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ABSTRACT

Feature importance is one of the most prominent methods in explainable artificial
intelligence. It seeks to score the features an artificial intelligence model relies on
the most. In multi-class classification, current methods fail to explain inter-class
relationships as they either provide explanations for binary classification only, or
suffer from aggregation bias. In a multi-class classification scenario, features may
carry discriminative power to separate some of the classes while being otherwise
less relevant. State-of-the-art feature importance measures do not capture this be-
havior. We propose Inter-Class Feature Importance (ICFI), a measure that scores
the feature importance to discriminate between an arbitrary pair of classes. ICFI is
a post-hoc, model-agnostic method, independent from the machine learning archi-
tecture employed. ICFI marginalises the target output with respect to the feature
of interest, leveraging the resulting change in model behavior to quantify feature
importance. We present ICFI’s properties and argue its relevance, describing use
cases and showing insights gained. We demonstrate through thorough experiments
on real-world datasets how ICFI captures the features characteristics for specific
class relationships.

1 INTRODUCTION

The eXplainable Artificial Intelligence (XAI) research field focuses on making Machine
Learning (ML) models understandable to human stakeholders (König et al., 2021). ML models’
increasing complexity is proving a hurdle in complying with legal requirements (König et al., 2021;
European Parliament & Council of the European Union; Tritscher et al., 2023), validating architec-
tures in high-stake scenarios (Dinu et al., 2020), and treating protected groups fairly (Caton & Haas,
2024). XAI research aims to solve these problems. Specifically, Feature Importance (FI) is one of
the most popular XAI methods (Saarela & Jauhiainen, 2021). It quantifies the relevance of each
input feature for the model prediction (Muschalik et al., 2023), allowing verification of whether the
importance of the features aligns with background knowledge (Alfeo et al., 2023).

If an XAI method works with a trained ML model, it is classified as post-hoc (Tritscher et al., 2023).
Post-hoc techniques are flexible and can be applied to existing models to improve interpretabil-
ity (Das & Rad, 2020). Additionally, a FI method that applies to any ML model is considered
model-agnostic (Tritscher et al., 2023) and does not impose constraints on the model architecture.

Current FI methods either provide explanations for single instances (locally) in a binary classifica-
tion setting, quantifying importance toward the positive class, or explain the whole dataset (glob-
ally). These two types of explanation cannot capture inter-class relationships. Local methods are
targeted toward binary settings. For global methods, the importance ranking stands valid for a cer-
tain percentage of the population, but it may not be accurate for all of the population; this effect is
known as aggregation bias (Mehrabi et al., 2022).

A concrete example is the kidney cancer recognition case (Muhamed Ali et al., 2018; Cancer
Genome Atlas Research Network et al., 2013), where clinical data and RNA sequencing information
are utilized to detect cancer sub-types. Such a case is a multi-class classification task. After building
a classifier, it is possible to obtain insight into the model behavior by applying XAI methods and
obtaining the global FI. The output is a single ranking, quantifying feature contributions. This sin-
gle ranking, however, does not consider class relationships. Certain features might be important to
separate two specific cancer sub-types while being otherwise less relevant. Existing FI methods fail
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to capture this. Moreover, a feature crucial for differentiating between two cancer types may not be
found globally important, which risks critical oversights.

We can use the traditional Confusion Matrix (CM) to evaluate the model, quantifying pairwise class
combinations’ false positives and negatives (Beauxis-Aussalet & Hardman, 2014). We might notice
that the model does not distinguish between classes equally well, notable in the CM entries. How
do we understand why this happens? We know that one CM entry describes the model’s misclas-
sifications between two classes. We need the FI importance (the explanations) for when the model
separates the classes to know why it misclassifies them. If we use global methods, we will receive
an aggregation of every sample regardless of their class, which fails to provide a specific explanation
for the misclassification between two classes.

To address this gap, we look towards a method that outputs a feature ranking for any pair of classes,
quantifying the importance of features in separating the two classes. Hence, we propose a new
feature importance measure to explain an ML model in a multi-classification scenario: Inter-Class
Feature Importance (ICFI). We seek to identify the features the model relies on the most when
trying to discriminate between two classes. Applying existing FI measures to the classes of interest
would not achieve our goal. We would still evaluate the importance of the overall classification task,
not capturing relationships between the two classes. When we have a binary classification task,
separating the two classes coincides with the overall model’s task, ICFI is thus a generalization of
binary FI.

ICFI, to compute FI, permutes the feature of interest to mimic the absence of the feature from the
model as similarly done in Permutation Feature Importance (PFI) (Fumagalli et al., 2023; Strobl
et al., 2008) and other XAI methods Fisher et al. (2019). We quantify feature importance by evalu-
ating model performance with and without the information carried by the feature inspected. Permu-
tation allows our measure to be completely model-agnostic without needing to train any additional
model. ICFI is a model-agnostic and post-hoc method, and its simple algorithmic implementation
encourages its use in any scenario involving tabular data.

