
Published at ICLR 2020 Integration of Deep Neural Models and Differential Equations Workshop

NEURAL DYNAMICAL SYSTEMS

Viraj Mehta, Ian Char, Willie Neiswanger, Youngseog Chung & Jeff Schneider
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{virajm,ichar,willie,youngsec,schneide}@cs.cmu.edu

Andrew Oakleigh Nelson, Mark D Boyer & Egemen Kolemen
Princeton Plasma Physics Laboratory
Princeton, NJ 08540, USA
{anelson,mboyer,ekolemen}@pppl.gov

1 INTRODUCTION

We introduce Neural Dynamical Systems (NDS), a method of learning dynamical models which
incorporates prior knowledge in the form of systems of ordinary differential equations. NDS uses
neural models to estimate free parameters of the system, predicts residual terms, and numerically
integrates over time to predict future states. It also natively handles irregularly sampled data and
implicitly learns values of interpretable system parameters. We find that NDS learns dynamics with
higher accuracy and fewer samples than a variety of deep learning methods that do not incorporate
the prior knowledge. We demonstrate these advantages first on synthetic dynamical systems and
then on real data captured from deuterium shots from a nuclear fusion reactor.

2 METHODS

We aim to introduce this model as a choice trading off between fidelity to our prior knowledge
about the world and flexibility to allow the model to adjust for the inevitable differences between
our modeling assumptions and reality.

We define a Neural Dynamical System (NDS) as a class of dynamical systems ẋ = fφ(x, u, t) where
a neural network is some part of fφ(x, u, t), predicting the parameters φ or some other component
of the system.

The following methods will discuss how to include ODE-structured prior knowledge in Neural Dy-
namical Systems: first in the ideal situation, where we know the correct system dynamics up to the
parameters of the dynamical system, as given by φ in our definition above. As this is a highly ideal
situation, we then point out two ways of relaxing to more incomplete information.

In all of these cases, our method has several advantages:

• Data Efficiency: by including prior knowledge we can learn accurate predictors with
smaller amounts of data.

• Accuracy: in situations where the dynamics are difficult to learn, an approximate model can
help predictions start from a baseline of accuracy that could be otherwise hard to achieve
and may help the final model reach a higher end level of performance.

• Continuous time: Neural ODE models natively operate in continuous time. Data arriving
at irregular intervals can be natively handled by Neural Dynamical Systems with good
performance.

• Explainability: to the extent that the parameters φ are meaningful values like the Rayleigh
constant in the Lorenz system and that our system predicts accurate values for them, we
can interpret the predictions of the system through these parameters.

NDS with Full System Dynamics Consider a class of dynamical systems where x ∈ Rn, u ∈
Rm, φ ∈ Rdp , dh, dc ∈ X, and let θ, ϑ, τ be trainable neural network weights. Let T < T ′

hθ(xt1:T ′ , ut1:T ) : X T ′ × UT → Rdh+dp be a fully connected neural network which we call a

1



Published at ICLR 2020 Integration of Deep Neural Models and Differential Equations Workshop

x1

⁞
xT′

u1

⁞
uT’

hθ(.)

cϑ(.)

bh

bc

dτ(.)
r

g(.)
ɸ

ODE 
Solver

xT′

⁞
xT

xt   ut

x+

Figure 1: A schematic Neural Dynamical System. Blue boxes are fully connected neural net-
works. Grey boxes are problem data and output. Pink boxes are embeddings and intermediate
quantities. The green box is the prior knowledge dynamical system. The purple box is data output
by ODE solver to query derivatives. Naturally, the ODE solver is a black box.

‘history encoder’ that outputs the parameters of the system φ̂ and an embedding bh ∈ Rdh . Also let
cϑ(xt, ut) : X × U → Rdc be a similar ‘context encoder’ for a single state and control that outputs
an embedding bc ∈ Rdc . Finally, let dτ (bh, bc) : Rdc+dh → Rn be a fully connected neural network,
which we call a ‘fusion encoder’ that outputs residual terms r̂. Then we can set up the following
dynamical system, which can be seen in Figure 1:

φ̂, bh = hθ(xt1:T ′ , ut1:T ) bc = cϑ(xt, ut)

r̂ = dτ (bh, bc) ẋ = gφ̂(xt, ut, t) + r̂
(1)

where g are domain-specific ODEs which are the input ‘domain knowledge’ about the system being
modeled. These can be equal to the true equations f and in the ‘full dynamics’ setting we assume
they are. But as we remove structure from the model, we will first remove equations from the system
g and then remove the assumption that they correctly model the dynamics. In order to more easily
explain how we evaluate and supervise these systems, we give an example.

