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HOMOLOGICAL DIMENSIONS AND SEMIDUALIZING COMPLEXES

A. A. Gerko UDC 512.717

Abstract. For finite modules over a local ring and complexes with finitely generated homology, we consider
several homological invariants sharing some basic properties with projective dimension.

In the second section, we introduce the notion of a semidualizing complex, which is a generalization
of both a dualizing complex and a suitable module. Our goal is to establish some common properties of
such complexes and the homological dimension with respect to them. Basic properties are investigated
in Sec. 2.1. In Sec. 2.2, we study the structure of the set of semidualizing complexes over a local ring,
which is closely related to the conjecture of Avramov–Foxby on the transitivity of the G-dimension. In
particular, we prove that, for a pair of semidualizing complexes X1 and X2 such that GX2 dim X1 < ∞,
we have X2 � X1 ⊗L

R RHomR(X1, X2). Specializing to the case of semidualizing modules over Artinian
rings, we obtain a number of quantitative results for the rings possessing a configuration of semidualizing
modules of special form. For the rings with m3 = 0, this condition reduces to the existence of a nontrivial
semidualizing module, and we prove a number of structural results in this case.

In the third section, we consider the class of modules that contains the modules of finite CI-dimension
and enjoys some nice additional properties, in particular, good behavior in short exact sequences.

In the fourth section, we introduce a new homological invariant, CM-dimension, which provides a char-
acterization for Cohen–Macaulay rings in precisely the same way as projective dimension does for regular
rings, CI-dimension for locally complete intersections, and G-dimension for Gorenstein rings.
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Introduction

Homological methods in commutative algebra are one of the most powerful tools for a researcher. An
important theorem on the localizability of the property of regularity of a local ring is an example of
an assertion that can be rather easily proved by means of homological methods, but a proof using only
classical methods is unknown.

The main idea in the proof of this theorem is that projective dimension characterizes regular rings in
the following sense: every module over a regular ring has a finite projective dimension and, conversely,
finiteness of the projective dimension of the quotient field implies that the ring is regular.

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications),
Vol. 30, Algebra, 2005.
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The basic idea of M. Auslander, presented in the beginning of the 1960s by him, is that modules of
finite projective dimension over a ring (not necessarily regular) have almost the same behavior as modules
over regular rings.

As an example of a property that has been generalized from the modules over regular rings to the
modules of finite projective dimension in the context of this approach (see [34]), one can give the following
statement: if a sequence of elements of a ring R is regular w.r.t. a module M , then the sequence is regular
w.r.t. the ring R.

The main motivation for studying homological dimensions characterizing other types of rings, which
are important in algebraic geometry, i.e., locally complete intersections, Gorenstein rings, and Cohen–
Macaulay rings, is the search for a reasonable description of modules having properties similar to those
of modules over rings of the corresponding types.

Such classes of modules appeared several times in problems of commutative algebra.
For Gorenstein rings, the corresponding class was considered by M. Auslander and M. Bridger [3]

and was defined as follows. Let G-dimM = 0 if the natural map M → Hom(Hom(M,R), R) is an
isomorphism and ExtiR(M,R) = 0 = Exti

R(M∗, R) when i > 0. The infimum of the lengths of resolvents
of the module M composed of modules P with G-dimP = 0 will be denoted by G-dimM .

For complete intersections, the corresponding class of modules, called modules of finite virtual projective
dimension (vpd), appeared in the paper of L. L. Avramov [6] studying the properties of the Betti numbers
of modules of infinite projective dimension. The dimension vpdRM is assumed to be finite if there exists
a surjective ring homomorphism S → R̂, where R̂ is the completion of R in the m-adic topology such
that the kernel of the homomorphism is generated by a regular sequence and pdS(M ⊗R R̂) < ∞. For
a (possibly) more general class of modules of finite CI-dimension (see Definition 3.2), considered in [9]
and characterizing complete intersections, several facts were proved, whose validity for virtual projective
dimension is unknown, in particular the good behavior under localization. In addition, in some problems,
modules of finite CI-dimension really demonstrate a behavior similar to that of modules over complete
intersections. The most important example is provided by the asymptotic properties of free resolvents,
which is the main point in [9]. Let us also mention [2, 12, 30], where the formula of depth has been carried
over from the modules over complete intersections to the modules of finite CI-dimension, and [2], where
the Auslander criterion of freedom has been generalized.

The mentioned dimensions are related to the inequalities

pdRM ≤ CI-dimRM ≤ G-dimRM.

A particular case of this (for M = k) is the following statement about the ring R:

R is regular =⇒ R is a complete intersection =⇒ R is a Gorenstein ring.

All necessary prerequisites from commutative and homological algebra can be found in Sec. 1.
We shall say that a generalized homological dimension characterizing a class of rings Ω is given if for

any ring R a class of modules HR and a map H-dimR from HR to Z are given. Let us give some restrictions
that are reasonable to apply in order to obtain a meaningful notion.

I. k = R/m ∈ HR ⇐⇒ any R-moduleM ∈ HR ⇐⇒ R ∈ Ω.
II. M ∈ HR =⇒ H-dimRM + depthM = depthR.

III. Let x be an R- and M -regular element. Then M ∈ HR if and only if M/xM ∈ HR/xR, and under
these two conditions H-dimRM = H-dimR/xRM/xM .

IV. M ∈ HR =⇒ Mp ∈ HRp and H-dimRM ≥ H-dimRpMp.
V. If in a short exact sequence 0 → M → N → K → 0 two of the three modules belong to HR,

then the third one belongs to HR as well; if this exact sequence splits, then N ∈ HR implies that
M ∈ HR and K ∈ HR.

Note that projective dimension and G-dimension satisfy all these conditions. For virtual projective
dimension properties I and II have been proved, and for CI-dimension properties I–IV have been demon-
strated.
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The main object of investigation for us is G-dimension. Although this notion was introduced almost
40 years ago, a renewed interest in it has arisen, especially in the last decade, when many papers were
devoted to this subject (see, e.g., [13]). An important set of unsolved problems related to G-dimension
consists of the questions of its behavior under a change of the ring, in particular the so-called conjecture
of transitivity of G-dimension.

Conjecture 0.1 ([8]). If φ : S → R is a finite local homomorphism of finite G-dimension (i.e.,
G-dimS R <∞), then for any R-module M such that G-dimRM <∞, we have G-dimS M <∞.

A close problem was studied in [24]. It turns out that for homomorphisms φ of finite G-dimension of
a special form, more precisely, surjective ones satisfying the condition grade(S/Kerφ)=G-dimS(S/Kerφ),
over the ring R there is a natural way to define a “suitable” module (which was also studied by H.-B. Foxby
[15]) independently, and for the introduced analogue of G-dimension w.r.t. such modules a result like a ring
change is true (see Theorem 1.54).

Trivial examples of “suitable” modules are the free module of rank 1 and the dualizing module when
it exists.

For GK-dimension w.r.t. a “suitable” module K, the analogues of Properties I–V hold true, where the
analogue of Property I is the assertion about the equivalence between the finiteness of the GK-dimension
of the quotient field and the condition that the module K is dualizing.

In Sec. 2, we consider complexes that are a generalization of both dualizing complexes and “suitable”
(see [24]) modules. These complexes were independently introduced by the author in [19] under the name
of “suitable” and by L. V. Christensen in [14] under the name of “semidualizing.” Since the latter name
fits better and is more popular in the literature, we are going to use it.

A complex is called semidualizing (see Definition 2.1) if its homology is finitely generated and the natural
morphism R → RHom(X,X) is an isomorphism in the derived category. Such complexes naturally
appear in the study of local homomorphisms of rings φ : S → R of finite G-dimension. In such a case,
the R-complex RHomS(R,S) is semidualizing. Trivial examples of semidualizing complexes are the free
module of rank 1 and the dualizing complex when it exists. If a semidualizing complex has just one
nonzero homology, then, up to a translation, this complex is isomorphic to a suitable module as an object
of the corresponding derived category.

In Sec. 2.1, the following results appear. We construct a theory of G-dimension w.r.t. a semidualizing
complex in which the analogues of Properties I–V are true. For the constructed dimension, there is
a result about a ring change that is similar to [24, Proposition 5] (Theorem 2.10). We reformulate the
Avramov–Foxby conjecture in terms of semidualizing complexes.

It is interesting whether it is possible to obtain any semidualizing complex by means of the induction
described above. For dualizing complexes, such a question forms the Sharp conjecture.

Conjecture 0.2 ([36]). If R is a local ring and X is a dualizing complex, then there exist a ring S and
a surjective homomorphism φ : S → R such that RHomS(R,S) � X.

This conjecture was proved by T. Kawasaki [31]. Here we show that a similar statement is also true
for suitable modules (Corollary 4.8), i.e., for semidualizing complexes with a unique nonzero homology.

In Sec. 2.2, we study the problem of existence of nontrivial semidualizing complexes (different from the
free module of rank 1 and the dualizing complex). For modules, the corresponding problem was proposed
by E. S. Golod [25]. The first nontrivial example of a suitable module was constructed by Foxby [16].
It is easy to show that the Cohen–Macaulay type (see Definition 1.31) of a suitable module must be
a divisor of the Cohen–Macaulay type of the ring. In the present paper, for a given type m we construct
an example of a ring over which, for any divisor m, there exists a corresponding semidualizing module
(Example 2.21). For this example, the structure of the set of constructed semidualizing modules coincides
with the structure of the set of all subsets of a finite set of the power equal to the number of prime divisors
of m.