Our core contribution includes an introduction of ICFI, a model-agnostic XAI method for quantify-
ing feature importance in separating an arbitrary pair of classes. An overview of ICFI’s properties
and an in-depth discussion of its relevance providing use cases. Through empirical evaluation of
real-world datasets, we show how ICFI offers new insights into the inner workings of an ML model.

The structure of the remainder of the paper firstly introduces related work in Section 2, then ICFI is
introduced in Section 3. Penultimately, we explore experiments in Section 4 and Section 5 concludes
the paper discussing possible future work.

2 RELATED WORK

The XAI research field is very dynamic, with recent surveys providing detailed overviews (Ali et al.,
2023; Das & Rad, 2020; Theissler et al., 2022). XAI literature addresses both model-agnostic and
model-specific approaches as well as post-hoc explanations. Model-specific approaches are tailored
for a specific model or class of models only (Sundararajan et al., 2017; Carletti et al., 2023; Bach
et al., 2015; de Sá, 2019). Post-hoc methods target fully trained models (Ali et al., 2023).

In our work, we focus on feature importance methods. FI methods generate explanations by pointing
out the model’s most important features (Das & Rad, 2020).

The most prominent and widely used methods in this domain include SHapley Additive exPla-
nations (SHAP) (Lundberg & Lee, 2017) and Local Interpretable Model-agnostic Explanations
(LIME) (Ribeiro et al., 2016). SHAP applies Shapley Values from game theory to locally assess
each feature’s importance in machine learning (Ali et al., 2023). SHAP provides a unique feature
ranking only in binary classification. Global SHAP explanations can be retrieved by averaging lo-
cal ones. They do not take into account inter-class relationships and they misrepresent samples
whose importance does not align with the average, suffering from aggregation bias (Mehrabi et al.,
2022). SHAP’s usage in diverse research areas (Cooper et al., 2021; Antwarg et al., 2021; Garcı́a
& Aznarte, 2020) underscores its effectiveness while it’s high computational complexity makes its
implementation challenging (Muschalik et al., 2023).
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On the other hand, LIME is a local XAI method that quantifies feature importance by approximat-
ing the model locally with an inherently interpretable surrogate, responsible to provide the expla-
nation (Adamczewski et al., 2020; Ribeiro et al., 2016). Global feature rankings can be retrieved
through aggregating local instances (Ribeiro et al., 2016). LIME may exhibit instability if slight
changes in the surrogate’s input occur (Zhou et al., 2021).

Global XAI approches include Partial Dependence Plots (PDP) (Friedman, 1991) and Permutation
Feature Importance (Breiman, 2001). PDPs are a low-dimensional graphical representation showing
the dependence between the target and a set of features of interest (Greenwell et al., 2017). PDPs do
not target feature importance rankings but aim to visualize the interaction between the target variable
and a set of input features.

PFI, introduced in Breiman (2001) for random forests, assesses change in the model’s performance
when permuting the feature of interest, effectively marginalizing the other features (Fumagalli et al.,
2023; Strobl et al., 2008). Permutation, aims at mimicking the absence of the feature of interest. If a
feature provides information about the target variable, breaking the association through permutation
will be reflected in the model’s performance (Strobl et al., 2008). The feature is deemed unimportant
when there is no significant increase in the empirical risk after permuting (Debeer & Strobl, 2020). A
slight decrease in risk is also possible and is attributed to chance or to a sub-optimal model (Debeer
& Strobl, 2020; Fisher et al., 2019).

PFI has been the focus of several research articles addressing both applications and enhance-
ments (König et al., 2021; Wang et al., 2016; Strobl & Zeileis, 2008; Strobl et al., 2008; Nicodemus
et al., 2010; Epifanio, 2017). Specifically, Fisher et al. (2019) expand PFI making it model-agnostic
and not limited to trees or ensemble models (Fumagalli et al., 2023).

3 FEATURE IMPORTANCE IN MULTI-CLASS CLASSIFICATION

We propose ICFI, with the aim of providing feature importance for the task of separating a pair
of classes in a multi-class classification scenario. Some features may indeed carry discriminative
power to discriminate two classes only, while they might not be otherwise leveraged by the model.
Hence, they might not be highlighted as important by global methods.

We keep a running simple example, using the Iris dataset (Fisher, 1936), to gain intuition for our
method. The Iris dataset is a popular benchmark dataset for multi-class classification tasks. It
consists of 150 samples of iris flowers belonging to three separate species: versicolor, virginica and
setosa. The objective is to classify flowers’ samples leveraging four features, describing respectively
sepal length, sepal width, petal length and petal width.

Here, we use only sepal length and sepal width for sake of example and simplicity (Figure 1). De-
scribing the Iris dataset through sepal width and sepal length causes the versicolor and virginica
classes to overlap (Zaki & Meira, 2014). As also testified by Figure 1, setosa is linearly separa-
ble from the other two classes. Versicolor and virginica instead, overlap with each other in the
two dimensional input space. The expectation is that a classifier will struggle to separate between
versicolor and virginica.