Example 1: Lorenz system. To illustrate the full construction, we operate on the example of the
the Lorenz system: a chaotic dynamical system originally defined to model atmospheric processes
(Lorenz, 1963). The system has 3-dimensional state (which we’ll denote by x, y, z), 3 parameters,
ρ, σ, and β, and no control input. The system is given by

ẋ = σ(y − x) ẏ = x(ρ− z)− y ż = xy − βz. (2)

For a given instantiation of the Lorenz system, we have values of φ = [β, σ, ρ] that are constant
across the trajectory. So, we can instantiate a history encoder hθ which outputs φ̂ = [β̂, σ̂, ρ̂]. We
use the DOPRI5 method (Dormand & Prince, 1980) to integrate the full neural dynamical system in
Equation 1, with g given by the system in Equation 2 using the adjoint method of Chen et al. (2018).
We use the state xT ′ as the initial condition for this integration. This gives a series {x̂t}Tt=T ′ , which
we evaluate and supervise with a loss of the form

Lθ,ϑ,τ ({x̂ti}Ti=T ′+1, {xti}Tt=T ′+1) =

T∑
t=T ′+1

||xti − x̂ti ||22. (3)

NDS with Partial System Dynamics Suppose we only had prior knowledge about some of the
components of our system and none about others. We can easily accomodate this incomplete infor-
mation by simply ‘zeroing out’ the function g for the components we don’t know, i.e. gi(x, u, t) = 0
for an unknown ith component.

NDS with Approximate System Dynamics For Neural Dynamical Systems to be useful, they
must handle situations where the known model is approximate. This is transparently handled by our
formulation of Neural Dynamical Systems: the parameters of the approximate model φ̂ are predicted
by a ‘history encoder’ and the residuals r̂ are predicted by a ‘fusion encoder’. This is the same as in
the case where we have the correct dynamics.

2



Published at ICLR 2020 Integration of Deep Neural Models and Differential Equations Workshop

Example 2: Nuclear Fusion System. In this paper, we apply this technique to plasma dynamics in
a tokamak. In a tokamak, two quantities of interest are the stored energy of the plasma, which we
denote E and its rotational frequency, ω. The simple model used for control development in Boyer
et al. (2019) is used in this work.

Ė = P − E

τe
ω̇ =

T

nimiR0
− ω

τm
(4)

Here, ni is ion density (which we approximate as a constant value of 5 × 1019 deuterium ions per
m3), mi is ion mass (which we know since our dataset contains deuterium shots and the mass of a
deuterium ion is 3.3436 × 10−27 kg), and R0 is the tokamak major radius of 1.67 m. We use the
constant known values for these. τe and τm are the confinement times of the plasma energy and
momentum, which we treat as variable parameters (because they are!). These are predicted by the
neural network in our model.

3 EXPERIMENTS

We aim to show with the following experiments that our methods improve predictions of physical
systems by including prior dynamical knowledge about the systems, even as we vary the configura-
tions between the most structured and more fluid settings. We show that our models learn from less
data and are more accurate. We first present results on a pair of synthetic physical systems where
the data is generated in a noiseless and regularly spaced setting.

Afterwards, we show NDS performance on data taken from several plasma shots on tokamak re-
actors. This setting is extremely challenging, as the physics community is still actively trying to
understand plasma and tokamak dynamics. That being said, we still see a substantial improvement
in prediction even though we use a simplified model of high-level summary measures.

