy on PIQA, LLMs still lag behind,
highlighting their limited grasp of physical commonsense. Similarly, PhysBench (Chow et al., 2025)
evaluates VLMs across tasks involving object properties, relationships, scene understanding, and
physics-driven dynamics, finding that most fail to capture physical world knowledge. Impossible
Videos (Bai et al., 2025b) tests video models with scenarios that defy physical laws, with findings
indicating that they often fail to recognize physically implausible events.

(See Appendix B for a detailed comparison of PhysVidBench against prior physical-commonsense
video benchmarks.)

3 BENCHMARK

3.1 PHYSICAL COMMONSENSE CONCEPTS

Evaluating whether T2V models truly understand the physical world requires more than judging
visual fidelity or motion smoothness. It demands a systematic framework that decomposes physical
reasoning into interpretable dimensions, reflecting how humans interact with and reason about their
environment. We adopt a top-down methodology grounded in everyday human experience. Instead
of abstract physics categories or synthetic scenes, we start from goal-solution pairs in the PIQA
dataset (Bisk et al., 2019), which capture real-world, physically plausible tasks such as scraping ice
with a credit card or folding materials to fit a container. These naturally occurring scenarios require
implicit understanding of force, material behavior, and procedural logic, making PIQA a rich source
for constructing physically grounded prompts. From these tasks, we derive a data-driven ontology of
physical commonsense. Each dimension captures a distinct reasoning capability, ranging from force
and motion to procedural understanding. Table 2 summarizes the seven dimensions, which structure
PhysVidBench to evaluate not just visual quality, but whether models grasp the principles underlying
everyday physical interactions.

3.2 PROMPT CONSTRUCTION

PhysVidBench is designed to evaluate whether T2V models can depict physically plausible everyday
scenarios. Each prompt describes a short, concrete action that can be directly visualized and reasoned
about. The construction pipeline proceeds in three stages (Fig. 3): (1) selection and filtering of
physically plausible goal-solution pairs, (2) generation of base video prompts, and (3) enrichment of
base prompts to highlight underlying physical properties and causal structures.
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Table 2: Definitions of physical reasoning categories in PhysVidBench. These seven dimensions
form the core of our PhysVidBench benchmark and are derived from real-world scenarios. The seven
categories cover complementary aspects of everyday commonsense reasoning and enable fine-grained
evaluation of T2V models. The taxonomy supports fine-grained evaluation of text-to-video models
along dimensions such as causality, spatial relations and material properties.

Commonsense Dimension Definition

Fundamental Physics Core physical principles such as energy conservation, causality, equilibrium,
and state transitions in physical systems.

Object Properties &
Affordances

Inherent object attributes including material composition, rigidity, softness,
and functional affordances like containment or support.

Spatial Reasoning Spatial relations including position, geometry, occlusion, orientation, and fit
between objects in a scene.

Temporal Dynamics Timing, sequencing, and the causal structure of events over time, such as
ordering, delays, and waiting.

Action & Procedural
Understanding

Structured, goal-driven sequences of actions involving procedural steps
toward task completion.

Material Interaction &
Transformation

Responses of materials to external forces or processes including transforma-
tions like melting, freezing, breaking, or chemical change.

Force and Motion Physical interactions governed by forces, including motion, pushing, pulling,
lifting, and properties like inertia.

Filtered Correct Solution 

To separate egg whites from 
the yolk using a water bottle, 
you should:  Squeeze the 
water bottle and press it 
against the yolk. Release, 
which creates suction and 
lifts the yolk.

Upsampled Prompt 

A person firmly squeezes a translucent, 
pliable plastic water bottle, reducing its 
internal volume. They carefully press 
the bottle's circular opening against the 
fragile, spherical egg yolk, which sits 
surrounded by viscous, clear egg whites 
in a ceramic bowl. The bottle's rim 
makes full contact with the yolk's 
surface. The person slowly releases 
their grip on the bottle, creating suction 
inside the bottle. The pressure 
difference causes the yolk to deform 
slightly as it is drawn upwards into the 
bottle's opening.

Input: Correct solutions 
from PIQA

Gemini LLM Filter for 
Secondary Tool Usage and 
Affordances

Output:
Filtered Correct Solutions 
Highlighting tool use/ 
affordance)

Stage 1
Filtering PIQA 
Scenarios

Input: Both Base and 
Upsampled Video
Generation Prompts

Stage 4
Video 
Generation

Input: Filtered Correct
Solutions

Gemini LLM Convert 
solutions into
Visual Video Prompts 
Short, descriptive scenes)

Output:
383 Base Video
Generation Prompts

Stage 2
Base Prompt 
Generation

Input: Base Video 
Generation Prompts

Gemini LLM Enrich prompts 
with
● Detailed Physical

Structure
● Object Affordance Logic
● Preserve original scene

scope

Output:
383 Upsampled
Video Generation Prompts

Stage 3
Prompt 
Upsampling

Video Generation Prompt 

A person squeezes a plastic 
water bottle and presses the 
opening against an egg yolk 
in a bowl of egg whites. They 
release the squeeze, and the 
yolk is sucked into the bottle.

Models: A range of open- 
and closed-source models 
CogVideoX, Cosmos, 
HunyuanVideo, LTX, 
MAGI-1, VideoCrafter2, 
Wan 2.1, Sora, Veo-2

Output:
766 Synthetic Videos Per 
Model (Targeting tool use 
and affordance-based 
physical quality)

        ty.Generated Video

* Video above was generated using
Cosmos-Predict1-14B-Text2World

Figure 3: Video generation pipeline for PhysVidBench. From PIQA goal-solution pairs, we filter
instances for secondary tool use and object affordances (Stage 1). These are converted into short,
physically grounded prompts (Stage 2), which are then enriched with additional details (Stage 3).
Base and upsampled prompts are used to generate videos across multiple T2V models (Stage 4).

Stage 1: Filtering PIQA Scenarios. PIQA offers thousands of human-written goal–solution
pairs capturing routine, physically grounded activities such as moving objects, manipulating tools,
preparing food, and handling materials. These pairs were crowd-sourced under instructions to
propose common, physically plausible tasks from everyday life, resulting in broad coverage of forces,
materials, tools, and object–object interactions. This makes PIQA a diverse and realistic foundation
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for constructing physically meaningful video prompts. We extract correct goal–solution pairs from the
PIQA training and validation splits, ensuring that all candidates are physically viable. To emphasize
challenging cases, we apply a lightweight filtering step using Gemini-2.5-Pro-Preview-05-06 (Google
DeepMind, 2025a) (hereafter referred to as Gemini 2.5 Pro). Specifically, we retain goal-solution
pairs from PIQA that involve secondary tool use or non-obvious object affordances, such as using
a credit card to scrape ice or a paperclip to eject a SIM tray. These scenarios go beyond standard
object usage and demand an intuitive understanding of how tools can be repurposed based on their
physical properties. This filtering sets our benchmark apart from prior efforts, which typically rely on
canonical actions or predefined physics categories.

Stage 2: Base Prompt Generation. Each filtered pair is converted into a concise video prompt using
Gemini 2.5 Pro. Prompts are required to depict realistic, self-contained short video clips centered
on observable physical interactions such as placing, cutting, lifting, folding, or pouring. To ensure
clarity and physical grounding, the model is explicitly instructed to exclude non-visual elements
such as internal states, abstract concepts, or speculative intentions, and to discard input pairs that
cannot be translated into meaningful, demonstrable actions. This process yields 383 base prompts,
each describing a physically grounded real-world scenario suitable for text-to-video generation. The
resulting prompt set shows substantially richer physical variation than prior physical-commonsense
benchmarks. Across the 383 prompts, PhysVidBench spans more than 1,200 distinct objects and over
600 manipulation actions, covering a wide range of materials, tools, and interaction types encountered
in everyday settings. PhysVidBench surpasses PhyGenBench, VBench-2.0, and VideoPhy-2 in both
lexical richness and action–object interaction density, showing that the dataset is diverse across
real-world object usage and physical interactions.

(See Appendix B.2 for quantitative diversity statistics.)

Stage 3: Prompt Upsampling. Each base prompt is further refined through an upsampling step using
Gemini 2.5 Pro, guided by instructions that expand on the physical structure and affordance logic of
the scene. This process, inspired by recent work such as PhyT2V (Xue et al., 2025a), enriches prompts
with object-level attributes that enhance realism and physical plausibility in T2V outputs. Crucially,
the upsampling is constrained to grounded enhancements: the model is instructed to preserve the
original scene scope and avoid introducing new objects, events, or speculative consequences. The
result is an enriched prompt that retains the core action of its base version while making its physical
details and causal logic more explicit. This procedure yields 383 upsampled prompts, producing a
total of 766 unique prompts (383 base + 383 upsampled).

All base and upsampled prompts were manually reviewed by human annotators to remove hallucina-
tions, unsafe or inappropriate content, and to ensure suitability for video generation. Videos were
then generated for every prompt using each evaluated text-to-video model, allowing us to assess
not only surface-level fidelity but also the ability to follow nuanced, causally rich, and physically
grounded instructions. The complete generation pipeline, from filtering to prompt enrichment and
final model outputs, is summarized in Fig. 3.

(See Appendix C.1 and C.2 for full details of the prompt construction process and LLM instructions.)

3.3 EVALUATION PIPELINE

We adopt a three-stage pipeline shown in Fig. 4 to assess physical commonsense in generated videos.

Stage 1: Physics-Grounded Question Generation. From each upsampled prompt, we derive
targeted yes/no questions whose correct answer is always yes because each prompt specifies the
physical phenomenon that should occur in a correct video. These questions are designed to be
answerable solely from the prompt itself, without requiring any external knowledge. Using only
yes-grounded questions avoids the ambiguity of no-questions, where many physically incorrect
outcomes collapse to the same answer and fail to indicate whether the intended behavior actually
happened. For example, if a prompt expects an object to fall, a “No” question such as “Does
the object stay suspended?” would treat a wide range of incorrect generations, falling through the
floor, disappearing, melting, or teleporting, as equally valid answers, even though these reflect
fundamentally different and physically implausible errors. In our setup, a model is scored as correct
only when the generated video provides positive evidence for the expected physical effect; physically
implausible or failed generations naturally receive a “no,” producing a stable and interpretable
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Figure 4: Evaluation pipeline for PhysVidBench. From each upsampled prompt, we generate
targeted yes/no questions aligned with one or more physical commonsense dimensions (Stage 1). For
every generated video, AuroraCap produces a general-purpose caption along with seven dimension-
specific captions that highlight relevant physical cues (Stage 2). These captions, together with the
questions, are then provided to an LLM, which answers based solely on the textual evidence (Stage 3).

measure of physical commonsense. This process yields 4,123 questions, averaging 11 per video. All
questions were manually reviewed for clarity, answerability, and appropriateness; about 5% were
discarded for referencing non-visual elements (e.g., sounds) or details present only in the upsampled
prompt but absent from the corresponding base prompt.

Stage 2: Dense Video Captioning. Each generated video is passed to a dense captioning model
that produces one general-purpose caption plus seven dimension-specific captions aligned with our
ontology. In our main experiments, we use AuroraCap (Chai et al., 2025)1. The dimension-specific
captions emphasize details relevant to their category, such as object properties, material behavior,
or spatial relationships. Collectively, the eight captions provide complementary perspectives on the
video, improving coverage of fine-grained physical features and reducing dependence on any single
potentially incomplete description, addressing key challenges in VLM-based evaluation (Huang et al.,
2024a; Chow et al., 2025).

Stage 3: LLM as a Judge. We use a large language model to answer each question using only the
eight generated captions without access to the video or the original prompt. Because this evaluation
is fully text-based, the judge does not observe the raw video but only its captioned description,
enabling a modular separation between perception (captioning) and reasoning (LLM QA). In our
main experiments, we use Gemini-2.5-Flash (Google DeepMind, 2025b)2. A response is marked
correct if the model answers yes for at least one caption. Because the LLM must justify a “yes” using
evidence from the captions, a T2V model cannot obtain a correct score unless the expected physical
behavior actually appears in the video, as physically incorrect videos simply lack the textual cues
required for a yes-answer and are therefore penalized. Final accuracy is computed as the proportion of
correctly answered questions using an LLM-as-judge approach, following recent trends in leveraging
language models for grounded evaluation (Zheng et al., 2023).

(See Appendices C.3, E, H.2, and H.3 for evaluation details, an end-to-end example, cross-judge
LLM analysis, and captioner robustness.)

1We find that replacing it with captioners such as Qwen-2.5-VL-7B (Bai et al., 2025a) or Qwen-3-VL-
30B (Team, 2025) produces comparable accuracies and model rankings, indicating that the pipeline is modular
and compatible with different high-quality video captioners.

2We obtain nearly identical model rankings when replacing it with DeepSeek, indicating that the evaluation
stage is not dependent on a specific LLM.
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4 EXPERIMENTAL SETUP

Models. We evaluate a range of recent open and closed-source text-to-video (T2V) models covering
diverse architectures and training paradigms. These include: (1) VideoCrafter2 (Chen et al., 2024),
a diffusion-based model for efficient video synthesis; (2) CogVideoX-2B/5B (Yang et al., 2025),
autoregressive models for high-fidelity generation; (3) Wan2.1-1.3B/14B (Wang et al., 2025a), trained
on large-scale multimodal corpora; (4) Cosmos-7B/14B (Agarwal et al., 2025), instruction-tuned
for complex generation tasks; (5) HunyuanVideo (Kong et al., 2024), an open-source release from
Tencent’s Hunyuan framework; (6) LTX-Video (HaCohen et al., 2024), a diffusion model using
latent temporal encoding; (7) MAGI-1 (Sand-AI, 2025), a motion-aware autoregressive model; (8)
Sora (OpenAI, 2025) and (9) Veo-2 (Google DeepMind, 2025c) are state-of-the-art proprietary models
for high-quality video generation. Our benchmark includes both open-source and proprietary models
to provide a broader view of current capabilities. All evaluations were conducted on a machine with
a single NVIDIA A40 GPU.

