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Abstract

Recurrent large language models that compete
with Transformers in language modeling perplex-
ity are emerging at a rapid rate. These architec-
tures use a constant amount of memory during
inference. However, due to the limited memory,
recurrent LMs cannot recall and use all the in-
formation in long contexts leading to brittle in-
context learning (ICL) quality. The challenge is
selecting what information to store versus discard.
We observe the order in which information is
shown to the LM impacts the selection difficulty.
To formalize this, we show that the hardness of
information recall reduces to the hardness of a
problem called set disjointness (SD), a quintessen-
tial problem in communication complexity that
requires a streaming algorithm (e.g., recurrent
model) to decide whether inputted sets are disjoint.
We empirically and theoretically show that the re-
current memory required to solve SD changes
with set order, i.e., whether the smaller set ap-
pears first in-context. Our analysis suggests, to
mitigate the reliance on data order, we can put in-
formation in the right order in-context or process
prompts non-causally. Thus, we first propose: (1)
JRT-PROMPT, where context gets repeated multi-
ple times in the prompt, effectively showing the
model all data orders. This gives 11.0±1.3 points
of improvement on average, with 11.9× higher
throughput than FlashAttention-2 for generation
prefill. We then propose (2) JRT-RNN, which
uses non-causal prefix-linear-attention to process
prompts and provides 99% of Transformer quality
at 360M params., 30B tokens and 96% at 1.3B
params., 50B tokens on average across the tasks,
with 19.2× higher throughput for prefill than FA2.
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1. Introduction
Recent work has made rapid progress in developing fixed-
memory recurrent architectures (e.g., Mamba (Gu and Dao,
2023) and RWKV (Peng et al., 2023)) that are competi-
tive with attention in language modeling perplexity. Dur-
ing inference, these models are more memory efficient and
asymptotically faster than the de-facto Transformer attention
(Vaswani et al., 2017). However, there is no free lunch —
due to their limited memory capacity, recurrent LMs cannot
recall all the information provided in long-contexts, making
in-context learning (ICL) quality brittle (Cho et al., 2014;
Schlag et al., 2021; Arora et al., 2024). Despite matching in
perplexity, we find a 2.8Bn parameter Mamba LM trained
on 300Bn tokens of the Pile underperforms a 1.3Bn param.
(2.2× smaller) Transformer LM trained on 50Bn tokens
(6× fewer tokens) by 5 points, averaged across a suite of
recall-intensive ICL tasks (Table 1).

Prior work (Arora et al., 2024) formalizes the tradeoff be-
tween an architecture’s recall ability and memory consump-
tion during inference by considering a simplified ICL setting
shown below. Here, we have the “context” of key-value to-
ken pair mappings on the left and “questions” on the right
for which the model should output 4, 6, 1, 2, 3:

A 4 B 3 C 6 F 1︸︷︷︸
Key-Value

E 2→ A ? C ? F ?︸︷︷︸
Query

E ? B ?

Unfortunately, recurrent models need Ω(N) space to solve
the recall task (Arora et al., 2024). This begs the question of
whether we can rely on recurrent models that use constant
O(1) space for in-context learning.

Luckily, models often do not need to remember all infor-
mation provided in-context to excel at a task. The key
challenge is predicting which subset of information (e.g.,
facts from documents, variable names from code) is use-
ful to store in memory to support next token predictions.
A long line of work focuses on improving the selection
mechanisms or architectural inductive biases that recurrent
language models use to select relevant information (e.g.,
LSTM (Hochreiter and Schmidhuber, 1997), decay rates
(Gu and Dao, 2023; Yang et al., 2023), delta rules (Schlag
et al., 2021; Munkhdalai et al., 2019)). Other works increase
the recurrent state size in hardware efficient ways, traversing
a quality-efficiency tradeoff space (Arora et al., 2024).
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Figure 1: Selecting (Left) Recurrent models have limited memory and deciding what to store from long-contexts (e.g., Galileo’s
Wikipedia) is challenging. Data order (Middle) changes the selection difficulty: seeing the question before the document simplifies the
model’s selection task. We formalize this by invoking set disjointness, the canonical communication complexity problem of deciding
whether two sets A and B are disjoint. A causal model needs enough memory to store set A to be able to compare to set B’s elements so,
ideally, the smaller set appears first. Beyond causal (Right) We show recurrent models the input twice in-context (JRT-PROMPT) or use
encoder-decoder recurrent models to process the prompt (JRT-RNN), to mitigate the reliance on data order.

Complementing these approaches, we focus on the simple
observation that the order in which data streams into the
recurrent LM during inference drastically impacts the dif-
ficulty of predicting what to store in the limited memory.
Suppose we ask questionsQ (e.g., “When did Galileo move
to Florence?”), over documents D (e.g., the Wikipedia for
Galileo Galilei). The model needs to remember just one
fact from D if the prompt is ordered [Q,D], but needs to
remember all facts when it is [D,Q] (Figure 1 (Left)).

Our work first theoretically formalizes how data order im-
pacts the memory requirement (Section 3), then proposes
two ways to mitigate the reliance on data order: the Just-
read-twice (JRT) prompting strategy (Section 3.2) and the
JRT recurrent architecture (Section 4).

Understanding the role of data order. Our first insight is
that the hardness of the recall problem reduces to the hard-
ness of set disjointness (SD), the quintessential, decades-
old problem in communication complexity theory (Chat-
topadhyay and Pitassi, 2010) (Theorem G.11). SD requires
a streaming algorithm (e.g., a recurrent model) to decide
whether inputted sets provided in-context are disjoint:

7 11 1 17 16 4 6 9︸ ︷︷ ︸
Set A

* 8 1 5 6︸ ︷︷ ︸
Set B

→ False, {1 6}

With theory and experiments, we show that the size of
the first set, |A|, governs the memory needed to solve SD.
Causal models need to store all elements in A to be able
to compare to the elements of B. This suggests that us-
ing “the right data order” in-context, e.g. placing the set
with min(|A|, |B|) first, would help memory-limited mod-
els. Further, models that see the context non-causally can
solve SD in space min(|A|, |B|), regardless of data order
(Theorem G.15, Figure 2). We next apply these insights.

Using “the right” order. We propose JRT-PROMPT (Sec-
tion 3.2), a simple strategy where information is repeated
multiple times in context before the model generates an-
swers (Figure 1 (Right)). In the second+ pass, the LM
conditions on the full context when deciding what to store,
effectively avoiding the issue of getting the data order
“right”. JRT-PROMPT gives 11.0± 1.3 point improvement
averaged across 16 off-the-shelf recurrent LMs and the 6
ICL tasks, while providing 11.9× higher throughput than
FlashAttention-2 (length 32k, batch size 16) (Dao, 2024)
(Table 1). JRT-PROMPT increases the context length, but
remains asymptotically more efficient than attention.

Beyond causal models. We next propose JRT-RNN, in-
spired by the simple design of Prefix-LM encoder-decoder
architectures (Raffel et al., 2020; Dong et al., 2019). Most
in-context learning inputs contain two parts, the inputted
prompts (context, instructions) and the text generated by
the model as output. In Prefix-LMs, the LM processes the
prompt region non-causally and causally decodes the output,
using only a standard next token prediction loss in the causal
region and in loss on the non-causal region. Unfortunately,
prior approaches to training Prefix-LM models have seen
limited success and use inefficient Transformer backbones
(Wang et al., 2022). We apply simple changes to improve
quality and efficiency including modifying the training loss
and using a linear attention formulation we term Prefix Lin-
ear Attention (PLA). We find JRT-RNN provides a 13.7
and 6.9 point average quality improvement at 360m and
1.3b parameters, and 19.2× higher throughput than FA2,
using our IO-aware implementation (Table 2).

Our contributions are: (1) a synthetic and theoreti-
cal study of data order and the memory requirement
for recurrent models, (2) JRT-PROMPT, and (3) JRT-
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RNN. Researchers have developed many techniques
for in-context leanring with Transformers (Wei et al.,
2022; Creswell et al., 2022), and we need a simi-
lar exploration into how to use alternative LLM archi-
tectures effectively. Code: https://github.com/
HazyResearch/prefix-linear-attention.

2. Background
We focus on developing methods for in-context learning
with recurrent LLMs. We provide key background here and
an extended related works discussion in Appendix A.

Recall and in-context learning. Many prior works have
identified a skill called associative recall as highly corre-
lated with in-context learning quality across architecture
classes via extensive theoretical and empirical analysis
(Graves et al., 2014; Ba et al., 2016; Schlag et al., 2021;
Elhage et al., 2021; Olsson et al., 2022; Fu et al., 2023a;
Arora et al., 2023a; Gu and Dao, 2023; Akyürek et al., 2024).
Recall entails using information provided in context (beyond
the model’s memorized knowledge) to generate next token
predictions. For instance, models are used via in-context
learning to produce the next steps in a proof given a provided
list of Lemmas (Lewkowycz et al., 2022; Trinh et al., 2024),
generate the next chunk of code given a repository (Rozière
et al., 2023; Yang et al., 2024), and answer questions or
provide summaries given documents (Arora et al., 2023b).
In a simplified view of the recall task, a model needs to
remember keys and values seen in context to provide the
answers for different queries. In this example, the model
should output 4, 6, 1, 2, 3:

A 4 B 3 C 6 F 1︸︷︷︸
Key-Value

E 2→ A ? C ? F ?︸︷︷︸
Query

E ? B ?

Memory-recall tradeoff for causal language models.
Today’s LLMs process input text causally in a fixed left-to-
right order (Brown et al., 2020). Prior work theoretically and
empirically demonstrates a fundamental tradeoff between a
causal LM’s memory consumption during inference and its
ability to remember information provided in context (recall)
(Cho et al., 2014; Schlag et al., 2021; Arora et al., 2024).
Attention (Vaswani et al., 2017), the de-facto LM architec-
ture (Brown et al., 2020; Chowdhery et al., 2022; Touvron
et al., 2023), provably solves recall perfectly in O(1) model
depth and width as a function of sequence length. How-
ever, attention incurs O(N2) complexity during training
and O(N) complexity and memory consumption during in-
ference, for sequence length N . Thus, many works explore
alternative recurrent architectures that are more efficient
— sub-quadratic compute and memory in sequence length
during training and O(1) during each token generation step
during inference — while competing with attention in qual-

ity (Ma et al., 2022; Fu et al., 2023a; Gu and Dao, 2023;
Arora et al., 2024; Yang et al., 2023, inter alia.).

However, using a limited amount memory during inference,
efficient models provably cannot retain all information seen
in-context, sacrificing recall and in-context learning quality
(Arora et al., 2024). Models that can better select what
information to store can extend the Pareto frontier of the
tradeoff space. A long line of work explores how to improve
this selection mechanism via architectural inductive biases
(Hochreiter and Schmidhuber, 1997; Schlag et al., 2021;
Qin et al., 2023; Gu and Dao, 2023, inter alia.). Another
approach is to navigate the quality-efficiency tradeoff space
by varying the recurrent state size in hardware-efficient
ways (Massaroli et al., 2023; Arora et al., 2024; Dao and
Gu, 2024). Complementing these approaches, the insight
motivating our work is that the order in which information
appears in-context drastically influences the difficulty of the
selection step (Sutskever et al., 2014). Non-causal models
can see all the input text at once to help avoid this issue.

3. Understanding the role of data order on
recurrent models

In this section, we show that the quality of recurrent large
language models varies as a function of the order in which
data arises in context making them brittle for in-context
learning applications.

3.1. Analysis of data order and communication
complexity

Set disjointness problem. To formalize the impact of data
order, we invoke the set disjointness (SD) problem: given
two sets, determine if the intersection is empty or not. SD is
the quintessential problem for studying the communication
complexity of different streaming algorithms (such as recur-
rent models) over the past several decades (Hemaspaandra,
2010). The hardness for a wide collection of problems re-
duces to the hardness of SD (Chattopadhyay and Pitassi,
2010). A formal definition is in Appendix G.2.

Synthetic formulation. We construct a synthetic task
where the model is given input sequences that contain two
sets A and B, seperated by a special token that designates
the end of set A and start of set B. Set elements are to-
kens ∈ [0..|V |] for vocabulary size |V | and the model needs
to output the tokens in the intersection of A and B. For
example, the correct output below would be 6:1

7 11 17 16 4 6 9︸ ︷︷ ︸
Set A

* 8 1 5 6︸ ︷︷ ︸
Set B

→ ?

1Note that we train the model to output the set intersection,
of size 1, not binary disjointness result (Algorithm 1). We find
explicitly outputting the intersection helps the model avoid the
behavior of outputting 0 or 1 with 50% accuracy during training.
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Figure 2: Data order vs. quality. The x-axis shows the recurrent state size in (bytes) during inference. The y-axis shows the accuracy on
the set disjointness task, where the model needs to output the intersecting elements between two sets of tokens A and B (of lengths |A|
and |B|) provided in-context. (Left) |A| is longer than |B|; (Middle) |B| is longer than |A|; (Right) Difference in accuracy between the
two orderings. We evaluate non-causal and causal versions of the Based recurrent architecture from (Arora et al., 2024). For each, we vary
the hyperparameters (e.g., model dimension, feature dimension) that affect the state size. We plot the maximum score for each point
across a sweep of three learning rates {1e− 4, 5e− 4, 8e− 4} and two random seeds. The plot shows that the causal recurrent models
are more sensitive to the data order than non-causal models.

In Figure 2, we vary the state size of the Based recurrent
architecture (Arora et al., 2024), which has been demon-
strated to outperform prior subquadratic models on recall,
on the SD task. We train on sequences where |A| and |B|
are between 1 and 1024, and |V | = 2048. In addition to
measuring overall accuracy, we consider the sliced accu-
racy on sequences where |A| < |B| and sequences where
|B| < |A|.

We find the causal models achieve better quality when the
size of set A is smaller than set B. Figure 2 (Right) shows
the difference in quality between when A is shorter vs.
longer than B, reflecting that the gaps tend to be larger
at smaller state sizes (x-axis). We additionally evaluate a
non-causal variant of the Based architecture and find (1)
it outperforms the causal models across state sizes when
A is longer than B (Figure 2 (Left)), and (2) displays less
variation in quality as a function of data (set) order Figure 2
(Right). We release code to reproduce this plot.

Theoretical study: recall and set disjointness. In Ap-
pendix G, we perform a systematic theoretical study of the
connection between set disjointness and recall as well as the
complexity of solving set disjointness in the JRT setting.

First, we show that set disjointness and the “general associa-
tive recall” (GAR) problem, which we define in Appendix
G [Definition G.24]), are essentially equivalent (see Propo-
sitions G.25 and G.26). Roughly speaking, the keys and
queries in GAR correspond to sets A and B in set disjoint-
ness.

We argue that recurrent models need space
Ω(min(|A|, |B|)) for solving set disjointness, and
hence, GAR (see Proposition G.29 in Appendix G.4.1).

Proposition 3.1. Given a JR−p prompt2 uJR−p ∈
{0, 1}pN×d for input u ∈ {0, 1}N×d to the GAR problem,
any recurrent modelMGAR (definition G.12) solving GAR

requires its state size to be at least Ω
(

min{|A|,|B|}
p

)
-bits.

That is, the lower bound holds even if we allow multiple,
but constant, many passes, as opposed to Ω(max(|A|, |B|))
lower bound for recurrent models without repeats (Arora
et al., 2024) Theorem F.3.

Next, we show we can indeed achieve this lower bound. We
show that certain recurrent models (concretely, a slight vari-
ant of Based) can solve SD with O(min(|A|, |B|)) space
in the JRT-PROMPT setting (App. G.3).
Theorem 3.2. Given a JRT prompt uJRT ∈ R2N×(n+1)

of the input u ∈ RN×(n+1) for the set-disjointness (SD)
problem (A,B) ⊆ {0, 1}n, there exists a Based model
(BaseConv + MLP + LinearAttention + MLP)3

that solves SD with space O(min{|A|, |B|} · n).4

Finally, we show that this improvement via JRT-prompting
is not realizable for all possible architectures. In particular,
we show that Ω(max{|A|, |B|}) = Ω(N) lower bounds for
the BaseConv model (a model that provably simulates any
gated convolution, e.g. Hyena (Poli et al., 2023a), H3 (Fu
et al., 2023b), with just poly-log blowup in parameters and

2A JR−p prompt is simply repeating the input p times (see
Definition G.28).

3This matches the architecture in our experiments.
4This bound is for the case where the IP kernel is dependent on

A and B; if we use an input-independent IP kernel, then we get
an upper bound of O

(
(min{|A|, |B|})2 · n

)
(see Remark G.23).

Further, this result needs one layer of BaseConv where the con-
volution kernel is input dependent as well.
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depth) (Theorems F.4, F.5, and F.6, (Arora et al., 2024))
for recall carry over even in the JRT-prompt setting (see
Theorems G.6, G.7, and G.11).

3.2. Consequences of analysis on downstream in-context
learning with large language models

We next show that our analysis holds consequences for in-
context learning on real-world tasks.

JRT-PROMPT approach. In-context learning tasks take
as input (C,Q,Y) where C is some context (e.g., document
or code repository), Q is some question or request to the
model given the context, and Y is the answer. For standard
in-context learning with autoregressive LM A, we input
C and Q and evaluate the generated output Ŷ = A(C,Q)
against the true completion Y .

We propose JRT-PROMPT, an exceedingly simple method in
which information from the prompt (e.g. questions and doc-
uments) is repeated in-context before the model is prompted
to output the answer, e.g., Ŷ = A(C,Q, C,Q), as depicted
in Figure 1 (Right). As a result, during the second occur-
rence of the context, the model can condition on a full view
of the context when deciding what to store. We provide the
prompts that we use in Appendix E, and release our code to
reproduce the table.