Hypothetically, also in the general case there should be a similar structure. Let KI be a suitable module
corresponding to some subset I ⊂ {1, . . . , n}. For Example 2.21, the following statement is true: I ⊂ J
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if and only if GKJ
-dimKI < ∞. For the latter property, there is an analogue in the general case that

allows us to introduce a natural binary relation on the set of semidualizing complexes. The relation is
symmetric and reflexive; its transitivity is a conjecture and is closely related to the problem of transitivity
of G-dimension formulated earlier. Nevertheless, the search for analogues of the relations satisfied in the
example described allows one to obtain several important corollaries for the general situation. The most
interesting is the analogue of I ⊂ J =⇒ KJ � KI ⊗ KJ\I , which, in the general case, gives a way to
construct an isomorphism X2 � X1⊗L

R RHomR(X1, X2) in the derived category if a pair of semidualizing
complexes X1 and X2 satisfying GX2-dimX1 <∞ is given.

After that, we consider the classification problem for semidualizing complexes over Cohen–Macaulay
rings. For such rings, any semidualizing complex is a suitable module in the sense of the corresponding
derived category (Proposition 2.32). A classification of suitable modules over complete rings can be
reduced to the case of a ring of depth 0 (Proposition 2.33); in particular, for Cohen–Macaulay rings to
the case of Artinian rings. For Artinian rings, we consider bases of semidualizing modules similar to the
collection K{1}, . . . ,K{n} in Example 2.21. The length of such a basis is naturally bounded in terms of the
minimal degree of a maximal ideal becoming 0 (Proposition 2.39), and at this moment the Betti series of
the ring becomes rational. This restriction is also strict and is an equality for Example 2.21. After that,
we deal with rings having this restriction as an equality (Definition 2.43). Numerical invariants (Betti
and Bass series of the quotient field) of such rings appear to coincide with the corresponding numerical
invariants of the ring from Example 2.21. In the case of rings with m3 = 0, we also have the Koszul
property (Proposition 2.57) and the equality of the length of the ring and of the nontrivial semidualizing
modules (Proposition 2.52).

In Sec. 3, we consider alternative (using zero-dimensional modules) approaches to defining a dimension
characterizing complete intersections. As a result, we obtain an extension of the class of modules of finite
CI-dimension satisfying Property V. Further, we give a proof, simpler than in [5], of the theorem that
a localization of a complete intersection is a complete intersection.

In Sec. 4, we study the dimension characterizing Cohen–Macaulay rings for which Properties I–IV
and the following statement hold true: the class of modules of finite CM-dimension contains the class of
modules of finite GK-dimension for any suitable module K. A new characterization of suitable modules
is used in the proof by means of G-Gorenstein connected ideals.

The author is highly grateful to Professor E. S. Golod for the attention paid to the paper during entire
its preparation and for many valuable remarks.

This work was partially supported by RFBR grant 02-01-00468.

1. Preliminary Facts

All rings are assumed to be commutative, Noetherian, and local, and modules are assumed to be finitely
generated. The maximal ideal of a ring R is denoted by m, and the quotient field is denoted by k ∼= R/m.

1.1. Basic Classes of Local Rings.

Definition 1.1. An element x ∈ m is called regular w.r.t. a module M or M -regular if for any nonzero
a ∈M we have xa �= 0.

Definition 1.2. A sequence (x) = (x1, . . . , xn) ∈ m is called M -regular if for any i ∈ {1, . . . , n} the
element xi is regular w.r.t. the module M/(x1, . . . , xi−1)M .

Definition 1.3. We call a sequence (x) = (x1, . . . , xn) ∈ m maximal M -regular if mR does not have
M/(x1, . . . , xn)M -regular elements.

Definition 1.4. The length of a maximal M -regular sequence is uniquely determined and is called the
depth of M (the notation is depthM).

Definition 1.5. A ring R is called regular if its maximal ideal is generated by a regular sequence.
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Definition 1.6. A ring R is referred to as a locally complete intersection if its completion R̂ is isomorphic
to a factor-ring of a regular ring by a regular sequence.

Definition 1.7. We call a ring R a Cohen–Macaulay ring if its depth depthR is equal to the Krull
dimension Krull dimR.

Definition 1.8. A ring R is called a Gorenstein ring if one of the following equivalent conditions is
satisfied:

(1) R is Cohen–Macaulay and the factor-ring of R by a maximal regular sequence is an injective module
over itself;

(2) the injective dimension of R as a module over itself is finite.

Proposition 1.9. One has the following implications:

A ring R is regular =⇒ R is a locally full intersection
=⇒ R is a Gorenstein ring =⇒ R is a Cohen–Macaulay ring.

1.2. Commutative Algebra of Complexes.

Definition 1.10. A complex X is a collection of modules Xi and homomorphisms ∂X
i : Xi → Xi−1 such

that ∂X
i ∂

X
i+1 = 0. We say that the ith homology of the complex X is the module Hi(X) = ker ∂X

i / im ∂X
i+1.

The homologies of all complexes under consideration are assumed to be finitely generated. We iden-
tify M with the complex X having Xi = 0 for i �= 0 and X0 �M .

The following numbers reflect the locations of zero homologies of a complex X.

Definition 1.11. The supremum, infimum, and amplitude of a complex X are defined by the following
equalities, respectively:

sup(X) = sup{i | Hi(X) �= 0},
inf(X) = inf{i | Hi(X) �= 0},

amp(X) = sup(X)− inf(X).

Definition 1.12. A complex is called bounded (bounded from above, bounded from below) if amp(X) <∞
(respectively, sup(X) <∞, inf(X) > −∞).

Definition 1.13. A complex is called acyclic if Hi(X) = 0 for any i.

Remark 1.14. For an acyclic complex, we have

sup(X) = −∞, inf(X) =∞, amp(X) = −∞.
Definition 1.15. A morphism of complexes α : X → Y is a collection of maps αi : Xi → Yi such that
∂Y

i αi − αi−1∂
X
i = 0. A morphism of complexes α induces a map in homologies Hi(α) : Hi(X)→ Hi(Y ).

Definition 1.16. A morphism of complexes α : X → Y is called an isomorphism if αi is an isomorphism
for all i. The corresponding complexes X and Y are called isomorphic (notation X ∼= Y ).

Definition 1.17. A morphism of complexes α : X → Y is called a quasi-isomorphism if Hi(α) is an
isomorphism for all i. The corresponding complexes X and Y are called quasi-isomorphic (notation
X � Y ).

Definition 1.18. The shift of a complex X (denoted by ΣX) is the complex with (ΣX)i = Xi−1 and
∂ΣX

i+1 = −∂X
i .

Remark 1.19. The map ΣX sending f ∈ Xi into f ∈ (ΣX)i+1 is an isomorphism of complexes.
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Definition 1.20. The cone of a morphism of complexes φ : X → Y is the complex cone(φ) with

cone(φ)i = Yi ⊕ (ΣX)i, ∂
cone(φ)
i =

(
∂Y

i (ΣY )(−1)
i Σ(φ)i

0 ∂ΣX
i

)
.

Proposition 1.21. The following two conditions on a morphism φ : X → Y are equivalent :
(1) φ is a quasi-isomorphism;
(2) cone(φ) is acyclic.

Definition 1.22. Given complexes X and Y , we define the complex U = X ⊗ Y in the following way:

Un =
∑

i

Xi ⊗ Yn−i, ∂U
n (xi ⊗ yn−i) = ∂X

i (xi)⊗ yn−i + (−1)ixi ⊗ ∂Y
n−i(yn−i).

Definition 1.23. Given complexes X and Y , we define the complex V = Hom(X,Y ) as follows:

Vn =
∏

j−i=n

Hom(Xi, Yj), ∂V
n (f)i = ∂Y

i fi − (−1)nfi−1∂
X
i .

Morphisms from X into Y correspond to cycles in the complex Hom(X,Y ) in the sense of Definition 1.15.

We deal with derived categories Df
b (R) (Df

+(R), Df
−(R)), i.e., with categories of bounded (bounded

from above, bounded from below) complexes with finitely generated modules of homologies, localized
w.r.t. the class of quasi-isomorphism (see [17, 28]).

By RHomR(·, ·) (⊗L
R) we denote the right (left) derived functor of the functor of homomorphisms

(tensor products) of complexes. According to [7, 37], the bounding conditions on arguments are not
necessary.

Definition 1.24. For complexes X and Y , we let

Exti
R(X,Y ) = H−i(RHomR(X,Y ))), TorR

i (X,Y ) = Hi(X ⊗L
R Y ).

Definition 1.25. For a complex X ∈ Df
+(R), we define the Betti numbers of X as follows:

βR
i (X) = dimk(TorR

i (X, k)) = dimk(Exti
R(X, k)).

The corresponding generating function is of the form

PR
X(t) =

∑
i

βR
i (X)ti.

Remark 1.26. βR
i (X) = rankPi(X), where P (X) is a minimal projective resolvent of X.

Definition 1.27. For a complex X ∈ Df
−(R), we define the Bass numbers of X in the following way:

μi
R(X) = dimk(ExtR

i (k,X)).

The corresponding generating function has the form

IXR (t) =
∑

i

μi
R(X)ti.

Remark 1.28. The number μi
R(X) equals the number of direct summands of the form E(k) (the injective

envelope of the quotient field) in the ith component of the minimal injective resolvent of X.

Definition 1.29. For a complex X ∈ Df
−(R), let us define the depth of X according to the following

formula:
depthX = inf{n | Exti

R(k,X) �= 0}.
Remark 1.30. For modules, the definitions of depth 1.4 and 1.29 are equivalent.
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Definition 1.31. For a complex X ∈ Df
−(R), we define the Cohen–Macaulay type as

dimk(Extdepth X
R (k,X)).

We shall need the following properties, which guarantee the preservation of the properties of being
finitely generated under the action of some functors (see [7]).

Proposition 1.32. If X ∈ Df
+(R) and Y ∈ Df

+(R), then X ⊗L
R Y ∈ Df

+(R).

Proposition 1.33. If X ∈ Df
+(R) and Y ∈ Df

−(R), then RHomR(X,Y ) ∈ Df
−(R).