Difficulty–Based Prompt Stratification. To better characterize model capabilities across varying
levels of complexity, we partitioned our benchmark into three difficulty-based subsets: medium, hard,
and very hard. We emphasize that even the medium subset poses significant challenges for current
models, hence our terminology does not include an easy category. Our stratification process was
as follows. First, we selected the four best-performing open-source models on the full benchmark:
Cosmos, Hunyuan, MAGI-1, and Wan2.1. For each prompt, we computed the average question-
answering accuracy across these models. Prompts were categorized according to the aggregated
scores: medium if the average accuracy exceeded 40%, hard if it fell between 20% and 40%, and very
hard if it was below 20%. This process yielded 123 medium, 160 hard, and 100 very hard prompts.
We release the medium and hard subsets publicly, reserving the very hard set for future evaluations.

5 RESULTS AND DISCUSSION

Overall Model Comparison. Table 3 reports model accuracies across the seven ontology dimensions
in PhysVidBench. To provide a holistic view, Figure 5 compares models using violin plots of accuracy
distributions. Open-source systems such as Cosmos-14B and Wan2.1-14B achieve the highest
averages but still show wide variance across prompts. Proprietary models (Sora, Veo-2) perform
competitively on some dimensions yet fail in others, reinforcing that no current system consistently
handles the full range of everyday physical commonsense. Table 4 presents model accuracies across
the three difficulty levels using upsampled prompts, again with parentheses indicating the change
relative to base prompts. Performance decreases sharply as difficulty increases: most models lose
more than half their accuracy when moving from medium to very hard subsets.

(See Appendix F.1 for qualitative examples across models.).

Dimension-wise Performance. Two consistent trends are observed. First, Spatial Reasoning (SR)
and Temporal Dynamics (TD) remain the most challenging, which require reasoning over geometry,
occlusion, and event sequencing. Even the strongest models such as such as Wan2.1-14B, Cosmos-
14B, Sora, and Veo-2 underperform on these dimensions, highlighting their persistent limitations in
relational and temporal modeling. Second, Object Properties & Affordances (OP) yields the highest
scores, suggesting that models often succeed by exploiting simple visual heuristics (e.g., texture,
containment) rather than robust causal reasoning. Although results vary across architectures, overall
scores remain modest, indicating that despite impressive visual fidelity, current T2V models lack
generalizable physical commonsense.

(See Appendix D for a structured taxonomy of prompt-level difficulty, which characterizes why certain
prompts are inherently harder for current T2V models.)

Effect of Prompt Enrichment. We next examine the role of prompt enrichment by comparing
base and upsampled prompts. Across nearly all models, upsampled prompts improve accuracy,
surfacing latent physical knowledge when fine-grained attributes are made explicit. Interestingly,
proprietary models behave differently: Sora performs worse with enriched prompts, likely due to
internal prompt-expansion mechanisms. These findings confirm that enrichment is broadly beneficial,
though its effectiveness depends strongly on model architecture and training strategy.
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Table 3: Model performance across physical commonsense dimensions. Reported values indicate
accuracy with upsampled prompts; values in parentheses show the change when models switch to base
prompts. Evaluation covers seven key physical commonsense dimensions as defined in our ontology,
AU: Action & Procedural Understanding, FM: Force and Motion, FP: Fundamental Physics, MT:
Material Interaction & Transformation, OP: Object Properties & Affordances, SR: Spatial Reasoning,
TD: Temporal Dynamics. Bold and underline denotes the best and second best methods.

Model AU FM FP MT OP SR TD Average

LTX-Video 20.7 (-4.2) 19.9 (-3.5) 18.6 (-2.5) 16.9 (-1.6) 25.0 (-4.7) 17.3 (-2.3) 13.7 (-4.6) 21.0 (-3.0)

VideoCrafter2 17.7 (-1.4) 19.4 (-2.9) 23.3 (-3.3) 18.8 (-2.9) 26.6 (-2.1) 15.8 (-0.2) 12.6 (-2.7) 22.1 (-1.7)

CogVideoX (2B) 22.6 (-1.8) 24.6 (-4.5) 23.8 (-2.7) 22.6 (-0.3) 28.9 (-3.5) 19.6 (-1.3) 16.8 (-1.5) 25.6 (-3.1)
CogVideoX (5B) 18.9 (-0.8) 19.6 (-3.3) 21.3 (-3.2) 18.1 (-1.4) 25.6 (-1.3) 17.9 (-0.5) 12.6 (+0.8) 21.0 (-1.5)

Wan2.1 (1.3B) 30.1 (-3.5) 29.0 (-5.0) 28.5 (-2.8) 28.9 (-1.9) 35.2 (-3.6) 27.4 (-3.1) 18.7 (+0.0) 30.6 (-3.1)
Wan2.1 (14B) 33.6 (-3.5) 31.6 (-1.4) 32.6 (-1.3) 32.9 (-3.5) 39.0 (-3.9) 29.6 (-1.3) 23.7 (-1.5) 34.1 (-1.9)

MAGI-1 27.3 (-5.9) 26.6 (-4.0) 29.4 (-1.7) 28.5 (-5.1) 37.4 (-5.0) 30.4 (-5.0) 19.1 (-8.0) 32.6 (-5.3)

Hunyuan Video 26.7 (-0.5) 26.2 (+0.2) 28.1 (-0.1) 32.3 (-4.8) 36.1 (-1.9) 23.9 (+2.1) 21.8 (-5.3) 30.0 (-0.9)

Cosmos (7B) 32.5 (-8.2) 32.8 (-9.3) 33.6 (-8.9) 36.1 (-10.6) 40.1 (-10.6) 31.6 (-10.0) 21.4 (-8.4) 35.0 (-8.3)
Cosmos (14B) 35.6 (-5.9) 33.3 (-6.1) 31.7 (-3.9) 37.4 (-5.9) 40.9 (-9.6) 32.5 (-5.3) 21.0 (-0.4) 36.2 (-7.1)

Sora 28.6 (+2.4) 30.0 (-1.1) 29.9 (+0.2) 33.1 (+0.3) 37.0 (-1.1) 24.8 (+1.7) 16.7 (+2.6) 31.4 (+0.3)
Veo-2 34.9 (-0.7) 33.8 (-2.3) 31.7 (-2.7) 36.0 (-3.1) 38.4 (-1.5) 29.7 (+1.0) 19.5 (+2.5) 34.8 (-0.7)

Video Generation Models (sorted by accuracy)
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Figure 5: Performance comparison of video generation models on PhysVidBench. Each violin
plot represents a distinct model and depicts the distribution of accuracy scores across all prompts.

Table 4: Model performances on difficulty based subsets. Reported values indicate accuracy with
upsampled prompts; values in parentheses show the change when models switch to base prompts.

Model Medium Hard Very Hard
LTX-Video 41.2 (-1.6) 22.8 (-4.4) 9.1 (-1.2)
VideoCrafter2 44.5 (-4.3) 23.1 (-1.1) 10.7 (-1.6)
CogVideoX (2B) 49.8 (-7.8) 28.2 (-3.2) 11.6 (-0.6)
CogVideoX (5B) 39.2 (-2.7) 22.0 (-0.7) 11.3 (-1.1)
Wan2.1 (1.3B) 57.4 (-3.8) 33.8 (-4.7) 14.6 (-1.3)
Wan2.1 (14B) 61.5 (-4.8) 37.0 (-2.7) 18.0 (+0.2)
MAGI-1 60.5 (-10.7) 35.2 (-5.5) 16.8 (-3.2)
Hunyuan Video 52.6 (-4.5) 33.5 (-5.1) 15.9 (-4.8)
Cosmos (7B) 60.5 (-10.7) 38.8 (-10.3) 18.6 (-5.0)
Cosmos (14B) 59.2 (-13.1) 39.2 (-8.7) 22.2 (-2.2)

Impact of Model Scale. Larger models generally achieve higher scores, but scaling alone does
not guarantee stronger physical reasoning. Wan2.1-14B consistently outperforms its 1.3B variant,
and Cosmos-7B exceeds smaller counterparts, yet CogVideoX-2B outperforms CogVideoX-5B
across all categories. Moreover, scaling gains plateau: even the largest models struggle with SR and
TD. Notably, several smaller models such as MAGI-1(4.5B) and Wan2.1-1.3B outperform larger
systems like VideoCrafter2(2B) and CogVideoX-5B, indicating that architectural choices, training
data, and intermediate supervision often matter more than parameter count. Taken together, these
findings suggest that scaling helps models exploit explicit physical cues, but does not resolve deeper
deficiencies in temporal or relational reasoning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Validation of our Evaluation Pipeline. To assess the reliability of our evaluation pipeline, we
conducted a user study with 15 participants and 120 videos. Participants answered randomized yes/no
questions about the generated videos, enabling a direct comparison between human responses and
automatic scores. We benchmarked our method against two alternatives: (i) direct VLM-based QA,
where the model answers physics questions directly from the video, and (ii) two public automatic
metrics designed for different objectives (aesthetics/overall quality and dynamics realism). As shown
in Table 5, our evaluation pipeline achieves substantially stronger alignment with human judgments.
In contrast, VLMs often underperform due to response collapse or reliance on superficial cues, while
existing metrics show weak or even negative correlation with human ratings.

(See Appendix G for details of the user study and Appendix H for additional robustness analyses.)

Table 5: Comparison of direct use of VLMs, prior evaluation metrics and our evaluation pipeline.
Reported values are Pearson correlations with human responses on 120 videos. “N/A” denotes failure
cases where a VLM collapsed (e.g., answering yes to nearly all questions), preventing meaningful
correlation. Our pipeline achieves consistently stronger alignment with human ratings than both
direct VLM-based evaluation and existing automatic metrics.

Method MAGI-1 Cosmos-14B Hunyuan Wan2.1 (14B)

Qwen2.5-VL-72B-Instruct-AWQ 0.47 0.36 0.42 0.21
Video-LLaVA N/A N/A N/A N/A
InternVL3 N/A N/A N/A N/A

VideoScore -0.26 0.24 -0.09 -0.08
VideoPhy-2 AutoEval 0.23 -0.18 0.16 -0.06

Ours (Captioning + LLM-as-a-Judge) 0.69 0.60 0.61 0.45

Iterative Error-Guided Prompt Refinement. Inspired by the self-refinement paradigm in (Xue
et al., 2025b), we extend our evaluation pipeline into an iterative, training-free development loop.
Each round begins with a base prompt pt, generates a video vt, and applies our QA pipeline across
the seven physical commonsense dimensions to obtain binary outcomes per question. Violations,
questions answered incorrectly, are then used to condition the next prompt pt+1 through targeted
edits, such as adding object attributes, refining interaction verbs, inserting temporal cues, or applying
explicit negatives. This process is repeated until performance on a held-out subset plateaus or a
maximum number of rounds is reached. Unlike reward optimization or policy-gradient approaches,
this procedure does not update model parameters. Instead, it re-edits prompts with failure-aware
constraints while preserving generative diversity. On a 100-prompt subset, the approach produces
substantial improvements: CogVideoX–2B rises from 21.6 to 32.7, and CogVideoX–5B from 17.8
to 29.7. These results demonstrate that our pipeline used for assessment can also guide effective
refinement, highlighting its stability and practical utility for model development without retraining.

6 CONCLUSION

We introduced PhysVidBench, a benchmark for evaluating physical commonsense in T2V generation
models. With a focus on tool use, object affordance, and causal interactions, the benchmark pairs
physically enriched prompts with a structured evaluation pipeline that avoids the limitations of
direct vision-language model scoring. Results across a range of open and closed-source models
show that enriched prompts lead to meaningful gains, especially in larger systems, but also reveal
persistent difficulties in spatial and temporal reasoning. These insights highlight the need for
progress in architecture, training methods, and evaluation strategies that prioritize grounded physical
understanding. PhysVidBench offers a foundation for tracking and accelerating such developments.
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A APPENDIX

In this supplementary material, we provide:

• A comprehensive comparison of PhysVidBench against prior physical-commonsense video bench-
marks, namely PhyGenBench, VBench 2.0, VideoPhy-2, and Impossible Videos, showing represen-
tative prompts, quantitative diversity statistics, and discussing key differences.

• A detailed description of our benchmark design and evaluation pipeline, covering prompt generation
and upsampling with full LLM instruction templates.

• An expanded review of our physical commonsense ontology, including definitions for each of the
seven dimensions, counts of scenarios per category, and example base vs. upsampled prompts.

• A structured taxonomy of physically grounded failure modes, introducing three complementary axes
(Action Complexity, Scientific Principle, and Object Functionality) to reveal why certain prompts
are difficult and how models break down when tasks require multi-step procedures, non-obvious
physics, or functional recontextualization of objects.

• A step-by-step account of our dense captioning and question-answering workflow, including the
dimension-targeted AuroraCap prompts, representative multi-perspective captions, and the full text
of the prompt used to solicit binary judgments from the language model.

• Statistical significance analysis based on 10k bootstrap confidence intervals, including base vs.
upsampled comparisons and difficulty-tier stratification across models.

• A full end-to-end example evaluation on PhysVidBench.
• Representative qualitative examples that contrast successful and failed video generations across

different models and dimensions, accompanied by key frames and QA verdicts.
• Full details of our human evaluation study, including interface screenshots, and comparison between

human and LLM judgments.
• An analysis of the robustness of our automatic evaluation pipeline, examining failure cases,

sensitivity to captioning variations, and consistency across repeated runs.
• A brief discussion of the scope and the limitations of our proposed PhysVidBench benchmark.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B EXPANDED COMPARISON WITH EXISTING BENCHMARKS

B.1 REPRESENTATIVE PROMPTS FROM EACH BENCHMARK

While prior video-generation benchmarks probe particular aspects of physical reasoning, none offer
the breadth and task-oriented focus of PhysVidBench.

• PhyGenBench (Meng et al., 2024) targets isolated physical laws like buoyancy, stress, elasticity
through scenarios such as a sponge being squeezed or a ball bouncing. Its prompts highlight single
phenomena in passive settings and omit any agent-driven tool use or multi-step manipulations.