Evaluation. JRT-PROMPT can be used with off-the-shelf
LLMs. We evaluate the following LMs on a suite of recall-
intensive in-context learning tasks, with zero-shot prompts:

• Based (Arora et al., 2024) pretrained LMs at
the 1.3B parameter scale trained on 10 − 50B
tokens of the Pile (Gao et al., 2020). Trans-
former++ and Mamba models trained on the ex-
act same tokens and data order are provided for
quality references: https://huggingface.co/
collections/hazyresearch/

• Mamba (Gu and Dao, 2023) pretrained LMs at the
130M, 370M, 1.4B, 2.8B parameter scales, trained on
300B tokens of the Pile (Gao et al., 2020): https:
//huggingface.co/state-spaces

• Gated Linear Attention (Yang et al., 2023) pretrained
LMs at the 1.3B and 2.7B parameter scales, trained
on 100B tokens of SlimPajama data (Computer, 2023):
https://huggingface.co/fla-hub

• Mamba-2 (Dao and Gu, 2024) pretrained LMs at the
130M, 370M, 1.3B, 2.7B parameter scales, trained on
300B tokens of the Pile (Gao et al., 2020): https:
//huggingface.co/state-spaces

The results are summarized in Table 1. Arora et al. (2024)
finds that linear recurrent models like Mamba drastically

underperform Transformers on these recall-intensive tasks.
Architectures like Based increase the recurrent state size, im-
proving both quality and efficiency, and recently Mamba-2
adopts this approach as well. Complementing the approach
of increasing state size, we find the JRT-PROMPT modifica-
tion provides 11.0± 1.3 points of improvement, averaged
across models and tasks: Based models with JRT-PROMPT
outperform the Transformer models with standard prompt-
ing on average. We also find that JRT-PROMPT can ben-
efit the Transformer models and that the method appears
more effective than few-shot learning for these tasks (Ap-
pendix E). Notably, Springer et al. (2024) recently proposes
repeating the context for the goal of generating embeddings
using autoregressive Transformer-based models, and our
findings are in similar spirit. We focus on sub-quadratic
architectures and in-context learning tasks.

JRT-PROMPT increases the context length due to repeti-
tion, however using using sub-quadratic recurrent architec-
tures, this is still asymptotically more efficient than using
quadratic Transformer models. We find at sequence length
N = 32768, batch size 16, Based with JRT-PROMPT (2N
the sequence length) can provide 11.9× higher throughput
than FlashAttention-2 (N sequence length) on an NVidia
H100 (see Section 5).

4. JRT-RNN: an encoder-decoder recurrent
architecture

We have shown that the recall quality of causal fixed-
memory recurrent models varies depending on the order
in which the information appears in context, making them
brittle for in-context learning. To improve reliability, we
next propose a simple linear attention architecture that goes
beyond causal modeling.

A long line of work has demonstrated the strength of non-
causal bidirectional neural networks in language model-
ing (Schuster and Paliwal, 1997; Kosko, 1988; Graves and
Schmidhuber, 2005; Devlin et al., 2019; Raffel et al., 2020;
Patel et al., 2023). However, it is challenging to use them for
fast text generation because the context must be re-processed
for each generated token (Tay et al., 2023; Dong et al., 2019;
Patel et al., 2023). Encoder-decoder architectures with a
bidirectional encoder and causal decoder offer a way to
achieve fast causal generation while reaping the benefits
of bidirectional LMs. Nonetheless, decoder-only causal
LMs remain the norm and encoder-decoder architectures
have received little attention in the context of sub-quadratic
efficient LLMs.

4.1. Preliminaries

Baseline linear recurrent architecture. We start from
a recurrent architecture, linear attention, introduced in
(Katharopoulos et al., 2020a; Tsai et al., 2019; Choroman-
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Architecture Params Tokens FDA SWDE NQ SQUAD TriviaQA Drop Average

Transformer++ 1.3B 10B 74.4/86.1 41.4/52.5 28.2/31.9 39.0/53.1 49.5/49.3 22.3/33.6 42.5 / 51.1
Mamba 1.3B 10B 23.3/40.3 15.5/31.8 19.4/25.8 26.6/48.5 46.4/51.1 21.3/32.1 25.1 / 38.2
Based 1.3B 10B 48.6/58.9 27.6/44.7 19.7/28.4 31.0/46.7 44.1/51.9 19.5/34.6 31.8 / 44.2
Transformer++ 1.3B 50B 83.7/89.2 50.8/65.0 32.8/37.5 41.1/58.1 56.6/58.8 21.5/37.9 47.8 / 57.8
Mamba 1.3B 50B 41.9/55.7 32.6/45.4 26.9/33.9 31.5/53.5 54.9/56.7 20.4/33.8 34.7 / 46.5
Based 1.3B 50B 60.2/68.3 37.1/54.0 29.4/35.2 38.9/56.3 54.5/57.6 21.7/39.1 40.3 / 51.8
GLA 1.3B 100B 48.3/68.6 37.7/53.6 26.6/31.3 34.7/54.8 55.5/54.6 19.6/33.3 36.7 / 48.9
GLA 2.7B 100B 47.1/65.8 43.6/54.5 27.1/32.9 37.2/55.7 57.9/57.0 22.2/34.0 39.2/ 50.0
Mamba 130M 300B 25.7/32.8 17.5/31.5 16.8/21.7 27.1/51.9 43.5/50.1 17.4/30.7 24.7 / 36.5
Mamba 370M 300B 41.9/58.3 27.6/42.2 23.8/31.1 34.9/51.0 53.6/51.7 19.3/33.2 33.5 / 44.6
Mamba 1.4B 300B 45.8/60.9 37.6/46.0 31.0/36.6 39.9/59.6 60.5/61.3 20.9/36.4 39.3 / 50.1
Mamba 2.8B 300B 54.3/66.6 38.9/48.9 33.5/40.1 43.9/59.4 66.2/63.9 19.8/36.9 42.8 / 52.6
Mamba-2 130M 300B 32.2/50.9 29.5/43.3 20.6/28.9 30.4/47.0 43.7/47.2 18.0/34.0 29.1 / 42.0
Mamba-2 370M 300B 60.8/76.7 38.3/52.1 26.6/33.6 35.3/51.8 54.6/54.7 22.4/36.3 39.7 / 50.9
Mamba-2 1.3B 300B 66.8/74.7 50.0/59.6 33.6/40.5 42.9/59.6 63.8/62.4 23.2/36.6 46.7 / 55.6
Mamba-2 2.7B 300B 68.7/81.6 55.2/60.8 34.4/41.7 45.4/59.4 66.4/66.5 23.0/42.5 48.9 / 58.8

Table 1: Evaluation of pre-trained language models. In each cell, we report in-context learning accuracy for the default zero-shot
/ JRT-PROMPT methods (using prompts provided in Appendix F). We evaluate across a suite of popular recall-intensive benchmarks.
The zero-shot prompt includes up to 1k tokens in the input and JRT-PROMPT includes up to 2k tokens in the input for all tasks (due to
repeating twice).

ski et al., 2020). Current strong recurrent LMs (e.g., Based
(Arora et al., 2024), GLA (Yang et al., 2023), Mamba-2
(Dao and Gu, 2024)) adopt linear attention with large re-
current state sizes. Prior work also theoretically shows that
linear attention and state space models like Mamba (Gu and
Dao, 2023) are closely related (Arora et al., 2023a; 2024;
Dao and Gu, 2024).

Let q, k, v be linear projections of the input u ∈ RN×d.
The exponential in softmax attention is replaced by a feature
map ϕ : Rd → Rd̃, from model dimension d to feature
dimension d̃, such that ϕ(qi)⊤ϕ(kj) ≈ exp(q⊤

i kj/
√
d).

The linear attention computation can then be written as:

yi =
ϕ(qi)

∑i
j=1

(
ϕ(kj)

⊤vj

)
ϕ(qi)

∑i
j=1 ϕ(kj)

(1)

Multiplying keys and values first, the time and space com-
plexity is O(Ndd̃) vs. O(N2d) for softmax attention.

Recurrent inference is split into two phases: prefill to pro-
cess the input prompt and decoding to generate one token
of the output at a time. During prefill, a length-l prompt
is processed in parallel according to Equation (1) result-
ing in a “KV-state” sl =

∑l
j=1 ϕ(kj)

⊤vj and “K-state”

zl =
∑l

j=1 ϕ(kj)
⊤. During decoding, we can compute

Equation (1) as:

si = si−1 + ϕ(ki)
⊤vi, zi = zi−1 + ϕ(ki)

⊤

yi =
ϕ(qi)si
ϕ(qi)zi

(2)

where si ∈ Rd×d̃ and zi ∈ Rd̃. Each decode step has
O(1) time and space complexity as the sequence length
grows, improving upon O(N) for softmax attention with
KV-caching.

Prefix-LM architecture. Prefix-LM is a category of
encoder-decoder models where inputs of length N are split
into two regions: the first of length M is processed non-
causally and the latter of length (N − M) is processed
causally (Raffel et al., 2020). During loss computation, the
former tokens are ignored and next-token-prediction loss
is computed on the latter region. Excitingly, the design is
quite simple, however prior instantiations of Prefix-LMs use
inefficient softmax attention backbones and have not pro-
vided compelling benefits over decoder-only Transformers
(Wang et al., 2022). Prior prefix LM architectures have seen
limited adoption.

4.2. JRT-RNN architecture

JRT-RNN draws inspiration from Prefix-LMs, but focuses
on expanding the Pareto frontier of the quality-efficiency
tradeoff space. To improve quality, JRT-RNN uses separate
ke, ve projections on the encoder side and kd, vd projec-
tions on the decoder side. While Prefix LM models use
shared projection weights for the encoder and decoder re-
gions, we find that using two sets of projections improves
quality. This observation appears in early work on recurrent
encoder-decoder architectures (Sutskever et al. (Sutskever
et al., 2014)).

For efficiency, JRT-RNN uses non-causal linear attention
for the encoder plus standard causal linear attention for
the decoder. We term this Prefix Linear Attention (PLA)
(Figure 1 (Right)):

yi =
ϕ(qi)(

∑i
j=1 ϕ(kdj

)⊤vdj
+

∑M
j=1 ϕ(kej )

⊤vej )

ϕ(vqi)(
∑i

j=1 ϕ(kdj
)⊤ +

∑M
j=1 ϕ(kej )

⊤)
(3)

Prior work has proposed many different instantiations of
linear attention by varying the feature map ϕ – PLA is a
general approach, agnostic to the choice of feature map.
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PLA retains the linear recurrent view, O(1) time and space
complexity for the inference decode step and the sub-
quadratic in sequence length training complexity of standard
causal linear attention (Katharopoulos et al., 2020b). During
prefill, we process a length-l prompt in parallel according
to Equation (3). If l < M , we left-pad the prefill to length
M and mask the padded region during the linear attention
computation. The recurrent state is initialized as:

sM =

M∑
j=1

(ϕ(kej )
⊤vej + ϕ(kdj )

⊤vdj ),

zM =

M∑
j=1

(ϕ(kej )
⊤ + ϕ(kdj

)⊤) (4)

Decoding for outputs yi, i > M proceeds according to
Equation (2), without modification.

Efficiency. Although linear attention is theoretically more
efficient than softmax attention, existing implementations
are generally slower than well-optimized standard attention
implementations (e.g., FlashAttention (Dao, 2024)). Excit-
ingly, (Arora et al., 2024) recently provides an IO-aware
kernel that realizes the efficiency benefits of the Based linear
attention architecture by carefully paritioning and storing
the large matrix-valued recurrent state across warp-registers
during prefill (Algorithm 1 in (Arora et al., 2024)). We ex-
tend their algorithm to support PLA, using the Based feature
map (defined in Appendix D) in Algorithm 2 and provide
the efficiency results in Section 5. Additional details of our
implementation are provided in Appendix D.

The baseline causal linear attention takes 2BNHD FLOPS
to compute the feature map on qd, kd, and 4BNHdD
FLOPS for the kd, vd dot product, cumulative sum, qd
dot product, and sum along the feature dimension D respec-
tively. PLA increases the FLOPS by BMHD to compute
the feature map on ke and 3BMHdD to compute the ke,
ve dot product, sum along D, and sum the state with the
decoder KV-state. PLA uses the same amount of memory
(recurrent state size) during the inference decoding step as
the original causal linear attention architecture.

4.3. JRT-RNN training objective

Our baseline recurrent models are trained with a standard
next token prediction (NTP) objective, learning a probability
distribution P(ui+1|{u1, ..., ui}) from input sequences of
tokens u = {u1, ..., uN} for sequence length N , and cross-
entropy loss. For the pure decoder models, the loss (LNTP)
is computed using all N tokens in u. Prefix-LMs can only
compute the NTP loss (LNTP) for tokens {uM , ..., uN},
which are processed causally.

Prefix LMs typically compute no loss on the non-causal re-
gion, however in JRT-RNN, we combine next token predic-
tion with the masked language modeling (MLM) objective
(Devlin et al., 2019). For the added MLM objective, we
replace proportion P of of tokens from the encoder region
{u1, ..., uM} with a [MASK] token and we measure the
cross-entropy loss (LMLM) in predicting the original token.
The loss is:

L =
w1LNTP + w2LMLM

w1 + w2
(5)

where w1, w2 ∈ R are scalar weights. During inference, no
[MASK] tokens are used; inference proceeds as with causal
LMs.

5. Results
In this section, we validate the following quality and effi-
ciency claims for JRT-RNN:

1. In-context learning (ICL) quality JRT-RNN provides
99% of Transformer quality at 360M params./30Bn to-
kens, averaged across the recall-intensive ICL bench-
marks. This represents 46.7% improvement over Based
and 78.8% over Mamba. JRT-RNN provides 96% of
Transformer quality at 1.3Bn params./ 50Bn tokens, rep-
resenting 16.2% improvement over Based and 34.5%
over Mamba on average.

2. Overall language modeling Beyond outperforming in
recall, we show that JRT-RNN matches the baselines in
general natural language understanding (SuperGLUE).
We give a detailed analysis of the pretrained LMs, com-
paring perplexity on slices of the Pile test set to show the
strengths and limitations.

3. Generation We show that JRT-RNN can provide 19.2×
higher prefill throughput than FlashAttention-2 at 32k
sequence length, batch size 16 on an NVidia H100 GPU.

Models. We compare JRT-RNN to two state-of-the-art
recurrent autoregressive models, Based (Arora et al., 2024)
and Mamba (Gu and Dao, 2023). We also compare to the
Transformer++ (Llama architecture (Touvron et al., 2023)),
which adds rotary encodings (Su et al., 2023) and GLU.

For JRT-RNN, we start from the Based linear recurrent
architecture, since it has been shown in prior work to out-
perform prior sub-quadratic architectures (e.g., Mamba,
GLA) at recall. An extended explanation of Based is in Ap-
pendix D. We reiterate that the approaches in JRT-PROMPT
and JRT-RNN can be combined with any recurrent LM.

Benchmarks. We evaluate on a range of ICL benchmarks.
We use SuperGLUE to test general language understand-
ing (Wang et al., 2019). We next evaluate on a suite of
recall-intensive tasks including: SWDE and FDA informa-
tion extraction tasks (Wu et al., 2021; Deng et al., 2022;
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Architecture Param/Tok
FDA SWDE NQ SQUAD Trivia Drop Avg.

512 1024 512 1024 512 1024 Full Full Full
Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑

Transformer 360M/30B 74.8 73.0 44.7 43.0 27.8 22.9 36.2 46.5 21.8 43.4
Mamba 360M/30B 41.1 24.3 22.2 13.6 16.4 12.5 25.5 43.0 17.3 24.0
Based 360M/30B 50.3 35.8 30.4 21.6 19.7 14.7 29.8 42.5 18.4 29.2
JRT-RNN 360M/30B 82.0 66.0 43.3 35.1 32.9 16.2 41.7 43.2 25.8 42.9
Transformer 1.3B/10B 75.3 71.5 41.6 41.0 29.6 25.8 38.7 48.8 22.6 43.9
Mamba 1.3B/10B 37.4 23.3 23.0 15.1 19.6 16.1 26.1 45.7 20.9 25.2
Based 1.3B/10B 66.3 49.0 32.3 26.3 19.7 15.7 30.7 44.2 19.1 33.7
JRT-RNN 1.3B/10B 78.5 60.6 38.5 32.7 26.5 16.7 51.6 44.8 28.4 42.0
Transformer 1.3B/50B 85.6 83.5 55.7 56.0 33.4 29.9 40.1 56.6 21.4 51.4
Mamba 1.3B/50B 55.4 40.1 44.0 33.7 27.6 23.2 32.2 54.5 20.7 36.8
Based 1.3B/50B 69.3 58.8 47.6 40.4 29.1 24.4 38.5 54.3 20.8 42.6
JRT-RNN 1.3B/50B 86.7 67.7 49.4 45.7 38.3 25.4 50.4 53.0 29.3 49.5

Table 2: Evaluation of JRT-RNN models. We compare JRT-RNN to strong LMs proposed in prior work (Based, Mamba, and
Transformer++) across parameter scales. In the table, we specify the length (number of tokens) of the documents provided in context (512,
1024, Full), where “Full” means the full document is included as prefill. Table 7 contains the average number of tokens per document in
each benchmark.

Arora et al., 2023b; 2024), where the model needs to extract
values for a specified attribute from in-context passages,
and SQUADv2 (Rajpurkar et al., 2018), Natural Questions
(Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017),
and Drop (Dua et al., 2019). In these tasks, the model needs
to ground its answers in in-context documents. We release
code and models to reproduce our results and provide details
on the benchmarks and evaluations in Appendix B.

5.1. In-context learning quality

In Table 2, we find JRT-RNN outperforms the decoder-only
baseline (Based) by 13.7 points at 360M parameters (30Bn
tokens) and 6.9 points at 1.3B parameters (50Bn tokens)
on average. JRT-RNN closes the gap to Transformer++
to within 0.5 points on average at 360M and 1.9 points on
average at 1.3B parameters.

In Table 2, we left pad documents with length < M , where
M = 1024 is the encoder region’s length during training
(discussed in Section 4) – for the three results with length
512 documents we pad using JRT-PROMPT and otherwise
with the tokenizer’s space token (discussed further below).

Length extrapolation. Though the encoder processes un-
til length M = 1024 for our trained LMs, we excitingly
find that the benefits of JRT extend to prefill lengths l s.t.
l > M as well. In Section 5.1, we evaluate at the 360M and
1.3B parameter scales with documents of length 2000.

Inference strategies. In Table 3, we compare alternate
inference strategies for JRT-RNN in the regime where the
prefill length l is less than the encoder length M , l < M :

• Decoding with padding: We left-pad the prefill to length
M to match the training distribution the model sees.
Causal decoding starts at position M . This is the default
for JRT-RNN.

• Read-twice pad: Instead of padding with a special to-
ken, we can “pad” by repeating the context (i.e., JRT-
PROMPT). We use this at l = 512 for FDA, SWDE, and

Arch. Param/Tokens FDA SWDE NQ
2k 2k 2k

Transformer 360M/10B 65.2 41.0 23.0
Mamba 360M/10B 12.4 13.4 12.4
Based 360M/10B 19.1 18.9 13.9
JRT-RNN 360M/10B 28.4 26.1 15.4
Transformer 1.3B/50B 79.7 55.5 30.2
Mamba 1.3B/50B 21.0 29.9 23.1
Based 1.3B/50B 36.1 37.7 23.4
JRT-RNN 1.3B/50B 55.2 41.4 26.2

Table 3: Evaluation at prefill lengths 2k, i.e. beyond the encoder
region (length M = 1024).