The behavior of the functors RHomR(·, ·) and ⊗L
R under localization can be described in the following

way.

Proposition 1.34. If X ∈ Df (R) and Y ∈ Df (R), then

(X ⊗L
R Y )p � (Xp⊗L

Rp
Yp)p.

Proposition 1.35. If X ∈ Df
+(R) and Y ∈ Df

−(R), then

RHomR(X,Y )p � RHomRp (Xp, Yp).

Note that the conditions for X and Y are essential, since for modules that are not finitely generated,
in general, HomR(M,N)p � HomRp (Mp, Np).

Definition 1.36. For X ∈ Df
b (R), we define the projective dimension as

pdRX = inf{sup(Z) | Z � X, Zi = 0 for |i| � 0, Zi is projective}.
Proposition 1.37 ([7, 2.10]). pdRX = sup(X ⊗L

R k).

Proposition 1.38 (the Auslander–Buchsbaum formula). If pdRX <∞, then

pdRX + depthX = depthR.

Definition 1.39. For X ∈ Df
b (R), we define the injective dimension as

idRX = inf{− inf(Z) | Z � X, Zi = 0 for |i| � 0, Zi is injective}.
Proposition 1.40 ([7, 2.10]). idRX = − inf(RHom(k,X)).

Definition 1.41. A complex X ∈ Df
b (R) is called dualizing if idRX < ∞ and the natural morphism of

complexes
R

αR−−→ RHomR(X,X)
is a quasi-isomorphism.

Proposition 1.42. If a complex X is dualizing, then for any M ∈ Df
b (R) the natural morphism

M
αM−−→ RHomR(RHomR(M,X), X)

is a quasi-isomorphism.

Proposition 1.43. If R is a Gorenstein ring, then the free module of rank 1 is a dualizing complex.

Proposition 1.44. If R � S/I, where S is a Gorenstein ring, then the R-complex RHomS(R,S) is
dualizing.

Proposition 1.45 ([28, V.3.4]). The following two conditions for a complex X ∈ Df
−(R) are equivalent :

(1) IXR (t) = tn;
(2) the complex X is dualizing.
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1.3. Suitable Modules. Let us list, following [24], the basic facts about GK-dimension and GK-perfect
modules that are necessary for further considerations.

Fix a moduleK. For any module P , we denote the module HomR(P,K) by P ∗. We say that a module P
is K-reflexive if the canonical homomorphism P → P ∗∗ is a bijection.

Definition 1.46. For K-reflexive modules P over a ring R such that for all i > 0 we have Exti
R(P,K) =

0 = Exti
R(P ∗,K), we set GK-dimR P = 0;

GK-dimRM = inf{n | there exists an exact sequence

0→ Pn → Pn−1 → · · · → P0 →M → 0, where GK-dimR Pi = 0}.
In the case where GK-dimM is finite, this can be expressed in the following way.

Proposition 1.47. If GK-dimM <∞, then GK-dimM = sup{n | Extn
R(M,K) �= 0}.

If GK-dimRR = 0, then the module K is called suitable. In other words, K is suitable if and only if
HomR(K,K) � R and for any i > 0 we have Exti

R(K,K) = 0. For example, a free module of rank 1
is suitable (the corresponding dimension coincides with the classical G-dimension of the module M ; we
denote it by G-dimM for the sake of brevity), and so is the dualizing module. For GK-dimension w.r.t.
a suitable module K, the following analogue of the Auslander–Buchsbaum formula holds true.

Proposition 1.48. If GK-dimM <∞, then GK-dimM + depthM = depthR.

Moreover, we have the following statement.

Proposition 1.49. The following three conditions are equivalent :
(1) K is a dualizing module;
(2) for any M , we have GK-dimM <∞;
(3) GK-dim k <∞.

Definition 1.50. gradeM = inf{i | Exti
R(M,R) �= 0}.

Proposition 1.51. If I is an ideal of R, then gradeR/I equals the length of a maximal R-regular sequence
in I.

Proposition 1.52. gradeM ≤ GK-dimM .

Definition 1.53. If gradeM = GK-dimM , then the module M is called GK-perfect. An ideal I of
a ring R is called GK-perfect if R/I is a GK-perfect module.

The meaning of the notion of “GK-perfect ideal” is given by the following theorem reflecting the
behavior of G-dimension under a ring change.

Theorem 1.54 ([24, Proposition 5]). Let I be a GK-perfect ideal and K be a suitable R-module. Then
Extgrade R/I

R (R/I,K) is a suitable R/I-module and for any R/I-module M

GK-dimRM <∞ ⇐⇒ GK′-dimR/I M <∞,
where K ′ = Extgrade R/I

R (R/I,K). Under the finiteness condition, these two dimensions satisfy the follow-
ing equality:

GK-dimRM = gradeR/I + GK′-dimR/I M.

Later (see Remark 2.11), we shall give a proof of this theorem that differs from the one in [24].

Definition 1.55. Let, under the assumptions of Theorem 1.54, K ′ � R/I. In this case, we call the
ideal I a GK-Gorenstein ideal. The simplest example is the ideal generated by a regular sequence.
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Proposition 1.56. The following two conditions for an ideal I are equivalent :
(1) an ideal I is G-perfect ;
(2) for k �= gradeR/I we have Extk

R(R/I,R) = 0; further, Extgrade R/I
R (R/I,R) is a suitable R/I-mod-

ule.

Lemma 1.57. If a is a G-Gorenstein ideal, a ⊂ I, and gradeR/I = gradeR/a, then

Exti+grade R/I
R (R/I,R) ∼= Exti

R/a(R/I,R/a)

for all i > 0. In particular,
Extgrade R/I

R (R/I,R) ∼= (a : I)/a.

Definition 1.58. Ideals I and J are called directly G-connected if there exists a G-Gorenstein ideal a
such that I = (a : J) and J = (a : I). In this case,

gradeR/I = gradeR/a = R/ grade J.

It follows from Lemma 1.57 that ideals I and J are directly G-connected through a G-Gorenstein ideal a
if and only if

Extgrade R/J
R (R/J,R) ∼= I/a, Extgrade R/I

R (R/I,R) ∼= J/a.

Below (Theorem 4.3), we obtain one more equivalent condition characterizing G-perfect ideals.

2. Semidualizing Complexes and GX-Dimension

2.1. Basic Notions. In this section, we define semidualizing complexes and G-dimension w.r.t. such
complexes and describe their essential properties.

Definition 2.1. A complex X ∈ Df
b (R) is called semidualizing if the natural morphism of complexes

R
αR−−→ RHomR(X,X)

is a quasi-isomorphism.

Example 2.2. The easiest examples of semidualizing complexes are the free module of rank 1 and the
dualizing complex when it exists. In what follows, such semidualizing complexes are called trivial.

The existence of a nontrivial semidualizing complex X over a ring provides a very strong restriction on
its Bass numbers.

Proposition 2.3. If X is a semidualizing complex over a ring R, then

PX
R (t) IRX(t) = IRR(t).

Proof. We have

RHomR(k,R) � RHomR(k,RHom(X,X)) � RHomR(k ⊗L
R X,X) � RHomk(k ⊗L

R X,RHomR(k,X)).

Computing the dimension of the corresponding vector spaces, we obtain the equality we are looking
for.

Given M ∈ Df
b (R), we write M∗∗

X = RHomR(RHomR(M,X), X) for the sake of brevity.

Definition 2.4. Let M αM−−→M∗∗
X be a quasi-isomorphism. Set

GX -dimM = − inf(Hom(M,X)) + inf(X).

Remark 2.5. In contrast to classical homological dimensions of modules, the introduced invariant can
be negative.

Let us get a connection between the given definition and Definition 1.46.
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Lemma 2.6. Let, in a short exact sequence

0→M → N → K → 0,

two of the three modules have finite GX-dimension w.r.t. a semidualizing complex X. The third one has
the same property.

Proof. Let I be an injective resolvent of the complex X. The statement evidently follows from the exact
sequence

0→ Hom(K, I)→ Hom(N, I)→ Hom(M, I)→ 0

and the commutative exact diagram

0 −−−−→ M −−−−→ N −−−−→ K −−−−→ 0⏐⏐�αM

⏐⏐�αN

⏐⏐�αK

0 −−−−→ M∗∗
X −−−−→ N∗∗

X −−−−→ K∗∗
X −−−−→ 0

The lemma is proved.

Lemma 2.7. Let, in a short exact sequence

0→M → N → K → 0,

one have
GX-dimN = 0, 0 < GX-dimK <∞.

Then
GX-dimM = GX-dimK − 1.

The proof is similar to that of Lemma 2.6.

Theorem 2.8. Let a semidualizing complex X have one nonzero homology in degree 0. Then K � H0(X)
is a suitable module and GX-dimM = GK-dimM .

Proof. If the complex X has just one nonzero homology, then the condition of αR : R → RHomR(X,X)
being a quasi-isomorphism can be reduced to the following:

(1) R
H0(αR)−−−−→ HomR(H0(X),H0(X));

(2) Exti
R(H0(X),H0(X)) = 0 for i > 0.

We use induction in that one of these dimensions that is finite. It is easy to see that GK-dimM = 0 if
and only if GX -dimM = 0. Indeed, if one of the dimensions equals zero, then we have Extn

R(M,K) = 0
with n > 0. Hence, M αM−−→ M∗∗

X is a quasi-isomorphism if and only if the canonical homomorphism
M →M∗∗

K is an isomorphism, which is what we claimed. Now let one of the dimensions of the module M
be finite and greater than 0. Then we cover the module M by a free module and apply the inductive
assumption and Lemma 2.7 to the kernel of this covering.

Remark 2.9. It follows from Lemma 2.6 that, in particular, if pdM <∞, then GX -dimM <∞ for any
semidualizing complex X.