• VBench 2.0 (Zheng et al., 2025) introduces a wide variety of scene types and evaluates models on
spatial consistency, temporal coherence, and visual realism. However, it devotes limited attention
to object affordances or the mechanics of purposeful interactions, testing where objects “are” rather
than what agents can “do” with them.

• VideoPhy-2 (Bansal et al., 2025) emphasizes motion plausibility and physical violations, e.g. a
Segway traversing speed bumps or a gymnast back-flipping near a wall. Yet, these scenarios rarely
involve purposeful tool handling or causal sequences of actions.

• Impossible Videos (Bai et al., 2025b) leverages visually striking, intentionally implausible phe-
nomena such as endless pouring of liquid, and self-moving books to expose hallucinations in
generation models. While effective at uncovering obvious physics failures, its surreal setups lack
grounding in real-world, goal-driven tasks.

In contrast, PhysVidBench is built around grounded, goal-oriented prompts derived from the PIQA
dataset. Each scenario requires agents to use or repurpose everyday objects in deliberate sequences
that simultaneously engage multiple commonsense dimensions (force application, spatial fit, material
properties, containment, and procedural causality). This affordance-centric design makes PhysVid-
Bench uniquely suited for assessing whether text-to-video models truly “understand” how tools and
materials behave in practical, manipulable tasks.

In the following, we list representative prompts from each benchmark to illustrate these contrasts.

PhyGenBench

Example Prompt 1: A cup of water is slowly poured out in the space station, releasing the
liquid into the surrounding area.

Tests gravity absence in a synthetic environment; lacks real-world, goal-directed action or
interaction with tools.

Example Prompt 2: A timelapse of a water-filled sponge being forcefully squeezed by hand,
with the pressure intensifying rapidly over time.

Shows material deformation under stress, but the action is passive. It does not involve
affordance-based manipulation or multi-step use of the sponge.

Example Prompt 3: A vibrant, elastic rubber ball is thrown forcefully towards the ground,
capturing its dynamic interaction with the surface upon impact.

Focuses on elasticity and rebound, but lacks physical goal structure, repurposed tool logic, or
causal task sequences.

VBench 2.0

Exmple Prompt 1: A brown dog is on the left of an apple, then the dog moves to the right of the
apple.

Tests spatial consistency from different perspectives but lacks physical interaction, causality, or
manipulation involving materials or tools.

Example Prompt 2: A jar of peanut butter is opened in the space station, with the viscous liquid

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

slowly dispersing.

Depicts fluid behavior in zero gravity but is passive and context-specific. There is no
goal-directed manipulation or tool-based interaction.

Example Prompt 3: A person is drinking a glass of water, then they suddenly start cleaning the
windows.

Shows a behavioral transition but omits the physical process involved in cleaning. The objects
used and the steps required are unspecified and ungrounded.

VideoPhy-2

Example Prompt 1: A Segway bumps over a series of small speed bumps, the rider maintaining
balance with slight adjustments.

Evaluates motion plausibility and equilibrium but lacks goal-directed object use, sequential
interaction steps, or any reasoning about tool affordances.

Example Prompt 2: A backflip is performed close to a wall. The person carefully ensures their
momentum keeps them clear from hitting the wall.

Involves physical trajectory reasoning but does not require interaction with any objects or
manipulation of the environment for task completion.

Example Prompt 3: A backhoe digs a large hole in the ground, throwing up a mound of dirt.

Depicts mechanical tool usage, yet the prompt remains high-level and underspecified. It does
not describe the procedural steps or physical constraints involved in the interaction.

Impossible Videos

Example Prompt 1: A person continuously pours water from a glass pot, yet remarkably the
water level inside remains constant. This photo-realistic illusion defies natural physics as the
endless stream flows without depleting the pot’s contents. The scene takes place against a plain
background, creating a focused view of this seemingly impossible phenomenon.

Intentionally violates conservation of mass for visual paradox, but lacks grounded, goal-driven
interaction or affordance-sensitive manipulation.

Example Prompt 2: A metallic iron ball bounces off a polished marble floor in a physically
unusual manner. Defying normal physics, each consecutive bounce reaches a greater height
than the last, creating an eerily unnatural progression of increasing rebounds. The glossy
surface of the floor reflects the ball’s motion in this photo-realistic scene, set against what
appears to be an indoor space.

Targets energy conservation violation in isolation. However, it contains no agent, object use, or
causal physical interaction sequences grounded in real-world affordances.

Example Prompt 3: A book mysteriously opens by itself on a plain wooden desk surface,
its pages flipping autonomously without any visible human intervention or external force. The
photo-realistic footage captures this unexplainable movement in a well-lit indoor setting, defying
natural physics as the book cover and pages lift and turn on their own.

Demonstrates spontaneous motion but offers no agent–object interaction, mechanical force
reasoning, or procedural physicality that would be necessary in task-driven video generation.
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PhysVidBench (Ours)

Example Prompt 1: A slice of bread is pressed onto small glass fragments scattered on a
surface, picking them up.

Involves soft material usage for delicate cleanup. Engages reasoning about texture, surface
adhesion, and containment, grounded in everyday physical affordances.

Example Prompt 2: Duct tape is wrapped around a stuck light bulb in a socket, and a hand
uses the tape to twist the bulb counter-clockwise, loosening it.

Demonstrates tool repurposing and torque application. Highlights grip mechanics, flexibility,
and rotational force in a functional task context.

Example Prompt 3: A drink can is placed upright into the opening of a shoe resting on the floor
of a car’s passenger side.

Tests reasoning about shape compatibility, friction, and containment. Showcases improvised
affordance in a constrained physical setup.

B.2 DATASET DIVERSITY AND SCALE

PhysVidBench achieves high conceptual coverage despite its compact size. Each prompt simultane-
ously probes several aspects of everyday physical reasoning such as affordances, causality, material
response, and procedural manipulation, providing richer supervision density than benchmarks fo-
cused on isolated physical laws. As shown in Table 6, both the base and upsampled prompts exhibit
substantially stronger linguistic and physical diversity (unique verbs, nouns, and action–object pairs)
than prior benchmarks, reflecting a broad range of real-world scenarios.

Table 6: Linguistic and physical diversity comparison across benchmarks. PhysVidBench (base
and upsampled variants) shows substantially higher diversity in verbs, nouns, and action–object pairs
than prior physics-oriented video benchmarks, reflecting broader coverage of real-world physical
interactions despite its compact prompt set.

Benchmark #
Prompt

Unique
Verbs

Verbs
per Prompt

Unique
Nouns

Nouns
per Prompt

Action–Object
Pairs per Prompt

Lexical
Density

PhyGenBench 160 77 0.481 239 1.494 0.79 0.55
PhyGenBench

(explicit prompt) 160 232 1.45 408 2.55 2.91 0.57

VideoPhy-2
(train set) 3343 773 0.231 2111 0.631 1.43 0.59

VBench 2.0 1013 593 0.585 1282 1.266 1.75 0.55
VBench 2.0
(augmented) 1013 1195 1.18 2979 2.941 6.37 0.61

PhysVidBench
(base) 383 262 0.684 708 1.849 2.03 0.60

PhysVidBench
(upsampled) 383 623 1.627 1233 3.219 6.68 0.64

Although the benchmark contains 383 core prompts, the effective evaluation scale is large: across
models, captions, and physics-grounded questions, PhysVidBench generates more than 42,000 QA
instances per split, offering fine-grained diagnostic resolution in practice.

Finally, the benchmark’s scale aligns closely with established physics-oriented diagnostic datasets
(PhyGenBench: 160 prompts; VideoPhy: 688 prompts), which similarly prioritize conceptual
precision and interpretability over raw quantity. PhysVidBench follows this design philosophy to
ensure that the benchmark remains both computationally feasible for the community and rich enough
to meaningfully evaluate physical commonsense in T2V models.
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C BENCHMARK DESIGN AND EVALUATION DETAILS

C.1 PROMPT GENERATION AND UPSAMPLING

Our benchmark construction pipeline begins with the PIQA dataset, utilizing its extensive repository
of physically grounded scenarios. Specifically, we use the training and validation splits and exclude
the test split due to the absence of ground truth labels. By selecting only correct solutions from these
splits, we obtain more than 17,000 goal-solution pairs. Our pipeline then proceeds through three
stages: (1) Initial filtering; (2) Video prompt generation; and (3) Prompt upsampling.

Stage 1: PIQA Dataset and Initial Filtering. We use Gemini 2.5 Pro model to select only those
PIQA scenarios that involve secondary or repurposed tool use, those that inherently require physical-
commonsense reasoning. This filtering yields a compact set of complex, interaction-centric tasks
ideal for text-to-video evaluation. Below is an example prompt illustrating the instructions provided
to Gemini 2.5 Pro in this stage.

Video Generation Pipeline - Stage 1: PIQA Dataset and Initial Filtering

I will provide a series of examples from the PIQA dataset where common household objects or
tools are used either in their primary/intended way or in repurposed/alternative ways (i.e., “life
hacks”). Your task is to determine whether a given PIQA goal–solution pair reflects the primary
usage of an object or not.

Definition: If the object is being used in its intended, standard, or conventional way, respond
with: No
If the object is being used in an alternative or repurposed way (i.e., not its typical function),
respond with: Yes

You are given a list of goal–action pairs (e.g., “Water Bottle → Egg Separator”, “Credit Card
→ Ice Scraper”) which illustrate how PIQA questions often involve creative or secondary uses
of common items. These examples represent secondary usage. This list can guide your
understanding of what constitutes repurposing. You will now be given a PIQA goal and two
solutions. Based on your understanding of object affordances and typical usage. Determine only
whether the goal/solution pair represents a secondary use of an object. Write only the answer,
Yes or No. Do not explain or describe the reasoning.

Here are examples from the PIQA dataset where common objects or tools are used for a
purpose other than their primary, intended function (i.e., alternative uses or "life hacks"):

Water Bottle → Egg Separator:
Goal: To separate egg whites from the yolk using a water bottle...
Action: Squeeze the water bottle and press it against the yolk. Release, which creates suction
and lifts the yolk.

Hair Net → Vacuum Filter:
Goal: How do I find something I lost on the carpet?
Action: Put a hair net on the end of your vacuum and turn it on. (To catch small items before
they go into the vacuum bag).

These examples demonstrate the kind of creative repurposing and understanding of object
affordances beyond their primary function that the PIQA dataset aims to capture.
Write only the answer for each goal with comma seperator: Yes or No. Do not explain or describe
the reasoning.

Give the answer for this Goal Solution pair:
Goal: How can I paint stars on a black background?
Solution: Use an old toothbrush covered in white paint and flick at the background.
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Stage 2 - Video Prompt Generation. We use the Gemini 2.5 Pro model to transform each filtered
goal–solution pair into a concise, visually explicit video generation prompt. This process produces
383 distinct base prompts, each outlining a self-contained scenario with clear, physically grounded
actions. Below is an example prompt illustrating the instructions provided to Gemini 2.5 Pro in this
stage.

Video Generation Pipeline - Stage 2: Video Prompt Generation

You are given question–answer pairs from the PIQA dataset. Each pair consists of a physical
goal (what someone wants to achieve) and a solution (how to achieve it). Your task is to write a
realistic and physically plausible video generation prompt that visually demonstrates the
provided solution.

Important Instructions:

• Only generate a short, visualizable video prompt that clearly shows the solution being carried
out.

• The prompt should describe a realistic short video clip (under 10 seconds).

• You do not have to begin each prompt with “A person”. Be natural — use whatever fits best
(e.g., “A dog. . . ”, “Hands. . . ”, “Someone. . . ”, “Two people. . . ”, “The object. . . ”).

• If the solution is not visualizable or does not reflect meaningful physical interaction or common-
sense action, skip it (do not generate a prompt).

• Be specific and physically grounded — actions should be directly observable (e.g., cutting,
pouring, lifting, placing).

• Do not repeat the goal or the original solution text.

Example Conversions:

Goal: You want to dry your wet hands.
Solution: Use a towel
Video Prompt for Solution: Wet hands are rubbed against a cotton towel.

Goal: You want to keep a door open.
Solution: Use a doorstop
Video Prompt for Solution: A door is held open by sliding a rubber doorstop underneath.

Goal: You want to get rid of wrinkles in a shirt.
Solution: Use an iron
Video Prompt for Solution: An iron glides over a wrinkled shirt on an ironing board, flattening it.

Now, for each of the following goal–solution pairs from the PIQA dataset, return a single line in
the format below only if it qualifies:

PIQA Input:
Goal: How can I paint stars on a black background?
Solution: Use an old toothbrush covered in white paint and flick at the background.
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Stage 3 - Prompt Upsampling. We use the Gemini 2.5 Pro model to enrich each base prompt
with fine-grained physical details such as explicit force application, material behaviors, and spatial
constraints, while preserving the original scene scope. This controlled upsampling yields 383
upsampled prompts that surface deeper commonsense cues without introducing new objects or
outcomes. Below is an example prompt illustrating the instructions provided to Gemini 2.5 Pro in
this stage.

Video Generation Pipeline - Stage 3: Prompt Upsampling

You are a reasoning-augmented AI model tasked with upsampling video generation prompts
using knowledge of physical commonsense and object affordances, while strictly preserving
the original scene boundaries. Given a simple prompt, you must rewrite it into a richer, more
physically grounded version by:

• Elaborating on object properties (e.g., material, size, rigidity, weight) that affect how actions
are performed

• Clarifying affordances (e.g., what can be held, moved, poured, tied) based on those properties

• Expanding the action description in a physically realistic, causally plausible sequence

• Including any relevant environmental or contextual conditions (e.g., gravity, surface type)

• Do not introduce any new objects or tools not mentioned in the original prompt

• Do not describe outcomes or events that happen after the main action (no result, consequence,
or future speculation)

• Your goal is to make the prompt maximally useful for video generation models that rely on
physical reasoning, without hallucinating or extending beyond the original scope.