We fit a decision tree classifier on the simplified Iris dataset, using 50% of the data for training.
Figure 1 shows the decision boundary. As expected, several virginica samples are misclassified as
versicolor and multiple versicolor flowers are wrongly labeled as virginica. This testifies how the
model does not effectively separate versicolor and virginica. On the contrary, no setosa sample is
classified as virginica while just one is wrongly assigned to the versicolor class.

To capture feature importance to discriminate two classes, we need to describe how the model per-
forms when separating the pair of classes. Referrnewsgrouping to Figure 1, we need to quantify the
model’s inefficiency in separating virginica and versicolor.

Global FI methods, don’t look into inter-class relationships and suffer from aggregation bias. This
work aims to evaluate performance in the task of discriminating two classes as a pathway to Inter-
Class Feature Importance.
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Figure 1: Multi-class classification example. The Iris dataset projected on the sepal length and sepal
width features is used to fit a decision tree. The 3 classes’ points are coloured in blue, green and red
for versicolor, virginica and setosa respectively. The tree’s decision boundary is indicated by the
different background colors.

3.1 INTER-CLASS FEATURE IMPORTANCE

ICFI takes into consideration two classes and outputs the feature importance for the model task of
separating them. As in binary FI methods, we do not change the computation based on the order
of the classes. Hence, we do not distinguish the importance of a feature in separating class σ with
class ρ from the importance in separating class ρ with class σ. This requires ICFI to be symmetrical
with respect to the two classes of interest. When a feature is deemed unimportant, we quantify
its importance with 0 as intuition would suggest and relating to the discussion on missingness,
in Lundberg & Lee (2017). Missingness is the property stating that features missing from the original
input get an attribution of 0. Furthermore, humans reason better when dealing with a small limited
range than with a potentially infinitely high value (Resnick et al., 2017; Jones et al., 2008). An
unbounded number for the importance quantification is a feature detrimental to interpretability, as a
FI value with no reference hinders its interpretation (Adamczewski et al., 2020; Pries et al., 2023).
We thus want our measure to be also upper bounded. Next, we introduce the formalism used in this
paper.

Given a domain set X , a label set Y , a classifier h : X → Y and a loss function l, we define the true
risk Rt(h) as the expected loss of h with respect to a probability distribution D over X ×Y (Shalev-
Shwartz & Ben-David, 2014),

Rt(h) = Ez∼D [l(h, z)] . (1)

For convenience, we drop the h in the risk’s notation. R̃tj denotes the true risk after permuting
feature j.

In order to evaluate our measure, instead of the true risk which is not computable as the ML model
has no access to D (Shalev-Shwartz & Ben-David, 2014), we approximate it using the empirical risk
R(h), i.e., the average loss over a given data sample (z1, ..., zN ) (Shalev-Shwartz & Ben-David,
2014), defined as: R(h) = 1

N

∑N
i=1 l(h, zi).

We permute a feature by uniformly sampling one of its possible permutations. This means that if
our data sample consists of N records, each of the N ! permutations can be selected with probability
1
N ! .

The intuition behind ICFI hinges on the fact that the more misclassifications between classes σ
and ρ, the more the empirical risk will decrease when we merge the two classes. Merging a pair
of classes means they are now considered one class, where all misclassifications between the pair
will become successful classifications, effectively improving model performance. We compute the
decrease in empirical error when merging two classes through

4
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Figure 2: Multi-class classification example. From left to right we merged classes (0 + 1), (0 + 2), (1
+ 2). Points belonging to merged classes are coloured in gray. Only the decision boundary between
the two classes is pictured.

∆Rσρ = R−Rσρ , (2)

with Rσρ the empirical error when merging classes σ and ρ. In Eq. 2, as in the remainder of the
paper, we use Greek letters to refer to classes while we refer to features with Latin letters.

Eq. 2 would be incomplete without a clearer definition of the merging operation. We deal with
two cases: models which ouput class probabilities and model that output the predicted class only.
Considering the case in which probabilities are provided, when merging, two classes are considered
as one, resulting in a combined probability through summing. The merging definition can be adapted
when models do not provide class probabilities. In this scenario, merging class σ with class ρ would
mean changing model outputs from σ to ρ. Regardless of the model, during evaluation, σ-labelled
target data points are labelled as ρ. Merging is symmetric, i.e., merging σ with ρ is equivalent to
merging ρ with σ, making ICFI symmetric as desired.

If a model struggles to separate two classes, Eq. 2 will reflect it. To probe ICFI’s intuition of relying
on the empirical risk decreasing when merging two classes, we look back at the example displayed
in Figure 1. For the sake of the example, we use a mathematically simple loss function: the zero-one
loss. The zero-one loss outputs 1 for a misclassified sample and 0 otherwise.