We use L2 error as our evaluation measure for predictive accuracy as given by Equation 3. For
synthetic examples, we learn over trajectories {(xti , uti , ti)}Ti=1 where the xti are generated by
numerically integrating ẋφ(x, u, t) using scipy’s odeint function (Virtanen et al., 2019), with x0 and
φ uniformly sampled from X and Φ, and uti given. We evaluate the synthetic experiments on a test
set of 500 trajectories that is fixed for a particular random seed generated in the same way as the
training data. We use a timestep of 0.5 seconds for the synthetic trajectories, which allows us to see
trajectories that don’t reach their peak and those that start to fall for the Ballistic system and to get
a wide spread of data on the Lorenz system (note the Lyapunov exponent of the system is less than
3 so in 16 predicted timesteps we get both predictable and unpredictable data (Frøyland & Alfsen,
1984)). We believe it is important to look at the progress of the system across this threshold to
understand whether the NDS model is robust to chaotic dynamics — since the Lorenz system used
for structure is itself chaotic, we want to make sure that the system doesn’t blow up over reasonably
long timescales. Lastly, the fusion data was measured at intervals of 0.05s.

All of these models take 32 timesteps of state and control information as input and are trained on
predictions for the following 16 timesteps. The ODE-based models are integrated from the initial
conditions of the last given state, while the fully connected and LSTM models naturally handle the
input and output data. The models are all trained with a learning rate of 3 × 10−3, which was seen
to work well across models. The learning rate was also reduced by a factor of 10 whenever test error
plateaued for 10 evaluations.

3.1 SYNTHETIC EXPERIMENTS

Sample Complexity and Overall Accuracy As we are interested in settings with limited data,
we trained the dynamical systems over 4, 000 batches of data. We generated training data on the
fly for synthetic experiments, so the model only ever saw each training example once. We repeated
this process with 5 different random seeds and plotted the L2 error of the model over the number
of samples seen by the model in Figure 2. The error regions are the standard deviation of the errors
over the various seeds.

As seen in Figure 2, the learning of Neural Dynamical Systems looks very different to that of the
comparison models. NDS improves rapidly in comparison to the fully connected models in both
the Lorenz and Ballistic cases. The NDS models with and without structure rapidly achieve good
accuracy and then capture mostly incremental gains afterward. We see the NDS with partial structure

3



Published at ICLR 2020 Integration of Deep Neural Models and Differential Equations Workshop

Figure 2: L2 loss between predicted and real trajectory as we train on more samples. The NDS
models learn much more quickly and converge to much lower errors on the Ballistic and Lorenz
systems.

in both cases perform slightly better than the full system. This is surprising to us as the partial
systems have less information than the full ones.

A potential explanation for this is that errors propagate through the dynamical model when the pa-
rameters are wrong, while the partial systems naturally dampen errors since, for example, ż only
depends on the other components through a neural network. Concretely this might look like a full
NDS predicting the wrong Rayleigh number σ which might give errors to y which would then propa-
gate to x and y. Conversely, this wouldn’t happen as easily in a partial NDS because there are neural
networks intermediating the components of the system. This certainly bears further exploration.

The Fully Connected Neural ODE outperforms the other models besides NDS, which we posit is
due to the fact that it implicitly represents that this system is a continuous time dynamical pro-
cess and should change in a continuous fashion. We also conducted experiments where we added
noise, looked at the accuracy of the learned parameters φ, and irregularly sampled data in time.

Figure 3: L2 loss between predicted and real
trajectories on the fusion problem as we train
on more samples. The Fusion NDS outperforms
other models, including a fixed version of the prior
knowledge model and a fully connected Neural
ODE. The initial drop in loss is steep, as is char-
acteristic of NDS models.

3.2 FUSION EXPERIMENTS

We explored the concept of approximate sys-
tem dynamics in a fusion system. The problem
is a low-dimensional one: predicting the state
of the tokamak as summarized by its stored en-
ergy and rotational frequency given the time
series of control input in the form of injected
power and torque. As we mentioned in Section
2, we have a simplified physical model given
by Equation 4 that approximately gives the dy-
namics of these quantities and how they relate
to one another through time.

Our full dataset consisted of 17,686 shots,
which we randomly partitioned into 1000 as a
test set and 16,686 as a training set. Data is
loaded and partially processed within the OM-
FIT framework (Meneghini et al., 2015). We
compare with the same models as in the previ-
ous section, but our Fusion Neural Dynamical

System is as described in Equation 1 with g given by Equation 4. As we discussed above, the dy-
namics in this equation are approximate. To illustrate this, we have included the accuracy of the
naive dynamics with no learning on our data with fixed confinement times τe = τm = 0.1s as the
Fixed Fusion Model in Figure 3. We use a larger Fully Connected network with 6 layers with 512
hidden nodes to attempt to capture the added complexity of the problem.