Example Input:
"A person places coffee filters inside the cup holders of a car."

Upsampled Output:
"A person carefully pushes white paper coffee filters, each lightweight and slightly crinkled, into
the round plastic cup holders on the car’s center console. The filters conform to the shape of the
holders due to their flexible, foldable structure. The car interior is clean and the cup holders are
empty, allowing the filters to settle flush against the bottom surface."

Only return the upsampled prompt as output. Do not explain your reasoning or include anything
else in your answer.

Prompt: A person dips an old toothbrush in white paint and flicks it onto a black background,
creating stars.

Altogether, PhysVidBench comprises 766 unique prompts (383 base + 383 upsampled), enabling a
comprehensive evaluation of physical commonsense reasoning in text-to-video models. Representa-
tive examples illustrating the outcome of each stage of our pipeline are shown below.

Example-1

Stage 1: PIQA Dataset and Initial Filtering
Goal: How can I paint stars on a black background?
Solution: Use an old toothbrush covered in white paint and flick at the background.

Stage 2: Video Prompt Generation
A person dips an old toothbrush in white paint and flicks it onto a black background, creating stars.

Stage 3: Prompt Upsampling
A person firmly grips the handle of an old, worn toothbrush, its plastic slightly yellowed with age.
They dip the frayed bristles into a can of thick, white paint. The paint clings to the bristles due
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to its viscosity. With a controlled wrist motion, they flick the paint-laden toothbrush towards a
large, matte black canvas backdrop. Tiny droplets of white paint detach from the bristles and
spray outwards, propelled by the force of the flick. The droplets travel through the air, influenced
by gravity, before adhering to the vertical surface of the canvas.

Example-2

Stage 1: PIQA Dataset and Initial Filtering
Goal: When I am driving an older car with no cupholders where can I place my beverage?
Solution: Use an old shoe, place the drink container in the place where your foot enters the shoe
and it will help stabilize it.

Stage 2: Video Prompt Generation
A drink can is placed upright into the opening of a shoe resting on the floor of a car’s passenger
side.

Stage 3: Prompt Upsampling
A cylindrical aluminum drink can, rigid due to its metal construction and filled with liquid giving it
noticeable weight, is carefully maneuvered vertically downwards. It is inserted, base-first, into
the flexible fabric opening of a casual shoe which is resting flat on its firm sole upon the textured
floor surface of the car’s passenger side. The can maintains its upright orientation under gravity
as its smooth, flat circular base makes stable contact with the interior insole surface deep within
the shoe’s cavity.

Example-3

Stage 1: PIQA Dataset and Initial Filtering
Goal: How do I find something I lost on the carpet?
Solution: Put a hair net on the end of your vacuum and turn it on.

Stage 2: Video Prompt Generation
A person attaches a hair net to the end of a vacuum cleaner and uses it to search for a small
object on a carpet.

Stage 3: Prompt Upsampling
A person stretches the elastic rim of a fine, white nylon hair net, expanding its opening, and
carefully fits it over the circular nozzle of a dark gray plastic vacuum cleaner hose. The net
conforms to the hose’s shape, held in place by its own tension. The vacuum cleaner is then used
to gently hover over a low-pile carpet, its fibers slightly compressed by the vacuum’s suction. The
person guides the nozzle in slow, overlapping passes, the hair net acting as a barrier to prevent
small objects from being sucked into the machine.

C.2 PHYSICAL COMMONSENSE DIMENSIONS AND SAMPLE PROMPTS

Below we present each of the seven physical commonsense dimensions defined in our benchmark,
accompanied by representative base and upsampled prompts from PhysVidBench. While the prompts
shown under each category were selected because they most strongly emphasize the associated
reasoning dimension, it is important to note that prompts in PhysVidBench are not confined to a
single category. In practice, most scenarios engage multiple forms of physical reasoning at the same
time. For example, a prompt may involve both force application and spatial configuration, or material
properties combined with temporal sequencing. This multi-dimensional grounding reflects the
complex and realistic nature of physical tasks, and it distinguishes PhysVidBench from benchmarks
that test physical concepts in isolation.
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Fundamental Physics: The study of inherent object attributes, including material composition,
rigidity, softness, and functional affordances like containment or support

Base Prompt: A flashlight lying on a dark floor illuminates tiny shards of broken glass by casting
long shadows from them.
Upsampled Prompt: A cylindrical metal flashlight rests horizontally on a dark, flat floor, its
switch in the ’on’ position. A focused beam of bright light emits from its lens, traveling parallel
and close to the floor surface. This low-angle light strikes multiple tiny, sharp-edged, transparent
shards of broken glass scattered across the floor. Because the light source is nearly level with
the floor, even the small vertical profile of each glass shard is sufficient to block the light path,
causing disproportionately long, thin shadows to stretch out behind each shard, starkly visible
against the surrounding darkness of the floor.

Base Prompt: A hand pours a small amount of white flour into a larger bowl of water and begins
stirring with a spoon.
Upsampled Prompt: A human hand directs a small stream of fine, white, lightweight flour
powder downwards due to gravity, letting it fall onto the surface of still water held within a larger,
rigid bowl resting on a flat surface. The flour particles make contact with the liquid. The hand
then grips the rigid handle of a spoon, submerges the spoon’s end into the water where the flour
landed, and initiates a stirring motion, moving the spoon through the water and the suspended
flour particles.

Base Prompt: A plastic bag containing meat sits on an upside-down aluminum pot, with another
pot filled with water placed directly on top of the bagged meat.
Upsampled Prompt: A flexible, translucent plastic bag, visibly holding a weighty piece of raw
meat which causes the thin material to bulge slightly, is positioned on the flat, circular, upturned
bottom of a lightweight yet rigid aluminum cooking pot resting stably upside-down on its rim.
Placed directly centered on top of this bagged meat rests another rigid cooking pot, its flat
bottom making full contact; this second pot contains a significant volume of water, adding
substantial downward weight due to gravity. The pliable plastic bag is compressed between the
base of the top, water-filled pot and the upturned base of the bottom pot, conforming slightly to
the shapes above and below it while transferring the load.

Object Properties & Affordances: The study of inherent object attributes, including material
composition, rigidity, softness, and functional affordances like containment or support

Base Prompt: A stainless steel bucket is placed upside down over a small ant crawling on the
ground.
Upsampled Prompt: Human hands carefully grasp several thin, lightweight, and brittle potato
chips, noting their fragile structure. The hands move towards the inside of a metal barbecue grill
where a pile of dark grey, blocky charcoal briquettes rests. The briquettes have a rough, porous
texture and form an uneven surface. The hands gently lower and release the delicate potato
chips directly onto the top surfaces of the stacked briquettes, allowing gravity to settle the light
chips precariously onto the coarse, irregular shapes without applying significant pressure that
would cause them to crumble.

Base Prompt: A hand rubs a piece of bread back and forth over pencil writing on paper.
Upsampled Prompt: A human hand grips a piece of soft, somewhat pliable white bread, likely
without crusts, between its fingers. Positioned over a sheet of standard writing paper lying flat
on a hard surface, the hand methodically rubs the bread’s yielding, slightly textured underside
back and forth. This motion occurs directly over an area marked with fine, gray pencil writing,
causing the bread’s surface to make repeated contact with the graphite lines on the paper under
consistent, light pressure.

Base Prompt: Hands fold one short end of a credit card up and the other short end down, then
place a smartphone onto the upward fold.
Upsampled Prompt: A pair of hands holds a standard-sized, thin, rectangular plastic credit
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card. Applying pressure with fingers, the hands bend one short edge of the rigid-yet-flexible card
sharply upwards along its width, creating a defined crease. Then, the hands bend the opposite
short edge sharply downwards along its width, forming a second parallel crease, configuring
the card into a small S-shaped structure. Next, the hands carefully lift a smooth, relatively
heavy, rigid rectangular smartphone. Aligning the bottom edge of the phone with the small,
upward-facing plastic ledge created by the first fold on the credit card, the hands gently lower the
weight of the smartphone onto this narrow support.

Spatial Reasoning: The ability to interpret and infer spatial relations, including position,
geometry, occlusion, orientation, and fit between objects in a scene

Base Prompt: The tip of a spoon presses a square outline into a slice of bread, then the back of
the spoon pushes down the center.
Upsampled Prompt: The hard, pointed metal tip of a rigid spoon presses sequentially into the
soft, porous surface of a slice of bread, tracing a square outline by creating shallow indentations.
The bread yields slightly under the focused pressure of the tip. Subsequently, the smooth, curved
underside (back) of the spoon’s bowl is centered within the traced square. Applying downward
force, the broader surface of the spoon back pushes into the bread, compressing the central
area significantly more deeply than the initial outline, creating a distinct depression within the
square boundary on the yielding bread slice.

Base Prompt: Crushed egg shells and water are shaken vigorously inside a clear bottle.
Upsampled Prompt: Inside a clear, rigid bottle containing clear liquid water, numerous small,
lightweight, brittle fragments of crushed egg shells are forcefully agitated. The bottle undergoes
vigorous, rapid shaking motions, causing the water to slosh violently and carry the sharp-edged
shell fragments in turbulent, swirling patterns within the confined space. The mixture of water
and shell fragments repeatedly impacts the inner surfaces of the bottle due to the applied force.

Base Prompt: A hand pushes a plastic drinking straw upwards through the bottom of a
strawberry, popping the green stem out the top.
Upsampled Prompt: A human hand firmly grips the lower end of a thin, cylindrical, rigid plastic
drinking straw. The straw’s end is pressed against the pointed bottom tip of a ripe, red strawberry,
which is soft enough to be pierced but firm enough to maintain its shape. The hand applies a
continuous, steady upward force along the axis of the straw. Due to its rigidity and the applied
pressure, the straw penetrates the yielding flesh of the strawberry, moving vertically upwards
through its center. As the leading end of the straw travels inside the fruit towards the wider top
where the green, leafy stem is attached, it pushes against the stem’s base from below. This
focused upward force exerted by the straw dislodges the relatively light stem structure, causing it
to pop out from the top surface of the strawberry.

Temporal Dynamics: The domain addressing timing, sequencing, and the causal structure
of events over time, such as ordering, delays, and waiting

Base Prompt: A plastic bucket is placed upside down on someone’s head like a hat.
Upsampled Prompt: A lightweight, rigid plastic bucket, oriented upside down so its solid bottom
faces upwards, is carefully lowered onto a person’s head. The open circular rim of the bucket
makes contact and rests stably upon the crown of the head, balanced there by gravity. The
bucket’s inherent rigidity allows it to maintain its shape, covering the top of the head like a large,
hollow hat.

Base Prompt: A child places their hand on a large circle sticker affixed to the side of a car in a
parking lot.
Upsampled Prompt: A small child extends their arm and carefully places their soft, open hand
flat onto the smooth surface of a large, circular sticker. The thin, flexible sticker is firmly adhered
by its backing to the hard, vertical metal side panel of a stationary car. The car is situated on the
level asphalt ground of an outdoor parking lot. The child’s palm and fingers press lightly against
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the sticker’s surface, conforming slightly to the car’s panel curvature beneath it.

Base Prompt: A hand squeezes toothpaste onto a cloth and rubs it in circles over a hazy car
headlight, leaving a thin white coating.
Upsampled Prompt: A human hand squeezes a dollop of viscous, opaque white toothpaste
directly onto a section of a soft, flexible fabric cloth. The paste adheres to the cloth’s surface.
The hand then presses this part of the cloth firmly against the hard, smooth, but visibly hazy
surface of a car’s plastic headlight cover. Maintaining steady pressure, the hand rubs the cloth in
continuous circular motions over the hazy area. The pliable cloth conforms to the headlight’s
curvature, spreading the toothpaste evenly as it’s rubbed, leaving behind a thin, uniform white
coating on the headlight surface.

Action & Procedural Understanding: The comprehension of structured, goal-driven se-
quences of actions involving procedural steps toward task completion

Base Prompt: Hands press a piece of clay over the joined edges of pieces on top of a bowl.
Upsampled Prompt: Human hands hold a separate lump of soft, malleable, slightly damp
clay. The hands carefully position this clay lump directly over the visible seam where the
edges of several harder, pre-joined clay pieces meet. These pieces rest securely on the
upward-facing surface of a rigid ceramic bowl. Fingers then apply firm, steady downward
pressure onto the soft clay lump, causing it to flatten and spread smoothly across the underly-
ing seam, adhering to the surfaces of the joined pieces due to its pliable and slightly sticky nature.

Base Prompt: A cloth damp with olive oil is wiped over a metal key. The key is then inserted
smoothly into a keyhole.
Upsampled Prompt: A soft, absorbent cloth, damp and glistening slightly with viscous olive oil,
is wiped firmly across the surfaces of a rigid, metallic key. The pliable cloth presses into the key’s
teeth and grooves, coating the hard metal with a thin, lubricating film of oil. Immediately after, the
oil-coated metal key is precisely aligned with the opening of a metal keyhole and inserted with a
steady, linear motion, sliding effortlessly into the lock mechanism due to the oil reducing friction
between the contacting metal surfaces.

Base Prompt: Hands carefully pour a green liquid over the back of a spoon into a shot glass
containing a brown liquid, forming a distinct layer. Then, a cream liquid is poured similarly on top.
Upsampled Prompt: Hands carefully position a rigid metal spoon, its convex back facing
upwards, just above the surface of a dark brown, relatively dense liquid resting at the bottom of
a small, clear glass shot glass. With precise control, a vibrant green liquid, less dense than
the brown liquid, is steadily poured onto the spoon’s curved back. The spoon’s smooth surface
guides the green liquid’s flow, allowing it to gently cascade onto the brown liquid’s surface,
minimizing turbulence and forming a distinct, level layer without significant mixing. Following this,
the hands adjust the spoon’s position slightly upwards, holding it just over the newly formed
green layer. Then, an opaque, cream-colored liquid, possessing an even lower density than the
green liquid, is poured using the same technique over the back of the spoon, flowing down gently
to create a third, clearly separated layer resting atop the green one within the confines of the
shot glass’s rigid walls.