Inference Param/Tokens FDA SWDE NQ
512 512 512

Left-pad 360M/30B 61.9 38.1 24.6
Read-2× 360M/30B 82.0 43.3 32.9
Iterate 360M/30B 76.3 40.7 29.2
Left-pad 1.3B/50B 75.8 49.3 30.9
Read-2× 1.3B/50B 86.7 49.4 38.3
Iterate 1.3B/50B 80.2 43.3 34.2

Table 4: JRT-RNN with alternate inference strategies when l <
M , for prefill and encoder lengths l and M .

NQ in Table 2. Padding is a fixed cost for JRT-RNN, so
it can be used creatively.

• Iterative encoding: We allow the model to non-causally
view its previously generated tokens during decoding. We
generate token yl given the length l prefill, append it
to the prefill, and then compute yl+1 again using the
parallel view on the new input of length l + 1. This
protocol is expensive, but future work could consider
periodically updating the non-causal encoder-state when
decoding many tokens.

Overall natural language understanding While recall is
critical for in-context learning, it is important to validate that
the models remain strong in their overall natural language
understanding abilities.

In appendix C we provide a detailed analysis of the perple-
ity of each architecture on various slices of the Pile test set,
showing that JRT-RNN helps predict tokens that require
in-context recall. We also use the downstream SuperGLUE
benchmark, a canonical test of natural language understand-
ing ability (Wang et al., 2019), to evaluate each architecture
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at the 360M and 1.3B parameter scales in Table 8. We val-
idate that the different architectures perform similarly on
average across these generic, short-context language tasks
as observed in prior work (Fu et al., 2023c; Karami and
Ghodsi, 2024; Arora et al., 2024).

Table 5: Latency (ms) of inference prefill for each implementation.
Each point is the average of 20 iterations, run on an NVIDIA H100
GPU. In Table 5, we vary the sequence length at a fixed batch size
of 16. In Table 5, we vary the batch size at a fixed sequence length
of 16384.

Implementation 2048 4096 8192 16384 32768

Based PyTorch 17.1 74.5 284.6 OOM OOM
Fast Transformer CUDA 11.4 23.0 47.0 96.0 OOM

Based Triton (FLA) 1.0 2.8 9.3 32.6 123.7
Based Custom CUDA 0.3 0.6 1.2 2.3 4.5

FlashAttention-2 0.5 1.8 6.8 26.6 107.8

JRT-RNN PyTorch 21.3 89.2 OOM OOM OOM
JRT-PROMPT Custom CUDA 0.6 1.2 2.3 4.5 9.0

JRT-RNN Custom CUDA 0.4 0.8 1.5 2.8 5.6

Implementation 8 16 32 64

Based PyTorch OOM OOM OOM OOM
Based Triton (FLA) 16.7 32.4 64.2 127.8

Based Custom CUDA 1.5 2.3 4.5 8.9
FlashAttention-2 13.4 26.6 52.9 108.2

Fast Transformer CUDA 50.7 95.5 OOM OOM

JRT-RNN PyTorch OOM OOM OOM OOM
JRT-PROMPT Custom CUDA 2.9 4.5 9.0 17.8

JRT-RNN Custom CUDA 1.8 2.8 5.6 11.1

5.2. Generation throughput

Generation can be decomposed into prompt “prefill pro-
cessing” and decoding “next token prediction” steps. Since
JRT-RNN does not modify the decoding step relative to
standard decoder-only recurrent models, we focus our dis-
cussion on the prefill stage.

Using the Based CUDA kernel proposed in (Arora et al.,
2024), JRT-PROMPT gives 11.9× and 13.7× higher
throughput in processing the prompt prefill than the
FlashAttention-2 and FLA Triton kernels respectively (pre-
fill length 32768) (Table 5). JRT-PROMPT provides 6.1×
and 7.2× higher throughput than the FlashAttention-2 and
FLA kernels respectively as we increase the batch size to 64
(Table 5). For JRT-PROMPT, we double the prefill length
compared to the baselines, using 2× the time of the original
Based prefill.

We next extend the Based kernel to support JRT-RNN and
demonstrate that the implementation achieves 19.2× and
22.0× higher throughput than FA2 and FLA as we increase
sequence length to 32768 (Table 5). JRT-RNN provides
9.7× and 11.5× higher throughput respectively as we in-
crease the batch size to 64 (Table 5). JRT-RNN takes 1.24×
the time of the Based prefill.

We benchmark the inference efficiency of JRT-PROMPT and
JRT-RNN in Table 5 (additional details in Appendix D). As

baselines, we consider popular and well-optimized softmax
attention and linear attention implementation. For attention,
we consider FlashAttention-2 (Dao, 2024). For linear atten-
tion, we consider the linear attention CUDA kernel from
Fast Transformers (Katharopoulos et al., 2020b; Vyas et al.,
2020) and a Triton parallel Based kernel from Flash Linear
Attention (FLA) (Yang and Zhang, 2024). We also compare
to PyTorch implementations of JRT-RNN and Based. All
numbers are benchmarked on a NVidia H100 GPU.

6. Conclusion
Recurrent LLMs promise drastically more efficient infer-
ence relative to Transformers, however they are brittle dur-
ing in-context learning. We identify the role of data order as
a key reason, formalized via synthetics and theory. Our anal-
ysis suggest that putting data in the right order in context or
non-causally processing the context can help efficient recur-
rent models better use their limited memory. We translate
these insights to JRT-PROMPT and JRT-RNN respectively.
JRT-PROMPT improves the quality of recurrent models by
11.0± 1.3 points averaged across models and tasks, and our
prototype architecture, JRT-RNN, provides a 13.7 point
improvement at 360M parameters and 6.9 point improve-
ment at 1.3B parameters. Both methods increase throughput
relative to FlashAttention-2 using IO-aware CUDA imple-
mentations.

While much of the effort on sub-quadratic LMs seeks to di-
rectly mimic the experience of using quadratic Transformer
LMs, our work emphasizes that we can exploit the asym-
metries in efficiency to close the quality gaps: multiple
linear passes over data is still asymptotically more efficient
than quadratic attention. To facilitate reproducing this work,
we release code and models at https://github.com/
HazyResearch/prefix-linear-attention.
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The appendix is organized as follows:

1. Appendix A includes an extended related works discussion.

2. Appendix B includes additional experimental details.

3. Appendix C includes additional experiments to supplement Section 5.

4. Appendix D includes details on the IO-aware implementation and benchmarking for JRT-RNN.

5. Appendix E includes error analysis discussion for JRT-PROMPT.

6. Appendix F includes the prompts used for all in-context learning experiments in this work.

7. Appendix G includes theoretical results and proofs.
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A. Extended related work discussion
The notion that causal models are limited because they need to “predict the future” when computing representations is
well-known (Raffel et al., 2020; Schuster and Paliwal, 1997; Kosko, 1988). Yet, current large language models (e.g., Llama
(Touvron et al., 2023), GPT (Brown et al., 2020), and efficient Mamba (Gu and Dao, 2023), Griffin (De et al., 2024), GLA
(Yang et al., 2023), RWKV (Peng et al., 2023), Striped Hyena (Poli et al., 2023b)) are causal. Here we provide an extended
discussion of the related work.

A.1. Prompting strategies

Most related to our work, Springer et al. (2024) recently proposes to produce embeddings from autoregressive Transformer
models by repeating the context twice and taking embeddings from the activations of second occurrence. We focus on 1)
sub-quadratic models / memory perspective, 2) recall-intensive tasks rather than producing embeddings. Our findings build
on these ideas and the key distinctions are: (1) our focus on sub-quadratic architectures, which can provide asymptotically
higher efficiency, (2) our focus on recall and in-context learning based tasks as opposed to embedding generation, and (3)
our theoretical analysis on why JRT-PROMPT impacts the memory requirement of recurrent LMs.

We are certainly not the first to try modifying the data order for recurrent LMs. The seminal Seq2seq paper from Sutskever
et al. (Sutskever et al., 2014) proposes to reverse the order of the tokens in the source sequence when using encoder-decoder
LSTM-based recurrent language models.

A.2. Encoder-decoder language models

A long line of work has explored the use of bidirectional networks (Schuster and Paliwal, 1997; Kosko, 1988; Graves and
Schmidhuber, 2005; Devlin et al., 2019; Raffel et al., 2020; Patel et al., 2023). In early work, Schuster and Paliwal (1997)
demonstrate synthetic math tasks that require recurrent models to use lagging and future values to produce outputs, favoring
bidirectional networks. Kosko (1988) explores associative recall style tasks in two layer bidirectional networks. We build on
the ideas from this line of work and focus on our discussion on large language modeling architectures.

Three popular language modeling architecture paradigms are encoder-only, decoder-only, or encoder-decoder. A popular
use case for bidirectional, encoder-only, models is producing word or context embeddings (Peters et al., 2018; Devlin
et al., 2019). It is challenging to use these models for fast and open-ended generation (Tay et al., 2023; Dong et al., 2019).
Encoder-decoder models have emerged as a compelling alternative, combining non-causal bidirectional encoding for parts
of the input text and causal decoding to generate responses.

However, causal decoder-only language models currently prevail (e.g., Llama-3 (AI@Meta, 2024), GPT (Ouyang et al.,
2022; Brown et al., 2020), PaLM (Chowdhery et al., 2022)). Current research on efficient architectures also largely focuses
on pure encoder-only (e.g. M2-BERT (Fu et al., 2023c), Mamba-Caduceus (Schiff et al., 2024), Orchid (Karami and
Ghodsi, 2024)) or decoder-only causal LMs (e.g., Mamba (Gu and Dao, 2023), RWKV (Peng et al., 2023), Griffin (De et al.,
2024), Striped Hyena (Poli et al., 2023b)), as opposed to encoder-decoder. In contrast, our work on JRT-RNN explores
encoder-decoder recurrent LMs in light of recent progress in sub-quadratic efficient architectures.

Recurrent encoder-decoder language models Recurrent encoder-decoder language models were popular in the context
of machine translation systems. Sutskever et al. (2014) uses two LSTM RNNs, one to process the inputs and produce a
fixed dimensional vector, and the other to decode the outputs from this vector. Wu et al. (2016) use a similar two-stack
(encoder-stack and decoder-stack) architecture, using right-to-left and left-to-right RNNs for some encoder layers).

Instead of compressing the source sentence into a fixed recurrent state, Bahdanau et al. (2016) use attention to refer back to
encoder states. A key motivating observation for the switch to attention comes from Cho et al. (2014), which finds that the
quality of RNN-based encoder-decoder language models degrades quickly as the sequence length increases. Following
the rise of attention and the Transformer architecture (Vaswani et al., 2017) in popularity, subsequent work predominantly
explores Transformer-based encoder-decoder LMs.

Transformer-based encoder-decoder language models Raffel et al. (2020) propose the T5 architecture, which uses
two separate Transformer stacks, one for non-causally encoding input text and one for causally decoding response. Cross-
attention allows the decoder attention queries to attend to the final attention key and value states form the encoder stack. More
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recently, (Yen et al., 2024) trains a 7Bn parameter two-stack encoder-decoder model called CEPE, adapted form Llama-2
(Touvron et al., 2023) with cross-attention between stacks, following T5.5 We evaluate this model on the recall-intensive
tasks and surprisingly find that ignoring its encoder altogether and placing documents and questions in the decoder far
outperforms placing the document in the encoder and questions in the decoder on the recall-intensive benchmarks.

SWDE FDA
Acc. ↑ Acc. ↑

CEPE Enc.-Dec. 51.0 5.9
CEPE Dec.-Only 80.4 72.5

Table 6: Evaluating the CEPE 7Bn parameter model (Yen et al., 2024) on the document information extraction tasks, using N = 50
random examples. For the encoder-decoder baseline, the document is inputted to the encoder and the question (i.e., name of the attribute to
extract from the document) is sent to the decoder. In the decoder-only model, the standard prompt containing the document plus attribute
are inputted to the decoder and the model’s encoders are ignored (empty inputs). We observe the encoder-decoder model tends to produce
irrelevant responses.

Prior work suggests that the T5 architecture struggles in open-ended generation (Patel et al., 2023; Tay et al., 2023). Some
differences between JRT-RNN and the T5-style approach are that the T5 corruption pretraining objective deviates from how
the models are used for downstream generation tasks, and training requires the use of multiple special sentinel tokens and
unique positional encodings per stack of layers.

Instead of using separate encoder and decoder stacks, some prior work explores the use of Prefix-LMs. These models split
the input into encoder and decoder regions within each layer, where the former is processed non-causally and the latter is
processed causally (Raffel et al., 2020). Next token prediction loss is computed on the causal tokens and no loss is computed
on the prefix tokens.

To better equip encoder-decoders with generation abilities, UniLM (Dong et al., 2019), UL2 (Tay et al., 2023), AlexaTM
(Soltan et al., 2022) and others use different combinations of span corruption and prefix language modeling pretraining
objectives. During training, given an input sequence, one of the suite of objectives is sampled with some pre-defined
probability. Each of these architectures are Transformer-based, facing quadratic scaling in sequence length during training
and linear scaling during inference. In GLM (Du et al., 2022), spans of text are masked and autoregressively in-filled during
training, to endow the model with generation capabilities. We are inspired by these works in combining MLM and next
token prediction objectives, and future work could explore alternate variations to the training objective used in JRT-RNN.

Discussing the differences in JRT-RNN Recent work has made exciting progress in designing efficient LMs that extend
the Pareto-frontier of the quality-efficiency tradeoff space relative to Transformers and prior recurrent architectures. However,
these are decoder-only LMs, while JRT-RNN uses the encoder-decoder framework. Prior popular encoder-decoder LMs are
Transformer-based with quadratic scaling and do not convincingly improve in quality over decoder-only models (Wang
et al., 2022), so the motivation to use them is unclear. JRT-RNN improves efficiency (Table 5) and quality (Table 2).

Within the encoder-decoder framework, JRT-RNN uses a prefix LM structure. Unfortunately, prior work and our ablations
suggest this training strategy does not perform well ((Wang et al., 2022) and Table 11), and this architecture has not seen
adoption. Instead JRT-RNN deviates by (1) adding a masked language modeling loss to the prefix alongside next token
prediction for the suffix. JRT-RNN (2) reads the prefix twice. Prefix LM models modify the attention mask of standard
attention to make the prefix non-causal and use shared projection weights for the non-causal encoder and causal decoder
regions. Instead, JRT-RNN uses two sets of key and value representations for encoding and decoding respectively.

5https://huggingface.co/hyen/CEPED-LLaMA-2-Chat-7B
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B. Experimental details
This section provides additional details for the synthetic, JRT-PROMPT and JRT-RNN experimental protocols. We use
NVidia A100-80GB GPUs for all training runs.

B.1. Additional details for set disjointness synthetic experiments

This section provides experimental details for Figure 2.

Dataset The procedure for generating training and evaluation data for our synthetic experiments is shown in Algorithm 1.
We train on the following mixture of sequence lengths, where the tuple denotes (|A|, |B|) for sets A and B in the sequence:

(4, 16), (16, 4), (8, 32), (32, 8), (64, 16), (16, 64), (4, 128), (128, 4), (16, 256), (256, 16), (4, 256), (256, 4)

We evaluate on the following mixture of sequence lengths (requiring length extrapolation from training), where the tuple
denotes (|A|, |B|) for sets A and B in the sequence:

(1, 32), (32, 1), (4, 32), (32, 4), (4, 128), (128, 4), (16, 256), (256, 16), (4, 256), (256, 4), (16, 512),

(512, 16), (4, 512), (512, 4), (8, 768), (768, 8), (16, 768), (768, 16), (4, 768), (768, 4)

We include 20000 data points per tuple above during training and 1000 during evaluation. We use V = 2048 as the
vocabulary size.

Algorithm 1 Set Disjointness Synthetic Procedure

Require: Vocabulary V , Sequence lengths NA and NB for sets A and B, Special token IDs prefix_token_id, mask_tok_id,
sep_sets_token_id, sep_answer_tok_id
Output: Synthetic sequence

1: Let the first half of V , VA, be prospective tokens for set A and the second half, VB , be prospective tokens for set B.
2: Randomly select NA tokens from VA for set A. Randomly select NB tokens from VB for set B.
3: Randomly select a token t from A as the intersecting token between sets. Replace a random token (at a random position)

from B with t.
4: Construct the final input sequence as the concatenation:

[prefix_token_id], A, [sep_sets_token_id], B, sep_answer_tok_id], [t]

5: The label sequence contains a “-100” (i.e., a token to ignore computing the loss) at all positions except for the final
position. We mask [t] (the final position) from the input sequence.

6: Output the synthetic input and label sequences.

Models We evaluate causal and non-causal variants of the Based recurrent model. Each model contains 4 layers alternating
gated-convolutions (with a short filter of size 3) and linear attention with 2 query key and value heads. For the non-causal
variant, we simply replace the causal cumulative sum in linear attention with a sum, and we use non-causal circular
convolutions. For the linear attention feature map, we use a Taylor approximation to the softmax-exponential function as
in (Arora et al., 2024) (also defined in ??). Each layer has an MLP with GeLU activations. We do not use any explicit
positional embeddings, instead finding the short-convolutions sufficient for positional information.

To sweep the state size, we vary the model width or dimension ∈ {36, 48, 64, 96, 128} and linear attention feature dimension
∈ {4, 8, 16, 24}.

Training We train using cross-entropy loss on the predicted vs. true intersection token t in Algorithm 1. For each point in
Figure 2, we sweep learning rates ∈ {0.0001, 0.0005, 0.0008} (after identifying that this regime is most effective for the
architectures) and report the maximum accuracy after 48 epochs of training. We use AdamW as the optimizer with 0.1
weight decay.

We build our synthetic experiments using the synthetics repository provided by prior work (Arora et al., 2023a): https:
//github.com/HazyResearch/zoology.
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B.2. Additional details for JRT-PROMPT experiments

For Table 1 (JRT-PROMPT), we use the following publicly available models pretrained and released by the baseline works:

• Based (Arora et al., 2024) models are at https://huggingface.co/collections/hazyresearch/
based-65d77fb76f9c813c8b94339c

• Gated Linear Attention (Yang et al., 2023) models are at https://huggingface.co/fla-hub.

