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ABSTRACT

Influence Maximization (IM) has garnered significant attention due to its broad
applicability in areas such as viral marketing, social network recommendations,
and disease containment. The primary goal of IM is to identify an optimal seed set
that maximizes influence spread. Existing methodologies for IM are largely cate-
gorized into proxy-based and simulation-based approaches, each with its own lim-
itations. Proxy-based methods often fail to capture complex seed interactions and
are model-specific, while simulation-based techniques are computationally expen-
sive for large-scale graphs. Additionally, current research lacks a comprehensive
model to understand the relationship between seed set configurations and their
resulting influence spreads. To address these challenges, we present a Bayesian
Optimization Influence Maximization (BOIM) framework that employs Bayesian
optimization to minimize the number of required simulations. Our approach uti-
lizes a Gaussian Process (GP) as the surrogate function to model the complex
interplay between seed sets and influence spreads. In GP, we also introduce a
specialized kernel for graph-level Bayesian optimization and implement strati-
fied sampling to ensure uniform instance distribution. Our methodology offers
a computationally efficient yet accurate alternative to traditional IM approaches,
effectively bridging the gap between computational efficiency and approximation
fidelity. Extensive experimentation has demonstrated that our approach has effec-
tiveness and efficiency that surpasses standard simulation methods.

1 INTRODUCTION

In an increasingly networked world, the concept of Influence Maximization (IM) has risen to promi-
nence, attracting sustained interest from both the academic and industrial communities Domingos
& Richardson (2001); Li et al. (2018). This significance is underscored by its wide-ranging applica-
tions, including but not limited to, viral marketing Chen et al. (2010), personalized recommendations
in social networks Ye et al. (2012), rumor mitigation He et al. (2012), and the containment of in-
fectious diseases Newman (2002). The core objective of IM is to identify a seed set of size k that
optimizes the extent of influence propagation, commonly referred to as influence spread. Given
that solving IM problems optimally is NP-hard, existing research often resorts to approximation
techniques, primarily greedy algorithms Kempe et al. (2003); Tong et al. (2010); Yan et al. (2019);
Zhang et al. (2022). Nevertheless, the suboptimal performance or computational inefficiency of cur-
rent IM algorithms can lead to significant repercussions. As such, the timely identification of the
most effective seed set remains a research imperative.

Current research on IM faces two major pain points: (1) Formulation of an Optimal Algorithm
for Influence Maximization: Influence Maximization (IM) methodologies predominantly bifur-
cate into two paradigms: proxy-based and simulation-based approaches. Proxy-based techniques
emphasize computational efficiency and have evolved over time. Initial methods employed heuristic
estimations of nodal influence Chen et al. (2009); Roth (1988); Chung et al. (2003), while subsequent
advancements have strived for a more nuanced capture of propagation dynamics Yan et al. (2019);
Zhang et al. (2022). Despite their computational advantages, these methods often exhibit limita-
tions in capturing intricate seed interactions and are highly model-specific, thereby compromising
approximation quality. Specifically, they fall short in identifying overlapping influence flows, lead-
ing to suboptimal results. Conversely, simulation-based methods prioritize approximation fidelity
by iteratively selecting nodes that maximize marginal influence Kempe et al. (2003). However, the
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computational burden escalates exponentially for large-scale graphs, thereby impeding practical ap-
plicability Arora et al. (2017). Subsequent research has aimed to ameliorate this by devising more
efficient simulation algorithms at the expense of some approximation accuracy Cheng et al. (2013);
Borgs et al. (2014). The overarching challenge remains to accelerate simulation-based methods
without sacrificing their approximation fidelity. (2) Modeling the Interplay between Seed Set and
Influence Propagation: The prevailing focus in existing IM literature has predominantly been the
identification of influential seed sets, often neglecting the intricate relationship between seed se-
lection and resultant influence spread. Zhang et al. Zhang & Chen (2023) made an initial attempt
to dissect the influence contributions of individual seeds and their interdependencies using global
sensitivity analysis. However, this discourse still overlooks the latent correlations between seed set
configurations and ultimate influence outcomes. Another line of inquiry employs Graph Neural Net-
works as a predictive model for individual seed influence Kumar et al. (2022), but this is constrained
by model transferability and the computational overhead of training data generation. Moreover, the
final seed selection still adheres to a greedy paradigm, thereby neglecting potential synergistic inter-
actions among seeds. Consequently, there exists a conspicuous gap in the development of a robust
methodology that can accurately model the relationship between seed set configurations and their
ensuing influence spread.