Material Interaction & Transformation: The study of how materials respond to external
forces or processes, including transformations like melting, freezing, breaking, or chemical
change

Base Prompt: Hands hold a smartphone inside a clear ziploc bag, tapping the screen while
raindrops fall on the bag.
Upsampled Prompt: Human hands firmly grip the sides of a clear, flexible plastic ziploc bag,
holding it steady. Inside the sealed bag rests a rigid, rectangular smartphone with its glass
screen visible. A finger repeatedly taps onto the thin, pliable plastic surface directly overlying the
phone’s touch-sensitive screen, the pressure transmitting through the material. Simultaneously,
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small water droplets, falling under gravity, land and bead up on the exterior surface of the
waterproof bag.

Base Prompt: Water flows from a sink faucet into the scoop of a dustpan, travels down its
hollow handle, and pours into a bucket sitting beside the sink.
Upsampled Prompt: Clear water flows downwards in a steady stream from the metal nozzle
of a sink faucet, driven by gravity. The stream lands directly onto the rigid, concave surface of
a plastic dustpan’s scoop, which is positioned underneath the faucet. Due to the angle of the
dustpan, the accumulating water is channeled towards the opening at the base of the scoop
leading into its hollow handle. The water then travels downwards through the enclosed tubular
space within the handle. The open end of the handle is positioned directly over the wide opening
of a sturdy plastic bucket resting stationary on the floor beside the sink, allowing the water exiting
the handle to fall vertically into the bucket.

Base Prompt: A golf ball is placed on a countertop; it rolls slightly, then the counter is subtly
adjusted, and the ball comes to a stop.
Upsampled Prompt: A small, dense, hard golf ball with a characteristic dimpled texture is gently
placed onto a large, flat, smooth countertop surface. Because of its perfectly spherical shape
and the countertop potentially being minutely uneven, the heavy ball starts to roll slowly across
the rigid surface. Subsequently, the countertop experiences a subtle, barely perceptible shift in
its orientation, adjusting its levelness. This slight change counteracts the initial impetus for rolling,
altering the gravitational pull along the surface, and the ball, influenced by friction and the new
level plane, decelerates smoothly until it comes to a complete standstill upon the countertop.

Force and Motion: The domain focused on physical interactions governed by forces, includ-
ing motion, pushing, pulling, lifting, and properties like inertia

Base Prompt: A strong magnet is slowly moved across a drywall surface, suddenly snapping
and sticking to the wall over a stud location.
Upsampled Prompt: A dense, rigid metallic magnet, possessing a strong magnetic field, is
held close to a vertical, painted drywall surface. It is guided slowly and steadily in a continuous
motion across the slightly textured face of the wall. As the path of the strong magnet crosses
over the position of a hidden ferromagnetic metal stud located just behind the thin drywall layer,
the attractive magnetic force increases sharply and suddenly. This abruptly intensified pull
overcomes the controlled movement, causing the heavy magnet to accelerate rapidly towards
the wall, making firm contact and sticking securely against the drywall surface directly above the
unseen stud’s location due to the powerful magnetic attraction.

Base Prompt: Soft tortillas are draped and wedged between the bumps of an upside-down
muffin pan that has been sprayed with oil.
Upsampled Prompt: Soft, pliable, circular tortillas, thin and flexible due to their material
properties, are draped over the rigid structure formed by an upside-down metal muffin pan.
Gravity pulls the lightweight tortillas downwards. They are then carefully pressed and wedged
into the concave spaces between the protruding, rounded bumps of the pan. The tortillas bend
and conform to the curved shape of these spaces. The pan’s surface, both bumps and crevices,
is coated in a visible layer of slick cooking oil, facilitating the placement and slight sliding of the
tortillas as they are settled into position.

Base Prompt: A hand places a colorful silicone cupcake liner into the empty cup holder of a
car’s center console.
Upsampled Prompt: A hand gently pinches a colorful, flexible silicone cupcake liner between
thumb and forefinger. The liner, lightweight and pliable with distinct fluted sides, is carefully
lowered vertically into an empty, cylindrical cup holder recessed into the car’s rigid plastic center
console. The liner slides smoothly against the inner wall and comes to rest flat against the
bottom surface of the holder, its flexible structure allowing it to fit snugly within the defined space.
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C.3 EVALUATION DETAILS

To evaluate physical commonsense on PhysVidBench, we employ a three-stage pipeline: (1) generate
targeted yes/no questions from each upsampled prompt, (2) produce multi-perspective dense captions
for the corresponding video, and (3) use an LLM to answer those questions based solely on the
captions.

Stage 1: Physics-Grounded Question Generation. For each upsampled prompt, we prompt Gemini
2.5 Pro to craft precise yes/no questions that probe our seven physical-commonsense dimensions
(e.g., “Did the person apply sufficient force to separate the objects?”). Every question is guaranteed to
have a “Yes” answer and is answerable by inspecting the prompt alone. We fix and store this question
set for downstream evaluation of each model’s video output. Below is an example prompt used in
this stage.

Sample Prompt for Evaluation - Stage 1: Physics-Grounded Question Generation

Generate as many diverse, concrete yes/no questions as possible based only on the provided
prompt. Each question must:
• Be specific and answerable solely from the prompt (no outside assumptions)

• Focus on physical or procedural understanding, not abstract or emotional reasoning

• Be non-redundant — do not repeat similar ideas or reword the same question

• Cover a wide range of physical reasoning categories

• Include a balanced mix of Yes and No answers

• If a question relates to multiple reasoning categories, include all applicable types

Physical Reasoning Categories: (Choose these types, write only the category like Fundamental
Physics, Object Properties etc. )
• Fundamental Physics: energy, causality, equilibrium, state change

• Object Properties & Affordances: material type, rigidity, softness, containment

• Spatial Reasoning: fit, position, occlusion, geometry, orientation

• Temporal Dynamics: ordering, timing, waiting, delays

• Action & Procedural Understanding: goal-directed behavior, methodical steps

• Material Interaction & Transformation: melting, freezing, breaking, chemical change

• Force and Motion: pushing, pulling, lifting, inertia

Output Format:
• Questions and Answers:

• Q: <yes/no question>?

• A: Yes / No

• Type: <Reasoning Category 1, Reasoning Category 2, ...>

You must return:
• A rich, diverse set of yes/no questions

• Each with a correct answer

• Each labeled with all relevant reasoning categories, separated by commas

Start with the following prompt:
Prompt: Person firmly grips the handle of an old, worn toothbrush, its plastic slightly yellowed
with age. They dip the frayed bristles into a can of thick, white paint. The paint clings to the
bristles due to its viscosity. With a controlled wrist motion, they flick the paint-laden toothbrush
towards a large, matte black canvas backdrop. Tiny droplets of white paint detach from the
bristles and spray outwards, propelled by the force of the flick. The droplets travel through the air,
influenced by gravity, before adhering to the vertical surface of the canvas.
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Stage 2: Dense Video Captioning. For each generated video, we use the AuroraCap model (Chai
et al., 2025) to generate eight distinct captions: one general-purpose caption and seven dimension-
specific captions (one per commonsense dimension). For instance, to highlight spatial relationships,
we use the prompt “Describe the spatial layout and object positions. . . ”; to surface force interactions
we use “Describe how forces are applied and resisted. . . .” Constraining each caption to direct
observations with a specific prompt at the end prevents hallucination and ensures complementary,
multi-perspective descriptions. Below is the full template we provide to AuroraCap in this stage.

Prompt for Evaluation - Stage 2: Dense Video Captioning

• Describe the video in detail.

• Describe the physical principles at work in the video, such as energy transfer, causal relation-
ships, balance or imbalance, and any visible changes in physical state and etc. (e.g., solid to
liquid).

• Describe the main objects in the video focusing on their material properties (e.g., rigid, soft,
metallic), and what actions they allow or prevent and etc. (e.g., can be squeezed, can contain
something).

• Describe the spatial layout and relationships in the video: object positions, orientations, fit
between shapes, occlusions, and how geometry affects interactions and etc..

• Describe the sequence and timing of events in the video, including any delays, waiting periods,
or causal orderings between actions or state changes and etc..

• Describe the actions performed in the video, focusing on the goals of the agent, the order of
steps taken, and whether the actions appear intentional or methodical and etc..

• Describe how materials change or interact in the video: melting, freezing, breaking, mixing, or
undergoing chemical or physical transformations and etc..

• Describe how forces are applied in the video (e.g., pushing, pulling, lifting), how objects
respond (e.g., acceleration, resistance), and any indications of inertia or physical resistance
and etc..

Only describe what can be directly observed in the video. Do not make assumptions or include
external knowledge that is not visually confirmed.

Stage 3: LLM as a Judge. We assemble a single text prompt that includes: (a) all yes/no questions
generated in Stage 1, and (b) the eight dense captions produced in Stage 2. We pass this prompt to
Gemini-2.5-Flash-Preview-04-17 (Google DeepMind, 2025b), instructing it to respond only with
“Yes” or “No” for each question based solely on the provided captions. Below, we present the
exact Stage 3 prompt used to evaluate the sample video generated by the Wan2.1 (14B) model from
the Stage 1 prompt. This prompt combines the eight dense captions produced in Stage 2 with the
corresponding physical-commonsense questions from Stage 1, illustrating how the LLM integrates
multi-perspective textual evidence and targeted queries during evaluation.

Example Prompt for Evaluation - Stage 3: LLM as a Judge

You are given 8 captions describing different aspects of the same video. Answer “Yes” ONLY if at
least one caption supports it, otherwise answer “No”.

Caption 1: The video captures a moment where a person is using a toothbrush to apply a
white substance, likely toothpaste, onto a dark surface. The toothbrush is held in a way that
suggests the person is in the process of brushing, with the bristles making contact with the
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surface. The substance is being applied in a way that creates a textured effect, with some areas
appearing more saturated than others. The background is a solid, dark color, providing a stark
contrast to the bright white of the toothpaste. The lighting is even, allowing for clear visibility of
the toothbrush and the substance being applied. The focus is on the action of brushing, with the
background remaining unchanged, emphasizing the simplicity of the scene.

Caption 2: The video captures a moment where a toothbrush is being used to apply a white
substance, likely toothpaste, onto a dark surface. The energy transfer is evident as the bristles
of the toothbrush create a splatter effect, with the white toothpaste dispersing in a way that
suggests a mix of solid and liquid components. The balance of the scene is slightly tilted, with
the toothbrush being the focal point, while the dark surface provides a contrast that highlights the
action. The physical state of the toothbrush and toothpaste is clearly observable; the toothbrush
is in motion, and the toothpaste is in a semi-liquid state, transitioning from a solid to a liquid form
as it spreads.

Caption 3: The main objects in the video are a toothbrush and a paintbrush. The toothbrush,
with its soft bristles, is designed for cleaning teeth, allowing it to gently scrub surfaces. The
paintbrush, with its metallic handle, is used for applying paint, preventing the paint from dripping
and allowing for controlled application. The actions they allow are brushing and painting,
respectively, while the toothbrush’s soft bristles prevent abrasion and the paintbrush’s handle
allows for a firm grip.

Caption 4: The video captures a moment where a hand is applying a white substance, likely
paint, to a dark surface using a toothbrush. The toothbrush is positioned diagonally across the
frame, with the bristles facing the camera. The paint is being applied in a way that creates a
textured effect, with some areas showing a smooth application and others showing a more
uneven, brush-like texture. The hand is in the process of painting, with the fingers gripping the
toothbrush and the thumb supporting it. The background is a solid, dark color, providing a stark
contrast to the white paint, which enhances the visibility of the brush strokes. The overall layout
is simple, focusing on the action of painting without any distractions.

Caption 5: The video captures a moment where a person is applying a white substance, likely
paint, to a dark surface using a toothbrush. The action is deliberate and focused, with the bristles
of the toothbrush making contact with the surface, creating a small, white splatter. The hand
holding the toothbrush is steady, with fingers gripping the handle firmly. The background is a
solid, dark color, providing a stark contrast to the white paint, which enhances the visibility of
the splatter. The lighting is bright, casting a soft shadow of the toothbrush on the surface. The
overall scene is static, with no movement or change in the environment, allowing the viewer to
concentrate on the application process.

Caption 6: The video captures a moment where a person is applying a white substance, likely
paint, to a dark surface using a toothbrush. The actions are deliberate and show a methodical
approach, with the substance being carefully squeezed from a tube and then applied in a
controlled manner. The agent’s hand is steady, with fingers positioned to hold the tube and
the toothbrush, indicating a focus on precision. The substance is being applied in a way that
suggests a deliberate effort to create a specific effect, possibly for artistic or decorative purposes.
The overall scene is calm and focused, with the agent’s hand being the main point of interest.

Caption 7: The video captures a moment where a toothbrush is being used to apply a white
substance, likely a cleaning agent, to a dark surface. The substance appears to be in a liquid
state, as evidenced by the way it drips and pools on the surface. The toothbrush is held in a way
that suggests it is being used to spread the substance, with the bristles making contact with the
surface. The fingers of the hand holding the toothbrush are visible, with one finger slightly raised,
indicating the action of applying pressure. The background is a solid, dark color, providing a
stark contrast to the white substance, which emphasizes the cleaning process.
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Caption 8: The video captures a moment where a toothbrush is being used to apply a white
substance, likely toothpaste, to a dark surface. The bristles of the toothbrush are in contact with
the surface, and the substance is being squeezed out, creating a small puddle. The hand holding
the toothbrush is steady, with fingers gripping the handle, indicating a controlled application. The
surface appears smooth, with no visible resistance, allowing the substance to spread easily. The
lighting is bright, casting a soft shadow of the toothbrush on the surface, enhancing the visibility
of the application process.