• Mamba (Gu and Dao, 2023) and Mamba-2 (Dao and Gu, 2024) models are at https://huggingface.co/
state-spaces

We integrate all tasks into the popular LM-Eval harness to run inference. We truncate long-documents (e.g., in NQ, FDA,
SWDE) to length 1k tokens for the default prompting and length 2k tokens for JRT-PROMPT so that both methods receive
the same information in-context. We note that these lengths are chosen because the listed pretrained models have 2048
context lengths. We ensure that the answer span is present in truncated documents. We do not use any task-specific prompt
customization in this section, to highlight the effectiveness of JRT-PROMPT despite little effort.

B.3. Additional details for pre-training experiments

Additional details for JRT-RNN To facilitate comparisons to prior work, we start with the Based architecture (Arora
et al., 2024) and replace its linear attention layers with JRT-RNN linear attention layers. Note that the Based architecture
hybridizes gated convolution layers (kernel size 3), sliding window attention layers (window size 128), and linear attention
layers (using a Taylor approximation to the exponential function as the feature map, with feature dimension 16). We maintain
the exact same order and number of each layer type as the Based work. We reduce the number of gated convolution layers
by 1 at 360M parameters to account for the increase in parameters due to the encoder projections.

Next we include a description of the linear attention feature map used in our trained models. Based uses a 2nd-order Taylor
approximation to the softmax-exponential function as the feature map ϕ : Rd → Rd̃ (Zhang et al., 2024). To approximate
exp(q⊤

i kj/
√
d):

exp(x) ≈ 1 + x+
x

2!
(6)

ϕ(qi)
⊤ϕ(kj) = 1 + q⊤

i kj +
(q⊤

i kj)
2

2
(7)

The second order term has large dimension 273 if d̃ = 16 as in (Arora et al., 2024). As a result, a careful IO-aware
implementation is key to efficiency.

Training protocol For Table 2, we use the code provided by the baseline works, which has been adapted from the
FlashAttention code base: https://github.com/Dao-AILab/flash-attention/tree/main for our pre-
training runs (Dao, 2024). The Pile data is tokenized using the GPT2BPETokenizer and all models see the data in the same
order. Here we provide details on the hyperaparamters and configurations used for training each architecture.

• JRT-RNN We provide hyperparameters and settings used for JRT-RNN in Table 15. We integrate JRT-RNN into the
Based implementation released by the prior work.

• Based (Arora et al., 2024) We train using the specifications in Table 16 and the architecture implementation provided
here: https://github.com/HazyResearch/based.

• Transformer++ (Touvron et al., 2023) We refer to the modern Llama architecture with Rotary encodings, RMSNorm
and SwiGLU as Transformer++, following prior work (Gu and Dao, 2023; Yang et al., 2023). We train using the the speci-
fications in Table 18 using the Flash Attention training code provided here: https://github.com/Dao-AILab/
flash-attention/tree/main (Dao, 2024).

• Mamba (Gu and Dao, 2023) We train using the specifications in Table 17, where the parameters are sourced from the
Appendix of (Gu and Dao, 2023). The architecture implementation is from the reference at https://github.com/
state-spaces/mamba.

We give all models the Transformer++ change (e.g., SwiGLU, Rotary) where relevant.
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Inference protocol For JRT-RNN, we left-pad prefill when it is shorter than the encoder region and mask in the linear
attention layer following Listing 3 Appendix D. We apply no changes if the prefill exceeds the encoder region. For all
results reported in this work, we use the parallel view of JRT-RNN to process the prefill and compute initial states following
Section 4, then use the recurrent view to decode.

B.4. Additional details for Pile perplexity slicing analysis

In Appendix C.1, we analyze the perplexity of different models trained on the Pile, on the Pile test data. Here we provide
additional details for the protocol.

We compute the training counts of bigrams across 10M Pile training documents, each of length 2048. We evaluate the
models on 3, 200 sequences of length 2048 (6.6M total tokens), and measure perplexity on the last 1024 tokens per sequence
(the causal, decoder region for JRT-RNN) (3.3M total tokens). We then evaluate perplexity on two slices of this test set:

1. Associative recall (AR) hits. Tokens in the final position of a bigram which previously occurred in context, and this
bigram is infrequent during training. For instance, in the sequence “While lunching at the Maison Bergey bistro near
his apartment: he had been musing about the ... (723 tokens) ... the young waitress’s sigh at the Maison Bergey.” the
second “Bergey” would be included as an “AR hit” if “Maison Bergey” is a rare bigram during training. Intuitively, the
model would need to rely on the context to predict the next token if the bigram were rare during training (i.e., was not
memorized), testing the model’s recall ability.

2. Other tokens. All other tokens. Intuitively, these tokens test the knowledge memorized in the model parameters.

In Figure 3, for the recall frequencies plot, we restrict to “AR hits” where the bigram and the re-occurrence of the bigram in
context are separated by at least 1024 in distance within the context. In the recall gaps plot, we restrict to bigrams that are
seen fewer than 1000 times during training and vary the distance between bigram occurrences in-context on the x axis.

B.5. Evaluation datasets

Here we provide additional details on the recall-intensive benchmark suite used in this work. The tasks include:

• FDA FDA is an information extraction task where documents are FDA reports for pre-market medical devices and the
model needs to extract attributes such as the device code, classification, and indications for use (Arora et al., 2023b;
2024). These FDA reports are frequently analyzed by domain experts (Wu et al., 2021). We use the dataset released at:
https://huggingface.co/datasets/hazyresearch/based-fda, which is part of the LM-Eval Harness
repository (Gao et al., 2023).

• SWDE SWDE is an information extraction task where documents are HTML webpages spanning 14 different websites
in the Movie and University topic domains (e.g., “IMDB.com”, “RottenTomatoes”, “USNews”) and the model needs
to extract attributes such as the Movie director / assistant director and University tuition (Lockard et al., 2020; Deng
et al., 2022; Arora et al., 2023b; 2024). We use the dataset released at: https://huggingface.co/datasets/
hazyresearch/based-swde, which is part of the LM-Eval Harness repository (Gao et al., 2023).

• SQUADv2 SQUADv2 is a document QA benchhmark where documents come from Wikipedia and answer to questions
are a span of tokens in the document (Rajpurkar et al., 2018; Arora et al., 2024). We use the version of the dataset released
at: https://huggingface.co/datasets/hazyresearch/based-squad, which is part of the LM-Eval
Harness repository (Gao et al., 2023).

• TriviaQA TriviaQA is a popular document QA benchmark where documents come from both Wikipedia and the general
web and the question structure varies (Joshi et al., 2017). We use the dataset released at: https://huggingface.
co/datasets/mandarjoshi/trivia_qa

• Natural Questions (NQ) Natural Questions is a popular document QA benchmark where documents come from Wikipedia
and the questions are real queries issued to the Google search engine (Kwiatkowski et al., 2019). The answers are spans
of text from the documents. We use the dataset released at: https://huggingface.co/datasets/natural_
questions.

• Drop DROP is a challenging document QA benchmark that requires discrete reasoning over paragraphs from Wikipedia
articles (Dua et al., 2019). The questions often require arithmetic operations, counting, or sorting of information found in
the documents. We use the dataset released at: https://huggingface.co/datasets/ucinlp/drop.
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Cloze Completion Formatting As the models in this work are not instruction fine-tuned and have been trained on next
token prediction, they are more effective at producing relevant answers when the prompt format aligns with the pre-training
task (next token prediction) as shown in prior work (Arora et al., 2022). Therefore, we reformat the questions in these
benchmarks to a cloze-completion format using Meta’s Llama-3-70B model (AI@Meta, 2024).

Given the question and the answer, the prompt we use is, where we provide the original question and answer from the task
example:

Converting to Cloze Format

Can you rewrite this question and answer as a statement. Ensure that the answer is the last part of the
statement.

Question: {question}

Answer: {answers}

Rewrite:

As an example:

Example

Input
Can you rewrite this question and answer as a statement. Ensure that the answer is the last part of the

statement.

Question: Which team scored the final TD of the game?

Answer: Dallas

Rewrite:

Answer
The team that scored the final TD of the game is Dallas.

We filter the dataset by picking the rewrite with the answer appearing in the end and we remove the answer (e.g., “Dallas”)
when producing the final dataset. We report the resulting dataset sizes in Table 7 and release the datasets for reproducal.

Dataset Size Token
FDA 1102 1999.9
SWDE 1111 1036.1
SQUAD 2984 151.9
TriviaQA 1698 310.1
NQ 3157 8857.7
Drop 2084 236.6

Table 7: Evaluation Dataset Overview

Metrics We evaluate whether the model generated answer contains the exact answer span specified in the task. We run
inference using the newline character and max generation length of 48 as stop-conditions.
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Figure 3: Perplexity slices. We slice the Pile test set perplexities of the pretrained LMs into associative recall “AR” and non-recall
“Other” slices. A token is an AR token if it corresponds to a bigram that is re-occurring in the context, since the LM can look to the prior
occurrence to predict the next token (Def. in Appendix C.1). Top left (recall frequencies) We plot y perplexity on AR bigram tokens
that test the LMs’ recall skills based on x the bigram frequency in training. Top right (recall distances) We plot y perplexity for AR
tokens based on x the distances between the re-occuring bigrams in context. Bottom (non-recall frequencies) We plot y perplexity on
non-recall tokens based on x the bigram frequency in training. Further details are in Appendix B.

C. Additional experiments
C.1. Overall language modeling

While we focus on a suite of recall-intensive benchmarks in Section 5, here we show that JRT-RNN maintains the quality of
baseline models on other common in-context learning benchmarks.

Language modeling perplexity. A fundamental challenge is how to compare the inherent quality of models pre-trained
with disparate objectives. In our setting, this is challenging since JRT-RNN additionally minimizes a masked language
modeling objective beyond the standard causal next token prediction objective and sees 50% less data than the decoder-only
models for the next token prediction task (when M = 1024, N = 2048). Overall JRT-RNN computes losses on 65% of the
number of training data tokens seen by the decoder-only models (with 15% masked tokens in the encoder region).

Despite these differences, we consider a simple proxy of evaluating the perplexity of decoder-baselines in comparison to
encoder-decoder JRT-RNN in the overlapping non-causal regions of both model types (i.e. the last 1024 tokens per input
sequence of N = 2048 for our trained models). Following prior work (Arora et al., 2023a), we further slice the perplexity in
two groups: (1) the associative recall “AR slice” includes tokens, referred to as “AR hits”, that require the model to perform
recall in order to predict the next token correctly and (2) the “Other slice” containing the remaining tokens (e.g., memorized
knowledge). 6

Slicing the model predictions on the Pile test set, we observe the following. Our measurement protocols are described in
further detail in Appendix B.

1. Recall frequencies. JRT-RNN excels in the “AR slice”. For infrequently seen bigrams during training (unlikely to
be memorized in the model parameters), JRT-RNN improves in perplexity relative to Based and Mamba, two strong
causal recurrent baselines (Figure 3, top right).

6As a heuristic rule, a token is an “AR hit” if it is completes a bigram that was previously seen in-context, and this bigram is infrequent
during training (i.e., was not memorized by the model) (Arora et al., 2023a). For instance, in the sequence “In 1957, Dr. Seuss wrote ... In
1982, Dr. Seuss” the second Seuss would be included as an “AR hit” if “Dr. Seuss’ is a rare bigram during training.
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Model Shots BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Avg
Acc. ↑ Acc. ↑ F1 ↑ Acc. ↑ Acc. ↑ F1 ↑ EM ↑ Acc. ↑ Acc. ↑ Acc. ↑

JRT-RNN
(356m/30b)

0 49.2 33.9 17.4 65.0 57.2 16.5 15.8 53.1 50.0 37.5 39.6
1 46.5 37.5 26.9 65.0 51.9 18.9 18.1 46.2 46.6 55.8 41.3
5 49.1 44.6 30.5 71.0 56.3 26.7 25.8 48.0 50.5 50.0 45.3

Based
(360m/30b)

0 57.6 32.1 21.7 65.0 57.2 17.4 17.0 54.5 50.0 36.5 40.9
1 54.9 35.7 25.7 70.0 55.3 21.8 21.1 48.0 48.1 55.8 43.6
5 53.5 53.6 36.7 76.0 56.4 25.3 24.4 50.5 53.6 51.0 48.1

Transformer
(360m/30b)

0 59.3 41.1 24.1 68.0 57.2 14.6 14.2 54.9 50.0 36.5 42.0
1 54.9 37.5 26.9 70.0 54.2 21.1 20.4 43.7 46.4 53.8 42.9
5 49.1 46.4 30.9 68.0 55.2 23.7 23.0 52.7 51.1 52.9 45.3

Mamba
(358m/30b)

0 56.4 35.7 25.8 68.0 57.2 27.2 26.6 53.4 50.0 36.5 43.7
1 51.1 41.1 28.5 70.0 52.3 25.8 25.1 50.2 46.4 55.8 44.6
5 50.0 51.8 34.8 70.0 54.5 23.2 22.5 46.9 50.3 51.0 45.5

Table 8: SuperGLUE benchmark evaluations. We evaluate the models from Table 2 on the SuperGLUE benchmark (Wang et al., 2019)
using the EleutherAI LM Eval harness (Gao et al., 2023).

Model Shots BoolQ CB COPA MultiRC RTE WiC WSC Avg
Acc. ↑ Acc. ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑

JRT-RNN
(1.3B/50B)

0 57.4 33.9 22.4 74.0 57.2 52.7 50.0 36.5 50.9
5 52.1 50.0 34.5 75.0 53.9 49.8 50.0 55.8 54.1

Based
(1.3B/50B)

0 55.1 41.1 19.4 71.0 56.8 53.1 50.0 53.8 52.9
5 52.5 50.0 33.7 75.0 51.4 49.1 53.1 53.8 53.8

Transformer
(1.3B/50B)

0 57.6 41.1 28.8 72.0 56.0 54.2 50.0 53.8 54.1
5 54.8 41.1 26.2 73.0 51.7 57.4 50.3 47.1 52.9

Mamba
(1.3B/50B)

0 54.8 25.0 25.2 73.0 56.4 51.3 50.0 40.4 50.1
5 55.6 53.6 45.5 75.0 53.7 53.8 51.7 56.7 56.6

Table 9: Same as Table 8 at the 1.3b parameter scale, trained on 50b tokens.

2. Recall distances. In the “AR slice”, the gap between JRT-RNN and the decoder-only baselines grows as the distances
between repeated bigrams seen in-context grows. This provides further support beyond Section 5.1 that JRT-RNN can
help with longer context recall tasks (Figure 3).

3. Non-recall frequencies. JRT-RNN is worse in perplexity than the decoder-only LMs for the non-recall “Other
slice” for bigrams that are rarely seen during training. This slice tests the model’s use of memorized knowledge (as
opposed to knowledge provided in the context). This is expected as JRT-RNN computes losses 65% of the tokens of
the decoder-only LMs. We expect this gap to decrease with scale and longer training durations (seen as the bigram
frequencies increases) (Figure 3, top left). Future work could also consider decoupling sequence mixers from MLPs
(knowledge stores) in training. How best to normalize training between encoder-decoder and decoder-only LMs is an
open question.

SuperGLUE Naural Language Understanding We use SuperGLUE (Wang et al., 2019) suite. We run these evaluations
using the LM-Eval Harness repository’s default settings (Gao et al., 2023).

In Table 8 and Table 9, we observe that all models achieve comparable quality. These results align with prior work suggesting
that while alternate architectures provide similar overall language modeling perplexity, their quality on recall-intensive tasks
is much more variable (Arora et al., 2023a; Gu and Dao, 2023; Akyürek et al., 2024; Arora et al., 2024).

Padding We note that the SuperGLUE inputs are quite short in sequence length, meaning that JRT-RNN sees pad tokens
in the majority of the encoder region of the input until we reach length M = 1024. We use the space-token as the pad token
in our evaluations, as discussed in Appendix B. Since we do not train with pad tokens in this work, this such sequences are
relatively out of distribution, but with masking the padding portion of the sequence, we can recover quality. In Table 10, we
evaluate JRT-RNN where we do not mask on the linear attention layers and observe quality starkly degrades on certain
tasks (e.g., Copa and WSC).

Model Shots BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Avg
Acc. ↑ Acc. ↑ F1 ↑ Acc. ↑ Acc. ↑ F1 ↑ EM ↑ Acc. ↑ Acc. ↑ Acc. ↑

JRT-RNN 5 53.5 53.6 36.7 76.0 56.4 25.3 24.4 50.5 53.6 51.0 44.2
+No Pad Mask 5 49.1 55.4 38.2 56.0 56.3 26.7 25.8 51.6 49.7 40.4 41.3

Table 10: Few-shot downstream evaluation on SuperGLUE of pre-trained language models. Same protocol as Table 8, however we
do not mask the left-padding in the linear attention layers.
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C.2. JRT-RNN ablations

Training without MLM Loss JRT-RNN inspired by Prefix LM due to its simplicity. Prior work and our own finds
that Prefix LM underperforms in quality (Wang et al., 2022). Here we compare JRT-RNN with and without the masked
language modeling (MLM) loss. Excluding the MLM loss matches the protocol in prior Prefix-LM training. In Table 11, we
find that the model is decent at longer sequences, but drops quality on short-context prompts.

N=512 N=1024 N=2048
SWDE FDA SWDE FDA SWDE FDA
Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑

Based 25.4 51.0 19.1 30.1 15.7 13.4
JRT-RNN, no MLM loss 23.9 38.7 21.6 39.2 18.5 18.3

Table 11: Ablations of design choices in JRT-RNN All models are 360M param variants of JRT-RNN, trained to 10 billion tokens on
the Pile.

Training with Based ablations Based is a hybrid architecture with some linear attention, sliding window attention, and
gated short-convolution layers. In Table 12, we train with the JRT-RNN vs. decoder-only approaches while ablating the
mixture of layer types. The results suggest prefix linear attention remains useful for these recall-intensive tasks.

N=512 N=1024 N=2048
SWDE FDA SWDE FDA SWDE FDA
Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑

Linear attention (Taylor map) 29.6 25.5 21.5 16.0 23.0 4.6
Prefix linear attention (Taylor map) 36.8 57.7 27.1 48.7 23.9 8.2
Linear + Sliding attention 25.4 10.3 21.2 8.1 20.8 3.0
Prefix Linear + Sliding attention 35.5 53.3 34.8 46.5 32.1 30.0

Table 12: Ablations of the types of sequence mixers in the LMs. The default Based and JRT-RNN architectures in the main paper use a
hybrid of sliding window attention (SWA), gated convolutions, and linear attention (LA). Here we also evaluate pure linear attention
variations (top two rows, no SWA, no Convs.) and linear attention plus SWA (bottom two rows, no Convs.). All models are 360M param
variants of JRT-RNN, trained to 30 billion tokens on the Pile using the same learning rates and schedules. In (Arora et al., 2024), it is also
observed that the short convolution layers are helpful for such tasks.
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D. JRT-RNN implementation details
In this section, we first provide a PyTorch reference for JRT-RNN and then discuss the IO-aware CUDA implementation.