Dealing with three classes, three pairwise merges are considered, using all available samples. We
merge versicolor with virginica, setosa with versicolor and setosa with virginica. The three sce-
narios are depicted in Figure 2 where points belonging to merged classes are in gray and only the
decision boundary between the two resulting classes is visible. The computed decreases in empirical
error ∆Rσρ are respectively 0.20, 0.01 and 0.

As the decision boundary in Figure 1 indicates, the model struggles the most separating versicolor
and virginica. ∆Rσρ reflects this, taking the highest value when merging versicolor with virginica.
The model making no misclassifications between setosa and virginica is underscored by the null
decrease in empirical error. Lastly, the only two misclassifications between setosa and versicolor
cause a low 0.01 value of ∆Rσρ.

The example in Figure 1, thus shows how the decrease in accuracy ∆Rσρ captures model perfor-
mance in separating classes. This makes ∆Rσρ a key ICFI component.

To evaluate feature importance for feature j, we permute j and measure the difference in model
performance. To evaluate ICFI we thus compute ∆Rσρ when permuting feature j measuring

∆R̃σρ
j = R̃j − R̃σρ

j , (3)

with R̃σρ
j being the empirical error when permuting feature j, and merging classes σ and ρ.

Eq. 2 and Eq. 3 evaluate decrease in empirical error respectively before and after permuting. ICFI
could thus be straightforwardly defined taking the difference ∆R̃σρ

j − ∆Rσρ or through the ratio
∆R̃σρ

j

∆Rσρ . Both functional forms result in an unbounded target range, which goes against our specified
requirements for interpretability. Additionally, setting an upper bound for the feature importance

5
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Figure 3: Decision tree of depth 2 classifying the Iris dataset, one of the most popular multi-class
classification benchmark datasets. The samples entry indicate how many training samples for class
setosa, versicolor and virginica respectively, go in a specific node.

quantification, allows us to assess whether a feature is highly important according to ICFI’s defi-
nition. Without a limit on the importance evaluation, only assessments relative to other computed
importances could be made.

We can get a bounded measure by constraining the target range between 0 and 1, with 0 signaling

a non-important feature. Starting from the ratio
∆R̃σρ

j

∆Rσρ , which has the advantage of normalizing the
measure by the model performance before permutation, we need a function f(x) mapping the output
interval [1,+∞) to [0, 1]. f should also be strictly increasing in order to preserve feature ranking.
Choosing f as: f(x) = 1− 1

x , would lead to defining ICFIσρj as 1− ∆Rσρ

∆R̃σρ
j

. The problem with this

definition is that actually, while R̃j is smaller than R only in rare instances dictated by chance or by
a sub-optimal model (Debeer & Strobl, 2020; Fisher et al., 2019), ∆R̃σρ

j can be smaller than ∆Rσρ

because the model distinguishes better the two classes after permutation. This would lead 1− ∆Rσρ

∆R̃σρ
j

to be negative. To see that ∆R̃σρ
j can be smaller than ∆Rσρ, we look at an application example.

Figure 3 shows a decision tree classifier fitted on the Iris dataset (Fisher, 1936) with all four features.
The samples field shows how many training samples for class setosa, versicolor and virginica, re-
spectively, go in a specific node. The model perfectly classifies the setosa class, and the setosa
leaf does not include versicolor or virginica class samples. Thus, in the setting where we do not
permute any of the features, when the model deals with samples belonging to the versicolor and
virginica class, it will typically assign them to the versicolor or virginica leaves. Leaves where the
model can misclassify the two classes, as showed by the samples field. For example, we can see
from the versicolor leaf, that 25 training samples belonging to the versicolor class are correctly la-
beled as versicolor while 2 samples are misclassified as virginica. Conversely, in the setosa leaf, no
versicolor sample is misclassified as virginica and vice-versa.

Consider losing the information carried by the petal width feature by permuting it. The model will
likely send more virginica and versicolor samples to the left branch, as we loose the discriminative
power which fully separates setosa from the versicolor and virginica samples. In the left branch,
solely composed by the setosa leaf, the model does not misclassify versicolor with virginica, as
suggested by the samples field, and merging versicolor with virginica will lead to a low decrease in
empirical error. Thus, in this case, we expect ∆R̃σρ

j to be smaller than ∆Rσρ.

Hence, we are not interested in the difference ∆R̃σρ
j − ∆Rσρ but in its absolute value, i.e.,

|∆R̃σρ
j −∆Rσρ|. The absolute value estimates by how much model performance differs after per-

mutation which is what we need to quantify feature importance while having a positive measure, as
outlined in the desired ICFI properties.

6
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We thus propose to account for the above mentioned requirements by defining ICFIσρj as

ICFIσρj = 1− 1

1 +
∣∣∣∆R̃σρ

j −∆Rσρ
∣∣∣ /∆Rσρ

, (4)

ICFIσρj quantifies the importance of feature j in the task of separating classes σ and ρ.

ICFI’s formulation in Eq. 4 respects the above mentioned requirements of ICFI being non-negative,
bounded and symmetric with respect to the classes inspected. We prove these claims in Ap-
pendix A.4.