To address the aforementioned challenges, we introduce a Bayesian Optimization Influence Maxi-
mization (BOIM), a method that leverages the sample efficiency of Bayesian optimization (BO) to
significantly reduce the requisite number of simulations. Specifically, we employ a surrogate Gaus-
sian Process function to capture the intricate relationship between seed sets and their corresponding
influence spreads. To facilitate graph-level BO, we design a specialized kernel that accurately quan-
tifies the distance between seed sets within the graph structure. Moreover, we implement a stratified
sampling technique, preceded by clustering, across the graphs to ensure a uniform distribution of
sampled instances within each BO iteration. This methodology not only enhances performance
but also expedites the optimization process, offering a more computationally efficient alternative to
traditional simulation-based approaches for IM. Our primary contributions include:

• Propose an efficient and effective simulation-based method. This method deviates from
conventional simulation-based methods and greedy methods by incorporating the consid-
eration of seed interactions. In addition, simulation-based algorithms allocate a substantial
amount of computer resources and time to execute simulations. However, the Bayesian op-
timization paradigm enhances the feasibility of the algorithm by substantially decreasing
the number of simulations required.

• Provide theoretical support for the proposed kernel and sampling in IM. To ensure
the robustness and efficacy of our proposed kernel method, we rigorously validate the ker-
nel function through theoretical analysis. Also, we provide a comprehensive theoretical
framework to substantiate that our graph-based sampling approach significantly mitigates
variance. This theoretical investigation serves as a robust complement to our empirical
studies, thereby rendering our research both comprehensive and methodologically sound.

• Conduct extensive empirical experiments to prove the superiority of BOIM . To sub-
stantiate the efficacy and efficiency of the proposed algorithm, we employ an extensive
suite of both real-world and synthetic datasets. Our algorithm not only attains performance
metrics that are on par with traditional simulation-based methods but also exhibits a compu-
tational speedup, executing approximately 1.5 times faster than the most efficient existing
algorithm.

2 RELATED WORK

Influence Maximization. AS IM is NP-hard, researchers have pursued feasible solutions with opti-
mal performance. The first approximation approach proposed a simulation-based greedy algorithm
but it lacked scalability Kempe et al. (2003). Subsequently, other simulation-based methods were
developed to improve performance or reduce complexity, yet high computational costs persist, pro-
hibiting application to massive online networks Leskovec et al. (2007); Goyal et al. (2011); Arora
et al. (2017); Tang et al. (2014). Critically, simulation opacity precludes elucidating and enhancing
diffusion processes Li et al. (2018). To mitigate burdensome simulations, proxy-based approaches
emerged, whereby node spreading power is approximated by proxies. Initial proxies were simple
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heuristics like degree, PageRank Page et al. (1999), and eigen-centrality Zhong et al. (2018). Later,
influence-aware and diffusion model-aware proxies were proposed to better estimate seed influence
spread Chen et al. (2009); Kimura et al. (2009); Yan et al. (2019); Zhang et al. (2022). Diffusion
models describe how the node tries to activate its neighbors. Independent cascade (IC) and linear
threshold (LT) are common examples Kempe et al. (2003). In IC, each node will try once and only
once to activate all its neighbors with a certain probability in each time step. The influence spread
of a seed set has an uncertainty that comes from the probabilities of the nodes activating each other.
This uncertainty is not what researchers are interested in. Thus, it is often removed by taking the
average of multiple simulation rounds as the expected influence spread. In LT, edges are weightless
while each node has an individual threshold. When the percentage of a node’s neighbors that are ac-
tivated exceeds its threshold, the node will be activated in the next time step. Since the information
about each node’s threshold is not available, it is randomly assigned in each round of the simulation.

Bayesian Optimization is an approach for optimizing black-box functions that are expensive to
evaluate. It constructs a probabilistic model of the objective function and uses this model to deter-
mine promising candidates to evaluate next Frazier (2018). Bayesian optimization was first proposed
by Mockus et al. Mockus (1998) and has since become a popular methodology for hyperparameter
tuning and optimization of complex simulations and models Snoek et al. (2012). The key idea is
to leverage Bayesian probability theory to model uncertainty about the objective function. A prior
distribution is placed over the space of functions, often a Gaussian process, which is updated as ob-
servations are made. An acquisition function then uses this model to determine the next evaluation
point by balancing exploration and exploitation. Some common acquisition functions include ex-
pected improvement, knowledge gradient, and upper confidence bound Shahriari et al. (2015). There
has been much work extending Bayesian optimization to handle constraints Gelbart et al. (2014),
parallel evaluations González et al. (2016), and high dimensions de Freitas & Wang (2013). Overall,
Bayesian optimization provides an elegant and principled approach to sample-efficient optimization
of black-box functions. Bayesian optimization over a graph search space has emerged in the past
decades. However, most of the works focus on node-level tasks and thus develop specific kernels for
node smoothing Ng et al. (2018); Oh et al. (2019); Walker & Glocker (2019); Opolka & Liò (2020);
Borovitskiy et al. (2021); Opolka et al. (2022). These works, while related, deal with a different task
and the methods cannot be applied on our problem.