D.1. Reference code for JRT-RNN

Below we include a PyTorch reference for the proposed layer, showing the parallel and recurrent views.

1 from einops import rearrange
2 import torch
3 from torch import nn
4

5

6 def encoder(k, v):
7 k, v = k.unsqueeze(-2), v.unsqueeze(-1)
8 kv_state = (k * v).sum(dim=2, keepdim=True)
9 k_state = k.sum(dim=2, keepdim=True)

10 return kv_state, k_state
11

12 def decoder(q, k, v):
13 q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
14 kv_state_dec = (k * v).cumsum(dim=2)
15 k_state_dec = k.cumsum(dim=2)
16 return q, kv_state_dec, k_state_dec
17

18 def compute_linear_output(q_dec, k_dec, v_dec, k_enc, v_enc):
19 kv_state_enc, k_state_enc = encoder(k_enc, v_enc)
20 q, kv_state_dec, k_state_dec = decoder(q_dec, k_dec, v_dec)
21

22 kv_state_dec = kv_state_enc + kv_state_dec
23 k_state_dec = k_state_enc + k_state_dec
24

25 z = 1 / ( q * k_state_dec).sum(dim=-1)
26 y = ( (q * kv_state_dec).sum(dim=-1))
27 output = y * z
28 output = rearrange(output, ’b h l d -> b l (h d)’)
29 return output
30

31 def compute_parallel_output(q_dec, k_dec, v_dec, k_enc, v_enc):
32

33 # Scaling
34 k_state = k_enc.sum(dim=2, keepdim=True) + k_dec.cumsum(2)
35 z = 1 / ((q_dec * k_state).sum(dim=-1))
36

37 # standard attention
38 A_qk = torch.einsum("bhnd,bhmd->bhnm", q_dec, k_dec)
39 A_qk = torch.tril(A_qk)
40 y = torch.einsum("bhnm,bhme->bhne", A_qk.to(q_dec.dtype), v_dec.to(q_dec.dtype))
41 y = y * z[..., None]
42 output_1 = rearrange(y, ’b h l d -> b l (h d)’)
43

44 # cross attention
45 A_qk_2 = torch.einsum("bhnd,bhmd->bhnm", q_dec, k_enc)
46 y = torch.einsum("bhnm,bhme->bhne", A_qk_2.to(q_dec.dtype), v_enc.to(q_dec.dtype))
47 y = y * z[..., None]
48 output_2 = rearrange(y, ’b h l d -> b l (h d)’)
49 output_ref = output_1 + output_2
50 return output_ref
51

52 # Inputs
53 enc_len, dec_len = seqlen // 2, seqlen
54 q_dec = torch.randn((batch, heads, dec_len, head_dim))
55 k_dec = torch.randn((batch, heads, dec_len, head_dim))
56 v_dec = torch.randn((batch, heads, dec_len, head_dim))
57 k_enc = torch.randn((batch, heads, enc_len, head_dim))
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58 v_enc = torch.randn((batch, heads, enc_len, head_dim))
59

60 q_dec = feature_map(q_enc) # head_dim to expanded_dim
61 k_enc = feature_map(k_enc)
62 k_dec = feature_map(k_dec)
63

64 out = compute_linear_output(q_dec, k_dec, v_dec, k_enc, v_enc)
65 out_ref = compute_parallel_output(q_dec, k_dec, v_dec, k_enc, v_enc)

Listing 1: Minimal PyTorch implementation of JRT RNN.

1 if mask is not None and q.shape[2] > 1: # Check that we’re in prefill
2 if len(mask.shape) == 4:
3 lin_attn_mask = (mask == 0)[:, :1, -1, :][..., None] # b,1,k_len,1
4 else:
5 lin_attn_mask = mask[:, None, :, None] # b,1,k_len,1
6 lin_attn_mask = lin_attn_mask.to(torch.bool)
7 k = k.masked_fill(~lin_attn_mask, 0)
8 k_enc = k_enc.masked_fill(~lin_attn_mask, 0)

Listing 2: PyTorch implementation linear attention masking

D.2. IO-aware implementation

We build our implementation from the custom kernel for the Based architecture released in prior work (Arora et al., 2024)
(Algorithm 1). 7 Letting fnbased be the prior kernel, we use Algorithm 2 as the IO-aware implementation of JRT-RNN. We
modify fnbased to (1) avoid multiplications with queries in the first call and to simply compute the KV-state, and (2) we use
the final row (row M ) of the KV-state, representing the sum of (ke ∗ ve) along the sequence dimension.

Algorithm 2 JRT-RNN CUDA Kernel Pseudocode

Require: Input decoder representations qd, kd, vd ∈ RN×d and encoder representations ke, ve ∈ RM×d.
Ensure: Output y ∈ RN×d

Initialize SRAM buffers and register file fragments following Algorithm 1 (Arora et al., 2024). Including registers A0, A1, A2 to store
the KV-state (for the 0th, 1st, 2nd order terms of the Based linear attention kernel Taylor approximation respectively) and SRAM
buffer y for storing the final output

Run fnbased(ke, ve) to compute KV-state for the encoder, where the result is held in registers A0, A1, A2. We modify the previously
proposed Based implementation by using the non-causal sum instead of cumsum for the KV states. We don’t multiply with queries in
this step, as is done in the original algorithm.

Run fnbased(qd, kd, vd), from the register state initialized by the encoder computation. This computes the output y, held in SRAM.

Store y from SRAM to HBM.

7https://github.com/HazyResearch/ThunderKittens
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E. Analysis
In this section, we provide qualitative analysis for JRT-PROMPT using three representative recurrent LMs, Mamba pretrained
for 300b tokens on the Pile at the 370M, 1.4B, and 2.8B parameter scales.

We first bucket the common error modes, finding three primary categories: (1) No Answer (N/A), (2) Repetition, and (3)
Irrelevant outputs. The statistics for each category are shown in Table 13. Compared to the standard default zero-shot
prompting approach, JRT-PROMPT tends to increase the No Answer error and repetition errors, while reducing errors related
to irrelevant outputs.

Model Mamba-370m Mamba-1.4B Mamba-2.8B
Error Type N/A Rep Irrel N/A Rep Irrel N/A Rep Irrel
FDA-default 0.2 35.4 22.7 0.1 31.1 23.0 0.2 27.5 18.3
FDA-JRT-PROMPT 0.0 29.4 12.3 0.1 29.2 9.8 0.0 23.3 9.8
SWDE-default 39.1 20.2 13.1 37.3 17.3 7.8 32.3 18.9 9.7
SWDE-JRT-PROMPT 23.6 17.0 17.2 28.0 15.0 11.1 26.9 14.7 9.6
SQUAD-default 0.0 6.6 58.6 0.0 5.9 54.2 0.0 5.5 51.3
SQUAD-JRT-PROMPT 0.0 12.2 37.0 0.1 10.7 30.0 1.6 32.9 13.8

Table 13: Error Mode Statistics We calculate the percentage ratio of different error types to the total number of test data points. N/A: No
Answer; Rep: Repetition; Irrel: Irrelevant.

No Answer One error observed in the models is the output of an empty string, especially in tasks with complex text. We
believe this is due to formatting sensitivity and could reduce with model scale.

No Answer Example

Input

Information about the applicant in the text: SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(
k) Number: K172333 B. Purpose for Submission: To expand the use of previously cleared assay reagents
for Factor V Leiden; ...... D. Type of Test: Quantitative clot-based applications E. Applicant: Siemens
Healthcare Diagnostics Product GmbH F. Proprietary and Established Names: ...... G. Regulatory
Information: ...... Protein C with Protein C Reagent Antithrombin (AT) with INNOVANCE Antithrombin
Protein C with Berichrom Protein C \n

Information about the applicant in the text: SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(
k) Number: K172333 B. Purpose for Submission: To expand the use of previously cleared assay reagents
for Factor V Leiden; ...... D. Type of Test: Quantitative clot-based applications E. Applicant: Siemens
Healthcare Diagnostics Product GmbH F. Proprietary and Established Names: ...... G. Regulatory
Information: ...... Protein C with Protein C Reagent Antithrombin (AT) with INNOVANCE Antithrombin
Protein C with Berichrom Protein C applicant:

Prediction

""

Ground Truth

Siemens Healthcare Diagnostics Product GmbH
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Repetition If the model reads repeated phrases (e.g., documents and questions), it may merely repeat the document and
question again rather than providing an answer, when using JRT-PROMPT. These models are not instruction fine-tuned and
identifying the relevant task may be difficult.

Repetition Error Example

Input

Information about the applicant in the text: SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(
k) Number: K182513 B. Purpose for Submission: New device 510(k) clearance for the FluChip-8G Influenza
A+B Assay C. Measurand: Influenza A and influenza B viral nucleic acids. ...... E. Applicant: InDevR,
Inc. F. ...

Information about the applicant in the text:) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A.
510(k) Number: K182513 B. Purpose for Submission: New device 510(k) clearance for the FluChip-8G
Influenza A+B Assay C. Measurand: Influenza A and influenza B viral nucleic acids. ...... E. Applicant:
InDevR, Inc. F. ...

applicant:

Prediction

Information about the applicant in the text:) SUBSTANTIAL EQUIVALENCE DETERMINATION SUMMARY A. 510(k)
Number: K182513 B. Purpose for Submission: New device 510(k) clearance

Ground Truth

InDevR, Inc.

Irrelevant Output Sometimes model outputs are undesirable and unrelated to the input text. For instance, the model may
provide new continuations of the text as opposed to referring back to the context and outputting previously seen information.
JRT-PROMPT appears to help reduce these types of errors.

Irrelevant Output Example

Input

"Title: Martin_Luther\nBackground: At the heart of scholars’ debate about Luther’s influence is whether it
is anachronistic to view his work as a precursor of the racial antisemitism of the Nazis...

Title: Martin_Luther\nBackground: At the heart of scholars’ debate about Luther’s influence is whether it
is anachronistic to view his work as ...... His position was entirely religious and in no respect
racial.\"Martin Brecht referred to Luther’s stand on the Jews as

Prediction

a very important and important part of the history of the German people.

Ground Truth

misguided agitation

Few shot prompting A common hypothesis for why few-shot prompting is more effective than zero-shot prompting
is that it provides the model with a better understanding of the task at hand. Here we evaluate the few-shot baselines on
recall-intensive tasks.

The in-context learning results for different models are shown in Table 14. The improvement of few-shot in-context learning
in smaller models is less obvious than in larger models. JRT-PROMPT appears more effective than few-shot ICL on average,
suggesting that there is benefit from reading twice, beyond simply improving the model’s understanding of the task via
few-shot examples.
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One failure mode we observe with few-shot prompts is that the model sometimes outputs the attribute-value (e.g. director
name given HTML text from different movie web pages) from the example documents instead of the relevant input document
from which we seek to extract information.

Mamba-130m Mamba-370m Mamba-1.4B Mamba-2.8B
DF FS JP DF FS JP DF FS JP DF FS JP

FDA 25.7 22.0 32.8 41.9 35.3 58.3 45.8 46.0 60.9 54.3 54.8 66.6
SWDE 17.5 19.7 31.5 27.6 35.0 42.2 37.6 47.1 46.0 38.9 51.9 48.9
SQUAD 27.1 25.2 51.9 34.9 36.0 51.0 39.9 45.5 59.6 43.9 53.2 59.4

Table 14: JRT-PROMPT ablations. Here we evaluate three ICL baselines: DF is default prompt; FS is a prompt with 2 in-context
examples; JP is JRT-PROMPT.
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F. Prompts
Below we include the prompts for the default and JRT-PROMPT in-context learning results that produced the numbers in
Table 1. We use the exact same prompt structure for all examples in the task and across all models. We use a shared structure
across groups of tasks e.g., information extraction tasks SWDE and FDA use the same prompt structure and document QA
tasks (NQ, TriviaQA, Drop, SQUAD).

F.1. SWDE
SWDE (Default)

Input

The Evil Dead Movie Facts and Details click here amc home | movie guide Genres\nLists\nRatings amctv.com>
movie guide>The Evil Dead>details The Evil Dead details\nOverall Rating Total Ratings: 1 Overview\
nDetails\nCast & Credits\nAwards\nReview Movie Details: Director: Sam Raimi\nProduced By: New Line
Cinema, Renaissance Pictures\nYear: 1983\nRun Time: 85 minutes\nCountry: USA\nLanguage: English MPAA
Rating: R\nCategory: Feature\nGenre/Type: Horror\nFilmed In: Color Key Cast: Bruce Campbell, Ellen
Sandweiss, Betsy Baker, Hal Delrich

... many document tokens ...

cranked up the story’s comic aspects several dozen notches for the rollicking semi-remake, Evil Dead 2:
Dead by Dawn. by Cavett Binion, Rovi Keywords: atrocity\nbook\ncabin\ncellar\nchainsaw\ndemon\
ndismemberment\ngateway-to-hell\nmonster\ndemonic-possession rampage\nsatanic\nSatanism\nslasher\ntree\
nweekend\nwoods [place]\ncollege-student\ninvocation Themes: Zombies\nDemonic Possession\nNightmare
Vacations\nCurses and Spells Exclusive coverage Get Dragged to Hell With This Ultimate Sam Raimi Fan
Quiz - Horror Hacker - AMCfrom AMC Blogs\nInside the Unlikely Cult of Road House - AMC Movie Blog -
AMCfrom AMC Blogs\nU.S. Marshals and Five Other Stealth. Year:

Ground Truth

1983

SWDE (Twice)

Input

Information about Year. The Evil Dead Movie Facts and Details click here amc home | movie guide Genres\
nLists\nRatings amctv.com>movie guide>The Evil Dead>details The Evil Dead details\nOverall Rating Total
Ratings: 1 Overview\nDetails\nCast & Credits\nAwards\nReview Movie Details: Director: Sam Raimi\
nProduced By: New Line Cinema,

... many document tokens ...

U.S. Marshals and Five Other Stealth.
The Evil Dead Movie Facts and Details click here amc home | movie guide Genres\nLists\nRatings amctv.com>

movie guide>The Evil Dead>details The Evil Dead details\nOverall Rating Total Ratings: 1 Overview\
nDetails\nCast & Credits\nAwards\nReview Movie Details: Director: Sam Raimi\nProduced By: New Line
Cinema, Renaissance Pictures\nYear: 1983

... many document tokens ...

With This Ultimate Sam Raimi Fan Quiz - Horror Hacker - AMCfrom AMC Blogs\nInside the Unlikely Cult of
Road House - AMC Movie Blog. Year:

Ground Truth

1983
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F.2. Natural Questions
Natural Questions (Default)

Input

List of Nobel laureates in Physics - wikipedia <H1> List of Nobel laureates in Physics </H1> Jump to :
navigation, search Front side ( obverse ) of the Nobel Prize Medal for Physics presented to Edward
Victor Appleton in 1947 <P> The Nobel Prize in Physics ( Swedish : Nobelpriset i fysik ) is awarded
annually by the Royal Swedish Academy of Sciences to scientists in the various fields of physics.

... many document tokens ...

The first Nobel Prize in Physics was awarded to

Wilhelm Conrad Rontgen, of Germany

Natural Questions (Twice)

Input

Who got the first nobel prize in physics? List of Nobel laureates in Physics - wikipedia <H1> List of Nobel
laureates in Physics </H1> Jump to : navigation, search Front side ( obverse ) of the Nobel Prize
Medal for Physics presented to Edward Victor Appleton in 1947 <P> The Nobel Prize in Physics ( Swedish
: Nobelpriset i fysik ) is awarded annually by the Royal Swedish Academy of Sciences to scientists in
the various fields of physics.

... many document tokens ...

for their joint researches on the radiation phenomena discovered by Professor Henri Becquerel
List of Nobel laureates in Physics - wikipedia <H1> List of Nobel laureates in Physics </H1> Jump to :

navigation, search Front side ( obverse ) of the Nobel Prize Medal for Physics presented to Edward
Victor Appleton in 1947 <P> The Nobel Prize in Physics ( Swedish : Nobelpriset i fysik ) is awarded
annually by the Royal Swedish Academy of Sciences to scientists in the various fields of physics.

... many document tokens ...

for their joint researches on the radiation phenomena discovered by Professor Henri Becquerel. The first
Nobel Prize in Physics was awarded to

Wilhelm Conrad Rontgen, of Germany
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F.3. FDA
FDA (Default)

Input

510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K153137 B. Purpose for
Submission: Clearance of a new device C. Measurand: Anti-PF4/Heparin Total Antibodies D. Type of Test:
Automated, latex enhanced immuno-turbidimetric assay E. Applicant: Instrumentation Laboratory (IL) Co.
F. Proprietary and Established Names:

HemosIL HIT-Ab
HemosIL HIT-Ab
Controls G. Regulatory Information: 1. Regulation section: 21 CFR 864.7695, Platelet factor 4

radioimmunoassay 21 CFR 864.5425, Multipurpose system for in vitro coagulation studies 2.

... many document tokens ...

Low HIT Control:
Control intended for the assessment of precision and accuracy of the assay at PF4/H antibody levels at or

below the cut-off.
High HIT Control: Control intended for the assessment of precision and accuracy of the assay at abnormal

PF4/H antibody levels. J. Substantial Equivalence Information: 1.
Predicate device name(s): Asserachrom HPIA Test kit from Diagnostica Stago 2. Predicate 510(k) number(s):

K003767 3. Comparison with predicate: 4 Similarities Item Device Predicate Trade Names HemosIL HIT-Ab(
PF4-H) HemosIL HIT-Ab (PF4-H) Controls (K153137) Asserachrom HPIA Test Kit (kit includes two control
levels) (K003767) Measurand Anti-PF4/Heparin Total Antibodies AntiPF. Purpose for submission:

Clearance of a new device

FDA (Twice)

Input

Information about Purpose for submission. 510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A.
510(k) Number: K153137 B. Purpose for Submission: Clearance of a new device C. Measurand: Anti-PF4/
Heparin Total Antibodies D. Type of Test: Automated, latex enhanced immuno-turbidimetric assay E.
Applicant: Instrumentation Laboratory (IL) Co. F.

... many document tokens ...

Predicate device name(s): Asserachrom HPIA Test kit from Diagnostica Stago 2. Predicate 510(k) number(s):
K003767 3. Comparison with predicate: 4 Similarities Item Device Predicate Trade Names HemosIL HIT-Ab(
PF4-H) HemosIL HIT-Ab(PF4-H) Controls (K153137) Asserachrom HPIA Test Kit (kit includes two control
levels) (K003767) Measurand Anti-PF4/Heparin Total Antibodies Anti-PF.