Theorem 2.10. Let X be a semidualizing complex over S, R be a finite (finitely generated as an S-mod-
ule) S-algebra, and X ′ = RHomS(R,X). Then

(1) GX-dimS R <∞ if and only if X ′ is a semidualizing complex over R;
(2) under the condition of GX-dimS R <∞ for an R-complex M , the finiteness of the GX-dimension

over the ring S is equivalent to the finiteness of the GX′-dimension over the ring R. Moreover,

GX-dimS M = GX′-dimRM + GX-dimS R.
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Proof. The functor

RHomR(·, X ′) � RHomR(·,RHomS(R,X))

from the category Df
+(R) into Df

−(R) is isomorphic to the functor RHomS(·, X). Hence

RHomR(X ′, X ′) � RHomS(RHomS(R,X), X),

and we get the first statement of the theorem. The equivalence of the inequalities GX -dimS M <∞ and
GX′-dimRM <∞ can be proved similarly.

Now, for M ∈ Df
b (R), let us have GX -dimS M <∞. Then

GX -dimS M = − inf(RHomS(M,X)) + inf(X)

= − inf(RHomS(M,X)) + inf(X ′)− inf(X ′) + inf(X)

= − inf(RHomR(M,X ′)) + inf(X ′)− inf(X ′) + inf(X)
= GX′-dimRM + GX -dimS R.

The theorem is proved.

Remark 2.11. Let a semidualizing complex X have just one nonzero homology that is a suitable module
and let a be a GK-perfect ideal, where K � H0(X). In this case, the semidualizing complex X ′ �
RHomS(R,X) also has one nonzero homology that is an R/a-suitable module. Applying Theorem 2.10,
we obtain the statement of Theorem 1.54.

We describe semidualizing complexes X such that for any R-module M we have GX -dimM <∞.

Theorem 2.12. Let X be a semidualizing complex over a ring R and GX-dimR k < ∞. Then X is
a dualizing complex and for any R-complex M ∈ Df

b (R) we have

GX-dimRM <∞.
Proof. From Theorem 2.10, we see that RHomR(R/m, X) is a semidualizing complex over the vector
space k, whence there exists just one value i = i0 such that μi(m, X) is not zero. Moreover, μi0(m, X) = 1.
According to Proposition 1.45, this property of the Bass numbers characterizes dualizing complexes. The
converse easily follows from Proposition 1.42.

Further we consider the behavior of GX -dimension under localization.

Theorem 2.13. Let X be a semidualizing complex over a ring R and let M be an R-module. Then Xp

is a semidualizing complex over the ring Rp and the finiteness of GX-dimRM implies the finiteness of
GXp -dim

Rp
Mp.

Proof. From Proposition 1.35 we see that the Rp-complex Xp is semidualizing and that applying lo-
calization to a quasi-isomorphism M → RHomR(RHomR(M,X), X) one can get the required quasi-
isomorphism

Mp→ RHomRp (RHomRp (Mp, Xp), Xp).

The theorem has been proved.

We prove an analogue of the Auslander–Buchsbaum formula for GX -dimension.

Theorem 2.14. Let X be a semidualizing complex over a ring R, and, for M ∈ Df
+(R), let us have

GX-dimRM <∞. Then

GX-dimRM + depthM = depthR.
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Proof. We have

depthM = − sup(RHomR(k,M))

= − sup(RHomR(k,RHomR(RHomR(M,X), X)))

= − sup(RHomR(k ⊗L
R RHomR(M,X), X))

= − sup(RHomk(k ⊗L
R RHomR(M,X),RHomR(k,X)))

= −(sup(RHomR(k,X))− inf(RHomR(M,X))).

Similarly, we get
depthR = −(sup(RHomR(k,X))− inf(X)).

Then
depthR− depthM = inf(X)− inf(RHomR(M,X)) = GX -dimM.

We have proved the theorem.

Remark 2.15. Note that the proof of the Auslander–Buchsbaum formula for the classical G-dimension
of modules that appeared in [3] has a big gap (see [32]). It seems that the first correct proof is in [32] and
it is much more complicated than what we give here. A simpler way is presented in [13], but also in this
case the moving from modules to complexes simplifies the proof significantly.

Consider the following situation: a ring R is an S-algebra, and M is an R-module of finite R-projective
dimension. Then it is easy to see that the projective dimension of M over S is also finite and we have
the equality

pdS M = pdRM + pdS R.

In [8, Remark 4.8], it was conjectured that the analogue of this statement is true for G-dimension. Using
Theorem 2.10, we propose the following conjecture, which may be more general.

Conjecture 2.16. Let X be a semidualizing complex over a ring R. Then

GX -dimM ≤ G-dimM,

and if the right-hand side is finite, then the equality holds.

We show that from this conjecture for semidualizing complexes of a special form the required assertion
follows.

Corollary 2.17. Let R be a finite S-algebra, G-dimS R <∞, and M ∈ Df
b (R). Then under the assump-

tion of validity of Conjecture 2.16 for the ring R one has

G-dimRM <∞ =⇒ G-dimS M <∞,
and under the condition of finiteness the following formula holds:

G-dimS M = G-dimRM + G-dimS R. (1)

Proof. Consider the complex X ′ = RHomS(R,S). According to Theorem 2.10, X is a semidualizing
R-complex, whence, if Conjecture 2.16 is true, then we have GX -dimRM < ∞. Applying now Theo-
rem 2.10, we get G-dimS M <∞. Equality (1) obviously follows from Theorem 2.14.

The following problem is also interesting: Is it true that all semidualizing complexes over a ring R are
just the complexes of the form X = RHomS(R,S), where R is a quotient-ring of S?

For dualizing complexes, the corresponding problem was given by R. Sharp [36], and a positive answer
to it appeared in [31], where it was shown that any ring over which there exists a dualizing complex is
a quotient-ring of a Gorenstein ring. Below (Corollary 4.8), it is shown that the answer to this question
is also positive in the case where the complex X is semidualizing with a unique nonzero homology.
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2.2. The Structure of the Set of Semidualizing Complexes. We begin by presenting a construc-
tion of a ring with a big number of nontrivial suitable modules, which provides the foundation for studying
the structure of the set of semidualizing complexes in the general case.

Let S1, . . . , Sn be finite local algebras over a local ring R. We denote the maximal ideal in Si by mi,
and m denotes the maximal ideal of the ring R. Consider the R-algebra S = S1 ⊗R S2 ⊗R · · · ⊗R Sn.

For any P ⊂ {1, . . . , n}, set SP =
⊗

R Si, where i runs through the set P . We denote P̄ = {1, . . . , n}\P .

Proposition 2.18. Let, for any i, the algebra Si be free as an R-module and let Si/mi
∼= R/m. Then the

algebra S is local, for any P ⊂ {1, . . . , n} the S-module KP = HomSP̄
(S, SP̄ ) is suitable, and

typeKP = (typeR)n
∏
i∈P̄

dimSi/mi
HomSi/mSi

(Si/mi, Si/mSi).

If, moreover, none of the rings Si/mSi is a Gorenstein ring, then the modules KP are pairwise noniso-
morphic.

Proof. Consider the ideal generated by all mi in S. The condition of the proposition provides its max-
imality. On the other hand, any other maximal ideal must intersect each Si giving the ideal mi. The
suitability of the modules KP follows from the fact that S is a free SP̄ -module and from Theorem 2.10.
We verify that they are not isomorphic. Let P and Q be two different subsets of {1, . . . , n}. Without
loss of generality, we assume that there exists i ∈ P \Q. We prove that KP and KQ are not isomorphic
as Si-modules. The Si-module KP is isomorphic to the module HomR(Si, R)l, and the Si-module KQ is
isomorphic to the module Sl

i, where l = rankSi S. Over the ring Si/mSi, a minimal system of generators
of the module KP /mKP consists of l · dimSi/mi

HomSi/mSi
(Si/mi, Si/mSi) elements (which is not equal

to l, since the ring Si/mSi is not a Gorenstein ring), and a minimal system of generators of the module
KQ/mKQ has l elements. One can calculate the type of KP from this.

Remark 2.19. The module KP = HomSP̄
(S, SP̄ ) can be represented in the following form:⊗

i∈P

HomR(Si, R)⊗
⊗
i∈P̄

Si.

Proposition 2.20. The Cohen–Macaulay type of a suitable S-module K is a divisor of the Cohen–
Macaulay type of the ring.

Proof. According to Proposition 2.3, we have PK
S (t) ISK(t) = ISS(t). Comparing the leading coefficients, we

obtain that the Cohen–Macaulay type of the ring R is the product of the Cohen–Macaulay type of the
module K and the number of its generators.

In [14], for any natural i, an example of a ring with type 22i
and suitable modules of all types admissible

by Proposition 2.20 were constructed.
Here, for any given natural m, we construct an example of a ring S with Cohen–Macaulay type m over

which, for any divisor of m, there exists a suitable module with the corresponding Cohen–Macaulay type.

Example 2.21. In Proposition 2.18, let R = k. Represent the natural number m as the product of
primes:

m =
n∏

i=1

pi.

Consider the ring

Tm =
n⊗

i=1

k � kpi ,

where k is a field. The type of the ring Tm equals m, and, according to what has been proved, for any
divisor a of the number m there exists a suitable Tm-module K with type a.
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Remark 2.22. Under the conditions of Proposition 2.18, the Betti and Bass numbers of the module KP

depend only on the collection of isomorphism classes of the rings Si, where i ∈ P . That is why if there
are isomorphic rings among the rings Si, then the modules KP cannot be separated by these invariants,
in general.

Remark 2.23. As shown in [35, Corollary 4.9], for the ring Tm from Example 2.21 the set of suitable
modules just consists of the modules constructed in Proposition 2.18.

The problem whether this construction is universal at least for the case of finite-dimensional algebras
over a field is interesting. All other examples known to the author are like those.

The following consideration provides the basis for further investigations of the set of semidualizing
complexes over a ring.