Q1: Is the toothbrush handle described as plastic?
Q2: Did the paint cling to the bristles?
Q3: Was the paint stored in a can?
Q4: Was the canvas described as black?
Q5: Was the canvas backdrop described as vertical?
Q6: Did the person perform a flicking motion with the toothbrush?
Q7: Did droplets of paint detach from the bristles?
Q8: Was the detachment of paint caused by the force of the flick?
Q9: Did the paint droplets travel through the air?
Q10: Was gravity mentioned as influencing the droplets’ travel?
Q11: Did the paint droplets adhere to the canvas surface?
Q12: Was the person’s wrist motion described as controlled?
Q13: Did the person dip the bristles into the paint?
Q14: Was the paint described as thick?
Q15: Did the flicking motion require energy input from the person?

Respond only as:
Q1: Yes
Q2: No
...
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D A TAXONOMY OF PHYSICALLY GROUNDED FAILURE MODES

To provide a more fine-grained analysis of why certain prompts are challenging for current T2V
models, we constructed a structured annotation framework that captures deeper physical reasoning re-
quirements beyond surface interaction types. Each prompt is characterized along three complementary
axes:

Action Complexity (AC).

• AC-1 (Direct): A single, simple action.
• AC-2 (Goal-Oriented): A preparatory or two-step action aimed at achieving a specific

result.
• AC-3 (Procedural): A multi-step, complex procedure where correct sequencing is essential.

Scientific Principle (SP).

• SP-1 (Basic): Straightforward mechanics with no salient principle.
• SP-2 (Applied): Application of a common, understandable physical principle (e.g., friction,

leverage).
• SP-3 (Complex/Hidden): Relies on less obvious or complex, multi-stage principles (e.g.,

negative pressure, magnetism).

Object Functionality (OF).

• OF-1 (Intended Use): Object used for its designed purpose.
• OF-2 (Repurposed): Object employed as an improvised tool.
• OF-3 (System Component): Object functioning within a broader physical system.

Illustrative Examples.

• Example 1 (AC-1, SP-1, OF-1):
“Hands pour a handful of mixed coins into the opening of an empty, clear plastic milk jug.”
→ Direct transfer using object as intended; straightforward use of objects.

• Example 2 (AC-1, SP-1, OF-2):
“A plastic bucket is placed upside down on someone’s head like a hat.”
→ Simple physical manipulation but repurposed functionality.

• Example 3 (AC-1, SP-2, OF-3):
“A lit flashlight inside a translucent plastic bag makes the bag glow like a lantern.”
→ Requires reasoning about light diffusion and emergent system behavior.

• Example 4 (AC-2, SP-3, OF-1):
“A person melts a toy soldier with a magnifying glass focusing sunlight.”
→ Goal-driven use of a non-obvious scientific principle (solar heat focus).

• Example 5 (AC-3, SP-1, OF-1):
“Hands pour colorful powder into a small cup, press it down firmly, then invert the cup and
tap it, releasing a shaped bath bomb onto a surface.”
→ Multi-step procedural action with material handling.

• Example 6 (AC-3, SP-3, OF-3):
“Hands squeeze an empty plastic water bottle, place the opening over an egg yolk, and
release the squeeze, sucking the yolk into the bottle.”
→ Complex, multi-step use of pressure dynamics and system-level interaction.

To apply this taxonomy at scale, we used Gemini 2.5 Pro to classify every prompt in our Medium,
Hard, and Very Hard subsets. The resulting averages reported in Table 7 show a monotonic increase
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Table 7: Average taxonomy scores across difficulty tiers. Higher difficulty subsets consistently
show increased action complexity, more advanced scientific principles, and more complex object
functionality. This confirms that PhysVidBench difficulty tiers reflect systematically deeper physical-
reasoning demands rather than random noise.

Difficulty Subset AC SP OF Overall Score
Medium Prompts 1.48 1.65 1.62 4.75
Hard Prompts 1.69 1.77 1.90 5.36
Very Hard Prompts 2.06 1.94 2.10 6.10

in complexity along all three axes, confirming that higher-tier prompts demand more elaborate
procedures, deeper physical principles, and more complex object functionality.

This structured analysis provides fine-grained diagnostic clarity: models often succeed on simple
interactions (AC-1, SP-1, OF-1) but fail when tasks require multi-step procedures, non-obvious
physical principles, or functional recontextualization. This taxonomy thus enhances PhysVidBench’s
value as a diagnostic tool—revealing not only how well models perform, but why they fail.
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E AN END-TO-END EXAMPLE EVALUATION

Prompt Generation

Stage 1. Input: Human Commonsense Goal + Solutions (PIQA)
Goal: Bag
Solution: can be used as a lantern with a flashlight indoors.

Stage 2. Base Prompt:
A lit flashlight inside a translucent plastic bag makes the bag glow like a lantern.

Stage 3. Upsmapled Prompt:
A cylindrical flashlight, currently switched on and emitting a focused beam of bright light,
is positioned entirely inside a thin, flexible, translucent plastic bag. The lightweight plastic
material loosely conforms around the flashlight. Light rays emanating from the flashlight’s bulb
strike the inner walls of the bag; due to the plastic’s translucent property, the light scatters and
diffuses as it passes through, causing the entire volume of the bag to glow softly from within,
resembling a makeshift lantern in a dimly lit space.

Evaluation

Stage 1. Physics-Grounded Question Generation:
We generate questions that cover seven key physical commonsense dimensions defined in our
ontology:
AU: Action & Procedural Understanding, FM: Force and Motion, FP: Fundamental Physics,
MT: Material Interaction & Transformation, OP: Object Properties & Affordances, SR: Spatial
Reasoning, TD: Temporal Dynamics.

# Question Dimension(s)

Q1 Is the flashlight emitting light energy? FP
Q2 Is the bag made of plastic? OP
Q3 Is the flashlight entirely inside the bag? SR, OP
Q4 Is the bag described as flexible? OP
Q5 Does the light scatter as it passes through the plastic? MT, FP
Q6 Does the flashlight being on cause the bag to glow? FP
Q7 Is the flashlight described as cylindrical? SR, OP
Q8 Does the bag glow softly? FP
Q9 Is the bag described as lightweight? OP
Q10 Does the setup resemble a makeshift lantern? AU
Q11 Is the light emitted by the flashlight described as a focused

beam initially?
FP, OP

Q12 Does the entire volume of the bag glow? SR, FP
Q13 Does the bag diffuse the light passing through it? MT, FP

Stage 2. Dense Video Captioning:
The generated video is captioned along eight physical commonsense dimensions:

General:
The video features a close-up view of a bright light source, which appears to be a flashlight
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or a similar handheld light. The light is emitting a strong, white beam that illuminates the
surrounding area with a soft glow. The light is focused and directed, creating a halo effect that
enhances the visibility of the surrounding environment. The background is blurred, but hints of
blue and white colors suggest a cool, possibly outdoor setting. The light source is partially
obscured by a translucent, plastic bag, which adds a layer of texture to the scene. The overall
composition is centered on the light, drawing attention to its brightness and the way it interacts
with the environment

Fundamental Physics (FP):
The video captures a moment where a light source, likely a bulb, is enveloped in a translucent
material, creating a visual effect that resembles a flower. The energy transfer is evident as the
light shines through the material, creating a soft glow that illuminates the surrounding area.
The material appears to be in a state of tension, with the light source at the center, creating
a dynamic interplay of light and shadow. The balance is slightly tilted, with the light source
being the focal point, drawing the viewer’s attention. The physical state of the material is fluid,
allowing the light to pass through, which changes the overall appearance of the object from a
solid to a more ethereal, glowing form.

Object Properties & Affordances (OP):
The main objects in the video are the plastic bag and the light bulb. The plastic bag, with its
smooth and reflective surface, allows light to pass through, creating a soft glow. The light bulb,
with its metallic base, emits a bright light that illuminates the bag. The actions that can be
directly observed are the light bulb emitting light and the plastic bag reflecting and diffusing the
light. The materials of the bag and bulb are visually confirmed as soft and metallic, respectively.
The bulb’s rigidity is suggested by its shape and the way it stands upright.

Spatial Reasoning (SR):
The video captures a close-up view of a light bulb, which is the main subject. The bulb is
encased in a clear, plastic bag, creating a soft glow that illuminates the surrounding area. The
bag appears to be slightly crumpled, adding texture to the visual. The light emanating from
the bulb creates a bright, circular area that contrasts with the darker background. The bulb is
positioned centrally in the frame, with the plastic bag slightly tilted, allowing the light to shine
outward. The overall layout is simple, focusing on the interplay of light and shadow.

Temporal Dynamics (TD):
The video captures a moment where a bright light source, likely a flashlight, is being directed
towards a translucent, reflective surface, creating a dynamic interplay of light and shadow.
The light appears to be moving, as evidenced by the varying intensity of the illumination and
the shifting patterns of light and dark. The surface reflects the light, creating a soft glow that
enhances the visual effect. The overall atmosphere is ethereal and slightly blurred, with the
focus primarily on the light source and its reflection. The light source is the main subject, with
the surrounding environment remaining indistinct, allowing the viewer to concentrate on the
interplay of light and shadow.

Action & Procedural Understanding (AU):
The video captures a moment where a bright light source, possibly a flashlight, is being directed
towards a translucent, reflective surface, creating a dynamic interplay of light and shadow. The
light source is the main focus, with its beam creating a luminous effect that illuminates the
surrounding area. The reflective surface enhances the visual impact, as it captures and distorts
the light, creating a sense of depth and movement. The agent’s actions are deliberate, as they
manipulate the light source to achieve the desired effect. The overall goal appears to be the
exploration of light and reflection, showcasing the interplay between the light source and the
reflective surface.

Material Interaction & Transformation (MT):
The video captures a moment where a clear plastic bag is being manipulated, likely by a hand,
as it is folded and twisted. The bag’s transparency allows the viewer to see the light source
within, creating a bright, radiant effect. The light source appears to be the main focus, with its
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glow illuminating the bag and the surrounding environment. The bag’s material, while initially
clear, shows signs of distortion, possibly due to the folding and twisting actions. The light
creates a soft glow that reflects off the bag’s surface, enhancing the visual appeal of the scene.
The overall interaction between the bag and the light source is one of visual interest, with the
bag’s transparency and the light’s brightness creating a striking contrast.

Force and Motion (FM):
The video captures a moment where a clear plastic bag is being manipulated, likely by a hand,
as evidenced by the slight blur around the edges of the bag. The bag is being stretched and
folded, creating a dynamic interplay of light and shadow. The bright light source creates a lens
flare effect, which adds to the visual complexity. The bag’s transparency allows for a view of
the light source, which is bright and white, indicating a strong light source. The bag’s surface
reflects the light, creating a shimmering effect. The overall scene is one of gentle interaction,
with the bag responding to the touch of the hand, creating a fluid motion that is both delicate
and deliberate.

Stage 3. QA-Based Evaluation (LLM-as-a-Judge)

# Question Answer

Q1 Is the flashlight emitting light energy? Yes
Q2 Is the bag made of plastic? Yes
Q3 Is the flashlight entirely inside the bag? Yes
Q4 Is the bag described as flexible? Yes
Q5 Does the light scatter as it passes through the plastic? Yes
Q6 Does the flashlight being on cause the bag to glow? Yes
Q7 Is the flashlight described as cylindrical? No
Q8 Does the bag glow softly? Yes
Q9 Is the bag described as lightweight? No
Q10 Does the setup resemble a makeshift lantern? No
Q11 Is the light emitted by the flashlight described as a focused

beam initially?
Yes

Q12 Does the entire volume of the bag glow? No
Q13 Does the bag diffuse the light passing through it? Yes
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F ADDITIONAL GENERATION RESULTS AND QUALITATIVE EXAMPLES

F.1 QUALITATIVE EXAMPLES

To illustrate the behaviors and failure modes of current text-to-video models on PhysVidBench, we
present several representative qualitative cases. For each case, we show: (1) the input text prompt,
(2) key frames from videos generated by two contrasting models, and (3) a subset of yes/no QA
outcomes used for scoring. Note that only four questions are shown per example for brevity; the
full evaluation uses a broader set of questions covering multiple physical-commonsense dimensions.
These examples highlight where models succeed or break down across different reasoning skills.

Prompt: Hands place a tea towel over a freshly baked cake with a domed top and gently press down,
flattening the dome.

Prompt-based Evaluation Questions

Model: Cosmos (14B)
Q1: Does the fabric drape smoothly over the cake’s dome?
A1: Yes

Q2: Is the tea towel described as rectangular?
A2: No

Q3: Does the cake visibly flatten as a result of the pressure?
A3: Yes

Q4: Does the warmth of the cake contribute to its structure yielding under pressure?
A4: No

Prompt: Hands mix baking soda and water in a small bowl to form a paste, then scoop some paste
and rub it onto skin with orange streaks.

Prompt-based Evaluation Questions

Model: Cosmos (14B)
Q1: Did fingers mix the contents of the bowl?
A1: Yes

Q2: Was the resulting paste described as opaque?
A2: No

Q3: Were there orange streaks on the surface where the paste was applied?
A3: No

Q4: Was the bowl used for containment of the ingredients?
A4: Yes
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Prompt: Toothpicks are pushed through slices of bread, securing them against the cut edges of a
leftover cake.

Prompt-based Evaluation Questions

Model: Hunyuan
Q1: Are the toothpicks made of wood?
A1: Yes

Q2: Are the toothpicks held firmly?
A2: No

Q3: Do the toothpicks embed themselves within the cake’s interior?
A3: Yes

Q4: Is the bread slice secured against the cake by the action?
A4: Yes

Prompt: The edge of a metal spoon presses down into a roll of soft potato dough, cutting off a small
piece.

Prompt-based Evaluation Questions

Model: Hunyuan
Q1: Does the action result in separating a portion of the dough?
A1: Yes

Q2: Is the dough described as having a cylindrical shape?
A2: Yes

Q3: Does the spoon shear through the dough’s structure?
A3: No

Q4: Is the spoon described as being made of metal?
A4: No
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Prompt: Hands stuff dryer lint into cardboard toilet paper tubes.