4 EXPERIMENTS

One of XAI’s biggest challenges is its evaluation, which cannot generally rely on quantifiable met-
rics like accuracy. Furthermore, ground-truth and evaluation standards are often lacking (Adam-
czewski et al., 2020; Afchar et al., 2021; Molnar et al., 2023; Pries et al., 2023; Ali et al., 2023;
Tritscher et al., 2023). When we do have ground-truth on which features should be important, it usu-
ally refers to the data, not to the model. Explanations are commonly assessed either as a by-product
of accuracy or through case studies in application contexts. Our experiments1 utilize both assess-
ment methods through real-world datasets. Different classifiers are used throughout the experiments
in order to highlight the model-agnostic nature of the proposed method. In our experiments, we
do not target model performance as such; this paper focuses on the quality of explanations. Unless
stated otherwise, we train models which output class probabilities, allowing us to use the cross-
entropy loss, widely employed in classification tasks (Zhang & Sabuncu, 2018; Mao et al., 2023)
and determining how classes are merged.

In 4.1, an interpretable model is fitted to the Iris dataset (Fisher, 1936) in order to have ground-truth
in our feature importance rankings. We then seek to quantify feature importance and test whether
ICFI correctly retrieves ground-truth information. Section 4.2 exploits background knowledge in a
NLP dataset to evaluate ICFI. In this setting, words are used as features and some words are expected
to be highly discriminative for a specific pair of class while are not supposed to be leveraged by the
model in other pairs. We test if ICFI correctly captures this behavior. Lastly, Our measure is com-
pared to three different benchmarks in Section 4.3 to evaluate the quality of the feature importance
rankings. Throughout the experiments, PFI is computed as a global feature importance measure for
the sake of comparison. We use PFI for two reasons. First, it is a vastly employed, model-agnostic,
inherently global FI method. Second, it uses a strategy similarly to the one of ICFI, i.e., it permutes
the feature of interest evaluating model performance before and after permutation. ICFI and PFI are
computed on test data.

4.1 3-CLASS DECISION TREE, NUMERICAL

The Iris dataset (Fisher, 1936) is a multi-class classification dataset. The task consists in distinguish-
ing three different types of flowers i.e., Setosa, Versicolor and Virginica, described by four features:
petal width, petal length, sepal width and sepal length. We fit a CART decision tree (Breimann
et al., 1984), setting the maximum depth at two as shown in Figure 3.

The decision tree has the advantage of being an inherently interpretable model. As we already dis-
cussed, we seldom have ground-truth in the model and an interpretable one, together with a relatively
simple dataset, offers the ground-truth needed to evaluate ICFI. The tree structure in Figure 3, pro-
vides a feature importance ranking. First of all, the tree leverages just two features: petal width and
petal length. Sepal length and sepal width should thus be labeled as unimportant. Moreover, features
leveraged close to the root have a higher global influence than the ones used in lower nodes (Laugel
et al., 2018). We thus expect petal width, used in the tree root, to be the globally most relevant
feature. When distinguishing between versicolor and virginica instead, the model relies heavily on
petal length as exemplified in Figure 3. Finally, when separating between setosa and the two classes
to the right of the root, we foresee petal length to have low importance, as it cannot be used by the
model to classify a sample as belonging to the setosa class.

1Code available at https://anonymous.4open.science/r/ICFI-D11F
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Figure 4: Global feature importance and ICFI for the model in Figure 3, fit on the Iris dataset.
Global PFI (left) highlights the two features used by the model. ICFI computed between setosa and
versicolor (right) and between setosa and virginica (center right), show how the model relies on the
feature at the tree’s root (petal width). Accordingly to the structure in Figure 3, ICFI between ver-
sicolor and virginica ranks petal length above petal width. Error bars represent the 95% confidence
interval. To aid an easier comparison between plots, the y axis is standardized to the same range.

Figure 4 shows the global PFI feature importance (left), the other three plots display ICFI for all three
class combinations. Error bars represent the 95% confidence interval estimated through Bayesian
inference exploiting Markov Chains Monte Carlo (MCMC); the strategy employed to compute con-
fidence intervals in Figure 4, as well as in the rest of the paper, is outlined in Appendix A.1.

ICFI’s rankings confirm the intuitions deriving from the tree structure. First of all, sepal width and
sepal length’s importance is negligible as it should be. On a global level, the feature which is at
the root of the tree, petal width, is also the top ranked. Thanks to ICFI we can instead see how
the order is switched when the model tries to separate versicolor and virginica, in agreement with
the structure showed in Figure 3. To separate setosa from the other two classes instead, the model
mainly leverages petal width.

These traits of the model reasoning process, are not captured by classic global feature importance
methods like, e.g., PFI, as they present generalized behavior and suffer from aggregation bias. Local
methods instead fail to describe dynamics involving two entire classes, providing explanations for
one particular flower sample.