510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K153137 B. Purpose for
Submission: Clearance of a new device C. Measurand: Anti-PF4/Heparin Total Antibodies D. Type of Test:
Automated, latex enhanced immuno-turbidimetric assay E. Applicant: Instrumentation Laboratory (IL) Co.
F.

... many document tokens ...

Predicate device name(s): Asserachrom HPIA Test kit from Diagnostica Stago 2. Predicate 510(k) number(s):
K003767 3. Comparison with predicate: 4 Similarities Item Device Predicate Trade Names

HemosIL HIT-Ab(PF4-H) HemosIL HIT-Ab(PF4-H) Controls (K153137) Asserachrom HPIA Test Kit (kit includes two
control levels) (K003767)

Measurand Anti-PF4/Heparin Total Antibodies Anti-PF. Purpose for submission:

Clearance of a new device
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F.4. SQUAD
SQUAD (Default)

Input

Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL)
for the 2015 season.

The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference (
NFC) champion Carolina Panthers 24-10 to earn their third Super Bowl title.

The game was played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa Clara,
California. As this was the 50th Super Bowl, the league emphasized the "golden anniversary" with
various gold-themed initiatives, as well as temporarily suspending the tradition of naming each

Super Bowl game with Roman numerals (under which the game would have been known as "Super Bowl L"), so that
the logo could prominently feature the Arabic numerals 50.The NFL team that represented the AFC at
Super Bowl 50 was the

Denver Broncos

SQUAD (Twice)

Input

Which NFL team represented the AFC at Super Bowl 50? Super Bowl 50 was an American football game to
determine the champion of the National Football League (NFL) for the 2015 season. The American Football
Conference (AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion
Carolina Panthers 24-10 to earn their third Super Bowl title. The game was played on February 7, 2016,
at Levi’s Stadium in the San Francisco Bay Area at Santa Clara, California. As this was the 50th Super
Bowl, the league emphasized the "golden anniversary" with various gold-themed initiatives, as well as
temporarily suspending the tradition of naming each Super Bowl game with Roman numerals (under which
the game would have been known as "Super Bowl L"), so that the logo could prominently feature the
Arabic numerals 50.

Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL)
for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the
National Football Conference (NFC) champion Carolina Panthers 24-10 to earn their third Super Bowl
title. The game was played on February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at
Santa Clara, California. As this was the 50th Super Bowl, the league emphasized the "golden anniversary
" with various gold-themed initiatives, as well as temporarily suspending the tradition of naming each
Super Bowl game with Roman numerals (under which the game would have been known as "Super Bowl L"), so
that the logo could prominently feature the Arabic numerals 50.The NFL team that represented the AFC at
Super Bowl 50 was the

Denver Broncos
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F.5. TriviaQA
TriviaQA (Default)

Input

81 years since the first inflight movie was shown...81 years since the first inflight movie was shown -
Travelers United Travelers United 81 years since the first inflight movie was shown

October 8, 2010 Filed Under: Today By Charlie Leocha Leave a Comment Our government at work - This is the
daily ’’Profile America’’ feature from the U.S. Census Bureau for today, Friday, October 8th.

This is the 81st anniversary of the first inflight movie ever shown. A little-known travel gem.
Friday, October 8th, celebrates one of the few joys left in long-distance flying, sitting back and enjoying

a feature-length movie.
But recently, one major airline announced it will be ending this entertainment, joining several low-cost

airlines in the policy.
While movies have been generally available on long flights for decades, the first movies shown in the air

were a newsreel and two cartoons.
These were shown on this date in 1929 aboard a Ford Trimotor operated by Transcontinental Air Transport.

Regular in-flight movie service began in July 1961 on a Trans World airline flight from New York to Los
Angeles.

Now, more than 3.9 million passengers fly between New York and Los Angeles every year. You can find these
and more facts about America from the U.S. Census Bureau online. The first in-flight movie was shown on
an internal flight in the USA in

1929

TriviaQA (Twice)

Input

In what year was the first in-flight movie shown on an internal flight in the USA? 81 years since the first
inflight movie was shown...81 years since the first inflight movie was shown - Travelers United
Travelers United 81 years since the first inflight movie was shown October 8, 2010 Filed Under:
Today By Charlie Leocha Leave a Comment .... These were shown on this date in 1929 aboard a Ford
Trimotor operated by Transcontinental Air Transport. Regular in-flight movie service began in July 1961
on a Trans World airline flight from New York to Los Angeles. Now, more than 3.9 million passengers
fly between New York and Los Angeles every year. You can find these and more facts about America from
the U.S. Census Bureau online at.

81 years since the first inflight movie was shown...81 years since the first inflight movie was shown -
Travelers United Travelers United 81 years since the first inflight movie was shown October 8, 2010
Filed Under: Today By Charlie Leocha Leave a Comment ... These were shown on this date in 1929
aboard a Ford Trimotor operated by Transcontinental Air Transport. Regular in-flight movie service
began in July 1961 on a Trans World airline flight from New York to Los Angeles. Now, more than 3.9
million passengers fly between New York and Los Angeles every year. You can find these and more facts
about America from the U.S. Census Bureau online at. The first in-flight movie was shown on an internal
flight in the USA in

1929
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F.6. Drop
Drop (Default)

Input

Hoping to rebound from their loss to the Patriots, the Raiders stayed at home for a Week 16 duel with the
Houston Texans. Oakland would get the early lead in the first quarter as quarterback JaMarcus Russell
completed a 20-yard touchdown pass to rookie wide receiver Chaz Schilens. The Texans would respond
with fullback Vonta Leach getting a 1-yard touchdown run, yet the Raiders would answer with kicker
Sebastian Janikowski getting a 33-yard and a 30-yard field goal. Houston would tie the game in the
second quarter with kicker Kris Brown getting a 53-yard and a 24-yard field goal. Oakland would take
the lead in the third quarter with wide receiver Johnnie Lee Higgins catching a 29-yard touchdown pass
from Russell, followed up by an 80-yard punt return for a touchdown. The Texans tried to rally in the
fourth quarter as Brown nailed a 40-yard field goal, yet the Raiders’ defense would shut down any
possible attempt. The first touchdown of the game was scored by

Chaz Schilens

Drop (Twice)

Input

Who scored the first touchdown of the game? Hoping to rebound from their loss to the Patriots, the Raiders
stayed at home for a Week 16 duel with the Houston Texans. Oakland would get the early lead in the
first quarter as quarterback JaMarcus Russell completed a 20-yard touchdown pass to rookie wide
receiver Chaz Schilens. The Texans would respond with fullback Vonta Leach getting a 1-yard touchdown
run, yet the Raiders would answer with kicker Sebastian Janikowski getting a 33-yard and a 30-yard
field goal. Houston would tie the game in the second quarter with kicker Kris Brown getting a 53-yard
and a 24-yard field goal. Oakland would take the lead in the third quarter with wide receiver Johnnie
Lee Higgins catching a 29-yard touchdown pass from Russell, followed up by an 80-yard punt return for a
touchdown. The Texans tried to rally in the fourth quarter as Brown nailed a 40-yard field goal, yet
the Raiders’ defense would shut down any possible attempt.

Hoping to rebound from their loss to the Patriots, the Raiders stayed at home for a Week 16 duel with the
Houston Texans. Oakland would get the early lead in the first quarter as quarterback JaMarcus Russell
completed a 20-yard touchdown pass to rookie wide receiver Chaz Schilens. The Texans would respond
with fullback Vonta Leach getting a 1-yard touchdown run, yet the Raiders would answer with kicker
Sebastian Janikowski getting a 33-yard and a 30-yard field goal. Houston would tie the game in the
second quarter with kicker Kris Brown getting a 53-yard and a 24-yard field goal. Oakland would take
the lead in the third quarter with wide receiver Johnnie Lee Higgins catching a 29-yard touchdown pass
from Russell, followed up by an 80-yard punt return for a touchdown. The Texans tried to rally in the
fourth quarter as Brown nailed a 40-yard field goal, yet the Raiders’ defense would shut down any
possible attempt. The first touchdown of the game was scored by

Chaz Schilens
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G. Theoretical results
We begin by setting notation.

Notation. We will be denoting the all 1 row vector of size k, given by
[
1 1 . . . 1 1

]
, and the all 0 row vector of

size k, given by
[
0 0 . . . 0 0

]
, as 1k and 0k, respectively. We will also construe the standard basis vector ei as a

column vector in these notes, and adhere to the following matrix indexing convention: M[i, j] is the entry in the ith row and
the jth column, M[i, :] ∈ F1×n denotes the ith row, and M[:, j] ∈ Fm×1 denotes the jth column of M ∈ Fm×n, where F
is a field and the reader can substitute F for R for convenience. We then use 1m×n,0m×n ∈ Fm×1 to denote the matrix of
all 1s and 0s, respectively.

Next, we denote the Hadamard product of vectors u,v ∈ Fn as u ⊙ v; the operation can be extended to matrices by
applying the Hadamard product column-wise across the matrices. This is commonly referred to as (element-wise) gating.
For vectors u,v ∈ Fn, we also denote their linear (or acyclic) convolution as u ∗ v and cyclic convolution as u⊛ v.

We also recall the definition of BaseConv for the reader’s convenience:

Definition G.1 (BaseConv (Arora et al., 2023a)). Given an input sequence u ∈ RN×d, where N is the sequence length
and d is the model dimension, a learned weight matrix WB ∈ Rd×d and biases BB ,BK ∈ RN×d and a matrix of
convolution filters K ∈ RN×d, a BaseConv layer computes the following:

zBaseConv := (uWB +BB)⊙
(
K ∗ u+BK

)
∈ RN×d, (8)

where the convolutions are applied across the input length N .

We will need the following “5-tuple" notation for BaseConv model:

Definition G.2. An
(
N,L, d, Ñ , d̃

)
− -BaseConv is a stacked sequence to sequence model with L layers such that:

1. input and output are N × d matrices,

2. each layer corresponds to the a BaseConv layer as defined in Definition G.1, and

3. all the individual gated convolution layers take in Ñ × d̃ matrices and output Ñ × d̃ matrices. We refer to the tuple
(Ñ , d̃) as the inner dimension of the model.

We also assume that the input u ∈ RN×d is embedded into u′ ∈ RÑ×d̃ such that

u′[n, t] =

{
u[n, t] if n < N, t < d

0 otherwise.

The output from the last layer z ∈ RÑ×d̃ is transformed into output y ∈ RN×d by extracting the top left N × d entries in z.

Definition G.3. An MLP layer is map RN×d → RN×d defined via matrices W 1,W 2 ∈ Rd×d and “bias" matrices
B1,B2 ∈ RN×d as follows:

MLP(u) = ReLU(uW 1 +B1)W 2 +B2.

G.1. JRT Lower Bounds for BaseConv

First, we formally define JRT prompts below.

Definition G.4 (JRT Prompts). For any modelM with input u ∈ RN×d, a JRT prompt for input u is the repeated input
uJRT ∈ R2N×d given by

uJRT[i, :] :=

{
u[i, :] if i < N

u[i−N, :] otherwise.
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G.1.1. LOWER BOUND ON THE NUMBER OF LAYERS FOR AR

In this section, we will provide a lower bound on the number of layers needed to solve the standard associative recall
problem with JRT prompts. We formally recall the associative recall problem:

The AR problem takes key-value pairs {ki,vi}N−1
i=0 along with a query q appended at the end as input and the

goal is to output vi if q = ki for some i ∈ [0, N − 1].

We also require a randomized communication complexity lower bound result for the index problem:

The index problem has two agents, Alice and Bob, where Alice has a string x ∈ {0, 1}n and Bob has an index
i ∈ [n], and the goal for the players is to output the i-th entry xi. Moreover, we also require the communication to
be one-way: only Alice is allowed to send a single message to Bob and Bob needs to output the answer.

We will use the following well-known lower bound for the index problem.

Theorem G.5 ((Jayram et al., 2008)). The one-way randomized communication complexity8 of the index problem for an
n-length bit string is Ω(n).

We will now mirror the argument from (Arora et al., 2024, Theorem F.4) to show that the lower bound on the number of
layers for a BaseConv model solving AR still holds for JRT prompts.

Theorem G.6. Given a JRT prompt uJRT ∈ {0, 1}2N×d for input u ∈ {0, 1}N×d to the AR problem with any encoding
such that log c ≤ d ≤ 2(logN)1−ϵ

for ϵ > 0, and c possible tokens from the vocabulary with c ≤ N , a data-independent
BaseConv model with model parameters taking O(logN) bits needs Ω(ϵ log logN) layers to solve AR.

Proof. Given a BaseConv modelM solving AR, regardless of the input length N , we know that there exists an equivalent
polynomial P (uJRT) of degree at most 2L that solves AR for any uJRT ∈ {0, 1}2N×d, where L denotes the number of
layers.9 Now, take the instance (x, i) of the index problem with x ∈ {0, 1}N and the corresponding JRT prompt of the AR
problem as before

uJRT := {j,xj}N−1
j=0 , i, {j,xj}N−1

j=0 , i (9)

Next, we build the following one-way protocol for solving the index problem using the BaseConv model from the
hypothesis that it solves AR. Alice with their access of x ∈ {0, 1}N will again generate a JRT input uJRT for AR (without
the query) as in equation 9. More specifically, Alice takes the values a := uJRT[0 : N − 2, :] ≡ uJRT[N : 2N − 2, :
] ∈ {0, 1}2(N−1)×d while leaving out the query q := uJRT[N − 1, :] = uJRT[2N − 1, :], and substitutes these known
2(N − 1)d values to define the following polynomial:

QJRT(q) = P (a, q,a, q). (10)

Crucially, QJRT is still a polynomial in d variables, corresponding to the values uJRT[N − 1, :] = uJRT[2N − 1, :] that
Bob has and trivially has degree D ≤ 2L. As in the proof of (Arora et al., 2024, Theorem F.4), Alice can run the modelM,
retrieve the coefficients of QJRT, and send it to Bob. Since we assume that P solves AR, Bob can take the coefficients of
QJRT and substitute uJRT[N − 1, :] = uJRT[2N − 1, :] to QJRT to compute P (uJRT) which is the value xi.

Moreover, the polynomial QJRT that Alice sends still has at most d2
L

coefficients as each term in QJRT can have degree at
most 2L. If each such coefficient has B bits, then using theorem G.5, the total number of bits being communicated must
satisfy B · d2L ≥ Ω(N). This follows from the fact that if B · d2L ≤ o(N), then since the associated value of i in equation 9
is the answer to the indexing problem, we have shown that a one-way communication protocol for solving the index problem
uses o(N) communication complexity, which then contradicts theorem G.5. This is the same equation we get in the proof of
(Arora et al., 2024, Theorem F.4), which yields the following lower bound on the number of layers:

L ≥ log

(
logN − logB

(logN)1−ϵ

)
. (11)

8The randomized communication complexity of function f is defined as minπ ∥π∥, where π ranges over all randomized protocols that
can solve f with probability of success at least 2/3.

9See the proof of (Arora et al., 2024, Theorem F.4) for justification.
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Recall here that the model parameters are assumed to be O(logN) bits, so any coefficient in QJRT should have absolute

value at most
(
2O(logN) · 2Nd

)2L
as each coefficient can be a product of at most 2Nd variables. That is, for some α > 0,

we have the following bound on each coefficient:

2B ≤ (2 ·Nα+1d)2
L

≤ (2N (α+2))2
L

where the last equality uses the fact that d ≤ 2logN(1−ϵ) ≤ N . We thus have

log(B) ≤ log(α+ 2) + L+ log log (2N) . (12)

Substituting equation 12 to equation 11, we get

L ≥ log

(
logN − log(α+ 2)− L− log log (2N)

(logN)1−ϵ

)
(13)

Now, if L > log log 2N , we are done. Otherwise, if L ≤ log log (2N), then we can substitute this to equation 13 to get

L ≥ log

(
logN − log(α+ 2)− 2 log log (2N)

(logN)1−ϵ

)
= log (logN − log(α+ 2)− 2 log log 2N)− (1− ϵ) log logN (14)

We now claim that first term in equation 14 satisfies the following:

log (logN − log(α+ 2)− 2 log log (2N)) ≥ (1− ϵ

2
) log logN. (15)

To see this, note that, for sufficiently large enough N , the following holds:

logN

2
≥ log(α+ 2) + 2 log log (2N) ,

hence, we get

log (logN − log(α+ 2)− 2 log log (2N)) ≥ log

(
logN

2

)
≥ log logN − 1 ≥ (1− ϵ

2
) log logN.

This proves the claim in equation 15. Finally, using equation 15, equation 14 leads to the following:

L ≥ (1− ϵ

2
) log logN − (1− ϵ) log logN =

ϵ

2
log logN,

which still provides the lower bound L = Ω(ϵ log logN), as desired.

G.1.2. LOWER BOUNDS FOR MQAR WITH d = log2 c

Next, we present lower bounds for the mulitple-query associative recall (MQAR) problem which generalizes the AR
problem (Arora et al., 2023a). To this end, we recall the definition of MQAR below.

Suppose we are given an input sequence u[0 · · · 3N − 1] ≜ {(k0,v0, q0) , . . . , (kN−1,vN−1, qN−1)} with
each ki,vi, qi ∈ C is a token drawn from a vocabulary of size c = |C|. Our goal is then to check, for each
1 ≤ i ≤ N − 1, whether there exists 0 ≤ j < i such that qi ≡ kj , and if so, output vj .

We now present the following lower bound from (Arora et al., 2024) for the MQAR problem d = log2 c to encode all
c possible tokens from C using the natural binary encoding, which also holds for JRT input. This is because the result
(Theorem F.5) in (Arora et al., 2024) is derived using Lemma 5.1 in (Arora et al., 2024) (degree of multilinear polynomial
computed by BaseConv in terms of its number of layers) and Lemma 5.2 in (Arora et al., 2024) (degree of multilinear
polynomial for the MQAR problem), both of which are independent of the input length N .

Theorem G.7. A data-independent BaseConv model needs log(2d)-layers to solve MQAR with a JRT prompt u ∈
{0, 1}2·3N×d for the original input u ∈ {0, 1}3N×d with d = log2(c).
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G.1.3. LOWER BOUNDS FOR MQAR VIA THE EQUALITY (EQ) PROBLEM

(Arora et al., 2024) also contains lower bounds on the number of layers solving MQAR due to the lower bounds on the
equality problem (EQ), where we define the equality problem (EQ) as checking whether the two encodings are equal:
u1 ≡ u2 for an input pair u1,u2 where each ui is a token drawn from a vocabulary of size c = |C| and embedded in
{0, 1}d.