3 PROBLEM SETUP

A graph is represented as a bidirectional structure G = (V, E), where V and E denote the set of
nodes and edges, respectively, and |V| = N . Given this graph G, a predefined seed budget k ∈ N+,
and a specific diffusion model d, the objective of an Influence Maximization (IM) algorithm is to
identify a seed set Ω of size k that approximately maximizes the expected influence spread ϕ(Ω)
(i.e., numbers of covered nodes). Mathematically, this can be formulated as:

Ω = argmax
Ω

ϕ(Ω), s.t. |Ω| ≤ k. (1)

To capture the underlying relationship between the seed set Ω and the influence spread ϕ(Ω), we
aim to approximate a function f such that ϕ(Ω) ≈ f(Ω;G, d). Consequently, Equation 1 can be
reformulated as:

Ω = argmax
Ω

f(Ω;G, d), s.t. |Ω| ≤ k. (2)

4 METHOD

This research presents a learning framework called BOIM, which is based on Bayesian optimization.
The framework is designed for the purpose of influence maximization, as depicted in Figure 1. The
first step involves the development of a graph spectral kernel (GSG) function, which serves the
purpose of quantifying the similarity between sets of source nodes. By including this kernel, we
utilize a Gaussian Process (GP) model to function as as surrogate for predicting the influence spread
given a specified source set of nodes. The candidate source sets are organized into distinct clusters,
and in order to enhance the initialization of the Gaussian Process (GP) model, we perform several
simulations and utilize stratified sampling techniques on graphs. This approach aims to reduce
variance during selecting the most favorable candidate nodes. The process of updating subsequent
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FIGURE 1: Overview of BOIM

models involves iteratively selecting training instances based on the Expected Improvement (EI)
criterion. The aforementioned procedure will be repeated multiple times under a budget constraint.
Ultimately, the complete exploration of all candidate cases leads to the identification of the ideal
collection of influential nodes.

4.1 REDUCE SEARCH SPACE

Consider a graph with N nodes, node sets are typically associated with a binary vector, where they
are labeled as 1 if being sources and 0 otherwise. This vector is represented with s = {0, 1}N . With
k sources, the total possible source configurations is

(
N
k

)
. Recognizing that not all nodes are equally

significant in diffusion, like major cities in transport networks or key influencers in social networks,
we focus on the top a nodes by degree. This reduces potential source combinations to

(
a
k

)
where

a ≪ N .

Past Influence Maximization (IM) research has shown that selecting seeds in close proximity to each
other diminishes the final influence spread due to the overlap of their influence regions Tong et al.
(2010); Zhang & Chen (2023). To mitigate this, we maximize the inner distance among a seed set s
by:

ds = max
s

min
u,v

d(u, v), ∀u, v ∈ s (3)

where d(u, v) denotes the shortest distance between two nodes. The seed sets with top ds values are
selected as candidate sets.

4.2 KERNEL DESIGN FOR GAUSSIAN PROCESS

A kernel that is appropriate and valid ensures that Gaussian Processes (GPs) reliably estimate the
extent of influence propagation, given a specific seed set. One of the issues lies in the absence
of graph structural information in the binary seed vector representation s. To illustrate, consider
two 3-node sets: one original and the other formed by shifting each node by one hop based on
the original one. Although it is anticipated that the final influence spread would be quite similar
for these two sets, the similarity of the binary representations is actually quite low (0 in this case).
This binary representation not only inadequately characterizes the similarity between two sets of
nodes, but also violates the smoothness assumption imposed by the Gaussian process. Previous
work for graph kernels prioritizes structural comparisons, often ignoring attributes over the graphs
Vishwanathan et al. (2010); Kriege et al. (2020); Nikolentzos et al. (2021); Siglidis et al. (2020).
In order to overcome this constraint, we propose a novel kernel that effectively combines graph
structure information and attributes with theoretical validity. First, the source vector s is transformed
into its Fourier counterpart s̃ such that:

s̃ = U⊤s, s̃(i) =
n

Σ
i=1

siU
⊤(i), (4)

where U⊤ is the inverse eigenvectors of the graph Laplacian and serves as a graph Fourier transform
basis. Combining the graph Fourier transform and RBF kernel, we have a new kernel termed graph
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spectral Gaussian (GSG) kernel:

K(x, x′; l) = exp(−||U⊤x− U⊤x′||2

2l2
), (5)

where l is a hyperparameter corresponding to the length-scale of the RBF kernel. Mercer kernels are
essential for Gaussian Processes (GPs) as they ensure valid covariance matrices and enable implicit
high-dimensional data mapping. Additionally, they offer computational benefits through the “kernel
trick” in expansive spaces. Therefore, we analyze if the proposed kernel is a valid Mercer kernel.
Theorem 4.1. GSG is a valid Mercer Kernel for GP.
Proof. The kernel in Equation 5 can be transformed as follows:

K(x, x′; l) = exp(−||U
⊤x− U⊤x′||2

2l2
) = exp(− [(U⊤x)⊤U⊤x+ (U⊤x′)⊤U⊤x′ − 2(U⊤x)⊤U⊤x′]

2l2
)

= exp(− [x⊤UU⊤x+ x′⊤UU⊤x′ − 2x⊤UU⊤x′]

2l2
) = exp(−||x− x′||2

2l2
).

Hence, K(x, x′; l) can be considered as being equivalent to the RBF kernel, which is widely recognized as a
valid Mercer kernel.

Next, we set up a Gaussian process (GP) with GSG kernel to realize Equation 2. The purpose of this
GP is to estimate the expected influence spread ϕ of the provided seed set s evaluated by simulation.

GP : s → ϕ(s). (6)

4.3 DATA ACQUISITION

In order to prepare the data for training Equation 6, it is necessary to obtain a series of pairings
(si, ϕ(si)). The acquisition of each individual ϕ(si) necessitates a simulation, which is an expensive
process. The objective is to choose more representative node sets, aiming for maximum diversity in
order to minimize variance.

The GP requires initialization and iterative training, both utilizing sampling techniques. Initializa-
tion requires sampling multiple data points, while each iteration selects a new data point from a
fresh sample set by maximizing an acquisition function. This acquisition function leverages the GP
posterior to balance exploration and exploitation. Due to the discrete property of the graph data,
traditional sampling methods commonly employed, such as the Sobol sequence Sobol’ (1967), do
not fit the influence maximization problem. As a replacement, we propose a graph stratified sam-
pling (GSS), which clusters the candidate and sample uniformly from each group. Specifically,
GSS performs clustering over graph Fourier signals of candidate sources (Equation 4), and samples
equal-size candidates from each cluster.
Theorem 4.2. GSS has a lower variance than random sampling.
Proof. Simple random sampling randomly draws m samples from the entire population. The variance of its
mean estimator is:

Var(Ȳrs) = Var
(∑m

i=1 Yi

m

)
=

1

m2
Var

(
m∑
i=1

Yi

)
=

σ2

m
,

where σ2 = Var(Yi) is the population variance. To set up GSS, we divide all candidates into κ non-overlapping
equal-sized groups based on similarity. N is the population, and Ni is the population in i-th group. From the
ith group, mi samples are drawn, with a total of m = m1 + m2 + · · · + mκ samples. The variance of this
GSS mean estimator is given by:

Var(Ȳgss) = Var

(
κ∑

i=i

Ȳi

)
=

κ∑
i=1

(
Ni

N

)2
σ2
i

mi
, (7)

where σi is the sample mean of the ith group. To demonstrate the variance reduction of GSS compared to
simple random sampling, we compare Var(Ȳgss) and Var(Ȳrs). Note that the within-group similarity exists, so
the variances within each group are smaller than the overall population variance, i.e., ∀i, σ2 ≥ σ2

i . In addition,
the sample size of each group is the same (i.e., m1 = m2 = . . . = mc = m̃, and κ · m̃ = m), the size of each
group is the same ( N

Ni
= κ). So:

Var(Ȳgss) =

κ∑
i=1

(
1

κ

)2
σ2
i

m̃
≤

κ∑
i=1

(
1

κ

)2
σ2

m̃
=

1

κ

σ2
i

m̃
= Var(Ȳrs).
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The underlying assumption is that GSS clusters similar items within each group, thereby reducing
within-group variance and, consequently, the estimator’s overall variance. This would aid Bayesian
Optimization in minimizing overall variance and drawing precise conclusions about actual sources.
Note that the expected sample mean by GSS is identical to the sample mean by random sampling,
which is the population mean. Consequently, a decrease in variance reduces inference errors.