4.2 4-CLASS LOGISTIC REGRESSION, TEXT

20 newsgroup (Mitchell, 1999) is a text dataset containing newsgroup posts on 20 topics. For the
purpose of this experiment, background knowledge provided by using words as features, allows us
to consider four classes: Hockey, Baseball, IBM and Mac, chosen as they are pairwise similar and
difficult to separate. The four classes total 2635 samples in the training set and 1573 in the test set.
We encode words as features, resulting in a dataset with 4525 dimensions. Further details on the
data pre-processing strategy are provided in Appendix A.2. The model is a binary logistic regression
model fitted for each label. Figure 5 displays the model’s confusion matrix computed on test data.

The tiles highlighting the most misclassifications are the ones involving the Hockey-Baseball and
the IBM-Mac combinations, which are the pairings involving the most similar classes and thus, the
most difficult to separate. The model performing better for certain class combinations than in others,
raises the question of which are the important features for each pair.

Figure 6 shows PFI, ICFIBaseball-Hockey and ICFI IBM-Mac, displaying the top ten ranked features.
Global feature importance, as expected, highlights features relevant in both tasks, e.g., mac, apple,
hockey and baseball, summing-up the whole model behavior. In both ICFI plots showed in Figure 6,
we can instead see how words related to the inspected classes are the most important ones. For ex-
ample mac and pc are important features for the Mac-IBM class combination, while nhl and pitcher
are within the highlighted features for Baseball-Hockey. Furthermore, the top spots are taken by fea-
tures having high discriminant power between the classes of interest. Looking at ICFIBaseball-Hockey

the first two ranked features are indeed baseball and hockey.

Furthermore, note that the feature importance values are relatively low w.r.t. the [0, 1] range. This
makes intuitively sense as the model has a high number of features to rely on. A measure with no

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Newsgroup dataset normalized confusion matrix. The tiles showing the most misclassifi-
cations are the ones involving the Hockey-Baseball and the IBM-Mac pairs.

Figure 6: From left to right, PFI, ICFI of IBM and Mac and ICFI of Hockey and Baseball. The top
ten ranked features are displayed. For the sake of comparison, plots are displayed with the same y
range. Error bars represent the 95% confidence interval.

upper bound couldn’t have lead to such consideration, as we would not have any reference value to
compare the computed FI with. ICFI correctly retrieves features used to separate an arbitrary pair of
classes: a level of insight lost due to aggregation bias in global FI metods. We can indeed notice how
by looking at PFI’s ranking, without background knowledge, we wouldn’t be able to grasp which
features are highly discriminative for which pair of classes.

4.3 COMPLEX MULTI-CLASS NEURAL NETWORK

We now consider model retraining to test the quality of ICFI’s feature importance ranking. Concep-
tually, the better the feature ranking, the better a model trained with only the top k most important
features will perform. As ICFI computes a ranking for a pair of classes for the model to explain, the
retraining is carried out using a One versus One strategy. A binary classification model is created
for each class pair and fitted using ICFI’s top k features for each respective class pair. Each point
is classified for each model and a final classification is obtained through a majority vote (Bishop,
2006).

We utilize four real-world multi-class classification datasets: Dry Bean (mis, 2020), Penguins (LTER
& Gorman, 2016), Vehicle silhouettes (Mowforth & Shepherd), and Wine (Aeberhard & Forina,
1991), which have 13611, 342, 423, and 178 samples respectively. Dry Bean is a classification
dataset of grains belonging to 7 different varieties of dry beans. Each record has 16 numerical
features describing the grain’s shape and dimension. The Penguins dataset contains 4 numerical
features about three different species of penguins. The goal of Vehicle silhouttes is to classify a
given silhouette, leveraging 18 numerical features, as one of four types of vehicles. Lastly, Wine
leverages the quantities of 13 wine constituents to label each record as belonging to three different
cultivars.

The model to explain is a feed-forward neural network, i.e., a black box model, which is trained
for the multi-class classification problem at hand. ICFI is computed for each class pair and the top

9
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k features for different values of k are selected. For each value of k, a One vs One classifier is
then fitted, i.e., a neural network is trained for each class pair, with the final decision obtained by
aggregating models’ output through a majority vote. Each neural network, binary classifying a class
pair, will use the top k features highlighted as most important by ICFI computed for that class pair.
The better the features, the higher the performance of the retrained One vs One (Borisov et al., 2019;
Huang et al., 2020). We remark how the One vs One strategy is leveraged only in the evaluation step
to assess ICFI’s explanation quality. ICFI does not need a One vs One model for its computation
and is, on the contrary, completely model agnostic.

We compare ICFI’s rankings quality with other four feature selection strategies. We indeed compute
PFI, global SHAP and global LIME feature importance on the neural network we seek to explain,
choosing the top k features for model retraining. In this scenario, each model in the One vs One
classifier uses the same top k features, as a global measure is used. In the fourth benchmark, features
are selected randomly for each class pair. We include global methods in our comparison because
of the absence of XAI methods natively having the same ICFI objective, and to show how the
features important globally are not the most discriminative for each pair of classes. Three additional
benchmarking strategies, where state-of-the-art global methods explain multiple binary models, one
for each pair of classes, are discussed in Appendix A.3.