We next show that any model with JRT prompts solving MQAR also solves EQ.

Proposition G.8. Any model MMQAR that solves MQAR with JRT prompt also solves EQ using the same number of layers.

Proof. If there exists a model MMQAR that solves MQAR using L layers with JRT prompt, then for an arbitrary
input instance for EQ given by u1,u2 ∈ R2×d, we can produce the following input instance for MQAR: u :=
{(u1,1,u1), (u2,1,u2), (u1,1,u1), (u2,1,u2)} and solve EQ using L layers with MMQAR returning 1 iff there is
a match.

Due to proposition G.8, we obtain the following corollary.

Corollary G.9. Any lower bound L on the number of layers L of BaseConv to solving EQ is also a lower bound on the
number of layers required for solving MQAR with JRT prompts.

The lower bounds for the EQ problem in (Arora et al., 2024) depends on showing that the polynomial P representing EQ in
p-hot encoding has deg(P ) ≥ 2p, which does not depend on the sequence length (Proposition F.5). Since corollary G.9 also
holds in the JRT setting, we inherit the lower following lower bound for BaseConv solving MQAR in the p-hot encoding
setting, which we recall here for the reader’s convenience.

Definition G.10 (p-Hot Encoding). We define the p-hot encoding to be the collection of embeddings for a token xt with
0 ≤ t < c such that we express t in base p

√
c : (t0, .., tp−1) ∈ [0, p

√
c)p and represent each ti as one hot encoding in

{0, 1} p
√
c. That is, we take d = p · p

√
c.

Theorem G.11. A data-independent BaseConv model needs at least ⌊log(2p)⌋-layers to solve MQAR for a JRT prompt
uJRT ∈ {0, 1}2·3N×d for the original input u ∈ {0, 1}3N×d in the p-hot encoding setting, where d = p · p

√
c.

G.2. Recurrent Models and Set Disjointness

In this section, we will provide upper bounds on the class of recurrent models defined in (Arora et al., 2024) solving the set
disjointness (SD) problem. First, we recall the definition of recurrent models below.

Definition G.12 (Recurrent Models). A modelM taking an input u ∈ RN×d, where N is the input length and d is the
model dimension, is termed a recurrent model if its i-th state, representing the output at location i, Zi

M ∈ Rd̃, with d̃
denoting the state size, is determined exclusively by the preceding elements of the input u[0 . . . i − 1]. The state Zi

M
represents the accumulated information of the model depending on the inputs up to the i-th element, and is distinct from
learned parameters that are static with respect to the input sequence.

Specifically, Zi
M(u) = ϕ(u[0 . . . i− 1]), indicating that the state is a function of the input history but not of the entire input

sequence simultaneously. Moreover, we can express this as:

Zi
M(u) = f i

M(Zi−1
M ,u[i]), (16)

for a sequence of functions {f i
M}i∈[N ], where each function is tailored to evolve the state based on the immediate past state

and the current input.

Remark G.13. Note that definition G.12 excludes models that inherently require the entire input sequence for computation
at any state, such as those based on non-causal convolutional operations over the full input.

Remark G.14. Given sets A,B ⊆ {0, 1}n, the set disjointness (SD) problem seeks to check whether A and B are
disjoint, that is, A ∩B = ∅. First, we clarify the format of the input u ∈ {0, 1}N×(n+1) for the set-disjointness problem
with N = |A| + |B| + 1. The rows of the input u ∈ {0, 1}N×(n+1) correspond to elements in A and B. That is,
u[i, 0 : n− 1] ∈ A ∪B ∪ {0n}, where {[0n :: 1]} is a separator element which separates the contiguously placed (in any
arbitrary order) elements of each set with the last entry of non-separator rows equal to 0.
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Theorem G.15. For any recurrent modelM, there exists a function of the input history Zi
M(uJRT) = ϕ(uJRT[0 . . . i− 1])

that solves the set disjointness problem with Z2N
M of sizeO(n ·min{|A|, |B|}) for the JRT prompt uJRT ∈ {0, 1}2N×(n+1)

of the input u ∈ {0, 1}N×(n+1) for the set-disjointness problem.

Proof. Given a JRT prompt uJRT ∈ {0, 1}2N×(n+1) corresponding to the input for the set-disjointness problem, for a
recurrent modelM, we define the state Zi

M in Algorithm 3.

Algorithm 3 Recurrent Model for Set Disjointness

Require: an input uJRT ∈ {0, 1}2N×(n+1) for the set-disjointness problem
Ensure: state size Z2N−1

M .
1: firstSeparator← False
2: secondSeparator← False
3: smallFirst← False
4: for i← 0 to 2N − 1 do
5: if uJRT[i, n] = 1 then
6: if firstSeparator = False then
7: firstSeparator← True
8: if i ≤ ⌊N

2
⌋ then

9: smallFirst← True
10: end if
11: else
12: secondSeparator← True
13: end if
14: else
15: if firstSeparator = True then
16: if smallFirst = True then
17: if secondSeparator = False then
18: if i ≥ N then
19: Add uJRT[i, :] to Zi

M
20: end if
21: else
22: if there exists j s.t. uJRT[i, :] = Zi−1

M [j, :] then
23: Zi−1

M [j, n] = 1
24: end if
25: end if
26: else
27: if secondSeparator = False then
28: if i ≤ N then
29: Add uJRT[i, :] to Zi

M
30: else
31: if there exists j s.t. uJRT[i, :] = Zi−1

M [j, :] then
32: Zi−1

M [j, n] = 1
33: end if
34: end if
35: end if
36: end if
37: end if
38: end if
39: end for
40: for all j s.t. Zi−1

M [j, n] = 1 do
41: return Zi−1

M [j, 0 : n− 1].
42: end for

Semantically, we take a JRT input uJRT ∈ {0, 1}2N×(n+1) for the set-disjointness problem, and find the first separator
(lines 5 to 9). If the index i of the first separator is less than or equal to ⌊N2 ⌋ (line 8), then we know that the smaller set is
placed before the larger set. Otherwise, the smaller set is placed later (see Figure 4).

Either way, we want to store the smaller set and compare it against the larger set for intersections. To this end, if the smaller
set comes first (line 16), then we continue until the beginning of the repeated input (line 18) and collect the smaller set
(line 19), which we then use after we encounter the second separator (lines 22 to 23) to compare against the larger set. If

41



N N

N N

0
n

::
1

0
n

::
1

0
n

::
1

0
n

::
1

Figure 4: Placement of the smaller set is determined by when we first encounter the separator.

the smaller set comes second (lines 26 to 32), then after the first separator, we collect the smaller set (lines 28 to 29) and
compare it against the larger set that comes right after (lines 30 to 32).

For comparison (lines 40 to 41), we use the separator flag at the end. Recall that non-separator elements of the input have 0
in the separator flag index, and thus, so do the elements from the smaller set collected in the state ZM. When comparing
against the elements from the larger set, we simply set the flag to 1 for an element that is in the intersection of two sets.

Now, we examine the space requirement for the state ZM of the modelM. Note that we only add an element to ZM in
lines 19 and 29. In both cases, the elements are from the smaller set, and thus, |ZM| = min{|A|, |B|}. Moreover, each
element in A and B is of size n, and thus, we can conclude that the modelM with state ZM can solve the set-disjointness
problem with JRT input in O(n ·min{|A|, |B|}).

G.3. Based Solving SD

In this section, we will show that Based can solve the set disjointness problem with JRT inputs. Specifically, this
section implements Algorithm 3 in the Based architecture. Recall here that the Based model combines two layer types:
BaseConv (see definition G.1) and LinearAttention defined below.

Definition G.16 (Linear Attention with Kernels). Given an input sequence u ∈ RN×d, where N is the sequence length and
d is the model dimension, kernel projections10 Projectionq,Projectionk ∈ Rd×f , Projectionv ∈ Rd×d, where
f is the feature dimension, the LinearAttention layer computes the following:

zLinearAttention :=
(
QK⊤)V ∈ RN×d, (17)

where Q := Projectionq(u),K := Projectionk(u),V := Projectionv(u).

G.3.1. SD WITH LINEARATTENTION

We first show that with appropriate placement of the two sets, we can solve the set disjointness problem using a class of
kernel maps defined below.

Definition G.17 (IP -Kernel). We define the IP-Kernel to be the kernel map ϕϵ,f : Rd → Rf that takes elements from [c] to
Rf so that, for any x, y ∈ [c], we have

⟨ϕϵ,f (x), ϕϵ,f (y)⟩ = 1 if x = y and |⟨ϕϵ,f (x), ϕϵ,f (y)⟩| ≤ ϵ otherwise.

That is, an IP-kernel projects elements from the universal set [c] so that the inner products are approximately orthogonal.
Note that the feature dimension f is dependent on the tolerance ϵ.

We now show that if there exists an IP kernel with small enough ϵ, then it can be used to solve the set-disjointness problem
with a Linear Attention layer followed by an MLP layer.

Proposition G.18. Given an input u ∈ RN×d encoding the input (A,B) to the set-disjointness problem (SD) on sets
A,B ⊆ [c], there exists a Linear Attention (+ MLP) layer with state space O(df) that solves the set disjointness

10By kernel projections of a matrix u ∈ Rm×n, we mean applying some kernel map ϕ : RN×d → RN×f to each row of u.
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problem for u ∈ RN×d with the IP kernel ϕϵ,f applied on Q,K for ϵ = 1
3|A| .

11

Proof. We first define the keys and queries along with the values for the Linear Attention layer as follows:

Q[i, :] = K[i, :] = ϕϵ,f (u[i, :]) and V [i, j] :=

{
1 if i < |A|
0 otherwise.

Note that Q,K ∈ RN×f and V ∈ RN×d.(
QK⊤) [i, j] := Q[i, :]K⊤[:, j]

= ⟨Q[i, :],K[j, :]⟩
= ⟨ϕϵ,f (u[i, :]), ϕϵ,f (u[j, :])⟩

Next, the key-query product yields the following

zLinearAttention[i, j] :=
(
QK⊤) [i, :]V [:, j]

=

N−1∑
k=0

(
QK⊤) [i, k] · V [k, j]

=

N−1∑
k=0

⟨ϕ(u[i, :]), ϕ(u[k, :])⟩ · V [k, j]

=
∑
k<|A|

⟨ϕϵ,f (u[i, :]), ϕϵ,f (u[k, :])⟩

=: ρi,

where the second-last equality follows from the definition of V and we can specify ρi as follows:

ρi = 1± ϵ · |A| if there exists k ∈ [0 · · · |A| − 1] s.t. u[k, :] ≡ u[i, :], and otherwise, ρi ≤ ϵ|A|. (18)

For the MLP layer, we define the following parameters (see Definition G.3 for notation):

W 1 = Id×d, B1
MLP := −1

3
1N×d, W 2

MLP = Id×d, B2
MLP = 0N×d

Next, we note that for 0 ≤ ℓ < N and 0 ≤ j < d:

y[ℓ, j] :=
(
zLinearAttentionW 1

MLP +B1
MLP

)
[ℓ, j]

=

(
zLinearAttention − 1

3
1|B|×d

)
[ℓ, j]

=

(
ρℓ −

1

3

)
.

We now use the fact that ϵ ≤ 1
3|A| to get bounds on the above. To this end, for 0 ≤ ℓ < N , due to equation 18, if there exists

k ∈ [0 · · · |A| − 1] such that u[k, :] ≡ u[ℓ, :], we have

y[ℓ, j] =

(
ρℓ −

1

3

)
:=

(
(1± ϵ · |A|)− 1

3

)
∈
[
2

3
,
4

3

]
− 1

3
=

[
1

3
, 1

]
Otherwise, if there is no match, then we have

y[ℓ, j] =

(
ρℓ −

1

3

)
≤ ϵ · |A| − 1

3
≤ 1

3
− 1

3
≤ 0.

11Our notion of ‘solves’ is a bit non-standard so we clarify it here. If z ∈ RN×d is the output then it encodes the result as follows. If
the ith element in B appears in A then z[|A|+ i, :] has all entries in

[
1
3
, 1
]
, otherwise it is 0d. If we want a single value as an answer

(since SD has a Boolean output) we can apply O(1) BaseConv layers on z to sum up all the values in the last |B| rows of z. Then if
A ∩B ̸= ∅ then this value is at least d

3
, otherwise it is 0.
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We then get the final output as
z := ReLU(y)W 2

MLP +B2
MLP = ReLU(y),

which reduces to

z[ℓ, j] ∈
[
1

3
, 1

]
if there exists k ∈ [0 · · · |A| − 1] such that u[k, :] ≡ u[i, :], and 0 otherwise.

Therefore, the last |B| rows of the output z will have non-zero values if and only if A ∩B ̸= ϕ. Finally, the claim on O(df)
space follows from the well-known recurrent view of LinearAttention (see equation 2).12

G.3.2. REALIZATION OF IP KERNELS

In this section, we will provide some instances of realizing the IP kernels from Definition G.17.

Exponential Kernels. The first IP-kernel that we define is the exponential kernel ϕexp : Rd → Rf such that for any
x, y ∈ [c], we have

⟨ϕ(x), ϕ(y)⟩ = exp (⟨x, y⟩) ,

where x and y are encoding of the corresponding elements of [c] in {−1, 1}d, d = O(log(c)) with large enough distance13.
If x = y, we have

⟨ϕ(x), ϕ(y)⟩ = ⟨ϕ(x), ϕ(x)⟩

= exp (⟨x, x⟩) = exp

∑
i∈[d]

x2
i

 = exp

∑
i∈[d]

1

 = exp(d).

Next, if x ̸= y, we instead have
0 < ⟨ϕ(x), ϕ(y)⟩ = exp (⟨x, y⟩) ≤ exp (γ · d)

for some γ < 1 as the code has constant relative distance. Here, we want the match exp(d) to be large enough. That is, we
want

exp(d)

exp(γ · d)
≫ c

So, we want to pick d large enough so that
(1− γ) · d≫ ln c.

Data-Dependent Kernels. Here, we define the kernel ϕ based on the smaller set A. We start by letting d := |A|+ log c
so that we define the embeddings as

ϕ : [c]→ R|A|+log c

A ∋ a 7→
[
ea 0log c

]
A ̸∋ b 7→

[
0|A| Bb

] (19)

where ea ∈ {0, 1}|A| is the 1-hot encoding of the element a in A and Bb is the natural binary encoding in [c] on the element
b. Using this kernel ϕ, we achieve orthogonality:

⟨ϕ(x), ϕ(y)⟩ = δxy.

That is, we have the tolerance ϵ = 0 with feature dimension f = |A|+ log2 c.

12To incorporate the MLP part, note that as soon as each row of zLinearAttention is generated, we can generate the output of the
corresponding row in MLP(zLinearAttention) with O(d) space by noting that MLP operates independently on each row of its input.

13Specifically, we will need to use well-known construction of Binary codes with constant rate and constant relative distance (Guruswami
et al., 2019).

44



Randomized Kernels. We can also define a random kernel map

ϕ : [c]→ 1√
f
[−1, 1]f . (20)

That is, for each x ∈ [c], we pick a random vector in {−1, 1}f and normalize it by dividing by
√
f . Here, it is easy to see

that for every x ∈ [c], we have

⟨ϕ(x), ϕ(x)⟩ = 1

f

∑
i∈[f ]

1 = 1.

Now, for every x ̸= y, we can apply known concentration inequalities on Rademacher random variables to get

Pr
[
⟨ϕ(x), ϕ(y)⟩ > t√

f

]
≤ e

−t2

2 .

We then pick t = O(
√
log c) so that over all c2 pairs, we have

Pr
[
⟨ϕ(x), ϕ(y)⟩ > O(

√
log c)√
f

]
<

1

100c2
.

Then with a union bound on all c2 pairs, with high probability, we get that ϕ has ϵ = t√
f

. We then want the threshold to
satisfy the following:

t/
√

f <
1

3|A|
=⇒ f = Ω(|A|2 log c).

That is, for ϵ = 1
3|A| , f = Θ(min{|A|, |B|}2 log c) suffices.

Remark G.19 (Practical Justification). Empirically, prior works shows a variety of kernels that are competitive with
softmax attention quality while using a small amount of space. For instance, Zhang et al. (Zhang et al., 2024) show that
either training MLP projections to mimic softmax attention weights or using a 2nd-order Taylor approximation to the
softmax-exponential function are two effective kernel function choices. The 2nd-order polynomial is only a high fidelity
approximation within a small band of real values, however empirically results in Arora et al. (Arora et al., 2024) suggest that
the normalized query-key dot products often fall within this range, resulting in competitive quality with softmax attention.
Arora et al. (Arora et al., 2024), Chen et al. (Chen et al., 2021), and others further suggest that combining efficient sparse
plus low-rank attentions (e.g., linear attention plus dense, local sliding window attention) further diminishes quality gaps
versus full attention.

G.3.3. SHIFTS WITH BASECONV

Next, we will show that we can use BaseConv layers to move the smaller set to the start of the sequence. First, based on
whether the smaller set is at the start or not, we need to define separate convolution kernels based on the input. To this end,
we use the following BaseConv model to derive these kernels.
Lemma G.20. There exists

(
2N,O(1), (n+ 1),

(
2N + N

2

)
, (n+ 1)

)
− BaseConv model that takes in a JRT prompt

uJRT ∈ R2N×(n+1) of the input u ∈ RN×(n+1) for the set-disjointness (SD) problem (A,B) ⊆ {0, 1}n and outputs the
kernel hshift that shifts the input uJRT to get the smaller set at the start of the sequence, where

hshift(X) :=

{
X |A|+1 if |A| ≥ |B|
1 otherwise.

(21)

Proof. Following the proof of Proposition G.18, we know that it suffices to find the location of the separator to determine
the location of the smaller set. More specifically, if the separator is within

[
0, N

2 − 1
]

row index range, then we know that
the smaller set is at the start, and the kernel being generated is the identity. Otherwise, we generate the kernel X |A|+1 which
will be used in the proof of Proposition G.21.

We first increase the inner dimension of the JRT input uJRT ∈ R2N×(n+1) to uJRT
inner ∈ R(2N+N

2 )×(n+1) so that we
introduce a zero-block between the first seperator and the start of set B. That is, we have

uJRT
inner[i, :] =


uJRT[i, :] if i < N

2

0n+1 if N
2 ≤ i < N

uJRT[i− N
2 , :] if i ≥ N.
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We can achieve this by simply using the remembering primitive from (Arora et al., 2024, Definition F.15, Proposition F.13)
using a

((
2N + N

2

)
, 8, (n+ 1),

(
2N + N

2

)
, (n+ 1)

)
− BaseConv to remember uJRT[N2 : 2N − 1, :] while applying

the identity kernel to preserve uJRT[0 : N
2 − 1, :].