Expected improvement (EI) is used to estimate the potential improvement of samples over the cur-
rent best observation. Suppose the model clusters all candidates into γ groups C = {c1, c2, . . . , cγ},
one set is sampled from each group such that si ∼ ci,∀i ∈ [1, γ]. We optimize EI over the sample
set [s1, s2, . . . , sγ ] such that:

s̃∗ = argmax
s̃i∈[s̃1,s̃2,...,s̃γ ]

EI(s̃i) = argmax
s̃i

E[δ(si, s+) · I(si)],

where s+ is the best set so far, si is the node set that corresponds to the graph Fourier transform
signal s̃i, and δ(s, s+) = f(s; o∗)− f(s+; o∗). I(si) is an indicator function that equals to 1 when
f(si; o

∗) > f(s+; o∗) and 0 when otherwise. Although the search space in our problem is finite,
enumerating all node sets in each iteration violates our principle of efficiency. Thus, we strategically
sample a few sets with GSS and use EI to pick the maximum. For the initial node sets and the node
set in each iteration, we query the true value of the objective function as the expected influence
spread ϕ. The evaluation is achieved by simulations based on the given diffusion models such as IC
or LT.

4.4 ALGORITHM

BOIM is demonstrated in Algorithm 1. Initiated with a graph G, a given diffusion model d, time
step t, IM budget k, BO budget β, sample size γ, and filter threshold δ, it aims to produce an k-sized
node set Ω that maximize the expected influence spread ϕ. The algorithm selects the top a nodes
based on degree centrality as the candidate pool. A graph Fourier transform is applied on all k-size
subsets of the candidate pool that pass the distance filter (lines 3-11). These transformed sets are
clustered into c groups for later stratified sampling (line 12). One graph Fourier transform signal
is randomly sampled from each cluster and evaluated by simulations given the corresponding node
set as the seeds (line 16). The c pairs of Fourier representation of sources and influence spread
are used to train the GP model as an initialization (line 13-19). In each following iteration, a new
group of data points is sampled by GSS, and one of them is picked by the EI acquisition function.
After evaluation, the GP model is updated with the new signal-spread pair and the process repeats
until convergence or the iteration budget is used up (line 20-27). After that, all candidate sets are
evaluated with the trained GP model to find the spread-maximizing seed set Ω (line 28).

4.5 TIME COMPLEXITY

We analyze the time complexity of BOIM based on Algorithm 1. Selecting a nodes with the highest
degree centralities (line 2) is O(|V | + |E|) = O(N2) using BFS traversal. This complexity can
be further reduced to O(N) for sparse graphs. Calculating the graph Fourier transform operator is
O(N3) Merris (1994). Generating all k-sized node sets from the a candidate nodes (line 3) requires
O(ak). Looping through all combinations has a time complexity of O(ak), and the operations inside
the loop are multiplications between 1∗N vectors and N ∗N matrices, which are O(N2). Thus, the
time complexity for the whole block (line 2-11) is O(akN2). Clustering the graph Fourier signals
is O(ak). The operations above are the preparations for the GP training and have a combined time
complexity of

O(N2 +N3 + ak + akN2 + ak) = O(N3),

when a ≪ N and k is a very small integer. Breaking down the GP training process and the fi-
nal prediction (line 13 - 28), we get all the operations carried out. There are (γ + γ(β − γ))
samplings from the cluster, β simulations to evaluate the expected influence spread, (β − γ + 1)
rounds of GP model training, and 1 evaluation for each candidate node sets using the trained GP.
Assuming each simulation takes a long but constant time T , the time complexities of sampling,
simulation, GP training, and GP evaluation are O(1),O(T ),O(|β|3), and O(1) Rasmussen et al.
(2006), respectively. Thus, the time complexity for the whole training and predicting period is
O(γ + βγ − γ2 + βT + (β − γ + 1)|β|3 + ak) = O(T ) since β and γ are constants, and ak is
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ignorable comparing to the problem size N . The overall time complexity of BOIM is

O(N2 +N3 + ak + akN2 + ak + γ+ βγ− γ2 + βT +(β− γ+1)|β|3 + ak) = O(N3 +T ) (8)

where N is the graph size, k is the budget for seed selection, and T is the time spent on
evaluating the influence spread of one node set. Comparatively, the original simulation-based
greedy method (GRD) Kempe et al. (2003) performs N simulations to find the first seed.