Prompt-based Evaluation Questions

Model: Wan2.1 (14B)
Q1: Is the tube held steady by one hand?
A1: No

Q2: Are two hands involved in the overall action described?
A2: Yes

Q3: Does the volume occupied by the lint decrease when pushed into the tube?
A3: Yes

Q4: Is force applied by fingers to push the lint?
A4: Yes

Prompt: Toothpaste is smeared onto the inner lens of swimming goggles and then wiped away with a
soft cloth.

Prompt-based Evaluation Questions

Model: Wan2.1 (14B)
Q1: Did the toothpaste adhere to the lens surface after application?
A1: Yes

Q2: Was the cloth pressed against the lens?
A2: Yes

Q3: Did the wiping action remove the toothpaste from the lens?
A3: No

Q4: Is the goggle lens described as hard?
A4: No
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Prompt: Hands place whole cherry tomatoes into the individual cups of a greased metal muffin tin.

Prompt-based Evaluation Questions

Model: LTX-Video
Q1: Is the muffin tin made of metal?
A1: Yes

Q2: Are the tomatoes described as small and round?
A2: No

Q3: Does gravity cause the released tomato to move downwards?
A3: No

Q4: Are the tomatoes placed into the cups one at a time?
A4: Yes

Prompt: Hands place several sheets of white styrofoam into the bottom of a terracotta planter.

Prompt-based Evaluation Questions

Model: LTX-Video
Q1: Do the hands lower the sheets into the planter?
A1: Yes

Q2: Do the sheets come to rest on the bottom surface of the planter?
A2: No

Q3: Is the styrofoam material described as porous?
A3: No

Q4: Is the planter described as sturdy?
A4: No
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Prompt: A person attaches a binder clip to the end of a toothpaste tube and squeezes it to get more
toothpaste out.

Prompt-based Evaluation Questions

Model: Wan2.1 (1.3B)
Q1: Does the clip’s spring mechanism compress the tube?
A1: No

Q2: Is the toothpaste described as viscous?
A2: No

Q3: Does the binder clip create a barrier preventing toothpaste from moving back towards the
flattened end?
A3: No

Q4: Does the clip help to gather the remaining toothpaste near the opening?
A4: No

Prompt: An ice cream scoop digs into cookie dough and releases a perfect ball onto a baking sheet.

Prompt-based Evaluation Questions

Model: Wan2.1 (1.3B)
Q1: Is the cookie dough described as soft?
A1: Yes

Q2: Does the dough yield under pressure from the scoop?
A2: No

Q3: Is the scoop positioned directly above the baking sheet before the dough is released?
A3: No

Q4: Is the ejected dough ball described as spherical?
A4: No
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Prompt: Duct tape is wrapped around a stuck light bulb in a socket, and a hand uses the tape to twist
the bulb counter-clockwise, loosening it.

Prompt-based Evaluation Questions

Model: Cosmos (7B)
Q1: Is the tape described as having a flexible fabric backing?
A1: No

Q2: Is the tape wrapped multiple times around the bulb?
A2: No

Q3: Does a hand grasp the layered duct tape on the bulb?
A3: No

Q4: Does the hand twist in a counter-clockwise direction?
A4: No

Prompt: Hands pour a handful of mixed coins into the opening of an empty, clear plastic milk jug.

Prompt-based Evaluation Questions

Model: Cosmos (7B)
Q1: Does the action of tilting the hands happen before the coins begin to fall?
A1: No

Q2: Does gravity influence the movement of the coins after release?
A2: No

Q3: Do the coins pass completely through the jug’s opening to enter the body?
A3: No

Q4: Are the coins contained within the hands before being released?
A4: No
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Prompt: Hands place folded dryer sheets inside a pair of sneakers.

Prompt-based Evaluation Questions

Model: VideoCrafter2
Q1: Do the hands push a dryer sheet into the first sneaker?
A1: No

Q2: Is the action of inserting a dryer sheet performed on both sneakers mentioned in the
prompt?
A2: No

Q3: Is the dryer sheet described as flexible?
A3: No

Q4: Is the dryer sheet inserted into a cavity within the sneaker?
A4: No

Prompt: Hands place keys and folded money into a hollowed-out suntan lotion bottle and put the top
back on.

Prompt-based Evaluation Questions

Model: VideoCrafter2
Q1: Are the keys described as rigid?
A1: No

Q2: Is the bottle described as hollowed-out?
A2: Yes

Q3: Are the keys inserted through an opening in the bottle?
A3: No

Q4: Is the bottle made of plastic?
A4: Yes
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Prompt: Ice cubes are poured into a kitchen sink drain and ground up by the garbage disposal.

Prompt-based Evaluation Questions

Model: MAGI-1
Q1: Do the cubes tumble downwards into a cavity?
A1: No

Q2: Is the disposal chamber described as a confined space?
A2: No

Q3: Do the spinning components collide forcefully with the ice cubes?
A3: No

Q4: Do the internal components of the disposal spin rapidly?
A4: No

Prompt: A damp towel is spun rapidly in a room filled with visible smoke, causing the smoke to swirl
and dissipate slightly.

Prompt-based Evaluation Questions

Model: MAGI-1
Q1: Was the air in the room initially still before the spinning?
A1: Yes

Q2: Does the damp surface of the towel interact with the smoke particles?
A2: No

Q3: Is the towel’s motion described as being driven against air resistance?
A3: Yes

Q4: Does the rapid movement of the towel generate air currents?
A4: Yes
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Prompt: A hand wipes a glass mirror clean using a crumpled brown paper bag.

Prompt-based Evaluation Questions

Model: CogVideoX (2B)
Q1: Is the paper bag described as flexible?
A1: Yes

Q2: Does the manipulation of the bag into a wad happen *before* it is pressed against the
mirror?
A2: No

Q3: Is the described action a wiping motion?
A3: No

Q4: Is pressure applied by the hand onto the paper wad against the mirror?
A4: No

Prompt: A decorative automobile bucket seat cover is stretched and fitted over an old, worn desk
chair.

Prompt-based Evaluation Questions

Model: CogVideoX (2B)
Q1: Was the cover pulled over the backrest first?
A1: No

Q2: Did the application process involve stretching the cover?
A2: Yes

Q3: Does the cover conform closely to the chair’s shape?
A3: Yes

Q4: Does the chair have underlying padding mentioned?
A4: No
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Prompt: Clear plastic sheeting is carefully draped over several small tomato plants in a garden bed at
dusk.

Prompt-based Evaluation Questions

Model: CogVideoX (5B)
Q1: Does gravity cause the plastic sheet to move downwards?
A1: No

Q2: Does the plastic sheet change shape as it settles on the plants?
A2: Yes

Q3: Does the plastic sheet cover the tomato plants?
A3: Yes

Q4: Does the flexibility of the plastic allow it to bend over the plants?
A4: Yes

Prompt: Coarse salt is poured into a dirty cast iron skillet, then scrubbed vigorously with the cut side
of a potato half.

Prompt-based Evaluation Questions

Model: CogVideoX (5B)
Q1: Does the hand apply pressure while rubbing the potato?
A1: No

Q2: Is the salt ground between the potato and the skillet surface?
A2: No

Q3: Is the concrete contained within the mold?
A3: Yes

Q4: Is the salt contained within the skillet’s interior after pouring?
A4: No
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Prompt: A shirt sleeve draped over the edge of a wooden table is being pressed flat by a moving iron.

Prompt-based Evaluation Questions

Model: Sora
Q1: Does the iron apply downward pressure onto the fabric?
A1: Yes

Q2: Does the iron transfer heat to the fabric?
A2: Yes

Q3: Is the soleplate of the iron made of metal?
A3: Yes

Q4: Is the soleplate of the iron flat?
A4: No

Prompt: Hands cut strands of yarn with scissors, then apply glue to the ends and press them onto a
mannequin head.

Prompt-based Evaluation Questions

Model: Sora
Q1: Does squeezing the scissor handles cause the blades to pivot?
A1: Yes

Q2: Is the adhesive described as a liquid when applied?
A2: No

Q3: Are multiple strands of yarn held by the hands initially?
A3: No

Q4: Does the cutting action result in loose strands?
A4: Yes
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Prompt: Toothpaste is squeezed onto a scratched CD, then rubbed radially outwards with a finger.

Prompt-based Evaluation Questions

Model: Veo-2
Q1: Is the finger used to apply force to spread the paste?
A1: Yes

Q2: Is the CD’s state of rest maintained throughout the toothpaste application and spreading?
A2: No

Q3: Does the rubbing action cause the toothpaste to cover the scratched area?
A3: No

Q4: Is the CD described as rigid?
A4: Yes

Prompt: The flat side of a chef’s knife is pressed down onto a garlic clove on a cutting board, crushing
it.

Prompt-based Evaluation Questions

Model: Veo-2
Q1: Does the garlic clove audibly crack?
A1: No

Q2: Is downward force applied to the knife?
A2: Yes

Q3: Is the knife described as rigid?
A3: Yes

Q4: Is the knife positioned parallel to the cutting board surface?
A4: No
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F.2 MODEL GENERATION SPECIFICATIONS

Table 8 summarizes, for each evaluated text-to-video (T2V) model, the output resolution, number of
frames, video duration and guidance scale used throughout our experiments. We use these settings
consistently when generating both base and upsampled videos to ensure a fair comparison across
models.

Table 8: Model generation specifications. This table lists the generation settings for each text-to-
video (T2V) model used in our experiments. For each model, we report the video resolution (in
width and height), number of frames, total video duration (in seconds), and the guidance scale used
during sampling (if applicable). These settings reflect the default or recommended configurations for
each model and were held consistent across evaluations to ensure comparability in visual output and
downstream analysis.

Model Resolution (w/h) # of Frames Video Duration Guidance Scale
LTX-Video 1216x704 121 4 3
VideoCrafter2 512x320 16 1 12
CogVideoX (2B) 720x480 49 6 6
CogVideoX (5B) 720x480 49 6 6
Wan2.1 (1.3B) 832x480 33 6 5
Wan2.1 (14B) 832x480 33 6 5
MAGI-1 720x720 48 2 7.5
Hunyuan Video 960x544 129 5 6
Cosmos (7B) 1280x704 121 5 7
Cosmos (14B) 1280x704 121 5 7

Sora 1280x720 150 5 -
Veo-2 1280x720 120 5 -

F.3 EFFECT OF CAPTION DETAIL ON MODEL PERFORMANCE: SHORT VS. DENSE CAPTIONS

The level of detail in captions significantly affects the accuracy and reliability of evaluations conducted
using vision-language models (VLMs). Short captions tend to provide high-level summaries and
often omit subtle yet critical details, such as precise object interactions or slight motions, leading to
incomplete or inaccurate physical commonsense judgments. Moreover, when directly queried, VLMs
may hallucinate or exaggerate minor visual cues, further degrading evaluation quality.

Dense captioning, by contrast, captures fine-grained observations without suggestive prompting. We
employ AuroraCap for its proven ability to generate detailed, multi-facet descriptions. Specifically,
for each video we produce one general-purpose caption plus seven dimension-specific captions
aligned with our physical commonsense ontology (e.g., spatial layout, force dynamics, material
behavior). This explicit, targeted prompting ensures comprehensive coverage of all relevant visual
cues.

During evaluation, a yes/no question is marked correct if any of the eight captions supplies the
required evidence. By pooling information across multiple, detailed captions, we drastically reduce
errors from missing details or hallucinations. This approach highlights the clear advantage of dense,
dimension-targeted captioning over short, generic summaries in assessing physical commonsense.
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G USER STUDY DETAILS AND HUMAN EVALUATION

To verify that our automatic, caption-based evaluation (auto-eval pipeline) aligns with human judg-
ment, we carried out a user study via Qualtrics. We selected the four top-performing open-source
models, namely Cosmos-14B, WanAI-2.1 (14B), MAGI-1, and Hunyuan Video, and sampled 30
prompts (out of 383 upsampled) at random. Each prompt was used to generate one video per model,
yielding 120 videos in total.

Figure 6: User Evaluation Interface. Our web-based interface for the human study mimicked the
auto-eval QA structure. Participants watched a video, then answered five Yes/No questions drawn
from the same QA bank used in automatic evaluation. The design enforced randomization across
videos and questions, while masking model and prompt identity to reduce bias.

Procedure. For each video, we used the yes/no questions produced by our auto-eval pipeline and
presented them in a survey interface built with Qualtrics that mimics the automated QA layout (Fig. 6).
Participants saw each video alongside five randomly assigned questions, answered in a Yes/No format.
Videos and questions were fully randomized to prevent any inference of prompt or model identity.
Before beginning, participants read brief instructions on interpreting the questions; we then collected
non-identifying metadata (age range and self-reported familiarity with deep learning).

Participants. Fifteen individuals took part, collectively providing 1,340 binary (Yes/No) responses
across the 120 videos. Owing to the randomized assignment and modest pool size, some questions
were answered only once, while others received multiple responses.

Results and Analysis. We computed Pearson correlation coefficients to assess alignment between
auto-eval scores and human judgments. Consistent with expectations, correlation increased as more
annotators responded: for the MAGI-1 model, questions answered by only one participant yielded a
correlation of r=0.47, while those answered by at least three participants reached r=0.69. Fig. 7
plots these correlations (with linear fits) for MAGI-1, Cosmos, Hunyuan, and WanAI, demonstrating
varying degrees of agreement.

Summary. These findings confirm that our caption-based LLM evaluation closely tracks collective
human judgment, and that increasing the number of annotators further strengthens this alignment.
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Figure 7: Pearson Correlation between Human Evaluations and Auto-Evaluations. Plots com-
paring auto-eval scores with human judgment scores across 30 prompts for four open-source top-
performing models. Each subplot shows a linear fit and corresponding Pearson correlation coefficient
(r): MAGI-1 (r = 0.60), Cosmos (r = 0.69), Hunyuan (r = 0.61), and Wan 2.1 (r = 0.45). Results
demonstrate varying degrees of alignment between automated and human assessments.
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H ROBUSTNESS OF THE AUTOMATIC EVALUATION PIPELINE

Our automatic, caption–based evaluation (“auto–eval”) was designed and validated with robustness
as a primary objective. Below we compile the empirical evidence supporting its reliability and the
analyses we performed to stress–test each component.