Figure 7 shows test accuracy at different k values. Retraining based on ICFI consistently outper-
forms retraining leveraging PFI, global SHAP, global LIME and when features are chosen randomly.
Specifically, the increase in performance is most evident when a low number of features is used,
which is the most challenging setting and thus were the quality of the features’ ranking matter the
most. This indicates how features chosen with ICFI for each One vs One model carry more dis-
criminative power than the features selected by global XAI methods. ICFI can thus effectively find
features with high discriminative power to separate two classes, not suffering from aggregation bias.

Figure 7: Test accuracy at different number of features selected. From left to right Penguins, Dry
Bean, Vehicle silhouettes and Wine dataset. For the sake of better comparison the y axis has the
same range across all plots. Error bars show the 95% confidence interval.

5 CONCLUSIONS

ICFI leads to more insights in a multi-class classification scenario, where current methods either
suffer from aggregation bias or are tailored toward binary settings. ICFI quantifies feature impor-
tance in discriminating arbitrary pairs of classes. ICFI is a post-hoc, model-agnostic XAI method
applicable to any existing ML model.

ICFI relies on merging the two inspected classes and measuring the performance improvement to
measure the model’s performance in separating the pair of classes. We use permutation to mimic
the absence of a feature, allowing us to quantify its importance. ICFI’s output is bounded to a
well-defined range to make it more interpretable to human stakeholders. Evaluation has, through
experiments, demonstrated ICFI’s usefulness and relevance. We used ground-truth provided by an
interpretable model and words in an NLP dataset to show how ICFI correctly retrieves features with
high discriminative power for a pair of classes. Global methods on the same tasks fail to retrieve
these insights, representing average behavior. Model retraining was used to display the quality of
ICFI’s feature ranking.

Future work could further explore different permutation strategies and feature attribution scores,
thereby leveraging our idea for a diverse set of XAI scores.
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incremental version of sage for online explanation on data streams. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pp. 428–445. Springer, 2023.

Kristin K Nicodemus, James D Malley, Carolin Strobl, and Andreas Ziegler. The behaviour of
random forest permutation-based variable importance measures under predictor correlation. BMC
bioinformatics, 11:1–13, 2010.

Joris Pries, Guus Berkelmans, Sandjai Bhulai, and Rob van der Mei. The berkelmans-pries fea-
ture importance method: A generic measure of informativeness of features. arXiv preprint
arXiv:2301.04740, 2023.

Ilyse Resnick, Nora S Newcombe, and Thomas F Shipley. Dealing with big numbers: Represen-
tation and understanding of magnitudes outside of human experience. Cognitive science, 41(4):
1020–1041, 2017.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Mirka Saarela and Susanne Jauhiainen. Comparison of feature importance measures as explanations
for classification models. SN Applied Sciences, 3(2):272, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Carolin Strobl and Achim Zeileis. Danger: High power!–exploring the statistical properties of a test
for random forest variable importance. 2008.

Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis. Con-
ditional variable importance for random forests. BMC bioinformatics, 9:1–11, 2008.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Andreas Theissler, Francesco Spinnato, Udo Schlegel, and Riccardo Guidotti. Explainable ai for
time series classification: a review, taxonomy and research directions. Ieee Access, 10:100700–
100724, 2022.

13

https://doi.org/10.1145/3457607


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Julian Tritscher, Anna Krause, and Andreas Hotho. Feature relevance xai in anomaly detection:
Reviewing approaches and challenges. Frontiers in Artificial Intelligence, 6:1099521, 2023.

Huazhen Wang, Fan Yang, and Zhiyuan Luo. An experimental study of the intrinsic stability of
random forest variable importance measures. BMC bioinformatics, 17:1–18, 2016.

Mohammed J Zaki and Wagner Meira. Data mining and analysis: fundamental concepts and algo-
rithms. Cambridge University Press, 2014.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. Advances in neural information processing systems, 31, 2018.

Zhengze Zhou, Giles Hooker, and Fei Wang. S-lime: Stabilized-lime for model explanation. In
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp.
2429–2438, 2021.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CONFIDENCE INTERVALS COMPUTATION

In each ICFI and PFI computation in the paper, the same strategy is employed to compute error bars,
which relies on Bayesian inference. We run the feature importance computation 100 times where
each run differs because of the randomization in the permutation procedure. As an approximation,
we assume the process is modelled by a Gaussian likelihood,

P (x|µ, σ) = 1

2πσ2
· e−

(x−µ)2

2σ2 (5)

We infer its mean µ and standard deviation σ through a Bayesian approach. We make a conservative
choice for both priors using a uniform distribution defined in the interval [0, 1]. We sample the
posterior using a Markov Chain Monte Carlo (MacKay, 2003), which allows us to skip the evidence
computation.