Algorithm 1 BOIM with GSS
Input: Graph G, IM budget k, diffusion model d, time step t,
sample size γ, BO budget β, distance threshold δ
Output: A k-sized node set Ω
1: set S ← ∅, set Φ← ∅, set S̃ ← ∅
2: pool← top a nodes by degree centrality
3: for k-size node set s ⊂ pool do
4: if Shortest-path between nodes in s ≥ δ then
5: S ← S + s
6: end if
7: end for
8: for s ∈ S do
9: s̃← U⊤s as in Eq. 4

10: S̃ ← S̃ + s̃
11: end for
12: cluster S̃ into b groups: C = {c1, c2, . . . , cγ}
13: sample one set from each set group, {s̃i}γi=1 ∼ ci
14: for s̃i ∈ [s̃1, s̃2, ..., s̃γ ] do
15: si ← S[loc(s̃i)] where loc(·) is the index of · in S̃
16: ϕi ← simulate d with t on G with si as sources
17: Φ← Φ+ (s̃i, ϕi)
18: end for
19: train GP (as surrogate) with Φ: s̃ GP−−→ ϕ
20: while z ̸= 0 (z = β − γ) do
21: sample one set from each set group, {s̃i}γi=1 ∼ ci
22: s̃∗ ← argmaxs̃ij EI(s̃ij), ∀s̃ij ∈ [s̃11, s̃12, ..., s̃bγ ]
23: s∗ ← S[loc(s̃∗)]
24: ϕ∗ ← simulate d within t on G with s∗ as sources
25: Φ← Φ+ (s̃∗, ϕ∗) and re-train GP with Φ
26: z ← z − 1
27: end while
28: Find optimal s̃ with GP: i = argmaxi GP(s̃i)
29: Ω = si ∈ S

For each following seed, the number of
simulations reduces by 1. Thus, the total
number of simulations is N + (N − 1) +
· · ·+(N −k+1) = kN − (k2−k)/2 and
the time complexity is O(kNT ). The time
complexity for the fastest simulation-based
IM, which is Sobol Influence Maximiza-
tion Zhang & Chen (2023) (SIM), is O(M)
where M is a proxy-based IM algorithm
that combines with the following simula-
tions. It is claimed that SIM combined with
Degree Discount (SIM-DD) could provide
a good enough solution. Thus, the time
complexity can be regarded as O(k logN).
However, this time complexity considers
the evaluation time neglectable. As the
evaluation is #P -hard, which is at least
as hard as NP problems, we need to con-
sider the evaluation time. Therefore, the
actual time complexity for SIM combined
with degree discount is O(k logN +2kT ).
Assuming that the complexity of T domi-
nates N3, we can put the time complexities
of the three methods above together:

• BOIM: O(T )

• GRD: O(kNT )

• SIM-DD: O(2kT )

We can observe that BOIM requires sig-
nificantly fewer simulations than GRD
and SIM-DD. Runtime analysis shows
that BOIM is about 1.5 times faster than
SIM-DD, and about 17 to 22 times faster than GRD. Details are discussed in the experiment section.

5 EXPERIMENT

Configurations. We evaluate BOIM on synthetic and real-world datasets. The experiments are
carried out on a server with AMD EPYC 7302P CPU with 32GB RAM. Simulations are performed
by NDLib Rossetti et al. (2018), an open-source toolkit for diffusion dynamics. The Bayesian
optimization paradigm is implemented by BOTorch Balandat et al. (2020) and GPyTorch Gardner
et al. (2018). Our code for the experiments is available in the supplementary materials. We adopt
IC and LT as diffusion models to evaluate BOIM’s performance across multiple diffusion models.
Each seed set is evaluated by 100 simulation rounds. The Bayesian optimization paradigm includes
200 iterations to train the final model. ds is set to be larger than or equal to 2.

Datasets. Four datasets are employed to evaluate the effectiveness and the efficiency of BOIM.
Three real-world datasets, namely Cora, CiteSeer, and PubMed Yang et al. (2016), reproduce the
complex social network structure. Since the IM problem is traditionally studied on connected
graphs, we take the largest connected component of these graphs as the studied network. A syn-
thetic connected Watts-Strogatz small-world graphs (SW) is generated using NetworkX to represent
pseudo social networks. It is generated with 3000 nodes for effectiveness evaluation. We also use
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SW graphs with sizes ranging from 1000 to 5000 for runtime analysis. For all graphs, each edge is
uniformly and randomly assigned a weight between 0.40 and 0.80 for the IC model as the activation
probabilities, and each node is assigned a threshold between 0.01 to 0.20 for the LT model.

Baselines. We select popular IM algorithms as our baselines: (1) Simulation-based greedy algorithm
(GRD) Kempe et al. (2003): This approach adds the node with the highest marginal influence spread
to the seed set in each iteration. The marginal influence spread is determined by averaging the
results of 1000 simulation rounds. (2) Degree Centrality (DEG): This method selects the k nodes
with the highest degree centrality. After each selection, the chosen seed is removed from the graph,
and the degrees of the remaining nodes are updated, known as SingleDiscount Chen et al. (2009).
(3) Eigenvector Centrality (EIG): This technique picks the first k nodes ranked by their eigenvector
centrality. (4) Degree discount (DD) Chen et al. (2009): Similar to DEG, but the degree of each
candidate node is discounted based on the likelihood of its activation. (5) Sigma Yan et al. (2019):
This method estimates the spreading power of nodes using

∑
t I ·At, where I is a unit column vector.