Proposition 2.24. Under the conditions of Example 2.21, GKI
-dimKJ <∞ if and only if J ⊂ I.

Proof. All of the statements follow from the isomorphism

RHomS

( ⊗
R

1≤i≤n

Mi,
⊗

R
0≤i≤n

Ni

)
�
⊗

R
1≤i≤n

RHomSi(Mi, Ni).

The proposition is proved.

Proposition 2.25. Under the assumptions of Example 2.21, J ⊂ I if and only if

KJ ⊗KI\J � KI .

The proof evidently follows from Remark 2.19.
We show that, in the general case, we have a similar decomposition.

Theorem 2.26. If X1 and X2 are semidualizing complexes over R such that GX2-dimX1 < ∞ and the
complex M ∈ Df

+(R) has finite G-dimension w.r.t. X1 and X2, then the composition morphism

ϕ : RHomR(M,X1)⊗L
R RHomR(X1, X2)→ RHomR(M,X2)

is a quasi-isomorphism.

Proof. It suffices to show that the complex coneϕ is acyclic. From the commutative diagram

RHomR(RHomR(M,X1)
⊗L

R RHomR(X1, X2), X2)
RHom R(ϕ,X2)←−−−−−−−−−− RHomR(RHomR(M,X2), X2)⏐⏐��


⏐⏐�

RHomR(RHomR(M,X1),
RHomR(RHomR(X1, X2), X2))

M
⏐⏐�
∥∥∥

RHomR(RHomR(M,X1), X1)
�←−−−− M

it follows that RHomR(ϕ,X2) is a quasi-isomorphism. Hence, the complex RHomR(coneϕ,X2) is
acyclic. Since the complexes RHomR(M,X1) ⊗L

R RHomR(X1, X2) and RHomR(M,X2) are bounded
from below, the complex coneϕ is also bounded from below. If H(coneϕ) �= 0, then inf coneϕ is finite.
We have

−∞ = supRHomR(k,RHomR(coneϕ,X2)) = supRHomR(k ⊗L
R coneϕ,X2)

= supRHom k(k ⊗L
R coneϕ,RHomR(k,X2)) = supRHomR(k,X2)− inf coneϕ.

This leads to a contradiction, since the last expression is finite.
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Definition 2.27. Nonisomorphic semidualizing complexes X0, X1, . . . , Xn form a chain of length n if
GXi-dimXi−1 <∞ for all i = 1, . . . , n.

Corollary 2.28. If semidualizing complexes X0, X1, . . . , Xn form a chain, then there is a quasi-isomor-
phism

Xn � X0 ⊗L
R RHomR(X0, X1)⊗L

R RHomR(X1, X2)⊗L
R · · · ⊗L

R RHomR(Xn−1, Xn). (2)

Proof. For each i, apply Theorem 2.26 with M = R to the semidualizing complexes Xi and Xi−1.

Remark 2.29. If the semidualizing complexes X0, X1, . . . , Xn � X0 form a chain, then, according to
Corollary 2.28, one has the quasi-isomorphism

X0 � X0 ⊗L
R RHomR(X0, X1)⊗L

R RHomR(X1, X2)⊗L
R · · · ⊗L

R RHomR(Xn−1, Xn).

Hence, for any i we get
RHomR(Xi, Xi+1) � R.

Dualizing w.r.t. Xi+1, we obtain Xi � Xi+1. For the case of chains of length 1 with X0 � R, this
was shown in [14, Proposition 8.3, (iii) ⇒ (ii)], and for arbitrary chains of length 1 this was shown in
[1, Theorem 5.5].

Proposition 2.30. If the complexes X1, X1 ⊗L
R X2 are semidualizing over R, then

ϕ : X1 → RHomR(X2, X1 ⊗L
R X2)

is a quasi-isomorphism. If X2 is also semidualizing, then

ψ : X2 → RHomR(X1, X1 ⊗L
R X2)

is a quasi-isomorphism. In particular, GX1⊗L
RX2

-dimX1 <∞.

Proof. Similarly to the proof of Theorem 2.26, we note that coneϕ is bounded from above. Thus, if coneϕ
has nonzero homologies, then RHomR(X1, coneϕ) also has nonzero homologies. Contradiction.

Remark 2.31. Many problems concerning the structure of the set of semidualizing complexes are still
unsolved. We point out the more interesting of them.

Transitivity: if a triple of semidualizing complexes X1, X2, X3 is such that GX3-dimX2 < ∞ and
GX2-dimX1 <∞, then does this imply that GX3-dimX1 <∞?

Existence of “union”: does there exist for a pair of semidualizing complexes X1, X2 a third semi-
dualizing complex X3 such that GX3-dimX2 <∞ and GX3-dimX1 <∞? (Note that this is trivially true
when there is a dualizing complex over the ring.)

Consider the classification problem of semidualizing complexes over Cohen–Macaulay rings. Semidu-
alizing complexes with more than one nonzero homology can be found only in rings sufficiently far from
regular. More precisely, one has the following statement.

Proposition 2.32. Let X be a semidualizing complex over R and amp(X) > 0. Then R is not a Cohen–
Macaulay ring.

Proof. Assume, under the assumptions of the proposition, that R is a Cohen–Macaulay ring. Let I be
an injective resolvent of the complex X. If x is an R-regular element, then from the exact sequence of
complexes

0→ HomR(R/xR, I)→ I
x→ I → 0

we see that amp(HomR(R/xR,X)) ≥ amp(X). Applying induction on depth, we may assume that R is
Artinian. We have

0 = amp(RHom(X,X)) > amp(X),
since H0(RHom(X,X)) � R, and

Hamp(x)(RHom(X,X)) � Hom(Hinf X(X),Hsup X(X)) �= 0,

because over an Artinian ring Hom(M,N) �= 0.
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Proposition 2.33. Let R be a complete local ring and x be an R-regular element. Then it is possible to
obtain a one-to-one correspondence between the sets of isomorphism classes of suitable modules over the
rings R and R/(x).

Proof. If a module K is suitable over R, then it is known [24] that the module K ′ = K/(x)K is suitable
over R/(x). On the other hand, the fact that for the suitable R/(x)-module K ′ by definition we have
Ext2R/(x)(K

′,K ′) = 0 implies [4, Proposition 1.7] that there exists an R-module K such that K ′ = K/(x)K
and TorR

i (R/(x),K) = 0 when i > 0. Its suitability can be checked directly, and uniqueness follows from
the equality Ext1R/(x)(K

′,K ′) = 0 (see [4, Proposition 2.5]).

Remark 2.34. As the two previous propositions show, the classification of semidualizing complexes over
complete Cohen–Macaulay rings is reduced to the classification of suitable modules over Artinian rings.

Below, we consider the case of Artinian rings. There are reasons to think that the ring from Exam-
ple 2.21 has maximally possible chains of suitable modules in some sense. We formalize this consideration
later.

Definition 2.35. Modules K1,K2, . . . ,Kn are called weakly Tor-independent if

amp

(⊗L

1≤i≤n

Ki

)
= 0.

Definition 2.36. Modules K1,K2, . . . ,Kn are called strongly Tor-independent if for any subset I ⊂
{1, . . . , n} we have

amp

(⊗L

i∈I

Ki

)
= 0.

Remark 2.37. In the case n = 2, both notions are equivalent to the classical Tor-independence, i.e., to
the condition that TorR

i (K1,K2) is zero for i > 0.

Remark 2.38. It is unknown whether the weak Tor-independence implies the strong one for n > 2.

Theorem 2.39. If modules K1,K2, . . . ,Kn are not free and strongly Tor-independent, then mn �= 0. If,
under the same assumptions, mn+1 = 0, then the Betti series of k is of the form

1
n∏

i=1
(1− dit)

for some natural di.

Proof. We denote Yi = Syz1(Ki). Note that if we choose for each i a module Xi ∈ {Ki, Yi}, then the
modules Xi are still strongly Tor-independent. We assume that mn = 0. We prove by induction that

mn−j ⊗
⊗

1≤i≤j

Yi = 0.

If j = 1, then this follows from Y1 ⊂ mRβR
0 (K1). Let the induction assumption be proved for j = l.

Consider the exact sequence
0→ Yl+1 → RβR

0 (Kl+1) → Kl+1 → 0

and tensor it by
⊗

1≤i≤l

Yi. Using the strong Tor-independence, we get

⊗
1≤i≤l+1

Yi ⊂ m

( ⊗
1≤i≤l+1

Yi

)βR
0 (Kl+1)

,

2220



which implies what is claimed by the induction assumption. Using the proved statement for j = n − 1,
we obtain

m

( ⊗
1≤i≤n−1

Yi

)
= 0,

i.e.,
⊗

1≤i≤n−1
Yi is a vector space over the quotient field of R. Since

TorR
1

( ⊗
1≤i≤n−1

Yi,Kn

)
= 0,

the module Kn is free. We arrive at a contradiction, whence mn �= 0.
If now mn+1 = 0, then a similar consideration shows that

m2

( ⊗
1≤i≤n−1

Yi

)
= 0, m

( ⊗
1≤i≤n

Yi

)
= 0.

The first equality implies the existence of an exact sequence of the form

0→ kan →
⊗

1≤i≤n−1

Yi → kbn → 0.

Tensoring it by Kn and using the equalities

TorR
j

( ⊗
1≤i≤n−1

Yi,Kn

)
= 0, j > 0,

from the long exact sequence of Tor-complexes, we obtain the isomorphisms

TorR
i (Kn, k)an � TorR

i+1(Kn, k)bn

for all i > 0. From this it follows that

TorR
i (Yn, k)an � TorR

i+1(Yn, k)bn , i ≥ 0.

Thus, the Betti series of Yn has the form

PR
Yn

(t) =
cn

1− (an/bn)t
.