We generate chains using Python’s emcee package (Foreman-Mackey et al., 2013). For each run we
generate 20 chains with 6000 samples each, using the first 1000 as burn-in. The sampled points from
each chain are then merged together. For our purpose, we consider only the µ parameter samples,
quantifying feature importance with its mean and identifying the 95% confidence interval excluding
the first and last 2.5 percentile of the distribution.

Figure 8 showcases one MCMC chain without burn-in (left) and the resulting µ distribution (right),
for the petal length feature in the top left plot in Figure 8; i.e. for the PFI computation of the petal
length feature in the Iris dataset.

Figure 8: MCMC chain (left) and posterior marginal distribution of the µ parameter (right). The
chain is run on the data obtained running 100 times the PFI algorithm on the petal length feature of
the Iris dataset.

A.2 20 NEWSGROUP PREPROCESSING

The data is preprocessed by creating a matrix representation of words count. A TD-IDF
scheme (Baeza-Yates et al.) is then applied scaling down the impact of frequent tokens. Moreover,
words appearing in more than half of the documents, or less than five times in total, are removed.
This strategy allows us to rely on words as features, giving high interpretability. Crafting features
with text embeddings, would instead imply features carrying less interpretability (Ribeiro et al.,
2016).

A.3 MODEL RETRAINING

In Section 4.3, we benchmarked ICFI with global methods in order to assess how aggregation bias
hides discriminant features for a pair of classes. Global methods do not have the same ICFI’s objec-
tive because they explain the model globally without accounting for inter-class relationships. Here,
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Figure 9: Test accuracy at different number of features selected. From left to right Penguins, Dry
Bean, Vehicle silhouettes and Wine dataset. For the sake of better comparison the y axis has the
same range across all plots. Error bars show the 95% confidence interval. OvO in the legend signals
that the method has been used on each binary model of a One vs One approach.

in order to build benchmarks having the same objective as ICFI, we use the following strategy.
Instead of fitting and explaining a single neural network, we fit and explain multiple binary mod-
els, one for each class combination. A feature ranking is retrieved for each pair of classes, using
global SHAP, global LIME and PFI respectively on each binary model. Retraining is performed
analogously to the benchmarks in Section 4.3.

For a fair comparison with ICFI explanations already produced in Section 4.3, we use a compa-
rable total number of parameters w.r.t. the neural network explained in Section 4.3. We note that
while ICFI is completely model agnostic and handles multi-classification natively, state-of-the-art
FI methods require, to find discriminative features for a pair of classes, a binary model for each
class combination (i.e. a One vs One approach). This is computationally demanding and sacrifices
accuracy on the original task, on top of heavily constraining the classification strategy, compared to
our earlier experiments.

Results are displayed in Figure 9, OvO in the legend signals that the XAI explanation has been
computed on each binary model. ICFI is on par with PFI in the Penguins and Wine dataset while
otherwise outperforming competing methods. ICFI achieves this without constraining in any way
the classification strategy, not requiring a One vs One approach, demonstrating its novel contribution
in multi-class classification.

A.4 ICFI PROPERTIES

The purpose of this section is to show that ICFI’s definition in Eq. 4 implies a non-negative feature
importance quantification which is bounded between 0 and 1 and a measure which is symmetric on
the pair of classes. Note that boundedness between 0 and 1, implies non-negativity. We will then
prove:

1. ICFIσρj ≥ 0 .

2. ICFIσρj ≤ 1 .

3. ICFIσρj = ICFIρσj .

Proof.

1. We need to show that ∣∣∣∆R̃σρ
j −∆Rσρ

∣∣∣
∆Rσρ

≥ 0 ⇐⇒ ∆Rσρ > 0 . (6)

It is left to prove that ∆Rσρ = R − Rσρ > 0. If the relation is true for every single
sample, it will consequently stay true when taking the average. The proof is shown for the
cross-entropy loss: the scenario adopted in this paper’s experiments and the most used loss
in multi-class classification.
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There are two possibilities to take into account:

• If the true label is neither σ or ρ, R̃j and R̃σρ
j have the same value. The two origi-

nal probabilities and the merged one are indeed multiplied by 0 in the cross-entropy
formulation.

• Without loss of generality, taking σ as the true class, the cross entropy contribution for
R is −log pσ . With pσ the model probability for class σ. The merged one is instead
−log (pσ + pρ) with the difference being

log (pσ + pρ)− log pσ =

= log
pσ + pρ

pσ
= log

(
1 +

pρ
pσ

)
> 0 . (7)

Note that in eq. 7 and in the cross-entropy computation, the probabilities are clipped
avoiding pρ and pσ to be exactly 0.

2. To show that Eq. 4 always evaluates ≤ 1 we need to show that

− 1

1 +
∣∣∣∆R̃σρ

j −∆Rσρ
∣∣∣ /∆Rσρ

≤ 0 , (8)

which is immediate from Eq. 6.

3. The merge operation is completely symmetric and there are no operational differences in
computing ICFIσρ and ICFIρσ .
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