Nodes are selected based on this estimation in a greedy manner. (6) Pi Zhang et al. (2022): Nodes
are chosen based on their estimated spreading powers, calculated using I · (J −

∏
r=1(1 − Ar)),

where J is an all-one matrix and
∏

represents the element-wise product of matrices. (7) Sobol
degree discount (SIM-DD) Zhang & Chen (2023): Initially, the DD algorithm selects 2k nodes,
which are then pruned based on their Sobol total indices.

5.1 RESULTS
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FIGURE 2: Results on Cora with IC.

The empirical study generally consists of three major parts: (1)
effectiveness verification: demonstrate the effectiveness of the
proposed algorithm against current IM algorithms. (1) ablation
study: we compare BOIM with two variants to evaluate the
utility of our proposed GSG and GSS. (3) runtime analysis:
compare the BOIM with the baseline IM methods to evaluate
its time efficiency.

5.1.1 EFFECTIVENESS VERIFICATION
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FIGURE 3: Results on Cora with LT.

To demonstrate the effectiveness of BOIM, we compare it with
the baselines on the four datasets. First, experiments are carried
out on the largest component of the Cora graph. The graph size
is 2485. Under the IC model, the simulation-based greedy algo-
rithm (GRD) takes 10678.53 seconds to find a 3-seed set. Com-
paratively, BOIM runs for 624.58 seconds and SIM-DD takes
983.42 seconds. We can conclude that BOIM accelerates the
simulation-based method, shrinking the running time to 1

17 , and
the acceleration effect is greater than that of SIM-DD. The IM performances of the seven methods
are compared with GRD, the performance SOTA, in Figure 2. BOIM achieves the same perfor-
mance level with GRD and SIM-DD. Experiment with the LT model shows a similar result.Figure 3
demonstrates that BOIM achieves an influence spread of 1625.36 within 941.33 seconds while a
similar performance of 1628.84 takes GRD 20824.73 seconds.

TABLE 1: Results with IC model.

Methods SW(3000) Cora(2485) CiteSeer(3679) PubMed(44324)
DD 1638.92 ± 45.59 1098.68 ± 8.27 617.16 ± 10.39 10144.32 ± 32.40
DEG 1599.00 ± 45.36 1080.06 ± 19.47 604.06 ± 9.38 9139.68 ± 49.86
EIG 1625.00 ± 32.01 1080.44 ± 10.32 414.88 ± 4.14 3817.02 ± 37.95
Pi 1711.90 ± 30.54 1083.20 ± 14.21 607.08 ± 9.01 9166.20 ± 39.35
Sigma 1380.66 ± 27.77 1091.90 ± 8.91 406.80 ± 11.71 9886.76 ± 55.98
SIM+DD 1752.96 ± 23.78 1184.08 ± 14.95 669.92 ± 4.27 10182.76 ± 69.69
BOIM 1743.30 ± 48.99 1173.88 ± 33.55 673.62 ± 17.71 10121.50 ± 171.64

We also compare the perfor-
mance of BOIM with the
baselines on the other three
graphs. Each IM algorithm
generates 3 seeds to maxi-
mize the expected influence
spread, which is measured
by the mean and standard de-
viation of 100 simulations to remove the systematic uncertainty. The detailed results under the IC
model and the LT model are presented in Table 1 and Table 2, respectively.

We can observe that BOIM achieves significantly higher influence spread than the proxy-based
methods. Its performance is competitive, sometimes higher, compared to the other simulation-based
method SIM-DD.

8
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5.1.2 ABLATION STUDY TABLE 2: Performance with LT model.

Methods SW(3000) Cora(2485) CiteSeer(3679) PubMed(44324)
DD 622.78 ± 23.13 1583.82 ± 12.02 910.76 ± 16.28 7283.24 ± 311.22
DEG 633.12 ± 29.85 1585.40 ± 10.88 911.84 ± 11.20 6778.99 ± 386.63
EIG 587.36 ± 23.95 1587.86 ± 17.51 578.2 ± 4.34 3126.58 ± 206.82
SIM+DD 660.88 ± 53.57 1626.32 ± 7.95 997.58 ± 16.70 7564.17 ± 214.76
BOIM 690.42 ± 44.09 1625.36 ± 104.34 988.64 ± 38.92 7591.63 ± 424.75

Table 3 compares the per-
formance of BOIM against
three ablated versions: us-
ing all candidate sets without
filtering, using random sam-
pling (RS) instead of GSS, and using an RBF kernel instead of the proposed GSG. Column (+GSG)
shows the percentage increase in influence spread after substituting the RBF kernel with the GSG
kernel. Column (+GSS) demonstrates the further performance increase after combining GSS with
GSG. Column (+Filter) represents the performance increase percentage from the distance filter given
that GSG and GSS have already been applied.