We again apply the remembering primitive from (Arora et al., 2024, Definition F.15, Proposition F.13) to get

Y ← remember(uJRT
inner, 0, N, f),

using
((
2N + N

2

)
, 8, (n+ 1),

(
2N + N

2

)
, (n+ 1)

)
− BaseConv, where f is applied over x := uJRT

inner[0 : N − 1, :],
the first N rows of uJRT

inner. That is, we want to remember the last
(
N + N

2

)
rows of uJRT

inner. We define f := f2 ◦ f1,
where f1 is the cumulative sum of the first N rows computed using (N,O(1), (n+ 1), N, (n+ 1))− BaseConv followed
by f2 which is the shifting down by N − 1 using (N, 3, (n+ 1), N, (n+ 1)) − BaseConv (?)Propositions F.41 and
F.38]arora2024simple. That is, for i ∈ [0 : N − 1], we have

f1(x)[i, :] =

i∑
k=0

x[k, :];

f2(f1(x))[i, :] = f1(x)[i− (N − 1), :].

For the nth column, we know that for 0 ≤ i < N :

x[i, n] = uJRT
inner[i, n] = uJRT[i, n] =

{
1 if |A| ≤ |B| and i = |A|
0 otherwise.

This is because if |A| ≤ |B|, the separator is within
[
0, N

2 − 1
]

and its nth bit is 1, where |A| =: is ∈
[
0, N

2 − 1
]

to be the
location of the separator. We then get

f1(x)[i, n] =

{
1 if |A| ≤ |B| and i ≥ is

0 otherwise.

f2(f1(x))[i, n] =

{
1 if |A| ≤ |B| and i = 0

0 otherwise.

We can thus characterize the nth column of the output Y ∈ R(2N+N
2 )×(n+1) as follows:

Y [i, n] =


1 if |A| ≤ |B| and i = 0

0 if |A| > |B| and i = 0 or 1 ≤ i < N

uJRT[i+ N
2 , n] if i ≥ N.

We now remember Y [0 : N
2 − 1, :] while shifting down Y [N2 : 2N + N

2 − 1, :] by N
2 − 1 (?)Proposition F.13 and

F.38]arora2024simple to get Y ′ such that:

Y ′[i, :] =

{
Y [i, :] if i < N

2

Y [i− N
2 , :] if i ≥ N

2

=


Y [i, :] if i < N

2

uJRT[i, :] if N
2 ≤ i < 2N − 1

0n otherwise.

Focusing on the nth column, we see that we get for 0 ≤ i < N :

Y ′[i, n] =

{
1 if |A| ≤ |B| and i = 0 or |A| > |B| and i = |A|
0 otherwise

.
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Or equivalently

Y ′[0 : N − 1, n] =

{
e0 if |A| ≤ |B|
e|A| if |A| > |B|.

,

which is exactly what we need as the shift kernel hshift. A schematic representation of this process is provided in Figure 5.
The final claim on the overall parameters follows from the fact that we can ‘stack’ BaseConv layers with the same internal
dimension (Arora et al., 2024).

N
2

− 1 N − 1

1 1

|A| ≤ |B| |A| ≥ |B|

00

N − 1

1 1

|A| ≤ |B| |A| ≥ |B|

00

N − 1

cumulative_sum → shift_down remember

N − 1

1 1

|A| ≤ |B| |A| ≥ |B|

00

N
2

− 1 N − 1

1 1

|A| ≤ |B| |A| ≥ |B|

00

Figure 5: Schema for getting input-dependent shift kernels for the set disjointness (SD) problem.

We now use the kernels from Lemma G.20 to do the appropriate shift.
Proposition G.21. Given a JRT prompt uJRT ∈ R2N×(n+1) of the input u ∈ RN×(n+1) for the set-disjointness (SD)
problem (A,B) ⊆ {0, 1}n, there exist O(1) input-dependent BaseConv layers that can rearrange the input so that the
smaller set out of A and B is placed at the start of the sequence.

Proof. The input u ∈ {0, 1}N×(n+1) is formatted as in Remark G.14. In the first case where A is the smaller set, we do not
need to change the input. Let s := [0n :: 1] be the separator, then we want:

uJRT ≡
[
←− A −→ s ←− B −→ ←− A −→ s ←− B −→

]
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Otherwise, if |B| ≤ |A|, we want to shift the input so that |B| comes at the start of the input sequence in the JRT prompt
uJRT. To this end, we want to add a separator between after the first copy of the input ends. For this purpose, we can keep
the first copy as is, and operate on the duplicate A by shifting it down by 1 and adding a separator at the start of the second
input. We thus apply the remember(uJRT

shift_up, N,N + |A|, f ) primitive (?)Definition F.15]arora2024simple with 8 layers
of BaseConv where f is any function that maps (A, s) 7→ (s, A), so that we get

uJRT ≡
[
←− A −→ s ←− B −→ s ←− A −→ ←− B −→

]
Next, we shift up using the shift_up(uJRT, |A| + 1) primitive (?)Proposition C.5]arora2023zoology for BaseConv
with 3 layers by implementing the kernel hshift from Lemma G.20. We then get

uJRT
shift_up ≡

[
←− B −→ s ←− A −→ ←− B −→ 0|A|+1

]
That is, in both cases, the final output has the smaller set out of A and B at the start of the sequence.

To complete the proof we note that we can do the above in one single model (that uses data dependent convolutions): (1) We
add the extra separator after the second set in uJRT and (2) we do the using the convolution operator in BaseConv where
we use the convolution kernel computed from Lemma G.20.14

Finally, we can combine Propositions G.18 and G.21 to claim that Based can solve SD with JRT-prompting in space
O(min{|A|, |B|}).
Theorem G.22. Given a JRT prompt uJRT ∈ R2N×(n+1) of the input u ∈ RN×(n+1) for the set-disjointness (SD) problem
(A,B), there exists a (data dependent) Based model (BaseConv + MLP + LinearAttention + MLP)15 that solves
the SD problem with space O(min{|A|, |B|} · n).

Proof. First, we use the BaseConv layers from Proposition G.21 to get the smaller set of A and B in uJRT to the
start of the sequence in zBaseConv. Next, we reduce zBaseConv using an MLP layer to get zBaseConv[0 : N − 1, :] as the
input to the LinearAttention (+MLP) layer in Proposition G.18 so that we solve the SD problem for the original
input u. Finally, for the LinearAttention layer, we can use the data-dependent IP kernels from equation 19 to get
f = O(min{|A|, |B|})), which yields the claimed space usage since we have d = n.

Remark G.23. We note that we can use the random kernels from equation 20 in Theorem G.22 to get space usage of
O
(
(min{|A|, |B|})2 · n

)
without using data-dependent IP kernels.

G.4. GAR and SD

In this section, we introduce the general associative recall GAR problem. Recall that the query in the AR problem comes at
the end, and thus, the query is compared with all the keys in the input. On the other hand, in MQAR, a query at position i is
only compared with keys at positions j < i. Moreover, the number of keys and queries in the input are the same for MQAR.
Instead, we introduce the following alternate generalization of AR that has all the queries at the end with the number of
queries different from the number of keys.

Definition G.24 (GAR). We are given an input sequence

u[0 · · ·N − 1] ≜ (k0,v0), . . . , (kn−1,vn−1); q0, . . . , qm−1, (22)

where K := {ki}n−1
i=0 , V := {vi}n−1

i=0 , and Q := {qi}m−1
i=0 , with each ki,vi, qi ∈ C is a token drawn from a vocabulary of

size c = |C|, and we have N = 2n+m.

Our goal in the general associative recall (GAR) problem is to check, for each qi ∈ Q, whether there exists kj ∈ K such
that qi ≡ kj; if so, output the corresponding value vj , and otherwise, output Null.

We will first show that SD reduces to GAR.

Proposition G.25. Any algorithm A solving GAR can also solve SD.
14We also need to only keep the first N rows of the matrix, which we can obtain by zeroing out all the remaining rows using another

BaseConv layer.
15This matches the architecture in our experiments.
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Proof. Given an input to the set-disjointness problem (A,B) with A := {A0, . . . , A|A|−1}, B := {B0, . . . , B|B|−1}, we
can construct the following input to the GAR problem:

u := (A0, A0), . . . , (A|A|−1, A|A|−1);B0, . . . , B|B|−1.

Now, we run algorithm A on u, and if for all q ∈ Q, we get Null, then we know A ∩B = ∅, and otherwise, A ∩B ̸= ∅.
This solves the set disjointness (SD) problem.

What we have shown is that GAR is much more general compared to SD. However, we can also show that we can solve
GAR under certain conditions if we had access to an algorithm solving SD.

Proposition G.26. Let ASD be an algorithm solving the set disjointness (SD) problem. Then, for a vocabulary C with
|C| = c with values from [c] and represented as vj ∈ {0, 1}d where d = ⌈log2(c + 1)⌉ with at most one match for each
query, we can solve the GAR problem (definition G.24) with d calls to ASD.

Proof. Given an input (k0,v0), . . . , (kn−1,vn−1); q0, . . . , qm−1 to GAR, for each call ℓ ∈ [d] to algorithm ASD, we
construct the inputs to algorithm A by taking A := Q,B := Kℓ with Kℓ defined as follows:

kj ∈ Kℓ ⇐⇒ vj [ℓ] = 1. (23)

That is, we include kj ∈ Kℓ iff the ℓ’th bit of vj is 1.

We now claim that we can solve the MQAR problem given Q ∩Kℓ for all ℓ ∈ [d]. To see this, note that if a query q ∈ Q is
not in K, then q /∈ Q ∩Kℓ for every ℓ ∈ [d]. We thus output Null for these queries.

Otherwise, if q ∈ Q ∩K, then there exists a non-empty set of calls L ⊆ [d] such that q ∈ Q ∩Kℓ for all ℓ ∈ L. We can
then extract the ℓ’th bit of vj , where q = kj . That is, for q = kj , we use equation 23 to get

vj [ℓ] =

{
1 if ℓ ∈ L

0 otherwise.

This is exactly the value corresponding to the unique matching key kj for the query q.

G.4.1. LOWER BOUND FOR GAR VIA SD

In this section, we present a lower bound for solving GAR. For this purpose, we require the following two-way randomized
communication complexity16 lower bound for set-disjointness (SD).

Theorem G.27 ((Håstad and Wigderson, 2007)17). The two-way randomized communication complexity of the set disjoint-
ness problem with sets A,B ⊆ [n] is Ω(min{|A|, |B|}) bits for n ≥ o(min{|A|, |B|}).
Definition G.28 (JR−p Prompts). For any modelM with input u ∈ RN×d, a JR−p prompt for input u is the p-times
repeated input uJR−p ∈ RpN×d given by

uJR−p[i, :] := u[i mod N, :]

Proposition G.29. Given a JR−p prompt uJR−p ∈ {0, 1}pN×d for input u ∈ {0, 1}N×d to the GAR problem, any

recurrent modelMGAR (definition G.12) solving GAR requires maxi
∣∣Zi

MGAR

∣∣ to be at least Ω
(

min{|A|,|B|}
p

)
-bits.

Proof. We first take the input u ∈ {0, 1}N×d to the GAR problem and design a two-way communication protocol for
solving GAR given access to the reccurrent modelMGAR. To this end, Alice with their access of key-value part generates
her part of the input:

uAlice := (k0, v0), . . . , (kn−1, vn−1) (24)

16Here, in contrast to one-way randomized communication protocol in appendix G.1.1, both Alice and Bob are allowed to send
messages to each other.

17(Håstad and Wigderson, 2007) provides a lower bound of n for |A| = |B|. However, we can extend it to Theorem G.27 by reducing
the min{|A|, |B|} subset to the equal sized set by picking a hard distribution where both sets are of size min{|A|, |B|} and then adding
"extra" elements to only one of them to get a larger set (i.e., one can increase the universe size by these extra elements to get the desired
lower bound).
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of the input for GAR (without the queries), and Bob with their access of the query part generates the following;

uBob := q0, . . . , qm−1 (25)

of the input for GAR (without the key-value pairs) as in equation 22. That is, the concatenation uAlice :: uBob ≡ u in
equation 22. We then have

uAlice :: uBob :: · · · :: uAlice :: uBob︸ ︷︷ ︸
p−times

≡ uJR−p, (26)

the corresponding JR−p prompt for the input u to the GAR problem. We now claim that the following protocol (algorithm 4)
is equivalent to running the recurrent modelMGAR on the JR−p prompt uJR−p:

Algorithm 4 Communication Protocol for GAR

Require: A recurrent modelMGAR solving GAR along with the inputs uAlice,uBob from 24 and 25.
Ensure: MGAR(u

JR−p).
1: for i← 0 to p− 1 do
2: for j ← 0 to 2n− 1 do
3: Zi·N+j

MGAR
← f i·N+j

M (Zi·N+j−1
MGAR

,uAlice[j]) ▷ Z0
MGAR

← uAlice[0, :]
4: end for
5: Alice sends Zi·N+2n−1

MGAR
to Bob

6: for j ← 0 to m− 1 do
7: Zi·N+2n+j

MGAR
← f i·N+j

M (Zi·N+2n+j−1
MGAR

,uBob[j])
8: end for
9: Bob sends Zi·N+m−1

MGAR
to Alice

10: end for

The equivalency of this protocol with running the modelMGAR follows from equation 26.

Next, consider an instance uSD := (A,B) of the set-disjointness problem with A,B ⊆ [n] and |A| + |B| = N , where
A := {A0, . . . , A|A|−1}, B := {B0, . . . , B|B|−1}. Due to proposition G.25, we know that we can generate an equivalent
input u for GAR given an input uSD to the SD problem, whence we can generate inputs for Alice and Bob as in equation 24
and equation 25. Applying algorithm 4 then solves the GAR problem for u, and consequently, the SD problem for uSD.
Here, the total number of bits that are communicated in this protocol is

Tbits :=

p−1∑
i=0

∣∣Zi·N+2n−1
MGAR

∣∣+ ∣∣Zi·N+m−1
MGAR

∣∣ .
Now, if Tbits is o(min{|A|, |B|}) bits, we have shown that a two-way communication protocol exists for solving the
set-disjointness (SD) that uses o(min{|A|, |B|}) communication complexity. However, this contradicts theorem G.27. Thus,
we have Tbits ≥ Ω (min{|A|, |B|}) .

Finally, note that we have

p · 2max
k

∣∣Zk
MGAR

∣∣ = p−1∑
i=0

2max
k

∣∣Zk
MGAR

∣∣
≥

p−1∑
i=0

∣∣Zi·N+2n−1
MGAR

∣∣+ ∣∣Zi·N+m−1
MGAR

∣∣
≥ Ω (min{|A|, |B|}) .

=⇒ max
k

∣∣Zk
MGAR

∣∣ ≥ Ω

(
min{|A|, |B|}

2p

)
.

This concludes the proof.
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Table 15: JRT-RNN Training Settings. For hybridizing the three layer types – gated convolutions, sliding window, and linear attention –
we use linear attention at layers {2, 7, 12, 17, 22, 27, 32} and sliding window at layers {3, 8, 13, 18, 23, 28, 33}, with gated convolution
layers elsewhere. We did not tune the layer orderings and proportions.

356M 1.3B

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Optimizer eps 1e− 8
Precision BFloat16

Encoder region length 1024
Masked language modeling probability 15%

MLM loss scale 0.25
NTP loss scale 1.00

Warmup 1%
Learning rate decay Cosine

Learning rate (min, base) 8e-5, 8e-4
Global batch size 256

Weight decay 0.1

Num Layers 26 36
Hidden Size 1024 1792

MLP Activation SwiGLU
MLP Width 2

Num. Linear Attn Layers 5 7
Num. Linear Attn Heads 16

Taylor Feature Dimension 16
Linear Attn Positional Encodings None

Num. Sliding Window Layers 5 7
Sliding Window Size 64 16

Sliding Window Heads 16
Sliding Window Positional Encodings Rotary

Num. BaseConv Layers 17 22
BaseConv Projection Expansion Factor 4

BaseConv Filter Size 3
BaseConv Activation SiLU
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Table 16: Based Training Settings. For hybridizing the three layer types – gated convolutions, sliding window, and linear attention –
we use linear attention at layers {2, 7, 12, 17, 22, 27, 32} and sliding window at layers {3, 8, 13, 18, 23, 28, 33}, with gated convolution
layers elsewhere. We did not tune the layer orderings and proportions.

363M 1.4B

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Optimizer eps 1e− 8
Precision BFloat16

Warmup 1%
Learning rate decay Cosine

Learning rate (min, base) 8e-5, 8e-4
Global batch size 256

Weight decay 0.1

Num Layers 27 36
Hidden Size 1024 1792

MLP Activation SwiGLU
MLP Width 2

Num. Linear Attn Layers 5 7
Num. Linear Attn Heads 16

Taylor Feature Dimension 16
Linear Attn Positional Encodings None

Num. Sliding Window Layers 5 7
Sliding Window Size 128

Sliding Window Heads 16
Sliding Window Positional Encodings Rotary

Num. BaseConv Layers 17 22
BaseConv Projection Expansion Factor 4

BaseConv Filter Size 3
BaseConv Activation SiLU
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Table 17: Mamba Training Settings

358M 1.3B

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Optimizer eps 1e− 8
Precision BFloat16

Warmup 1%
Learning rate decay Cosine

Learning rate (min, base) 8e-5, 8e-4
Global batch size 256

Weight decay 0.1

Num Layers 46
Hidden Size 1024 2048
RMSNorm True

Norm Epsilon 1e− 5
Dt State 16

Dt (Min, Max) (0.001, 0.1)
Dt Init. Strategy Random

Dt Init. Floor 1e− 4
Dt Scale 1.0

Dt Softplus True
Projection Expansion Factor 2

Short Conv Filter Size 4

Table 18: Attention Training Settings

360M 1.3B

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Optimizer eps 1e− 8
Precision BFloat16

Warmup 1%
Learning rate decay Cosine

Learning rate (min, base) 8e-5, 8e-4
Global batch size 256

Weight decay 0.1

Num Layers 24 36
Hidden Size 1024 1680
Num Heads 16 24
RMSNorm True
MLP Bias False
Flash Attn True

Rotary Emb. Fraction 0.5
MLP Activation SwiGLU

MLP Width 4
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