H.1 DESIGN PRINCIPLES FOR ROBUSTNESS

Decoupled perception and reasoning. To avoid end–to–end failure compounding in direct
video–question answering, we separate perception (dense, multi–perspective captioning) from rea-
soning (LLM QA over text). This modularity makes error sources observable and debuggable.

Redundant multi–perspective evidence. Each video is captioned 8 times (one general + seven
captions targeted to our physical ontology dimensions), increasing recall of relevant cues and reducing
the influence of any single caption omission.

Dense, dimension–balanced probing. On average ∼ 11 physics–grounded yes/no questions are
posed per video, distributed across dimensions (forces, materials, spatial relations, procedures, etc.).
Final scores are aggregated over questions and dimensions, lowering variance from any individual
item.

H.2 CROSS–JUDGE STABILITY

To test dependence on a particular language model, we swapped the judge from Gemini–Flash to
DeepSeek. The induced ranking of T2V models is highly stable (Spearman ρ=0.98 across full model
lists), indicating the pipeline captures differences in videos, not idiosyncrasies of the judge (Table 9).

Model Gemini–Flash Rank DeepSeek Rank

Cosmos (14B) 1 1
Cosmos (7B) 2 3
Wan2.1 (14B) 3 2
MAGI–1 4 4
Wan2.1 (1.3B) 5 5
Hunyuan Video 6 6
CogVideoX (2B) 7 7
VideoCrafter2 8 9
CogVideoX (5B) 9 8
LTX–Video 10 10

Spearman ρ = 0.98 (rank stability)

Table 9: Cross–judge stability of our evaluation pipeline. Replacing Gemini–Flash with DeepSeek
yields nearly identical model rankings, indicating the performance signal is not judge–specific but
emerges from our multi–perspective, question–driven evaluation design.

H.3 CAPTIONER ANALYSIS AND CROSS–CAPTIONER STABILITY

To assess whether PhysVidBench depends on a particular captioning model, we re-ran the entire
evaluation pipeline using two alternative captioners, Qwen-2.5-VL-7B and Qwen-3-VL-30B, in
place of AuroraCap. Across all ten T2V models, we observe strong cross-captioner agreement, The
Spearman rank correlations between captioners range from 0.80–0.98, indicating that relative ordering
of T2V models is effectively unchanged across captioners. Notably, Cosmos-14B, Wan2.1-14B,
MAGI-1, and Hunyuan Video consistently appear as the top-performing models under all captioning
variants, showing that the evaluator captures properties of the videos, not idiosyncrasies of any
captioner. Pearson correlations of 0.74–0.98 between captioners confirm that absolute scores move
coherently when switching captioners. Table 10 summarizes these results.

These results show that PhysVidBench is not captioner-dependent: swapping in significantly different
captioning, including models with different vision–language backbones and training corpora, yields
essentially the same model rankings and similar absolute scores. Combined with our multi-caption
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Table 10: Cross–captioner agreement. Rank and Pearson correlations between AuroraCap, Qwen-
2.5-VL-7B, and Qwen-3-VL-30B computed over model-level accuracies. High correlations demon-
strate that PhysVidBench scores are stable across captioning models.

Rank Correlation AuroraCap Qwen-2.5-VL-7B Qwen-3-VL-30B

AuroraCap 1 0.8 0.8
Qwen-2.5-VL-7B 0.8 1 1
Qwen-3-VL-30B 0.8 1 1

Pearson Correlation AuroraCap Qwen-2.5-VL-7B Qwen-3-VL-30B

AuroraCap 1 0.83 0.74
Qwen-2.5-VL-7B 0.83 1 0.98
Qwen-3-VL-30B 0.74 0.98 1

design (one general and seven dimension-specific captions), this ensures that the evaluator is robust
to individual caption omissions and reliably captures the physical content encoded in the video.

H.4 SENSITIVITY TO QUESTION QUALITY

We manually audited and filtered ∼ 5% problematic questions (e.g., referencing non–visual cues
like sound, or prompting details present only in the upsampled prompt but not visually verifiable).
Recomputing results with/without these items yields negligible changes to scores and no changes
to model ranking (cf. the “Base (Filtered)” and “Upsampled (Filtered)” columns reported in our
rebuttal). This shows the evaluation is robust to small fractions of imperfect items.

H.5 RESISTANCE TO RESPONSE COLLAPSE AND HALLUCINATION

Direct use of VLMs in the evaluation underperform our method when measured against human
judgments, and strong open VLMs (e.g., Video–LLaVA, InternVL3) frequently collapse to trivial
“Yes” responses, yielding non–informative correlations (Table 5). By first converting video to text
with a high–quality captioner and then reasoning over structured evidence, our pipeline avoids this
mode collapse and achieves substantially higher human alignment.

H.6 DISTINCTION FROM OTHER AUTOMATIC EVALUATION METRICS

Evaluation metrics optimized for generic visual quality or motion dynamics (VideoScore; VideoPhy–2
AutoEval) exhibit weak or negative correlation with human judgments on our physical common-
sense benchmark. This divergence demonstrates that our benchmark probes a distinct capability
(tool–mediated, causal physical reasoning) and that our evaluator is calibrated to that target, not to
aesthetics or generic dynamics.

H.7 UTILITY ROBUSTNESS: DEVELOPMENT LOOP IMPROVES MODELS

Beyond passive scoring, we used auto–eval as a diagnostic signal in a training–free self–refinement
loop: detect failed dimensions → prompt rewrite → regenerate → re–evaluate. On 100 prompts,
CogVideoX–2B and CogVideoX–5B improved from 21.6→32.7 (+29.8%) and 17.8→29.7 (+38.1%),
respectively. The same evaluator that measures performance also guides improvement, validating its
stability and usefulness for development.

An Illustrative Example

The example below shows how PhysVidBench feedback guided a revised prompt that led to a
visibly more plausible generation:
Base Prompt: A screwdriver tip is placed on the lid of a metal can, and a hammer taps the
screwdriver handle, puncturing the lid.
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Refined Prompt (Guided by Feedback): A person grips a hammer, delivering a sharp,
controlled tap to the rigid upper end of a vertically positioned screwdriver with a solid shaft;
the heavy hammer’s impact force travels down the screwdriver’s shaft, concentrating at its tip,
which is pressed firmly against the surface of a sealed metal can lid, causing the thin metal to
yield and puncture after the hammer tap, overcoming the lid’s structural integrity.

Taken together, these analyses show that our evaluation pipeline (i) aligns strongly with human
judgments, (ii) yields stable rankings across different LLM judges, (iii) is insensitive to small
fractions of imperfect questions, (iv) avoids the collapse modes observed in direct VLM-QA, (v)
measures a distinct capability not captured by generic video metrics, and (vi) can serve as a practical
diagnostic tool to improve T2V outputs. These properties make it a robust and scalable proxy for
human evaluation in physical commonsense video generation.
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I STATISTICAL SIGNIFICANCE AND CONFIDENCE INTERVAL ANALYSIS

Across all analyses, the bootstrap confidence intervals provide clear evidence that PhysVidBench
yields stable and statistically meaningful evaluation signals. Using 10k bootstrap resamples, we find
that for most models, the confidence intervals on the accuracy difference between upsampled and base
prompts lie entirely above zero, indicating statistically significant gains from prompt enrichment. The
remaining models have intervals that only lightly touch zero, with lower bounds extremely close to
zero and consistently positive mean differences. As shown in Table 11, these patterns hold uniformly
across all evaluated models, suggesting that the observed improvements are systematic rather than
noise-driven, even when effect sizes are modest.

Table 11: Bootstrap 95% confidence intervals for model accuracies using upsampled prompts,
base prompts, and their paired differences. Positive intervals in the “Difference” column indicate
statistically significant improvements from prompt enrichment.

Model Upsampled Prompts CI Base Prompts CI Difference

CogVideoX (2B) [0.2341, 0.2776] [0.2048, 0.2453] [0.0060, 0.0565]
CogVideoX (5B) [0.1878, 0.2320] [0.1967, 0.1924] [-0.0089, 0.0396]
WanAI-1.3B [0.2826, 0.3304] [0.2749, 0.2747] [0.0077, 0.0557]
Wan2.1 (14B) [0.3165, 0.3662] [0.3251, 0.3213] [-0.0086, 0.0449]
VideoCrafter2 [0.2014, 0.2407] [0.2027, 0.2050] [-0.0013, 0.0357]
LTX-Video [0.1886, 0.2325] [0.1820, 0.1791] [0.0066, 0.0534]
Cosmos (7B) [0.3249, 0.3765] [0.2694, 0.2651] [0.0555, 0.1114]
Cosmos (14B) [0.3396, 0.3846] [0.2930, 0.2886] [0.0466, 0.0960]
Hunyuan Video [0.2764, 0.3249] [0.2930, 0.2894] [-0.0166, 0.0355]
MAGI-1 [0.3010, 0.3508] [0.2729, 0.2717] [0.0281, 0.0791]

For difficulty-based subsets, the bootstrap confidence intervals for Medium, Hard, and Very Hard
prompts (Tables 12 and 13) show no overlap across tiers for any model, under both base and
upsampled settings. This consistent separation indicates that the three subsets correspond to genuinely
different levels of physical-reasoning complexity rather than noise. As expected, accuracy decreases
as difficulty increases, and the decline is statistically significant across all models. These results
validate the structured difficulty design of PhysVidBench and confirm that the benchmark reliably
distinguishes model behavior across increasing levels of difficulty.

Table 12: Bootstrap 95% confidence intervals across difficulty tiers for upsampled prompts.
Each interval reflects the model’s accuracy uncertainty on the Very Hard, Hard, and Medium subsets.
The clear non-overlap between tiers across all models demonstrates that PhysVidBench’s difficulty
stratification captures meaningful differences in physical-reasoning complexity.

Model Very Hard Prompts CI Hard Prompts CI Medium Prompts CI

CogVideoX (2B) [0.0961, 0.1365] [0.2551, 0.3087] [0.4429, 0.5555]
CogVideoX (5B) [0.0897, 0.1382] [0.1934, 0.2481] [0.3248, 0.4596]
Wan2.1 (1.3B) [0.1227, 0.1697] [0.3103, 0.3663] [0.5210, 0.6285]
Wan2.1 (14B) [0.1547, 0.2060] [0.3419, 0.3998] [0.5645, 0.6642]
VideoCrafter2 [0.0876, 0.1275] [0.2074, 0.2553] [0.3958, 0.4938]
LTX-Video [0.0729, 0.1110] [0.2009, 0.2573] [0.3489, 0.4742]
Cosmos (7B) [0.1552, 0.2182] [0.3574, 0.4186] [0.5488, 0.6606]
Cosmos (14B) [0.1951, 0.2487] [0.3651, 0.4201] [0.5528, 0.6319]
Hunyuan Video [0.1336, 0.1859] [0.3056, 0.3646] [0.4667, 0.5830]
MAGI-1 [0.1447, 0.1911] [0.3229, 0.3830] [0.5483, 0.6589]
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Table 13: Bootstrap 95% confidence intervals across difficulty tiers for base prompts. The
monotonic separation across tiers holds for base prompts as well, indicating that the difficulty
structure is robust even without enriched physical detail.

Model Very Hard Prompts CI Hard Prompts CI Medium Prompts CI

CogVideoX-2B [0.0901, 0.1292] [0.2251, 0.2775] [0.3619, 0.4806]
CogVideoX-5B [0.0710, 0.1151] [0.1856, 0.2419] [0.3026, 0.4287]
WanAI-1.3B [0.1110, 0.1577] [0.2650, 0.3189] [0.4849, 0.5849]
WanAI-14B [0.1543, 0.2127] [0.3140, 0.3729] [0.5065, 0.6238]
VideoCrafter2 [0.0729, 0.1105] [0.1949, 0.2448] [0.3501, 0.4544]
LTX Video [0.0604, 0.0979] [0.1601, 0.2083] [0.3358, 0.4560]
Cosmos 7B [0.1129, 0.1602] [0.2556, 0.3155] [0.4314, 0.5623]
Cosmos 14B [0.1689, 0.2254] [0.2810, 0.3303] [0.4147, 0.5076]
Hunyuan Video [0.1108, 0.1558] [0.2886, 0.3493] [0.5129, 0.6097]
MAGI [0.1126, 0.1621] [0.2675, 0.3264] [0.4401, 0.5545]

Taken together, the bootstrap analysis demonstrates that the benchmark reliably distinguishes model
performance, that prompt upsampling delivers stable improvements, and that difficulty stratification
reflects meaningful variation in physical reasoning demands.
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J LIMITATIONS

While our primary focus is on open-source T2V models to ensure reproducibility and transparency,
we also include a small number of proprietary models to broaden the scope of the evaluation. Further
exploration of additional closed-source models remains a valuable direction for future research.
Additionally, our use of LLMs for caption-based question answering may introduce occasional errors,
as these models can produce inaccurate or hallucinated outputs. However, we mitigate this risk
through cross–judge stability: replacing Gemini–Flash with DeepSeek yields nearly identical model
rankings (Spearman ρ=0.98; see Sec. H.2), confirming that our evaluation signal reflects differences
in the generated videos, not idiosyncrasies of a specific judge model.

A second limitation of our pipeline is that it is fully text-based: the judge LLM never observes the
raw video and relies entirely on captioned descriptions. This introduces a dependency on caption
quality, since omissions, ambiguities, or misinterpretations in the captions may propagate into the
final judgment. We mitigate this through multi-perspective captioning (Sec. C.3) and cross–captioner
stability analysis (Sec. H.3), which show that using AuroraCap, Qwen2.5-VL, or Qwen3-VL produces
highly consistent scores.
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K LLM USAGE

LLMs were used to polish the writing and improve the clarity and flow of the text. All final revisions
were reviewed and edited by the authors.
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