Similarly, we get the Betti series for all modules Yi. Using the strong Tor-independence, we obtain the
equality

PR⊗
1≤i≤n

Yi
(t) =

n∏
i=1

ci

n∏
i=1

(1− (ai/bi)t)
.

It remains to note that
⊗

1≤i≤n
Yi is a vector space over k and βR

0 (k) = 1.

Conjecture 2.40. If suitable modules K0,K1, . . . ,Kn form a chain, then mn �= 0. If, under the same
conditions, mn+1 = 0, then the Betti series of k is

1
n∏

i=1
(1− dit)

for some di.
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Remark 2.41. By Corollary 2.28, the conditions of the conjecture imply weak Tor-independence of the
modules

K0,HomR(K0,K1),HomR(K1,K2), . . . ,HomR(Ki−1,Ki)
for all i ≤ n. This condition is intermediate between the weak and strong Tor-independence of the modules

K0,HomR(K0,K1),HomR(K1,K2), . . . ,HomR(Kn−1,Kn).

Theorem 2.42. Conjecture 2.40 is true for n ≤ 3.

Proof. First note that if the suitable modules K0,K1, . . . ,Kn form a chain, then the modules R,K1, . . . ,
Kn−1, D (where D is dualizing) also form a chain. Thus, one can assume the chain to be of the described
form. For n = 1, the statement is trivially true. The existence of two nonisomorphic suitable modules
now implies m �= 0, and the statement about the Betti series of the quotient field holds for all rings
with m2 = 0. For n = 2, the modules K1 and Hom(K1, D) are Tor-independent and we are under
the conditions of Theorem 2.39. According to Theorem 2.39, for n = 3 it suffices to show the strong
Tor-independence of the modules K1, HomR(K1,K2), and HomR(K2, D). The weak Tor-independence
follows from 2.28. To prove that any two of these modules are Tor-independent, we apply Theorem 2.26
to the triples (M,X1, X2) = (R,K1,K2), (K1,K2, D), and (HomR(K1,K2),K2, D).

Definition 2.43. An Artinian ring R is called SD(n)-complete if the following conditions hold:
(1) mn+1 = 0;
(2) over the ring there exist strongly Tor-independent nonfree suitable modules K1,K2, . . . ,Kn such

that, for any subset I ⊂ {1, . . . , n}, the module
⊗
i∈I

Ki is suitable.

Remark 2.44. If a set of suitable modules satisfies the second condition of Definition 2.43, then the
suitable modules X0 = R, Xk =

⊗
1≤i≤k

Ki form a chain by Proposition 2.30.

Example 2.45. All non-Gorenstein rings with m2 = 0 are SD(1)-complete. A ring with m3 = 0 is

SD(2)-complete if and only if there exists a nontrivial suitable module over it. The ring
1≤i≤n⊗

k

k � kai ,
where ai > 1, is SD(n)-complete (see Example 2.21).

Proposition 2.46. For an SD(n)-complete ring R, the module
⊗
Ki is dualizing.

Proof. Assume that
⊗
Ki is not dualizing. We show that the suitable modules K1,K2, . . . ,Kn,

Hom
(⊗

RKi, D
)

are strongly Tor-independent. Setting

X1 =
⊗
i∈I

Ki, X2 =
⊗
i/∈I

Ki,

we obtain the following isomorphisms:

X1 ⊗L
R RHomR(X1 ⊗L

R X2, D)

� RHomR(X2, X1 ⊗L
R X2)⊗L

R RHomR(X1 ⊗L
R X2, D) � RHomR(X2, D).

Here, Proposition 2.30 provides the first isomorphism and Theorem 2.26 provides the second one. Thus,

amp

(⊗L

i∈I

Ki ⊗L Hom
(⊗L

R
Ki, D

))
= amp

(
Hom

(⊗L

i/∈I

Ki, D

))
= 0,

as required. Now, using the first condition of the definition of an SD(n)-complete ring, we arrive at
a contradiction with Theorem 2.39.

Remark 2.47. If the conditions of Conjecture 2.40 hold for a ring R, n ≤ 3, and mn+1 = 0, then R is
SD(n)-complete.
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We study the case of SD(n)-complete Artinian rings below. First, we prove several auxiliary assertions
about the modules M being annihilated by the square of the maximal ideal with finite GK-dimension
w.r.t. some suitable nondualizing module.

Proposition 2.48. If R is Artinian, m2M = 0, and GK-dimM = 0, then there exists a natural c such
that for the Bass numbers μi(K) we have μi+1(K) = cμi(K) for any i > 0.

Proof. From the short exact sequence

0→ ka →M → kb → 0,

writing down the long exact sequence for the functor ExtiR(−,K) and using ExtiR(M,K) = 0 for all i > 0,
we obtain the isomorphisms Exti

R(k,K)a � Exti+1
R (k,K)b for all i > 0. Since K is not dualizing, we

have Ext1R(k,K) �= 0. Hence, (a/b)n dimk(Ext1R(k,K)) = dimk(Extn+1
R (k,K)) is a natural number for

any n ≥ 0. Thus, b divides a.

Proposition 2.49. If a ring R is Artinian, m2M = 0, and GK-dimM = 0, then l(M∗
K) = l(M) and

μ1(K) = μ0(K)2 − 1.

Proof. From the short exact sequence

0→ ka →M → kb → 0,

applying the functor Hom(−,K) and using ExtiR(M,K) = 0 for all i > 0, we get the short exact sequence

0→ kbμ0(K) →M∗
K → kaμ0(K)−bμ1(K) → 0.

The computation of the lengths gives

l(M∗
K) = (a+ b)μ0(K)− bμ1(K) = l(M)μ0(K)− bμ1(K). (3)

Similarly, starting from the exact sequence

0→ kbμ0(K) →M∗
K → kaμ0(K)−bμ1(K) → 0,

we obtain the equality

l(M∗∗
K ) = l(M∗

K)μ0(K)− (aμ0(K)− bμ1(K))μ1(K). (4)

In addition, we have
a+ b = l(M) = l(M∗∗

K ). (5)

Eliminating a and b from these formulas, we obtain

l(M∗
K)μ1(K) = l(M)(μ0(K)2 − 1)

and
l(M)μ1(K) = l(M∗

K)(μ0(K)2 − 1),

from which we obtain the required equalities.

Remark 2.50. Let R be an SD(n)-complete ring and K1,K2, . . . ,Kn be the corresponding set of non-
trivial suitable modules. Denoting Yi = Syz1(Ki), from the proof of Theorem 2.39 we deduce that for
any i ∈ {1, . . . , n} the module

⊗
j �=i

Yj is annihilated by the square of the maximal ideal and has finite

GK−i-dimension, where K−i =
⊗
j �=i

Kj .

The following proposition shows that in the general case the Betti numbers of suitable modules over
SD(n)-complete rings behave as in Example 2.21.
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Proposition 2.51. Let R be an SD(n)-complete ring and K1,K2, . . . ,Kn be the corresponding set of
nontrivial suitable modules. For each i, the Bass series for K−i is

IK−i(t) =
μ0(K−i)− t
1− μ0(K−i)t

,

and the Betti series for Ki is

PKi(t) =
β0(Ki)− t
1− β0(Ki)t

.

Proof. Using Propositions 2.48 and 2.49, we obtain the following expression for the Bass series of K−i:

IK−i(t) =
μ0(K−i)− μ0(K−i)ct+ μ0(K−i)2t− t

1− ct ,

where μj+1(K−i) = cμj(K−i) for j > 0. It remains to show that c = μ0(K−i). By Remark 2.50, there
exists an R-module M that is annihilated by m2 and has finite GK−i-dimension. Dualizing the exact
sequence

0→ ka →M → kb → 0,
we obtain the exact sequence

0→ kbμ0(K−i) →M∗ → kaμ0(K−i)−bμ1(K−i) → 0.

As in the proof of Proposition 2.48, from these two exact sequences we get the following:

a

b
= c =

bμ0(K−i)
aμ0(K−i)− bμ1(K−i)

.

Substituting μ1(K−i) = μ0(K−i)2 − 1 from Proposition 2.49 and transforming the expression, we obtain
the equality

(μ0(K−i)b− a)(b− μ0(K−i)a) = 0.
Since a/b is a natural number, we have a = μ0(K−i)b. From Proposition 2.46, we see that the module
Ki ⊗ K−i is dualizing, which is why from the isomorphism RHomR(Ki,Ki ⊗ K−i) � K−i we obtain
PKi(t) = IK−i(t).

Below, we consider the case of SD(2)-complete rings, i.e., the rings with m3 = 0 over which there exists
a nontrivial suitable module K.

Proposition 2.52. If R is an SD(2)-complete ring and K is a nontrivial suitable module over it, then
l(K) = l(R).

Proof. Dualizing w.r.t. K the exact sequence

0→ Syz1(K)→ Rβ0(K) → K → 0,

we obtain the sequence
0→ R→ Kβ0(K) → Syz1(K)∗ → 0.

From Proposition 2.49 it follows that l(Syz1(K)) = l(Syz1(K)∗). The computation of the lengths yields

β0(K) l(R)− l(K) = β0(K) l(K)− l(R),

from which it follows that l(K) = l(R).

Conjecture 2.53. For any suitable module K over an Artinian ring R, we have l(K) = l(R).

Remark 2.54. Any finite algebra with m3 = 0 is naturally graduated (see [40, proof of Theorem 3.1,
step 7]). On any R-module that is annihilated by m2 there exists a structure of a graduated module.