TABLE 3: Ablation tests under IC with RS+RBF without distance filter.

Methods SW(3000) Cora(2485) CiteSeer(3679) PubMed(44324)
RS+RBF 1616.20 ± 85.45 1036.42 ± 50.83 561.78 ± 42.75 9096.28 ± 722.70
(+GSG) +1.95% +4.58% +5.90%
RS+GSG 1647.76 ± 85.93 1083.88 ± 40.41 594.94 ± 17.85 9300.34 ± 497.48
(+GSS) +3.69% +5.51% +5.10%
GSS+GSG 1708.60 ± 61.11 1143.56 ± 30.63 625.26 ± 46.89 10028.04 ± 310.82
(+Filter) +2.03% +2.65% +7.73%
GSS+GSG+Filter 1743.30 ± 48.99 1173.88 ± 33.55 673.62 ± 17.71 10121.50 ± 171.64

We can observe that RS
+ GSG always outperforms
RS + RBF. More specif-
ically, GSG brings perfor-
mance enhancement ranging
from 1.95% − 5.90%. This
shows the benefits of the
graph spectral Gaussian ker-
nel for effective adaptation to the graph-structured data and the influence maximization problem. It
is also demonstrated that GSS + GSG outperforms RS + GSG on all four datasets. The increase
in influence spread ranges from 3.69% − 7.82% compared to before GSS is applied. This shows
the benefits of graph stratified sampling for uniform data acquisition. It explores the search space
better than random sampling. The distance filter also bounces the performance by 0.93% to 7.73%.
In sum, our ablation study verifies that the proposed components of GSS, GSG, and distance filter
provide significant gains over variants without those techniques. GSG kernel consistently assists in
graph-structured data adaptation, fulfilling the smoothness assumption. Graph stratified sampling
is crucial for handling more complex search spaces. On simpler and smaller graphs like SW, GSS
provides diminishing benefits. Distance filter helps with sampling more efficiently and thus benefits
the GP training.

5.1.3 RUNTIME ANALYSIS TABLE 4: Runtime (in seconds) comparison on SW graphs.

Methods 1000 2000 3000 4000 5000
DD 0.01 ± 0.00 0.04 ± 0.00 0.07 ± 0.00 0.11 ± 0.01 0.17 ± 0.00
Pi 0.23 ± 0.00 0.70 ± 0.00 1.60 ± 0.01 2.78 ± 0.02 4.34 ± 0.02
Sigma 0.27 ± 0.00 1.09 ± 0.15 2.02 ± 0.02 3.46 ± 0.27 5.02 ± 0.30
SIM+DD 182.85 ± 1.49 596.76 ± 1.96 1303.18 ± 9.37 2292.32 ± 8.77 3618.68 ± 28.73
BOIM 118.43 ± 0.46 380.13 ± 0.81 853.20 ± 2.91 1487.52 ± 10.74 2322.41 ± 19.77

As expected, the two
simulation-based methods
take significantly longer
than the proxy-based meth-
ods, and their scalability
is worse. This is due to the high complexity of the simulations. When compared with each
other, BOIM shows higher efficiency than SIM-DD. The runtimes of the two algorithms are closest
to each other when the graph size N = 1000. BOIM takes 118.43 seconds and SIM-DD takes
182.82 seconds, leaving the time difference at 64.39 seconds. We can also say that BOIM’s runtime
is 64.78% of SIM-DD’s runtime. As the graph grows from 1000 to 5000, this time difference en-
larges to 1296.27 seconds. And when the graph size N = 5000, BOIM takes 64.18% of SIM–DD’s
runtime. Generally speaking, the two algorithms have similar scalability, but BOIM runs about 1.5
times faster than SIM-DD.

6 CONCLUSION

We present an efficient simulation-based method BOIM for influence maximization. Bayesian op-
timization is adopted to reduce the number of simulations and uncover the black-box relationship
between the seed sets and their corresponding influence spread. We theoretically prove that GSG,
a graph-level kernel for the Gaussian process, is a valid Mercer. It is also proven that GSS, which
is graph stratified sampling based on the clustering of graph Fourier signals, reduces variance better
than random sampling. BOIM demonstrates competitive performance in empirical experiments con-
ducted on synthetic and real-world datasets. Ablation studies show that GSG, GSS, and the distance
filter help with the performance of BOIM.
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