Sample Complexity and Overall Accuracy When comparing the three points on the spectrum
of added structure (i.e. fusion NDS, fully-connected neural ODE, and fully connected network), we

4



Published at ICLR 2020 Integration of Deep Neural Models and Differential Equations Workshop

see that the Fusion NDS model performs best. Although the fully connected neural ODE performs
competitively, it fails to reach the same performance. We speculate that the dynamical model helps
with generalization whereas the fully connected network may overfit the training data and fail to
reach good performance on the test set.

We also see the steep initial decrease in loss for NDS which is similar to that in the synthetic ex-
periments. If we were more sample-constrained or wanted to learn over a specific subset of the
data, it seems that these NDS models learn something useful even in the initial batches due to their
system-identification-like properties.

REFERENCES

M. D. Boyer, K. G. Erickson, B. A. Grierson, D. C. Pace, J. T. Scoville, J. Rauch, B. J. Crowley,
J. R. Ferron, S. R. Haskey, D. A. Humphreys, R. Johnson, R. Nazikian, and C. Pawley. Feedback
control of stored energy and rotation with variable beam energy and perveance on DIII-D. Nuclear
Fusion, 59(7):076004, May 2019. ISSN 0029-5515. doi: 10.1088/1741-4326/ab17f5. URL
https://doi.org/10.1088%2F1741-4326%2Fab17f5.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary Differ-
ential Equations. arXiv:1806.07366 [cs, stat], June 2018. URL http://arxiv.org/abs/
1806.07366. arXiv: 1806.07366.

J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. Journal of
Computational and Applied Mathematics, 6(1):19–26, March 1980. ISSN 0377-0427. doi:
10.1016/0771-050X(80)90013-3. URL http://www.sciencedirect.com/science/
article/pii/0771050X80900133.

Jan Frøyland and Knut H. Alfsen. Lyapunov-exponent spectra for the Lorenz model. Physical
Review A, 29(5):2928–2931, May 1984. doi: 10.1103/PhysRevA.29.2928. URL https://
link.aps.org/doi/10.1103/PhysRevA.29.2928.

Edward N. Lorenz. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20
(2):130–141, March 1963. ISSN 0022-4928. doi: 10.1175/1520-0469(1963)020〈0130:DNF〉2.
0.CO;2. URL https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%
281963%29020%3C0130%3ADNF%3E2.0.CO%3B2.

O. Meneghini, S. P. Smith, L. L. Lao, O. Izacard, Q. Ren, J. M. Park, J. Candy, Z. Wang, C. J. Luna,
V. A. Izzo, B. A. Grierson, P. B. Snyder, C. Holland, J. Penna, G. Lu, P. Raum, A. McCubbin,
D. M. Orlov, E. A. Belli, N. M. Ferraro, R. Prater, T. H. Osborne, A. D. Turnbull, and G. M.
Staebler. Integrated modeling applications for tokamak experiments with OMFIT. Nuclear Fu-
sion, 55(8):083008, July 2015. ISSN 0029-5515. doi: 10.1088/0029-5515/55/8/083008. URL
https://doi.org/10.1088%2F0029-5515%2F55%2F8%2F083008.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1 0 Contributors. SciPy 1.0–Fundamental Algorithms for Scientific Computing
in Python. arXiv:1907.10121 [physics], July 2019. URL http://arxiv.org/abs/1907.
10121. arXiv: 1907.10121.

5

https://doi.org/10.1088%2F1741-4326%2Fab17f5
http://arxiv.org/abs/1806.07366
http://arxiv.org/abs/1806.07366
http://www.sciencedirect.com/science/article/pii/0771050X80900133
http://www.sciencedirect.com/science/article/pii/0771050X80900133
https://link.aps.org/doi/10.1103/PhysRevA.29.2928
https://link.aps.org/doi/10.1103/PhysRevA.29.2928
https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2
https://doi.org/10.1088%2F0029-5515%2F55%2F8%2F083008
http://arxiv.org/abs/1907.10121
http://arxiv.org/abs/1907.10121

	Introduction
	Methods
	Experiments
	Synthetic Experiments
	Fusion Experiments