Lemma 2.55. If R is an SD(2)-complete ring and K is a nontrivial suitable module over it, then
socleR = m2 for all i ≥ 2 and mSyzi(K) = m2Rβi−1(K). In particular, there is a natural graduation
on the minimal free resolvent of the module Syz1(K).
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Proof. Applying [29, Remark 2.4] to M = K and N = Hom(K,D), where D is the dualizing module
and K is nontrivial semidualizing, we obtain socleR = m2. To obtain the second equality, we argue as
in [29, Remark 2.4]. The inclusion mSyzi(K) ⊂ m2Rβi−1(K) is obvious. To prove the converse inclusion,
we assume that there exists x ∈ m2Rβi−1(K) \ mSyzi(K). As Syzi−1(K) is annihilated by m2, we have
x ∈ Syzi(K) \mSyzi(K). For i > 0, the equality TorR

i (Syzi(K),Hom(K,D)) = 0 holds, whence Syzi(K)
does not have k as a direct summand. Thus, x is not annihilated by m, a contradiction.

Proposition 2.56. If R is an SD(2)-complete ring and K is a nontrivial suitable module over it, then
the following equalities hold :

(1) dimk m2 = μ0(K)β0(K);
(2) dimk m/m2 = μ0(K) + β0(K);
(3) dimk m2K = μ0(K).

Proof. The first equality follows from Hom(K,K) � R (hence, dimk socleK dimk K/mK = dimk socleR)
and Lemma 2.55. To prove the second one, consider the sequence

0→ Syz2(K)/mSyz2(K)→ (R/m2R)β1(K) → Syz1(K)→ 0,

which is exact by Lemma 2.55. The computation of the lengths gives

dimk Syz2(K)/mSyz2(K)

= β1(K)(1 + dimk m/m2)− dimk Syz1(K)/mSyz1(K)− dimk mSyz1(K)

= β1(K)(1 + dimk m/m2)− β1(K)− β1(K)μ0(K) = β1(K)(dimk m/m2 − μ0(K)), (6)

where in the second equality we use the equality

dimk mSyz1(K) = dimk(Syz1(K)/mSyz1(K))μ0(K)

(see the proof of Proposition 2.51). On the other hand, from Lemma 2.55 we have

dimk mSyz2(K) = β1(K) dimk m2 = β1(K)μ0(K)β0(K). (7)

Finally, note that the module Syz2(K) also has finite GK-dimension, from which, as in the proof of
Proposition 2.51, we obtain

dimk mSyz2(K) = μ0(K) dimk Syz2(K)/mSyz2(K). (8)

Combining (6), (7), and (8), we get

dimk m/m2 = μ0(K) + β0(K).

To obtain the second equality, consider the short exact sequence

0→ Syz2(L)/mSyz2(L)→ (R/m2R)β1(L) → Syz1(L)→ 0,

where L � Hom(K,D) is a suitable module, and tensor it by K. The sequence

0→ (Syz2(L)/mSyz2(L))⊗K → (K/m2K)β1(L) → Syz1(L)⊗K → 0

is also exact by Remark 2.41. The computation of the lengths gives

β1(L)(l(K)− l(m2K)) = β2(L)β0(K) + (β0(L)− 1) l(R), (9)

where the equality
l(Syz1(L)⊗K) = (β0(L)− 1) l(R)

follows from the computation of the lengths in the exact sequence

0→ Syz1(L)⊗K → Kβ0(L) → D → 0

and Proposition 2.52.

2225



Using (9) and the formulas β0(L) = μ0(K), β1(L) = μ0(K)2 − 1, and β2(L) = (μ0(K)2 − 1)μ0(K),
which follow from Proposition 2.51 and the equality l(R) = (1 + μ0(K))(1 + β0(K)), we get the required
equality.

Theorem 2.57. SD(2)-complete rings are Koszul, i.e., Exti
R(k, k)j = 0 for i �= j.

Proof. For M = Syz1(K),Syz1(Hom(K,D)), we have Exti
R(M,k)j = 0 for i �= j. It remains to prove that

the modules Syz1(K) and Syz1(Hom(K,D)) are Tor-independent and their tensor product is annihilated
by m.

3. PCI-Dimension

Definition 3.1 ([9]). A quasi-deformation of a ring R is a diagram of homomorphisms R → R′ ← Q,
where R → R′ is a flat extension and R′ ← Q is a deformation, i.e., the quotient homomorphism by the
ideal I generated by a regular sequence.

Definition 3.2 ([9]). CI-dimRM = inf{pdQ(M ⊗R R
′)− pdQR

′ | R→ R′ ← Q is a quasi-deformation}.
Definition 3.3. Consider the modules M over a ring R such that G-dimRM = 0 and their Betti numbers
βR

n (M) are bounded by some polynomial in n. For such modules, we set PCI-dimRM = 0. For arbitrary
modules, we set

PCI-dimRM = inf{n | there exists an exact sequence

0→ Pn → Pn−1 → · · · → P0 →M → 0, where PCI-dimR Pi = 0}.
The following statement is well known [26], but we provide a simpler proof of it.

Proposition 3.4. If R is a complete intersection, then for any R-module M the numbers βR
n (M) are

bounded by some polynomial in n.

Proof. First, we reduce this assertion to the case where depthM = depthR. Let n = depthR−depthM .
We denote SyzR

n (M) = coker δn+1, where (F, δ) is the minimal free resolvent of M over R. For i � 0,
we have βR

i (SyzR
n (M)) = βR

i+n(M). On the other hand, G-dimRM = depthR − depthM , whence
G-dimR SyzR

n (M) = 0, and therefore depth SyzR
n (M) = depthR. Now let depthM = depthR. Take an

R- or M -regular sequence (x) = (x1, x2, . . . , xdepth R). Since in this case TorR
i (R/(x),M) = 0, we have

βR
i (M) = β

R/(x)
i (M/(x)). Thus, the statement is reduced to the case of an Artinian ring. We prove it

by induction on the length of the module M . For the quotient field k, this is a classical result [38]. The
induction step easily follows from the exact sequence 0→ k →M →M/k → 0.

Proposition 3.5. If R is a complete intersection, then for any R-module M we have PCI-dimRM <∞.
Conversely, if PCI-dimR k <∞, then R is a complete intersection.

Proof. Let R be a complete intersection. We take any R-module M and construct its resolvent consisting
of modules of nonzero PCI-dimension. Let n = depthR − depthM . We denote SyzR

n (M) = coker δn+1,
where (F, δ) is the minimal free resolvent of M over R. As G-dimM is finite because R is a Gorenstein
ring, G-dimR SyzR

n (M) = 0. For i � 0, we have βR
i (SyzR

n (M)) = βR
i+n(M). From this and because the

Betti numbers of any module over a complete intersection are bounded by a polynomial (3.4), we obtain
PCI-dimR SyzR

n (M) = 0.
If PCI-dimR k < ∞, then βR

i (k) are bounded by a polynomial and then the ring R is a complete
intersection [27].

Proposition 3.6. PCI-dimRM ≤ CI-dimRM , and if CI-dimRM is finite, then we have the equality.

Proof. If CI-dimRM < ∞, then by [9, Theorem 1.4] G-dimRM < ∞. Let n = depthR − depthM . We
denote SyzR

n (M) = coker δn+1, where (F, δ) is the minimal free resolvent of M over R. Since G-dimM is
finite, it follows that G-dimR SyzR

n (M) = 0. For i� 0, we have βR
i (SyzR

n (M)) = βR
i+n(M). From this and
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from the fact that the Betti numbers of any module of finite CI-dimension are bounded by a polynomial
[9, Lemma 1.5], we obtain PCI-dimR SyzR

n (M) = 0.

Proposition 3.7. If PCI-dimM <∞, then PCI-dimM + depthM = depthR.

Proof. The statement is evident, since under these assumptions PCI-dimM = G-dimM , and for G-di-
mension the corresponding formula is true.

Using a similar method for PCI-dimension, one can show some other properties of CI-dimension. The
key point here is that if the Betti numbers of two modules in a short exact sequence are bounded by
a polynomial, then this is also true for the third module. Moreover, from the properties of G-dimension
the following statement is obvious.

Proposition 3.8. If two modules in a short exact sequence have finite PCI-dimension, then so does the
third one.

However, it is unknown whether CI-dimension has a similar property.
As Proposition 3.6 shows, the class of modules of finite PCI-dimension contains the class of modules

of finite CI-dimension. There is a problem due to this: do these classes coincide? A negative answer was
given by O. Veliche in [39]. The following was shown.

Proposition 3.9 ([39]). Let Q be a ring containing a field and depthQ ≥ 4. Then there exists a perfect
ideal I ⊂ Q such that gradeR/I = 4 and there exists a module M over the ring R = Q/I such that
0 = PCI-dimRM < CI-dimRM =∞.

Now we prove that a localization of a module of finite PCI-dimension also has finite PCI-dimension.

Proposition 3.10. βRp

i (Mp) ≤ βR
i (M). In particular, if the right-hand side is bounded by a polynomial

in i, then so is the left-hand side.

Proof. We take the minimal free resolvent of M over R and tensor it by the (R-flat) module Rp. The
resulting complex is a complex of free Rp-modules that is a direct sum of the minimal resolvent of Mp

over Rp and some complexes of the form 0→ Rp→ Rp→ 0. As the ith Betti number equals the rank of
the ith free module in the free resolvent, we are done.

Proposition 3.11. PCI-dimRp Mp ≤ PCI-dimRM .

Proof. The statement evidently follows from the corresponding property of G-dimension and Proposi-
tion 3.10.

Proposition 3.12 ([5]). If R is a complete intersection, then Rp is a complete intersection.

Proof. Indeed, if R is a complete intersection, then, by Proposition 3.4, the βR
n (R/p) are bounded by

a polynomial. By Proposition 3.10, the βRp

i (Rp/pRp) are also bounded by a polynomial. But Rp/pRp is
the quotient field of the ring Rp, and from the fact that the Betti numbers are bounded by a polynomial
we obtain (see [27]) that Rp is a complete intersection.

4. CM-Dimension

Assumptions. Consider the following two groups of notions:
(1) regular ring; complete intersection; ideal generated by a regular sequence from m \m2; ideal gener-

ated by an arbitrary regular sequence; projective dimension;
(2) Gorenstein ring; Cohen–Macaulay ring; G-Gorenstein ideal; G-perfect ideal; G-dimension.
For a large variety of statements about the first group of notions there are analogues for the second

group. We look at several examples.
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The quotient-ring of a regular ring by some ideal is a regular ring if and only if the ideal is generated
by a regular sequence from m/m2, and, similarly, the quotient-ring of a Gorenstein ring by some ideal is
a Gorenstein ring if and only if the ideal is G-Gorenstein.

The quotient-ring of a regular ring by some ideal is a complete intersection if and only if the ideal is
generated by a regular sequence, and, similarly, the quotient-ring of a Gorenstein ring by some ideal is
a Cohen–Macaulay ring if and only if the ideal is G-perfect.

Let S be a ring, R be its quotient-ring by the ideal I generated by a regular sequence from m\m2, andM
be an R-module. Then pdRM <∞ if and only if pdS M <∞, and if one of these conditions holds, then
pdRM + gradeR/I = pdS M (see [33]). The analogue of this statement is the following. Let S be a ring,
R be its quotient-ring by a G-Gorenstein ideal, and M be an R-module. Then G-dimRM < ∞ if and
only if G-dimS M < ∞, and if one of these conditions holds, then G-dimRM + gradeR/I = G-dimS M
(see [24]).

Now we give a definition of CM-dimension that would be an analogue for Definitions 3.1 and 3.2 for
CI-dimension.

Definition 4.1. A G-quasi-deformation of a ring R is a diagram of local homomorphisms R→ R′ ← Q,
where R → R′ is a flat extension and R′ ← Q is a G-deformation, i.e., the quotient homomorphism by
the G-perfect ideal I.

Definition 4.2. CM-dimRM = inf{G-dimQ(M ⊗R R′) − G-dimQR
′ | R → R′ ← Q is a G-quasi-

deformation}.
We prove that from the finiteness of the GK-dimension of a module M w.r.t. suitable modules K it

follows that its CM-dimension is finite. To do this, we give a new criterion for G-perfectness of an ideal.

Theorem 4.3. The following condition for an ideal I is equivalent to conditions (1) and (2) from Propo-
sition 1.56:

(3) there exists an ideal J such that the ideals I and J are directly G-connected, Extgrade R/I
R (R/I,R)

is a suitable R/I-module, and Extgrade R/J
R (R/J,R) is a suitable R/J-module.

Proof. We check that condition (3) follows from the validity of condition (1). As a we can take the ideal
generated by a maximal regular sequence in I. Let J = (a : I). Then

gradeR/I = gradeR/J

and

G-dimRR/J = G-dimR/aR/J + G-dimRR/a = G-dimR/aR/I + G-dimRR/a = G-dimRR/I.

This yields the G-perfectness of the ideal J . Below, we use condition (2).
We check that condition (1) follows from condition (3). Let a be the corresponding G-Gorenstein ideal.

Consider the ideals I/a and J/a in the ring R/a. The G-perfectness of these ideals is equivalent to the
G-perfectness of I and J . Condition (3) by Lemma 1.57 can be carried over to the quotient-ring R/a,
which is why it suffices to consider the following case: Ann I = J , AnnJ = I, I is a suitable R/J-module,
and J is a suitable R/I-module. Under these conditions, the exact sequences 0 → I → R → R/I → 0
and 0→ J → R→ R/J → 0 are duals of each other and we obtain the following isomorphisms for i > 1:

Exti
R(R/I,R) ∼= Exti−1

R (I,R), Exti
R(R/J,R) ∼= Exti−1

R (J,R),

and also
Ext1R(R/I,R) = 0, Ext1R(R/J,R) = 0.

Now it suffices to show that for i > 0

Exti
R(R/I,R) = 0 = Exti

R(R/J,R).
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The induction basis is shown. Let k ≥ 1 and the statement be true for i ≤ k. Consider the spectral
sequences of the ring change

Exti
R/I(J,Extj

R(R/I,R))⇒ Exti+j
R (J,R)

and
Exti

R/J(I,Extj
R(R/J,R))⇒ Exti+j

R (I,R).

For i ≥ 0, we have
Exti

R/I(J,Extk−i
R (R/I,R)) = 0

by the induction assumption and the suitability of the R/I-module J . Hence,

Extk+1
R (R/J,R) � Extk

R(J,R) = 0.

Similarly,
Extk+1

R (R/I,R) = 0.

The theorem is proved.

Remark 4.4. The case where a = 0 and the ideals I and J = Ann I are principal was first considered
in [5] (see also [6]).

We list several immediate corollaries.

Corollary 4.5. If I is a principal ideal, then G-dimRR/I = 0 if and only if Ann I is a suitable R/I-mod-
ule.

Corollary 4.6. If there exists a G-Gorenstein ideal a such that (a : I) = I and Extgrade R/I
R (R/I,R) is

a suitable R/I-module, then I is G-perfect.

The following construction was considered in [10] in a similar context for the case where K is a dualizing
module. Let K be a suitable module over a ring R. We define multiplication on the R-module S = R⊕K
by the formula

(a1, r1)(a2, r2) = (a1a2, a1r2 + a2r1).

Obviously, we have introduced a ring structure on S. Note that there is a surjective ring homomorphism φ
from S into R, i.e., R can be considered as an S-module. The kernel of this homomorphism is an ideal
of K. This ideal is G-perfect by Corollary 4.6, where as a we consider the zero ideal.

Theorem 4.7. Let GK-dimM <∞ for some suitable module K. Then CM-dimM <∞.

Proof. Consider a G-quasi-deformation R→ R← S, where as S we take the ring R⊕K considered above.
By Theorem 1.54, GK-dimRM = G-dimS M .

Corollary 4.8. If K is a suitable module over R, then there exists a ring S such that R � S/I,
G-dimS R = 0, and HomS(R,S) � K.

Now we can give one more definition of CM-dimension, equivalent to Definition 4.2 but technically
more suitable.

Definition 4.2′. CM-dimRM = inf{GK-dimR′(M ⊗R R′) | R→ R′ is a flat extension,K is a suitable
R′-module}.

In particular, it is now evident that CM-dimM ≥ 0. Using this definition, we prove that CM-dimension
indeed characterizes Cohen–Macaulay rings.

Theorem 4.9. If CM-dimRM <∞, then CM-dimRM + depthM = depthR.
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Proof. The statement follows from the corresponding equality for G-dimension:

CM-dimRM = G-dimQM
′ −G-dimQR

′ = (depthQ− depthQM
′)− (depthQ− depthQR

′)

= depthQR
′ − depthQM

′ = depthR′ − depthR′(M ⊗R R
′) = depthR− depthM.

The theorem is proved.

Theorem 4.10. If a ring R is a Cohen–Macaulay ring, then for any R-module M we have CM-dimRM <
∞. Conversely, if CM-dimR k <∞, then R is a Cohen–Macaulay ring.

Proof. If the ring R is a Cohen–Macaulay ring, then its completion R′ is the quotient-ring of a regular
ring S by a G-perfect ideal, and the statement follows from the fact that all modules over regular rings
have finite G- (moreover, projective) dimension.

We prove the converse. Let CM-dimR k < ∞, R → R′ be the corresponding flat extension, and K be
a suitable module. Let (x)=(x1, . . . , xdepth R) be a maximalR-regular sequence. Then CM-dimR/(x) k<∞.
Indeed, since R → R′ is a flat extension, we see that (x) is an R′-regular sequence, R/(x) → R′/(x) is
also a flat extension, and the suitability of the R′/(x)-module K/(x)K and the equality

GK/(x)K-dim
R′/(x)

(k ⊗R′/(x)) = GK-dimR′(k ⊗R′)− depthR

follow from Theorem 1.54. Thus, it suffices to consider the case depthR = 0. We prove that in this
case R is Artinian. If not, then for any n the ideal mn is nonzero. For any n, we have the embed-
ding 0→ Hom(k,mn)→ Hom(k,R). Since

⋂
mn = 0, for n � 0 we have Hom(k,mn) = 0, whence

depth mn �= 0. On the other hand, for R-modules M of finite length, using induction on the length with
the help of Lemma 2.6 one can show that GK-dimR′ M ⊗R′ <∞. Consider the exact sequence

0→ mn ⊗R R
′ → R′ → R/mn ⊗R R

′ → 0.

Since the length of the module R/mn is finite, we have GK-dimR′ R/mn⊗R′ <∞, and from Lemma 2.6 we
obtain GK-dimR′ mn⊗RR

′ <∞, whence CM-dimR mn <∞. We have a contradiction with Theorem 4.9:

0 < depthmn + CM-dimR mn = depthR = 0.

The theorem is proved.

Proposition 4.11. CM-dimRp Mp ≤ CM-dimRM .

Proof. Obviously, we may assume that CM-dimRM is finite. Let R → R′ ← Q be the corresponding
G-quasi-deformation. Since R→ R′ is a flat extension, there exists an ideal p′ ⊂ R′ such that R∩ p′ = p.
Let q ⊂ Q be the preimage of p′. It is easy to see that the diagram Rp → R′

p′ ← Qq is a G-quasi-
deformation. Then,

G-dimQM ⊗R R
′ ≥ G-dimQq (M ⊗R R

′)q = G-dimQq Mp⊗Rp R
′
p′ ,

G-dimQR
′ = G-dimQq R

′
p′ ,

as required.

Remark 4.12. From Theorem 4.9 and Proposition 4.11 we obtain that for modules M of finite CM-di-
mension and for any prime ideal p the following inequality holds:

depthR− depthM ≥ depthRp− depthMp.

The last condition for the module M was used in [12]; in particular, the authors point out (see [12,
Remark 5]) that it holds for G-dimM < ∞. Thus, we have obtained some extension of the class of
modules for which the conditions of [12, Corollary 4] hold in advance.
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